Supplementary material for

A new look at the jet-storm track relationship in the North Pacific and North Atlantic

by Nora Zilibotti ^a, Heini Wernli ^a, and Sebastian Schemm ^b

^aInstitute for Atmospheric and Climate Science, ETH Zürich, Switzerland

^bDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge, UK

Corresponding author: Nora Zilibotti, nora.zilibotti@env.ethz.ch

This file contains supplementary Figs. 1 - 7.

1 Supplement

Figure S1: EKE at 300 hPa (shading) and 10-d low-pass filtered zonal wind at 250 hPa (U, gray contours, every $10 \,\mathrm{m \, s^{-1}}$) in the NA for weak (**a**) and strong (**b**) jet timesteps.

Figure S2: Eddy orientation measure, $v'^2 - u'^2$ normalized by EKE (shading) and the 10-d low-pass filtered zonal wind on 250 hPa (U, gray contours) for weak (a) and strong (b) jet timesteps in the NP.

Figure S3: Unnormalized eddy orientation measure, $v'^2 - u'^2$ (shading) and the 10-d low-pass filtered zonal wind on 250 hPa (U, gray contours) for weak (a) and strong (b) jet timesteps in the NA

Figure S4: As Fig. S2 but for the NA.

Figure S5: 10-day low-pass filtered zonal wind at $250 \,\mathrm{hPa}$ (U) and area-weighted annual frequency of cyclones at their time of maximum 12-hourly intensification in the NP. Frequencies are computed separately for time steps belonging to the weakest (left) and strongest (right) tercile of U.

Figure S6: As Fig. S5 but for the NA.

Figure S7: Cyclone-centered composites of cyclones at their time step of maximal 12-h intensification in the NA domain. Shown are cyclones with maximal intensification during time steps belonging to the weak (\mathbf{a},\mathbf{c}) and strong U (\mathbf{b},\mathbf{d}) terciles. (\mathbf{a},\mathbf{b}) show the 300 hPa EKE in shading, the high-pass filtered SLP in black contours (every $4\,\mathrm{hPa}$) and the total kinetic energy at 250 hPa in blue contours (every $200\,\mathrm{m}^2\,\mathrm{s}^{-2}$). The innermost total kinetic energy contour is $1400\,\mathrm{m}^2\,\mathrm{s}^{-2}$ in (\mathbf{a}) and $2200\,\mathrm{m}^2\,\mathrm{s}^{-2}$ in (\mathbf{b}) . (\mathbf{c},\mathbf{d}) show PV on $320\,\mathrm{K}$ in shading, SLP in black contours (every $5\,\mathrm{hPa}$), and the high-pass filtered meridional wind at $300\,\mathrm{hPa}$ in blue contours (every $5\,\mathrm{m\,s}^{-1}$). The significance of a positive (negative) PV anomaly with respect to the PV distribution of all DJF cyclones on a 1% level is shown by black (violet) stippling.