
Text S1 Detailed vine copula construction, including mathematical notation: As described by Sklar 1 

(1959), the joint multivariate distribution (F) can be described as: 2 

𝐹(𝑥) = 𝐶{𝐹ଵ(𝑥ଵ), … , 𝐹ௗ(𝑥ௗ)} (1) 

where x1, …, xd denotes a setting of d relevant variables, F1, ..., Fd the marginal distributions and C is 3 

a copula (itself a d-dimensional distribution function on [0, 1]d with uniform margins) (Erhardt and 4 

Czado, 2018). 5 

Following the methodology of Erhardt and Czado (2018), the copula data that are obtained from the 6 

marginal models corresponding to d different drought variables can be described as: 7 

𝑢 ∶= (𝑢ଵ, … , 𝑢ௗ) (2) 

where uj = (uj), j = 1, ..., d and uj are the copula data corresponding to variable j. 8 

As noted by Aas et al. (2009), vine copulas can be used to model multivariate data acting on two 9 

variables at a time, offering a way in which to construct higher-dimension copulas. For a three 10 

variable example, the vine copula density c is given as: 11 

𝑐(𝑢ଵ, 𝑢ଶ, 𝑢ଷ;  𝛩) = 𝑐ଵ,ଶ൫𝑢ଵ, 𝑢ଶ;  𝛩ଵ,ଶ൯𝑐ଵ,ଷ൫𝑢ଵ, 𝑢ଷ;  𝛩ଵ,ଷ൯𝑐ଶ,ଷ;ଵ{ℎଶ|ଵ൫𝑢ଶ, 𝑢ଵ;  𝛩ଵ,ଶ൯, ℎଷ|ଵ൫𝑢ଷ, 𝑢ଵ;  𝛩ଵ,ଶ൯; 𝛩ଶ,ଷ;ଵ} (3) 

where c1,2, c1,3 and c2,3;1 are the pair copula densities corresponding to the copulas C1,2, C1,3 and C2,3;1. 12 

The h-functions involved are defined as hb|a(ub, ua; Θ) := Cb|a(ub|ua; Θ), where Cb|a denotes the 13 

conditional distribution function of Ub given Ua (Erhardt and Czado, 2018).  14 

Having fitted the copula, the resultant copula data were transformed into independent data in the 15 

[0, 1] space using the Rosenblatt transformation (Rosenblatt, 1952). The Rosenblatt transform v := 16 

(v1, ..., vd) on the basis of the selected vine copula C for the data u = (u1, ..., ud) is defined as: 17 

𝑣ௗ ∶=  𝐶ௗ|ଵ,…,ௗିଵ(𝑢ௗ|𝑢ଵ, … , 𝑢ௗିଵ) (4) 

where Cj|1, ..., j−1 is the conditional cumulative distribution function for variable j given the variables 18 

1, ..., j − 1 for all j = 2, ..., d. In the Canonical Vine (C-Vine) context the order of the variables is 19 

determined by the selected order of root variables (Erhardt and Czado, 2018). 20 

The elements from this multivariate probability integral transformation were transformed to the 21 

standard normal distribution p, using the inverse of the cumulative distribution function of a 22 

standard normal distribution: 23 



𝑝௝ =  𝛷ିଵ(𝑣௝) (5) 

Finally, these uniform elements were then aggregated and standardised to the final Standardised 24 

Multivariate Index (SMI): 25 
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Limits of -3/3 were also imposed (Stagge et al., 2015). Index construction was performed using R 26 

software (R Core Team, 2017), and the following packages: 27 

Standardised Indices: 28 

SCI Package: Stagge et al. (2015) 29 

fitdistrplus: Delignette-Mueller and Dutang (2015) 30 

Copula: 31 

copula: Hofert et al. (2020) 32 

Vine Copula: 33 

VineCopula: Nagler et al. (2022) 34 

rvinecopulib: Nagler and Vatter (2021)  35 



Text S2 Method Description:  36 

The following provides a more specific description of the methodological procedure used in the 37 

construction of the Standardised Multivariate Index (SMI) and Standardised Bivariate Index (SBI), 38 

and aligns with the flowchart illustrated in Fig. S1.  39 

Overview 40 

Maximum temperature, precipitation and soil moisture were selected as the variables from which 41 

an extreme event index was constructed, using the European ReAnalysis 5th Generation Land 42 

Component (ERA5-Land) dataset (Muñoz-Sabater et al., 2021).  43 

Standardised Indices 44 

The extreme event index was constructed using copulas, after first constructing individual 45 

standardised indices: the Standardised Precipitation Index (SPI) (McKee et al., 1993) (precipitation), 46 

the Standardised Temperature Index (STI) (Zscheischler et al., 2014) (maximum temperature) and 47 

the Standardised Soil Moisture Index (SSMI) (Xu et al., 2018) (soil moisture). Gamma, Normal and 48 

Beta distributions were used to fit the SPI, STI and SSMI respectively across a 30-day accumulation 49 

period. 50 

Pre-processing Work 51 

Here, the pre-treatment guidelines proposed by Tootoonchi et al. (2022) are addressed (Fig. S1). 52 

The first step, an initial exploratory analysis, was performed in Bennet et al. (2023). Data ties, 53 

predominately within precipitation data (i.e. zero precipitation), are treated via the use of the 54 

Weibull plotting position for zero precipitation values (Stagge et al., 2015) when constructing the 55 

SPI. Autocorrection is addressed by the approach of Kao and Govindaraju (2010) via the constructing 56 

of daily subsets in the time series, resulting in 365 individual time series for each index. Stationarity 57 

is not addressed, with the baseline period (1961-1990) used for the standardised indices generally 58 

considered free from non-stationarity (World Meteorological Organisation, 2017), and thus copula 59 

parameters are able be stabilised. 60 

Vine Copula Structure 61 

A Canonical Vine (C-Vine) is a sub-class of R-Vine (itself a nestled set of trees used for pair copula 62 

construction as building blocks; Erhardt and Czado (2018) and Bedford and Cooke (2002)), having a 63 



star like structure where a centre node is linked to all remaining nodes (Wu et al., 2021). This star 64 

like structure allows the order of variables to be set to the order of importance, with the variable of 65 

highest importance being set as the root variable (Erhardt and Czado, 2018). In the current work, 66 

this C-Vine structure was selected, while testing (not shown; utilizing the algorithm of Dissmann et 67 

al. (2013)) revealed the conditional/root variable precipitation as the chosen optimal variable. 68 

Parameter Estimation 69 

A semi-parametric approach for the estimation of copula parameters is common in hydroclimatic 70 

studies (Pham et al., 2016; Tootoonchi et al., 2022), and is herein employed. The semi-parametric 71 

approach first establishes the individual marginal distributions based on their rank behaviour and 72 

by forming pseudo observations, before copula parameters are estimated by maximizing the pseudo 73 

likelihood function (Kim et al., 2007; Tootoonchi et al., 2022). The automatic fitting and model 74 

selection contained within the “rvinecopulib” and “VineCopula” packages of Nagler and Vatter 75 

(2021) and Nagler et al. (2022) provides for parameter estimation of semi-parametric models (i.e. 76 

after forming pseudo observations) using either maximum likelihood or the inversion of Kendall’s τ. 77 

Both parameter estimation methods were trialled by creating two copula models. Each model 78 

automatically selected the optimal copula families at each tree edge, for each calendar day and each 79 

grid cell (and for each accumulation period), using the “RVineCopSelect” function of Nagler et al. 80 

(2022), with the parameter estimation method being the only difference across the two models 81 

(either maximum likelihood or the inversion of Kendall’s τ). Parameter estimation using maximum 82 

likelihood was the best performing vine copula model, with 95.24% of grid cells having the best fit 83 

(log-likelihood) compared to the copula set. 84 

Copula Families 85 

Copula selection was from a family set made up of Clayton, Frank and Joe (no rotations), selected 86 

via Akaike Information Criterion (AIC). This process was performed for each calendar day, for each 87 

grid cell and for each accumulation period. The selection of only three copula families was made to 88 

reduce the overall spatial and temporal complexity associated with fitting highly unique copula 89 

families on the fine scales of this study (0.10 x 0.10 and daily resolution).  90 

Goodness of Fit 91 



To minimise computational load, goodness of fit tests were performed on the vine copula model 92 

fitted to the 15th day of each month, before aggregation of the test results. Testing was performed 93 

using Cramér-von Mises (CvM) and Kolmogorov-Smirnov (K-S) statistics. Results indicated strong 94 

agreement in the goodness of fit tests, with an overall good fitment of the copula model. 95 



 96 

Fig. S1 Flowchart illustrating the methodological procedure and steps performed in the current work 97 
to construct the multivariate index using both bi (Standardised Bo-Copula Index; SBI) and vine 98 
(Standardised Multivariate Index; SMI) copula methods.  99 



 100 

Fig. S2 Tree structure of optimal variables orders detected using the Dissmann et al. (2013) 101 
algorithm, applied across the entirety of New Zealand. Headings refer to the root/conditional 102 
variable: temperature (top left), precipitation (top right) and soil moisture (bottom).  103 



 104 

Fig. S3 Example of compound (a) and seesaw (b) events, adapted from Rashid and Wahl (2022). In 105 
the present work, the buffer within a seesaw event refers to a 30-day period, to ensure adequate 106 
sample size of events. Event characteristics are noted in the figure; for seesaw events representing 107 
onset rates of dry and wet phases, as well as termination rates of dry and wet phases, while for 108 
compound events representing onset and termination rates. 109 



Table S1 Optimal bivariate copula family for each season (DJF, MAM etc.), identified as the most common copula family (i.e. most days) for 110 
each season from either Frank, Clayton or Joe copulas, for all grid cells. Identification of optimal copula is performed using AIC selection 111 
criteria. 112 

Distribution Precipitation-Soil Moisture Copula Precipitation-Temperature Copula Temperature-Soil Moisture Copula 
Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring 

30-Day Frank Frank Frank Frank Clayton Clayton Frank Clayton Clayton Frank Frank Frank 

 113 


