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Abstract.

To improve hydrological uncertainty estimation, recent studies have explored machine learning (ML)-based post-processing

approaches that enable both enhanced predictive performance and hydrologically informed probabilistic streamflow predic-

tions. Among these, random forests (RF) and their probabilistic extension, quantile random forests (QRF), are increasingly

used for their balance between interpretability and performance. However, the application of QRF in regional post-processing5

settings remains unexplored. In this study, we develop a hydrologically informed QRF post-processor trained in a multi-site

setting and compare its performance against a locally (at-site) trained QRF using probabilistic evaluation metrics. The QRF

framework leverages simulations and state variables from the GR6J hydrological model, along with readily available catch-

ment descriptors, to predict daily streamflow uncertainty. Our results show that the regional QRF approach is beneficial for

hydrological uncertainty estimation, particularly in catchments where local information is insufficient. The findings highlight10

that multi-site learning enables effective information transfer across hydrologically similar catchments and is especially ad-

vantageous for high-flow events. However, the selection of appropriate catchment descriptors is critical to achieving these

benefits.

1 Introduction

1.1 On the need for quality uncertainty estimates15

Providing quality uncertainty estimates for streamflow predictions is critically important, particularly in applications such as

operational drought simulation, water resource management, and flood mitigation where significant stakes are involved (Hwang

et al., 2019; White et al., 2017). Poorly quantified or overly confident predictions can lead to misinformed decisions, potentially

resulting in economic losses, infrastructure damage, or even threats to public safety. To address this, various approaches have

been proposed in the hydrological community for streamflow uncertainty quantification, including multi-model ensembles20

(Georgakakos et al., 2004; Troin et al., 2021), Bayesian inference (Kuczera and Parent, 1998; Bates and Campbell, 2001),

and hydrological error modeling (Krzysztofowicz, 1999; Todini, 2008; Solomatine and Shrestha, 2009; Bennett et al., 2021),

referred to as post-processing.
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Hydrological uncertainty post-processing techniques aim to statistically model hydrological predictive distributions and

were adopted early through methods such as the hydrological uncertainty processor (HUP) (Krzysztofowicz, 1999) and model25

conditional processor (MCP) (Todini, 2008), but recent machine learning (ML)-based approaches have emerged as powerful

tools for hydrological post-processing. Although less interpretable, ML-based approaches can potentially produce reliable and

improved informative uncertainty estimates (Papacharalampous and Langousis, 2022; Tyralis and Papacharalampous, 2024).

Methods such as quantile regression (QR) (Tyralis et al., 2019; Papacharalampous and Langousis, 2022), conformal prediction

(Auer et al., 2024), and random forests (Zhang et al., 2023) have been used for streamflow post-processing with promising30

results. However, ML algorithms can produce different uncertainty estimates depending on how they are trained — particularly

on which catchments are included in the training dataset. Since hydrological conditions vary significantly across catchments,

the selection of catchments used for training can influence the uncertainty estimates of the ML model. In our study, we aim to

explore whether including different catchments (multi-site learning) may improve ML-based post-processing for uncertainty

estimation, and specifically for the quantile random forests (QRF) model.35

1.2 Machine learning-based post-processors

Random forest (RF) (Breiman, 2001) and its probabilistic variant, quantile random forest (QRF) (Meinshausen and Ridgeway,

2006) are extensively used and are considered state of the art in many hydrological applications. Recently, Zhang et al. (2023)

compared the QRF model and the countable mixtures of asymmetric Laplacians long short-term memory (CMAL-LSTM)

model to probabilistically post-process streamflow simulations across 522 catchments. The QRF and CMAL-LSTM models40

were comparable in terms of uncertainty estimates, but the CMAL-LSTM deep learning (DL) model performed better in catch-

ments with large flow accumulation areas. QRF has also been applied in hydrologically informed post-processing approaches.

Shen et al. (2022) use an RF framework and leverage internal state variables to correct PCR-Global (PCRaster Global Water

Balance, a global hydrological model) simulations at three stations in the Rhine Basin. They found that the use of hydrologi-

cal model states as input features of RFs provides additional information that may not be included in the model simulations.45

However, challenges remain, particularly in modeling errors during high streamflow periods. Magni et al. (2023) expand the

same approach at the global scale, using PCR-Global model simulations and internal states, in conjunction with static catch-

ment attributes, to train a single RF model on a global database of streamflow simulations and measurements. They found that

improvements were independent of the availability of streamflow data, indicating the power of regional learning methods in

poorly gauged and ungauged catchments.50

Prediction in ungauged basins is not the only benefit of training a single ML model on data from multiple catchments.

Kratzert et al. (2024) advocate the use of regional approaches to fit a deterministic Long Short-term Memory (LSTM) DL model

for streamflow simulations. They found that larger LSTM models trained on all available basins outperform smaller models

trained on a limited set of catchments. This is because, for some ML approaches, models calibrated on larger training datasets

can outperform smaller and more specialized models (Montero-Manso and Hyndman, 2021). Furthermore, Johnson et al.55

(2023) found that hydrological model performance depends on basin attributes, indicating the presence of regional and spatial

2

https://doi.org/10.5194/egusphere-2025-3586
Preprint. Discussion started: 30 July 2025
c© Author(s) 2025. CC BY 4.0 License.



bias. This can be harnessed to improve uncertainty estimation using a post-processing model with spatial parametrization and

trained on hydrologically diverse rainfall-runoff responses.

1.3 Scope of this study

This study focuses on the added value of a regional post-processing approach for hydrologically informed quantile random60

forests (QRF). The main contributions of this work are: (i) to understand the impact of including different catchments in the

training process of QRF (multi-site) and to test if it can improve its uncertainty estimates and (ii) to investigate the importance

of spatial catchment descriptors for these multi-site QRFs.

For this, we use temporally varying information (predicted streamflows and model states) and spatially varying catchment

characteristics. We chose to focus on QRF due to its balance of performance, interpretability, and popularity in the hydrological65

community. To the best of our knowledge, no prior study has explored the impact of multi-site learning with the QRF algorithm

for uncertainty estimation, particularly when post-processing a hydrological model calibrated separately for each catchment.

To that end, we fit different QRF variants on the internal states of a hydrological model, on meteorological variables, and on

readily available catchment characteristics. The proposed regional QRF variants are evaluated across a large sample of 564

French catchments to identify when multi-site learning may be beneficial and to offer practical considerations for multi-site70

QRF application.

The paper is organized as follows: We first introduce the dataset and describe the QRF algorithm, its variants, and the

probabilistic evaluation framework. Then, we present and discuss the results before summarizing the key findings along with

implications for future work.

2 Dataset75

2.1 A dataset of 564 French catchments

We used a set of 564 catchments distributed throughout France (Fig. 1). These catchments represent a wide range of hydrolog-

ical regimes and simulation contexts. We selected these catchments from the CAMELS-FR hydroclimatic dataset (Delaigue

et al., 2024). The criteria for selecting these catchments were as follows: (i) low anthropogenic influence, (ii) good data quality

for all flow regimes, and (iii) an available time series longer than 21 years. Streamflow data were obtained from the national80

HydroPortail archive (Leleu et al., 2014; Dufeu et al., 2022) at a daily time step for the period 1977–2021. Meteorological

forcings (precipitation and temperature) were provided by Météo-France’s daily SAFRAN grid reanalysis (Vidal et al., 2010).

Potential evaporation (PET) is calculated using the formula proposed by Oudin et al. (2005). Since our interest is in developing

a multi-site QRF post-processor, we used several static basin-averaged attributes describing climate, topography and geology.

All of these attributes are included in the CAMELS-FR dataset.85
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Figure 1. Location of the 564 catchment outlets. Plotted regions represent the hydroclimatological catchment groups used in the study.

To achieve separation between hydrological and statistical calibration, data time series were split into two periods: the first

period (1977–1989), during which the hydrological model was calibrated, and the second period (1990–2021), during which

QRF variants were trained and tested. The second period followed a classic train–validation–test splitting procedure:

– P1: training period from 1990 to 2004, used to train the QRF post-processor.

– P2: validation period from 2005 to 2009, used to select the hyperparameters of the QRF post-processor.90

– P3: testing period from 2010 to 2021, used to test the performance of the QRF variants on new data.

Finally, to ensure that sufficient data are available during the training period, all catchments in the dataset have at least 7

years of discharge data available during that period.
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2.2 Methods

2.3 Hydrological model95

We used discharge simulations obtained with the GR6J rainfall–runoff model (Pushpalatha et al., 2011), a daily 6-parameter

conceptual lumped model. GR6J has been applied in several studies across a large number of catchments and hydroclimatic

contexts (e.g. Poncelet et al., 2017; Golian et al., 2021; Tanguy et al., 2023). The GR6J model is based on several state variables

that control its simulations, in particular the production and routing store levels, and intercatchment exchange fluxes. We intend

to use these state variables as predictors in the QRF algorithm. Shen et al. (2022) successfully used internal state variables as100

predictors in an RF framework to correct hydrological model errors. They found that internal state variables provided valuable

information for the RF, enabling it to detect and correct for systematic hydrological model errors. To account for the influence

of snow of some catchments, we incorporated Cemaneige (Valéry et al., 2014), a snow accumulation and melt model, with

constant parameters for all catchments.

The Cemaneige-GR6J model was calibrated using the airGR R package (Coron et al., 2017, 2023) with the built-in calibra-105

tion algorithm. To ensure good performance across a wide range of streamflow conditions, the target optimization criterion was

a combination of KGE criteria (Gupta et al., 2009; Kling et al., 2012): an equal weighting of KGE criteria with a power of 0.5

and -0.5 prior transformations on streamflow.

2.4 Feature selection and data transformations

2.4.1 Target variable110

For the purposes of this study, we model the probabilistic distribution of hydrological model errors. Since these errors are

skewed and non-Gaussian (e.g. Evin et al., 2014), we applied a logarithmic transformation to improve the training process:

ϵt = log(
Qobs

t + δ

Qsim
t + δ

) (1)

where ϵt is the target variable of our study and represents the prediction error, Qobs
t and Qsim

t indicate observed and simulated

streamflows, respectively (mm/day), and t represents the time index with a temporal step of 1 day. δ is an offset parameter to115

avoid zero streamflow values and is unique for each catchment. It was calculated following recommendation in Pushpalatha

et al. (2012). The use of δ is especially relevant in this study due to the application of the logarithmic transformation.

The input predictors (or features) in the QRF models are listed in Table 1. These features can be broadly categorized into two

groups of approximately equal size: (i) time series data (dynamic features) that capture temporal variability, and (ii) catchment

descriptors (static features) that enable spatial identification of catchments.120
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2.4.2 Dynamic features

The proposed QRF framework post-processes GR6J simulations and uses hydrological model outputs and state variables along

with meteorological inputs (precipitation and temperature). Streamflow uncertainties are known to be autocorrelated (Evin

et al., 2014) with strong autoregressive (AR) and memory effects. Consequently, lagged observed streamflow (Zhang et al.,

2023; Pham et al., 2020) is a popular input feature for RF-based post-processing. In the simulation context of this study,125

streamflow is not available and we use state features from the GR6J model to provide additional information to QRF. Although

some of the features in Table 1, such as simulated flows and production store, are strongly autocorrelated, we assume that

the additional information still leads to improved uncertainty estimates compared to using model simulations alone. Similarly

to (Shen et al., 2022) we include other temporal information in QRF through transformed features: (i) increment features of

simulated streamflow, production, and routing store levels to help capture the dynamics of the hydrograph (rising and falling130

limbs etc.) and (ii) moving averages of meteorological features to highlight general trends. This feature engineering step can

be relevant for RF-based algorithms in a time series context, because QRF does not create temporal memory or embeddings as

is the case for AR models and LSTM neural networks (Evin et al., 2014; Li et al., 2016; Kratzert et al., 2018).

2.4.3 Static features

To take into account spatial heterogeneity, catchment descriptors are used for the multi-site QRF variants. The static features135

include: (i) average catchment attributes such as catchment area and aridity index. We chose to keep thirteen relevant catch-

ment attributes following the recommendations of Jehn et al. (2020); (ii) scale features of errors, simulated flows, and observed

streamflows. These scale features provide additional unique indicators of catchment characteristics. Montero-Manso and Hyn-

dman (2021) found that combining individual time series features such as catchment attributes with scale features can improve

the performance of ML models in a deterministic setting. Similar improvements are expected for QRF in the setting of hydro-140

logical uncertainty estimation. But, it is important to note that these scale features are not available for prediction in the context

of ungauged catchments, as they are calculated based on observed streamflows.

2.5 QRF: how to fit the algorithm?

Random forest Breiman (2001) is a non-parametric ensemble tree-based model that offers good performance and provides

certain interpretability through its feature importance estimates (Breiman et al., 1984; Breiman, 2001). RF and its probabilistic145

version QRF are used extensively in the hydrometeorological domain. An important advantage of QRF is that it provides full

distributional estimates without the need to estimate each quantile separately, as is required in quantile regression (Tyralis

et al., 2019; Papacharalampous and Langousis, 2022). QRF has been applied to complex and heteroscedastic cases, including

hydrometeorological ensemble forecasts (Taillardat et al., 2016; Tiberi-Wadier et al., 2021; Teja et al., 2023), post-processing

of streamflow simulation (Zhang et al., 2023), and estimation of the limits of acceptability for hydrological models (Gupta150

et al., 2024). Further details on the construction of RF and QRF can be found in (Louppe, 2014; Meinshausen and Ridgeway,

2006), but QRF can be viewed as an analog method (Delle Monache et al., 2013; Hu et al., 2023) that performs a weighted
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Table 1. Features used in the study

Features Unit Description Type

PotEvap mm/day potential evapotranspiration

Dynamic features

Precip mm/day precipitation

AE mm/day actual evapotranspiration

Prod mm production store

Rout mm routing store

AExch mm/day intercatchment exchange

Qsim mm/day simulated flows

Delta_sim7 mm/day 7-day difference in simulated flows

Delta_sim1 mm/day 1-day difference in simulated flows

Delta_rout7 mm 7-day difference in routing store

Delta_rout1 mm 1-day difference in routing store

Delta_prod1 mm 1-day difference in production store

Prec_sold_frac - fraction of solid precipitation

Temp °C temperature

SWI_ISBA - soil wetness index

Rolling_temp °C moving average of temperature

Rolling_precip mm/day moving average of precipitation

Rolling_sold_frac mm/day moving average of solid precipitation

Month_of_year - annual cycle (cosine term)

top_drainage_density - drainage density

Static features

sit_area_topo km2 topographic catchment area

hyd_bfi_pelletier_pet_ou - baseflow index

cli_prec_mean mm/day mean daily precipitation

cli_pet_ou_mean mm/day mean daily potential evapotranspiration

cli_temp_mean °C mean daily temperature

cli_aridity_ou - aridity index

cli_psol_frac_safran - mean fraction of solid precipitation

cli_prec_freq_high - frequency of high-precipitation days

cli_prec_freq_low - frequency of dry days

top_altitude_mean m mean catchment elevation

cli_prec_season_pet_ou - seasonality index

Response_Time days Response time based on the X4 parameter from GR6J

mean_Qsim mm/day mean Qsim

std_Qsim mm/day standard deviation Qsim

mean_Qobs mm/day mean Qobs

std_Qobs mm/day standard deviation Qobs

mean_Error_log - mean error log

std_Error_log - standard deviation error log

Region indicator - Hydroclimatological region of the catchment
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nearest-neighbor search for analogous events. Similarly to a classic RF, QRF grows a number of trees n, with each tree trained

on a bootstrapped subsample of the original training data.

Individual trees are trained according to the Breiman et al. (2017) algorithm by minimizing a loss function and making155

successive splits with a predefined number of features p. This tree-building process enables QRF to account for strongly

correlated features, which is important given the strong correlation of some of the features used. For the purpose of this study,

we use mean squared error (MSE) as loss function to calculate the homogeneity of each group. The procedure continues

recursively, with each resulting group split further until a minimum number of data points m in child splits is reached.

In the classic Random Forest (RF) algorithm, predictions from individual trees are averaged to produce a single deterministic160

output. In contrast, Quantile Regression Forest (QRF) leverages the leaf nodes of trees to compute proximity measures between

a test input and training instances. For a prediction at time t and given input xt, each QRF tree is traversed using binary splits

to reach a corresponding leaf node. A proximity weight ωi(xt) is then defined for each training instance i (Meinshausen and

Ridgeway, 2006), which is then used to estimate the cumulative distribution function (CDF) of the prediction uncertainty:

F̂ (ϵ|xt) =
n∑

i=1

ωi(xt)1{ϵi≤ϵ} (2)165

where ωi(xt) > 0 and
∑n

i=1 ωi(xt) = 1, ϵi denotes the hydrological error of training instance i, and F̂ is the estimated CDF

of uncertainty for xt.

To provide reliable and sharp uncertainty estimates, we considered three hyperparameters for optimization: (i) The number

of trees n, which controls precision and stability. A larger number of trees improves the quality of uncertainty estimates, but

improvements diminish as computational cost increases, especially in larger models. (ii) The minimum number of samples at170

child nodes m, which affects tree depth and strongly impacts reliability and sharpness. Setting high values for the minimum

samples per leaf might yield high reliability, but can lead to poor performance, as the trees are too general and information

is lost. Low values result in overfitting and yield unreliable uncertainty estimates. (iii) The number of features per split, p,

which also shapes the QRF uncertainty estimates. Higher values can lead to under-dispersed uncertainties, while lower values

may reduce sharpness. Further details on hyperparameter values and selection are provided in Appendix A. Additionally, we175

also use a K-nearest neighbor (K-NN) (Wani et al., 2017) approach as a benchmark for the QRF methods used in the study.

Like QRF, K-NN aims to find analogous events but based on the Euclidean distance between features. Here, K-NN is fitted

locally on the same variables as for QRF. Further details on the fitting process and the hyperparameters used are provided in

Appendix B.

Given equation (2), the estimated CDF is bounded by the learning sample. QRF is unable to predict a quantile higher than180

the maximum observed in the training sample, which implies that QRF trained on a single basin is constrained by the range of

errors in its training data. A more hydrologically diverse training dataset would alleviate this problem and enable QRF to adapt

to more extreme events, provided that QRF is able to use the additional information properly.
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Figure 2. Schematic overview of implementing QRF based post-processors. Configurations 1, 2, and 3 represent the regional information

used in QRF post-processing. A description of the features used is provided in Table 2.

2.6 QRF variants

Figure 2 presents the framework employed for the QRF configurations analyzed in this study. The local approach (QRF-local)185

refers to training the QRF algorithm on data from a single basin. Given their construction, spatial features are constant for each

individual catchment and only time-series features can be fed to QRF in the local setup. QRF-local yields 564 independently

trained QRF models, each specific to its respective catchment. Next, spatial variability is added as we extend QRF to a multi-

site setting. The objective here is twofold: (i) to examine whether spatial diversity can improve the uncertainty estimates of

QRF. This can be challenging, particularly since the used GR6J hydrological model is calibrated on an on-site basis; and (ii)190

to determine the optimal number of catchments to include in the training set for effectively capturing hydrological diversity

and improving QRF predictions. We test QRF with two spatial settings: (i) a regional approach (QRF-region), where QRF is

trained on data from catchments that are geographically close and thus potentially have similar error dynamics. In total, 15

regional QRF models are developed for the hydrological regions of the study, based on hydroclimatological groupings of French

catchments; (ii) a global approach (QRF-national), in which a QRF is trained on data from all catchments in the dataset. Both195

static and dynamic descriptors are used in the training process of QRF-region and QRF-national. However, QRF-national uses

the catchment’s hydrological region as an additional input feature, which cannot be used for QRF-region. Intuitively, in cases

where QRF is unable to transfer information from different basins or when there are no useful analogs in similar catchments,

QRF-local would yield better performance, as no information from other catchments is used to build the model. To assess

the usefulness of static features for the multi-station QRF setup, we included QRF-basic, a global QRF approach fitted on all200

catchments of the study, but only with dynamic features. This experiment is expected to highlight whether dynamic time series
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features are sufficient to improve multi-site QRF predictions or that static features are essential for multi-site post-processing.

Table 2 presents the features used in the three configurations.

It is worth mentioning that in multi-site setups, the standardization procedure is an essential step that enables QRF to de-

termine analogs across a set of diversified catchments, as the scales of streamflows and dynamic features (GR6J states and205

transformed variables) vary significantly. Standardization is important for a meaningful training process and for the identifica-

tion of adequate analogous events. Initially, we standardized input data via the popular standard scaling method (Hastie et al.,

2001), which transforms dynamic features – for each catchment – so that the average and standard deviation are set to 0 and 1,

respectively. However, the method resulted in inconsistencies for catchments with outliers, as the standard deviation is sensitive

to extreme values. To solve this issue, we opted for robust standardization (Hastie et al., 2001), which removes median values210

of dynamic features and the target errors ϵt defined in Section 2.3.

Table 2. QRF variants of the study

Configurations Dynamic features Static features Hydroclimatological group Number of models

QRF-local ✓ 564

QRF-regional ✓ ✓ 15

QRF-national ✓ ✓ ✓ 1

QRF-basic ✓ 1

3 Assessment criteria

In this section, we present the probabilistic metrics used to evaluate the three variants of QRF. The followed criterion for prob-

abilistic predictions conforms to Gneiting et al. (2007) objective of maximizing calibration (reliability) subject to sharpness.

Reliability refers to the statistical consistency between probabilistic predictions and observed streamflow values, while sharp-215

ness is a property of predictions exclusively and refers to the dispersion or tightness of the predicted uncertainty distributions.

We used distributional, interval-based, and deterministic evaluation criteria to obtain a holistic point of view of the proposed

QRF variants. All QRF variants in this study predict, at each time step, 200 quantile members equally spaced between 0.005

and 0.995. All of the scores used are calculated using the EvalHyd (Hallouin et al., 2023) python library.

3.1 Distributional metrics: alpha score, sharpness, and CRPSS220

The alpha score (Renard et al., 2010) targets reliability. It calculates the closeness of predicted uncertainty distributions to

the statistical distribution of observed streamflows. The values of the metric range from 0 (worst reliability) to 1 (perfect

reliability). For sharpness, we used a skill score to measure sharpness, defined as the ratio between the sharpness metric and

the reference distribution. In our case, the reference distribution is the empirical distribution of observed streamflows during

the training period. The sharpness metric is the continuous ranked probability score (CRPS) (Gneiting et al., 2005a) of the225

10

https://doi.org/10.5194/egusphere-2025-3586
Preprint. Discussion started: 30 July 2025
c© Author(s) 2025. CC BY 4.0 License.



estimated predictions compared to its median (Appendix C). A perfect point forecast is assigned a score of 1; positive values

indicate better performance compared to the climatological distribution, and negative values indicate worse performance. We

also use the CRPS, which is a popular scoring measure for assessing reliability and sharpness simultaneously (Gneiting et al.,

2005b). For given probabilistic prediction members, the CRPS calculates the difference between the cumulative distribution

function (CDF) of the uncertainty estimates and the observed streamflow values. We use the CRPS skill score relative to the230

climatological distribution to obtain a positively oriented score (a higher score is better). The CRPSS value for perfect point

prediction is 1; positive values indicate better performance than the climatological distribution, and negative values indicate

worse performance, as per Appendix C.

3.2 Coverage ratio, average interval width, and Winkler score

To provide a more comprehensive assessment of predictive uncertainty, evaluation metrics were calculated for prediction235

intervals at the 90% and 95% levels. The coverage ratio (CR) is a measure of reliability that counts the number of observations

that lie within the prediction intervals. Values closest to the desired coverage level (i.e., 90% or 95%) are more reliable. To

assess the sharpness, we employ the average width metric (AW), which corresponds to the average width of the prediction

interval during the evaluation period. We also evaluate the Winkler score (WS), which simultaneously includes both criteria

and enables an easy comparison between the variants of the study. Both AW and WS are presented as skill scores - AW skill240

score (AWSS) and Winkler skill score (WSS) - relative to the climatological distribution.

3.3 Deterministic metrics

Although the main focus of this study is probabilistic post-processing, some decision-makers may require deterministic predic-

tions. Therefore, we also evaluate mean predictions to compare the different post-processing variants of the study. We use the

popular Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and Kling–Gupta efficiency (KGE) (Gupta et al., 2009)245

metrics to gauge the quality of deterministic predictions in multi-site learning setups.

4 Results

In this section, we compare each QRF variant according to its performance during the testing period. We investigate flow ranges

in which multi-site learning is preferable, and we explore the importance of including catchment descriptors for regional QRFs.

The results for the K-NN approach can be found in Appendix B. Figure. 3 illustrates the uncertainty estimates of QRF-local250

for a randomly selected catchment.

4.1 Reliability, sharpness, and CRPSS

We first present our results with distributional metrics in Figure 4, which shows the cumulative distribution of reliability, sharp-

ness, and CRPSS for the 564 catchments of the study. QRF-region and QRF-national slightly improve reliability compared to

QRF-local. However, multi-site learning does not yield better alpha scores for well-calibrated stations with QRF-local. Fig-255
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Figure 3. Example randomly selected for (station code K287191001 at Giroux with 756 km2) a catchment between 1st January 2016 and

1st January 2017 comprising both high- and low-flow events. Uncertainty estimates from QRF-local are plotted with observed flows. Darker

orange shades indicate regions of higher probability (25% and 75% quantiles). Lighter regions indicate low probability quantiles (5% and

95% quantiles).

ure 5 shows a direct comparison of the proposed variants and indicates that improvements were most noticeable for catchments

where QRF-local provided low reliability, i.e., 25% of the basins with the lowest alpha scores (the 25% quantiles of the alpha

score were 0.742 for QRF-local and 0.76 and 0.76 for QRF-region and QRF-national, respectively). In terms of sharpness,

the different QRF variants performed similarly, which is interesting given that multi-site setups significantly improve CRPSS

values. Among the QRF variants, QRF-national generally outperformed QRF-local, improving CRPSS by approximately 2%,260

except in the case of four catchments, where QRF-local performed significantly better. Additionally, QRF-region improved

CRPSS for 69% of the catchments compared to QRF-local, while QRF-national showed improvements in 88% of the catch-

ments. Overall, the improvements are less apparent for reliability, but multi-site QRFs seems to improve performance for

catchments with initially poor calibration in the local setup. Given that the sharpness metric was nearly identical across the

QRF variants in the study, we suspect that the CRPSS improvements are mainly due to improvements in reliability.265

4.2 Interval metrics

We now consider the 90% interval metrics. Figure 6 represents the box plots across the 564 catchments of the study for coverage

ratio, average interval width, and Winkler skill scores. The multi-site learning setup was beneficial for QRF and enabled better

coverage. For instance, the median coverage ratios were set at 0.87, 0.89, and 0.89 for QRF-local, QRF-region, and QRF-

national, respectively. The improvements are also observed for Winkler skill score, where QRF-national provided the best270

results. However, the average interval width was similar for all the variants in the study, further indicating that improvements

in multi-site learning in the case of QRF mainly relate to reliability. For the sake of completeness, we include interval metrics

for the 95% predictive uncertainty interval in Appendix D, as the conclusions remain the same.
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Figure 4. CDF of distributional metrics across the 564 catchments for the QRF variants in the study. The blue line represents the performance

of QRF-local, orange represents QRF-region, and green represents QRF-national.

4.3 Deterministic metrics

Figure. 7 shows the cumulative distribution function for the deterministic metrics of Nash–Sutcliffe efficiency (NSE) and275

Kling–Gupta efficiency (KGE) scores. Multi-site learning improves NSE for most catchments, but for KGE, improvements

are most apparent when the local approach yields low KGE values. For example, when investigating catchments at the lower

25% percentile, QRF-region and QRF-national improved the median KGE by 6%. However, for catchments where QRF-

local provided decent KGE scores (top 25% performers), multi-site setups yielded similar scores to a single-basin approach.

This would highlight the equalizing effects of multi-site learning for QRF, as it is most impactful for catchments with poor280

single-basin post-processing. We argue that these results show: (i) the ability of QRF in its multi-site setup to identify and

transfer useful information from neighboring catchments; (ii) although the improvements relate to both deterministic and

uncertainty predictions, they are most significant for coverage ratio, CRPSS, WSS, NSE, and KGE. Building on these findings,

we investigated whether these benefits were more pronounced under specific hydrological conditions.

4.4 How do QRF uncertainty estimates perform for different flow ranges?285

Here, we aim to understand how the proposed QRF approaches perform across different flow ranges. Table 3 summarizes

the average values of the alpha, dispersion, CRPSS, and interval scores for three flow groups: high (> 67%Qsim), medium

(> 34%Qsim and < 66%Qsim), and low flows (< 33%Qsim). Under low-flow conditions, the scores are similar, especially

the sharpness and alpha scores. But for higher simulated flows, multi-site QRFs provide better calibration (alpha score and

coverage ratio) and better overall performance (CRPSS and WSS). Although QRF-local was able to provide narrower interval290

widths, especially for higher flows, it had lower reliability compared to multi-site QRFs. QRF-region and QRF-national adapt
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Figure 5. Comparative plots between QRF variants in the study during the testing period. The first row shows the alpha score, the second

row shows dispersion, and the third row shows CRPSS. The first column compares metric values for QRF-local vs. QRF-region, the second

column for QRF-national vs. QRF-region, and the third column for QRF-national vs. QRF-region

to higher-flow ranges by providing wider uncertainty estimates and enable better calibration and conditionality, as reflected in

the improved CRPSS and Winkler scores.
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Figure 6. Box plots of 90% interval-based metrics across the 564 catchments of the study. Blue indicates the performance of QRF-local,

orange indicates QRF-region, and green indicates QRF-national.

Table 3. Summary of average metrics for different QRF methods across the 564 catchments of the study. Three flow ranges are included:

high, medium, and low simulated flows. The bold numbers indicate better performance in each group.

Alpha score Dispersion score CRPSS CR90.0 AWSS WSS

Regime QRF variant

Low flows (> 67%Qsim) QRF_local 0.769 0.905 0.914 0.848 0.921 0.919

QRF_region 0.767 0.901 0.919 0.874 0.918 0.925

QRF_national 0.765 0.905 0.921 0.871 0.920 0.927

Medium flows (> 34%Qsim and < 66%Qsim) QRF_local 0.819 0.764 0.792 0.862 0.808 0.812

QRF_region 0.833 0.752 0.797 0.882 0.798 0.821

QRF_national 0.831 0.758 0.802 0.882 0.802 0.825

High flows (< 33%Qsim) QRF_local 0.809 -0.216 0.225 0.870 0.269 0.381

QRF_region 0.827 -0.342 0.247 0.889 0.154 0.391

QRF_national 0.826 -0.213 0.264 0.890 0.249 0.427
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Figure 7. CDF of deterministic metrics across the 564 catchments for the QRF variants in the study. The blue line represents the performance

of QRF-local, orange represents QRF-region, and green represents QRF-national.

4.5 Impact of static descriptors

To understand the impact of static catchment descriptors, Figure 8 illustrates the distributional metrics for QRF-national and295

QRF-basic. QRF-basic is a multi-site QRF trained across all catchments of the study and using the same features as for QRF-

local (no static features). Notable differences between the two variants are observed: in terms of reliability (median 0.827

vs. 0.806 across all catchments), sharpness (0.637 vs. 0.614), and CRPSS (0.706 vs. 0.691). Largest difference are observed

for CRPSS, as QRF-national was better for 80% of the stations of the study. Furthermore, Figure D2 in Appendix D shows

that QRF-basic had very similar CRPSS values as for QRF-local. These results suggest that the performance improvements300

in multi-site QRF models are not solely due to the inclusion of hydrological diversity in the training data. Static catchment

descriptors play a significant role, and the selection of informative static features appears to be critical for effective multi-site

QRF implementations.

4.6 Sensitivity to scale (potential for improving the performance of QRF-national)

Following the results of the previous section, we found that multi-site learning can significantly degrade the performance305

for four cases across distinct hydrological regions; an example of such catchments is presented in Figure. 9. To investigate

this, Table 4 presents the differences in performance (alpha score and CRPSS) between QRF-national and QRF-local based

on the variability of errors ϵt for three groups: group 1 is characterized by important error variability (>1.5), group 2 also
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Figure 8. Distributional metrics across the 564 catchments for the QRF variants in the study. The red line represents the performance of

QRF-basic and green represents QRF-national.

Figure 9. Example uncertainty estimates for a Mediterranean catchment (station Y960000102) from QRF-local (left) and QRF-national

(right), covering the period from July 2017 to January 2020. The estimated 5% quantile is shown in blue, and the 95% quantile in green. The

QRF-national model noticeably overestimates the upper (95%) uncertainty quantile.
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has important error variability but to a lesser degree (0.77< and <1.5), and group 3 (<0.77) which can be seen as having

normal variability. Values 1.5 and 0.77 are the 99% and 90% quantiles of the interquartile range used to standardize the errors310

ϵt. QRF-national performed poorly for catchments with significant variations in the target variable, with notable decreases

in reliability and CRPSS compared to a single-basin approach. These results highlight that robust standardization of input

variables and errors is key to delivering meaningful multi-site QRFs, since this enables the algorithm to find analogs from

locally calibrated hydrological model inputs. Furthermore, the aforementioned scale discrepancies occurred specifically for

catchments characterized by frequent zero values in simulated and observed streamflows. This can be problematic when using315

logarithmic relative hydrological errors. Figure. 9 illustrates QRF-local and QRF-national predictions for the 5% and 95%

quantiles alongside observed flows for the Y960000102 catchment. Clearly, QRF-national overestimates the upper quantile.

The local approach thus yields better results, since the error dynamics of this catchment are unconventional compared to the

other catchments of the study.

Table 4. Average and median (shown in parentheses) differences between QRF-local and QRF-national models across distributional metrics,

evaluated across different error scale groups. For catchments with extreme error variability (Group 1), QRF-national model degrades the

quality of uncertainty estimates.

Error scale Alpha score Dispersion score CRPSS

Group 1 -0.26 (-0.241) -0.786 (-0.028) -0.297 (-0.084)

Group 2 -0.023 (-0.032) -0.091 (-0.021) 0.009 (0.011)

Group 3 0.015 (0.007) 0.01 (0.008) 0.021 (0.022)

5 Discussion320

5.1 When and where is it preferable to use a multi-site learning setup?

Although training QRF on local data yields good uncertainty estimates, as discussed in previous studies (Taillardat et al.,

2016; Zhang et al., 2023), using a multi-site setup can slightly improve QRF performance. Our results indicate that the best

improvements are achieved with QRF-national, which includes all 564 catchments of the study. The improvements mainly

concern (i) catchments where local information is not sufficient (i.e., poor QRF-local performance), (ii) CRPSS and WSS325

scores for nearly all catchments, and (iii) periods of higher flows.

The results presented in Section 4 indicate that multi-site learning improves the performance of QRF models, and that larger

models yield better uncertainty estimates (QRF-national > QRF-region > QRF-local). We find this result interesting, since

one might argue that regional models in the QRF-region approach provide an equilibrium in spatial variability by aggregating

similar catchments and, possibly, similar error dynamics (Johnson et al., 2023). Such an approach confines the QRF analog330

search to specific hydrological regions, without extending the search to the entire study area. QRF-national, however, is not

constrained by the predefined hydro-climatological regions. Region indicators are included as input features for QRF-national,
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and the algorithm is trained to find analogous events using these indicators, but is not strictly limited by them. Spatial variability

appears to be beneficial for QRF, provided that appropriate catchment descriptors are used, and incorporating explicit measures

of catchment similarity could further improve multi-site learning with QRF (Hashemi et al., 2022; Kratzert et al., 2024).335

Most improvements are noted for high and medium flows. QRF-national provided a better alpha score, i.e., reliability for

60% of the catchments during high and medium flows compared to QRF-local, but performance was identical for low flows.

As highlighted in Bertola et al. (2023) and Auer et al. (2024), high flows are generally more difficult to predict and some

high-flow events cannot be predicted exclusively from local historical data. QRF makes use of information from neighboring

catchments to provide uncertainty estimates for these events that can be more challenging to predict. Local information seems340

to be sufficient to characterize low-flow events.

5.1.1 What is the importance of meaningful catchment attributes?

We showed in Figure 8 that the improvements in QRF-national depend on the use of static descriptors. A nation-wide QRF

variant with no catchment attributes (identical input descriptors to the local variant) performed worse than a classic single-

catchment QRF. This indicates that increasing hydrological diversity and lumping more catchment data are not the primary345

drivers of performance improvements. The information shared within a multi-site setup is best used by the QRF algorithm in

conjunction with quality catchment descriptors. This would enable better uncertainty characterization and improved analog

searches in similar catchments. The catchment descriptors used are readily available in the CAMELS-FR and other CAMELS

datasets, making the use of such descriptors straightforward. Furthermore, a globally parametrized QRF post-processor is

able to extend its uncertainty estimates into ungauged catchments. Magni et al. (2023) found that RF is able to learn global350

mappings and improve deterministic estimates in poorly gauged and ungauged basins. Similar improvements could be obtained

in an uncertainty estimation at ungauged catchments context, if appropriate catchment descriptors that do not rely on observed

streamflows are selected.

5.2 On model complexity and computational time

Table 5 presents the number of parameters for each QRF variant, calculated as the product of the number of trees and the355

parameters of each tree (e.g., split thresholds, used input features). QRF-region and QRF-local exhibit a similar number of

parameters, despite QRF-region providing better uncertainty estimates. In contrast, QRF-national shows a 47% increase in

model complexity. This suggests that the performance gains of QRF-national come at the expense of increased computational

cost which can be a drawback, especially since QRF stores not only the tree parameters but also samples used for training.

RF-based algorithms are CPU-intensive and suffer from memory voracity, especially for larger datasets Taillardat and Mestre360

(2020). In the case of our study, we had no difficulty fitting QRF-local and QRF-region with an Intel(R) Core(TM) i7-4770

CPU (3.40 GHz) and 16 GBs of memory. However, because of memory issues, we trained QRF-national on Jean-Zay HPC,

where a single node with two CPUs (at 2.5 GHz) and 128 GBs of memory was sufficient. While training time is longer for

multi-site settings, inference/prediction times are very similar to those of QRF-local.
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Table 5. Cumulative number of parameters across all models.

Model Number of parameters

QRF-local 379M

QRF-region 364M

QRF-national 551M

6 Conclusions365

In this study, we investigated the added value of multi-site learning with a hydrologically informed quantile random forest

(QRF) post-processor across a large set of 564 French catchments. Three training setups were proposed – local, regional,

and national – which we evaluated with different probabilistic metrics and across various hydrometeorological conditions.

Based on reliability, sharpness, and overall metrics, our results indicate that multi-site learning improves QRF uncertainty

estimates, with notable enhancements; (i) for overall metrics (CRPSS and WSS) and deterministic metrics (NSE and KGE)370

(ii) at stations where the local approach provided unreliable uncertainty estimates; and (iii) for high and medium flows, where

predictions can be more challenging. These findings corroborate previous studies (Fang et al., 2024; Bertola et al., 2023;

Auer et al., 2024) that found that high-flow events can have similar characteristics in neighbouring catchments. These results

suggest that the QRF algorithm in its regional extensions can leverage data from neighbouring catchments to improve its

uncertainty estimates; this is particularly advantageous given the off-the-shelf use of available catchment descriptors and the375

similarity of the learning process between local and regional variants. Additionally, the selection of representative and quality

catchment attributes and static features is necessary to achieve the aforementioned improvements. We also found that using a

single QRF post-processor for all catchments in the study (QRF-national) provided the best probabilistic predictions, which

might indicate that the larger the model the better the uncertainty estimates with QRF. But QRF-national can yield erroneous

uncertainty estimates for catchments with significant scale variations in the errors. We argue that this is mainly due to the use of380

logarithmic transformation of relative errors, which strongly influences hydrological error dynamics at such stations. The use

of other transformations and experimenting with other catchments groupings (Hashemi et al., 2022) could solve this issue. In

addition, larger models are associated with higher computational costs, with increased complexity, and with a larger number of

parameters. This is particularly relevant for QRF, as RF-based algorithms are known for their intensive memory use. However,

some solutions include the use of GPU-accelerated QRFs (Raschka et al., 2020).385

We acknowledge certain limitations related to model-dependent artifacts. In this study, we were able to test QRF variants

only using the GR6J hydrological model, as it was the only model for which simulations were available. However, the proposed

framework is flexible and can be extended to other hydrological models and states. These findings highlight the performance

enhancements of regional hydrologically informed QRF post-processing, and we aim to explore further in future studies the

merits of the proposed QRF framework in both forecasting applications and prediction at ungauged basins.390
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downloaded from the HAL open archive using the following identifier: hal-04088473. The CAMELS-FR dataset can be downloaded from395

the Recherche Data Gouv repository using the following identifier: 10.57745/WH7FJR.

21

https://doi.org/10.5194/egusphere-2025-3586
Preprint. Discussion started: 30 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix A: Hyperparameter tuning and libraries used

Since we use QRF for probabilistic predictions, hyperparameter selection was based on the mean of the alpha score and CRPSS

values. This would enable a selection based on the quality of overall uncertainty estimates with an emphasis on reliability. For

QRF-local, hyperparameters were tuned independently for each catchment and the set maximizing the aforementioned criteria400

during the validation period was selected. QRF-region and QRF-national hyperparameters were selected based on median

criteria among the region’s catchments. Overall, the selected hyperparameters were found to vary between catchments and

regions. Table A1 presents the hyperparameters selected for optimization.

Table A1. Hyperparameters set optimized for QRF

Hyperparameter Values

Min samples leaf 5, 10, 25, 50, 75, 100, 150, 200, 400, 600

Number of estimators 200, 400, 600

Max features sqrt, 8, 16

Seeds 0, 1, 2

Appendix B: K-Nearest Neighbors model as benchmark

B1 K-Nearest Neighbours algorithm405

We used a naive k-nearest neighbors approach as a benchmark. The k-nearest neighbors (K-NN) algorithm is a non-parametric

method that makes predictions based on the closest historical examples in the feature space. In hydrology, it is often used

to estimate streamflow by averaging the outputs of the k most analogous conditions. Here analogs were used to estimate

uncertainty, on a local basis. Table B1 presents the hyperparameters used for the K-NN algorithm, while table B2 compares the

approaches K-NN and QRF-local. Average and median (between parentheses) across the catchments of the study, including410

distributional, interval and deterministic metrics.

B2 K-Nearest Neighbours and QRF-local comparison

Table B1. Hyperparameters Set Optimized for K-NN approach

Hyperparameter Values

Number of neighbors 5, 10, 25, 50, 75, 100, 150, 200, 400, 800

Distance Uniform, distance

Table B2 compares the average and median performance metrics of QRF-local and K-NN across the 564 catchments. Overall,

QRF-local consistently outperforms K-NN across all evaluated metrics. It achieves higher alpha scores, improved dispersion
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scores, and better CRPSS values, indicating both more reliable and more skillful probabilistic predictions. These results suggest415

that QRF-local leverages dynamic input features more effectively than the simpler K-NN approach.

Table B2. Average performance scores across the 564 catchments for QRF-local and K-NN. Median scores are shown in parentheses. Bold

values indicate better performance for each metric.

Model Alpha score Dispersion score CRPSS CR90.0 AWSS WSS NSE KGE

K-NN 0.771 (0.798) 0.587 (0.63) 0.655 (0.674) 0.835 (0.848) 0.678 (0.702) 0.698 (0.72) 0.825 (0.85) 0.812 (0.835)

QRF_local 0.799 (0.824) 0.593 (0.636) 0.674 (0.686) 0.860 (0.871) 0.680 (0.709) 0.715 (0.731) 0.832 (0.856) 0.822 (0.842)

Appendix C: Assessment criteria

C1 Continuous ranked probability score

Given a univariate predictive distribution F and a corresponding realization y, the continuous ranked probability score (CRPS)

is defined as:420

CRPS(F,y) =

+∞∫

−∞

(F (u)−H(u− y))2 du, (C1)

where H is the Heaviside function such that H(u−y) = 1 if u≥ y and 0 otherwise. In this study, the probabilistic predictions

are in the form of draws distributions; hence, equation C1 has to be discretized for computation. We apply the method which

is implemented in the function “CRPS_FROM_ECDF” from the Python package EvalHyd (Hallouin et al., 2023). The CRPS

is negatively oriented, meaning that smaller values are better.425

C2 Skill score

The performance of predictions can be more easily compared with that of a reference prediction skill scores. Skill scores (SS)

are used to assess the relative quality of two predictions. They are generally defined as: SS it is generally defined as:

SS = 1− S
Sref

(C2)

where S and Sref are the scores of predictions from the model to evaluate and the reference model respectively. Climatology430

is commonly used as a reference. In this study, we consider climatological distributions of observed streamflows. It has been

estimated as the empirical distribution of discharges across the training periods (P1).
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C3 Alpha score

Given a univariate forecast distribution Ft and a corresponding realization yt, the p value is Ft(xt) = p(Yt ≤ yt) and the alpha

score is defined as:435

α′y =
1

Ny

Ny∑

i=1

∣∣∣py(i)− p
(th)
y(i)

∣∣∣

where p
(i)
y and py(i)(th) are the ith observed and theoretical p values of yt values. Ny is the number of yt values. The alpha

score takes values between 0 and 1. It is positively oriented, with scores close to 1 reflecting perfect calibration.

The performance of streamflow forecasts can vary depending on the flow range considered (e.g., flood forecasting vs. drought

forecasting). Bellier et al. (2017) suggest a forecast-based sample stratification for continuous scalar variables in order to440

consider the merits of streamflow forecasts on different ranges of flows. To ensure robust reliability estimates and prevent

potential compensation effects, the alpha score was calculated separately for three distinct flow ranges: low, high, and average

forecasted flows.

C4 Dispersion score

Sharpness is quantified with the skill score of the forecast CRPS of median forecasts relative to climatological streamflow445

distribution, in which CRPS median is defined as follows:

CRPSmedian(F ) = CRPS(F,Fmedian) (C3)

where Fmedian is the median value of the distribution F .

Appendix D: Results supplement
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Figure D1. Box plots of 95% interval-based metrics across the 564 catchments of the study. Blue for the performance of QRF-local, orange

for QRF-region, and green for QRF-national.
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Figure D2. CRPSS metric across the 564 catchments. The blue line represents the performance of QRF-basic, orange represents QRF-local.
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