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Abstract. Accurately modelling soil erosion by water is essential for developing effective mitigation strategies and preventing

on- and off-site damages in agricultural areas. So far, complex artificial neural networks have rarely been applied in small-

scale soil erosion modelling, and their potential still remains unclear. This study compares the performance of different neural

network architectures for modelling soil erosion by water at a small spatial scale in agricultural cropland. The analysis is

based on erosion rate data at a 5 m × 5 m resolution, derived from a 20-year monitoring programme, and covers 458 hectares5

of cropland across six investigation areas in northern Germany. Nineteen predictor variables related to topography, climate,

management and soil properties were selected as inputs to assess their interrelationships with observed erosion patterns and to

predict continuous soil erosion rates. A single-layer neural network (SNN), a deep neural network (DNN), and a convolutional

neural network (CNN) were applied and evaluated against a random forest (RF) model used as a benchmark. All machine

learning models have successfully captured spatial patterns of soil erosion, with the CNN consistently outperforming the10

others across all evaluation metrics. The CNN achieves the lowest root mean squared error (RMSE: 1.05) and mean absolute

error (MAE: 0.41), outperforming the RF (RMSE: 1.31, MAE: 0.58) and the SNN (RMSE: 1.48, MAE: 0.63), while the DNN

performs similarly to the CNN with a slightly higher RMSE (1.1) and MAE (0.45). The CNN notably outperforms the other

three approaches when evaluating their capability to accurately predict soil erosion within given classes, achieving a weighted

mean F1 score of 0.7. A permutation importance analysis identified the digital elevation model as the most influential predictor15

variable across all models, contributing between 15 % and 18.3 %, while USLE C and R factors also had significant importance.

Overall, these findings highlight the potential of complex neural networks for predicting spatially explicit rates of soil erosion

by water.

1 Introduction

Soil erosion by water causes the loss of topsoil, along with the displacement of organic carbon and nutrients, degrading agri-20

cultural land and contributing to off-site damages such as water eutrophication and road blockages (Issaka and Ashraf, 2017).

These processes have significant and long-lasting environmental and economic consequences in affected areas worldwide. A

combination of anthropogenic, climatic, and topographic factors unique to each region defines the extent and distribution of

soil erosion by water. Accurately modelling these interactions at a small scale can help identify key drivers and affected areas.
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The resulting insights can support the development of targeted strategies to mitigate further soil degradation (Borrelli et al.,25

2018; Igwe et al., 2017).

Various approaches have been applied to predict soil erosion by water across different spatial scales, ranging from global

(Guerra et al., 2020), continental (Panagos et al., 2021), national (Plambeck, 2020), to small field plots (Anache et al., 2018).

The respective modelling approaches vary in data requirements, input variables, underlying principles, and complexity. Model

outputs are typically classified into erosion severity, susceptibility categories or expressed as continuous predictions of soil30

erosion rates over space and time. Depending on the intended output and available data, a variety of model types have been

developed, including process-based, empirical, and, more recently, artificial intelligence (AI) models (Borrelli et al., 2021).

Examples of physical process-based models are WEPP (Nearing et al., 1989; Pieri et al., 2007), Erosion 3D (Schmidt et al.,

1999), and EuroSEM (Morgan et al., 1998). Empirical models include the Universal Soil Loss Equation (USLE; Wischmeier

and Smith 1978), its revised version (RUSLE; Renard 1997), and further adaptations (Borrelli et al., 2021). One reason for35

the popularity of the USLE and its variations is their relatively low complexity, making these models time- and cost-efficient.

However, the simplicity of traditional approaches like the USLE comes with limitations, as the model considers only a limited

number of variables and often exhibits comparably low accuracy (Alewell et al., 2019; Avand et al., 2023; Kumar et al., 2022).

AI-supported modelling approaches have increasingly been used to overcome these limitations and to develop new methods

for identifying areas at risk of soil erosion by water. This includes the application of machine learning techniques such as40

random forest (RF; Garosi et al. 2019; Ghosh and Maiti 2021; Jaafari et al. 2022), with results indicating that RF outperforms

methods such as support vector machines (SVMs) and generalized additive models (GAMs). While these studies highlight the

potential of RF models, their main focus is on predicting and classifying gully erosion susceptibility.

Another promising AI approach for soil erosion modelling is the application of artificial neural networks (ANNs). However,

existing studies in this field have often employed simple neural network architectures, typically with only a single hidden layer.45

These single-layer networks have not only been used to model soil erosion susceptibility (De la Rosa et al., 1999) but also

to predict quantitative soil erosion rates at the plot scale (Licznar and Nearing, 2003). These early applications demonstrate

the potential of ANNs, but single-layer networks may not fully utilize the capacity of more complex architectures to capture

non-linear relationships between influencing variables and the spatial distribution and magnitude of soil erosion (Avand et al.,

2023).50

More complex, multi-layered ANNs have rarely been applied to predict soil erosion rates quantitatively. Instead, they have

been mostly used to model a classified erosion susceptibility (Golkarian et al., 2023; Khosravi et al., 2023; Sarkar and Mishra,

2018) or have been restricted to gully erosion (Ghorbanzadeh et al., 2020; Saha et al., 2021). In cases where ANNs have been

applied to quantify continuous soil erosion rates, studies often rely on limited datasets, such as those collected using erosion

pins over just one year (Gholami et al., 2021; Sahour et al., 2021).55

While machine learning methods have shown promise in modelling soil erosion, their application to predict continuous

erosion rates at fine spatial scales remains limited, particularly when using neural networks. Currently, most studies rely on

input data with spatial resolutions between 5 and 300 metres, with higher-resolution datasets often restricted to small areas,

such as individual plots (Borrelli et al., 2021; Parsons, 2019). This lack of research combining neural networks with high-
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resolution data is partly due to the limited availability of long-term monitoring schemes at the landscape scale, which provides60

spatially explicit erosion data as ground truth for model training and validation (Batista et al., 2025).

To address this gap, this study utilized existing long-term soil erosion monitoring data which spans over two decades and

was collected across seven study areas in northern Germany (Steinhoff-Knopp and Burkhard, 2018). This monitoring dataset

was combined with a range of high-spatial-resolution predictor variables as input for different machine learning approaches.

Specifically, three neural networks of increasing complexity and a RF model were systematically compared, evaluating their65

predictive accuracy on determining continuous soil erosion rates.

The goal of this study was to contribute to a more comprehensive understanding of the strengths and limitations of different

AI-based approaches for soil erosion modelling by aiming to answer the following research questions:

1. Which machine learning approach exhibits the highest predictive performance in estimating water-induced soil erosion

rates?70

2. What are the challenges and limitations in predicting soil erosion by water at a small spatial scale using machine learning

models?

3. Which variables are most important for predicting soil erosion by water at field to landscape scale across different

machine learning models?

2 Methods75

2.1 Study area

The models are based on data from seven distinct study areas across Lower Saxony, Germany and are located between 53.1°

N and 51.9° N latitude and 8.3° E and 10.5° E longitude. Five of these regions are clustered in the southeastern part of Lower

Saxony, and named Leine-Innerstebergland, while the other two are located in the Northeast and Southwest (Fig. 1). The

cultivated cropland within all the regions covers 458 hectares, is prone to erosion, and represents different soil types, relief80

characteristics, and management conditions (Capelle and Lüders, 1985; Capelle, 1990).

A large part of the soils – predominantly Luvisols and Cambisols – has a high silt content due to loess or sand-loess deposits,

increasing the erodibility of the topsoil (Steinhoff-Knopp and Burkhard, 2018). The mean slope across all study areas is 4.01°,

with the southern regions having a steeper relief (4.81°) compared to the northern (2.35°) and the western region (3.68°). The

primary crop is winter wheat, followed by winter barley, rapeseed, sugar beet, maize, and potatoes. All farmers within the85

monitored areas practice conventional farming and implement various soil conservation practices, including reduced tillage,

contour-parallel tillage, cover crops, grassed tramlines, and drainage systems.
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Figure 1. Overview of study areas in Lower Saxony and mapped soil erosion rates in (a) Küingdorf, (b) Barum, (c) Lamspringe, (d) Klein

Ilde, (e) Nette, (f) Adenstedt, and (g) Brüggen.
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2.2 Data collection

The soil erosion dataset used in this study was derived from a long-term monitoring programme funded by the Lower Saxony

State Authority for Mining, Energy and Geology (LBEG), covering the years 2000 to 2020. Exceptions include the investigation90

areas Adenstedt, where monitoring began in 2002, and Klein Ilde, where monitoring stopped in 2015. The methodology of the

field surveys is based on the recommendations by Rohr et al. (1990) and the instructions by DVWK (1996) and Botschek et al.

(2021). To implement a more efficient workflow, the mobile mapping application EroPad was used since 2010 (see Steinhoff

et al. 2013). The field surveys were carried out each year after the snowmelt (usually in February or March) and usually within

one week after each erosive rainfall event (> 12.7mmh−1; see DIN 19708:2022-08) throughout the summer months.95

The field surveys aimed to collect data on the spatial distribution and extent of three main types of soil erosion by water: linear

(i.e. rill) erosion, sheet erosion, and sheet-to-linear erosion. The losses by linear erosion features were surveyed by measuring

their volume and extrapolated to an 8 m buffer around their occurrence to account for the dispersion of soil loss due to tillage

practices by farmers (Steinhoff-Knopp and Burkhard, 2018). For the modelling process, soil erosion rates (tha−1yr−1) were

calculated by overlaying all surveyed erosion features in a grid resolution of 5 m × 5 m (Fig. 1).100

Nineteen predictor variables (i.e. features or covariates) potentially influencing soil erosion were selected for the modelling

process (Table 1). These variables include factors related to topography, climate, soil properties, and agricultural land man-

agement. The digital elevation model (DEM) and all derived topographic variables were processed at their native resolution of

5 m × 5 m. The USLE R-factor (erosivity of rainfall), originally at a grid resolution of 1 km × 1 km, was resampled to match

the DEM-based variables. The USLE K-factor (erodibility of topsoil), derived from a soil map at a scale of 1:50 000, and the105

USLE C-factor (crop cover and management factor) were rasterized to the 5 m × 5 m grid. The C-factor was determined for

each field using agricultural land management data collected alongside the field surveys.

Several of the variables, especially the topographic variables, were derived from each other or capture related aspects,

which could lead to a strong correlation between them (Avand et al., 2023; Jaafari et al., 2022). Therefore, the degree of

the linear relationship between variables was assessed by using the Pearson coefficient (r) and the variance inflation factor110

(VIF). The Pearson coefficient is used to gain information on the pairwise linear correlation between the variables, with ±0.7

being considered a threshold for strong correlation (Schober et al., 2018). The VIF is used to assess multicollinearity across

all variables, evaluating whether variables with high pairwise correlations can still provide valuable information for the final

predictions (Ebrahimi-Khusfi et al., 2021; O’brien, 2007). Variables with a VIF below 5 are considered to have a low level of

multicollinearity and are used for the modelling (Daoud, 2017).115

2.3 Machine Learning Models

This section provides a brief introduction to the four distinct machine learning models employed in this study. The model

implementations and hyperparameter selection process are described in Sect. 2.5.
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Variable Description Unit

DEM Digital elevation model of the terrain m

Slope Steepness of the terrain surface degree (°)

Slope length Horizontal length of a slope m

Aspect 360 Direction a slope faces [0 - 360°] degree (°)

Aspect 180 Slope direction normalized to 180° [0 - 180°] degree (°)

Plan curvature Horizontal curvature affecting water flow -

Profile curvature Curvature along the slope direction -

Flow line curvature Curvature of flow lines across the terrain -

Topographic position index (TPI) Position relative to surrounding terrain -

Flow accumulation Total accumulated runoff -

Wetness index Index based on a modified catchment area calculation -

Divergence-convergence index (DCI) Index of water flow divergence or convergence, based on a 3×3 cell area -

DCI 10 Index based on a 10×10 cell area -

Machining direction (MD) Orientation of the machining direction (tramlines) [0 - 180°] degree (°)

MD vs. aspect Angle between MD and Aspect 180 [0 - 90°] degree (°)

R factor USLE rainfall erosivity factor M J mm (h ha yr)−1

K factor USLE soil erodibility factor t h (M J mm)−1

LS factor USLE topographic factor (slope length and steepness) -

C factor USLE crop and management factor -

Table 1. Variables used in the soil erosion modelling process.

2.3.1 Random forest

A random forest (RF) model combines multiple decision trees to create an ensemble model to improve prediction accuracy120

(Breiman, 2001). A decision tree splits data based on feature values across multiple levels of nodes, with each branch repre-

senting different decision paths leading to predictions (Kingsford and Salzberg, 2008). Each tree is trained on a random subset

of the data, and, in the case of regression tasks, as applied in this study, the final prediction is obtained by averaging the outputs

of all trees.

Although mostly limited to classification outputs, RF has shown promise in previous studies on soil erosion modelling125

(Garosi et al., 2019; Ghosh and Maiti, 2021; Jaafari et al., 2022). Therefore, RF serves as a benchmark for evaluating the

performance of neural networks against other machine learning models. The RF model used in this study included 500 decision

trees, a maximum tree depth of 10, a minimum of two samples required to split an internal node and a minimum of one sample

per leaf.
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2.3.2 Single hidden layer neural network130

Artificial neural networks consist of an input layer, an output layer, and one or more so-called hidden layers of neurons (or

nodes) in between (Rumelhart et al., 1986). Each neuron in these layers is interconnected through weights. During training,

these weights are updated through an optimization process involving multiple iterations, a loss function, and most commonly,

backpropagation. The weighted sum of the inputs is passed through an activation function, which applies a non-linear transfor-

mation to determine the neuron’s output, which is then passed on to the subsequent layer. In a fully connected (or dense) layer,135

each neuron is connected to every neuron in the subsequent layer through individual weights.

Three different types of neural networks were compared in this study, each with a distinct and increasingly complex archi-

tecture. The first type is a neural network with a single dense layer (SNN) of 64 neurons between the input and the output layer

(see Wythoff 1993). The Rectified Linear Unit (ReLU) activation function was applied in both the hidden and output layers in

this and the following two variations of neural network models, to introduce non-linear relationships and constrain predictions140

to positive values (see Krizhevsky et al. 2017; Nair and Hinton 2010). Additionally, L2 regularisation, also known as Ridge

regularisation, was employed across all neural networks to reduce overfitting (see Hoerl and Kennard 1970; Ng 2004). The

Adam optimizer was used to determine the learning rate during training (see Kingma and Ba 2014).

2.3.3 Deep neural network

The interconnected neurons and the corresponding weights enable neural networks to capture complex non-linear relationships.145

Increasing the number of hidden layers enhances this capability while increasing training time and the likelihood of overfitting

the model to the training data. Such a neural network with multiple hidden layers is commonly known as a deep neural network

(DNN) or a deep learning model (LeCun et al., 2015). In this case, the DNN was modified to have three hidden layers, with 64

neurons in the first, 128 neurons in the second, and 256 neurons in the third hidden layer.

2.3.4 Convolutional neural network150

Convolutional neural networks (CNNs) were specifically designed to capture spatial relationships in grid-like structures, such

as images (LeCun et al., 2015). This is achieved through convolutional layers, which use filters, also referred to as kernels.

Filters are small matrices (e.g. 5 × 5 raster cells) that slide across the grid data, applying the same set of weights across

the entire grid. By doing so, CNNs are an effective and established approach to detect patterns across grid data (Krizhevsky

et al., 2017; LeCun et al., 2015). In this study’s CNN, three convolutional layers were used, each employing 256 kernels. Two155

dense layers with 128 neurons each were added following the convolutional layers. The dense layers utilize the learned spatial

patterns from the convolutional layers to produce the final predicted output.

2.4 Validation

The results were compared using different validation metrics. To determine the overall differences between the modelled

and the mapped soil erosion rate, the root mean squared error (RMSE) and the mean absolute error (MAE) were used. The160
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F1 score, which is the harmonic mean of precision and recall, was used to evaluate the ability of the models to predict within

different ranges of soil erosion severity (Chinchor, 1992). For this, the continuous predicted output was categorized into six dis-

crete classes: no erosion (0 tha−1yr−1), very low erosion (> 0 to < 0.25 tha−1yr−1), low erosion (0.25 to < 1 tha−1yr−1),

medium erosion (1 to < 2 tha−1yr−1), high erosion (2 to < 5 tha−1yr−1), and very high erosion (≥ 5 tha−1yr−1). A weighted

average F1 score was calculated to account for the imbalanced distribution of the mapped soil erosion dataset across the classes,165

with the majority (81.2 %) of the data falling below 1 tha−1yr−1. The resulting F1 score ranges from 0 to 1, with values closer

to 1 indicating a better overall alignment between the prediction and the different classes (Taha and Hanbury, 2015).

The importance of the predictor variables was evaluated through permutation importance, which reflects the influence of

each variable on the final model output. This is done by randomly permuting one variable at a time and measuring the resulting

increase in the mean squared error. A larger increase indicates that the variable has a greater impact on model accuracy. The170

results are normalized and expressed as percentages (Altmann et al., 2010).

2.5 Model implementation

The predictive performance of each model is highly influenced by the hyperparameters, which control the architecture and

learning behaviour. The most important hyperparameters (e.g. number of trees or neurons) and their optimal values were de-

scribed along with the respective models above (Sect. 2.3). To determine the optimal value for each hyperparameter, grid search175

was used, iterating over a predefined range of parameter settings to identify the combination that yields the best performance

(Yu and Zhu, 2020).

To improve the reliability of the model results, five-fold cross-validation was used. In each fold, the model was trained on 80

% of the data and evaluated on the remaining 20 %, which was not used for training. The validation metrics were then averaged

across the five runs. All models were built using the scikit-learn (Pedregosa et al., 2011) and TensorFlow (Abadi et al., 2015)180

Python packages.

3 Results

3.1 Pairwise correlation and multicollinearity analysis

To assess relationships between predictor variables and identify potential redundancy due to multicollinearity, the Pearson

correlation coefficient (r) and the variance inflation factor (VIF) were calculated. Five pairs of variables (see Table 1) had a185

strong linear correlation with Pearson coefficient close to or exceeding ±0.7: aspect 360 and aspect 180 (r = 0.69), slope and

wetness index (r =−0.69), DEM and R factor (r =−0.75), topographic position index and divergence-convergence index 10

(r = 0.82), slope length and LS factor (r = 0.82). However, all variables had a VIF < 5, indicating that there is not a high level

of multicollinearity between the variables. Consequently, no variables were removed for the modelling process.
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3.2 Model performance190

The results show that the CNN model outperforms all three other models across all validation metrics (Fig. 2 and Table 2).

When comparing the continuous modelled output to the mapped soil erosion rates, the CNN achieves the lowest error, with

an RMSE of 1.05 and an MAE of 0.41, which are notably lower than those of the RF (RMSE: 1.31, MAE: 0.58) and SNN

(RMSE: 1.48, MAE: 0.63) models. Only the DNN performed similarly, with a slightly higher RMSE of 1.10 and MAE of 0.45.

Figure 2. Plots comparing the model predictions (y-axis) against the true mapped values (x-axis) for (a) random forest (RF), (b) single-layer

neural network (SNN), (c) deep neural network (DNN), and (d) convolutional neural network (CNN).

The difference between the model predictions and the mapped soil erosion rates (i.e., “true values”) is visualised in Fig.195

2, where predicted values are plotted on the y-axis against the observed true values on the x-axis, illustrating their linear

correlation. It becomes clear that the RF (Fig. 2a) and SNN (Fig. 2b) models tended to underestimate areas with high mapped
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soil erosion rates. In contrast, the DNN (Fig. 2c) and CNN (Fig. 2d) provided a closer fit to the ground truth data, including

areas with higher erosion rates. This is supported by the R2 values of 0.81 for the DNN and 0.88 for the CNN, indicating that

both models captured a large portion of the variability in the mapped values. While the CNN model produced the most reliable200

results when predicting continuous soil erosion rates, it still occasionally exhibited large prediction errors with a varying spatial

distribution both between and within the seven study areas.

Figure 3. Difference between soil erosion rates predicted by the convolutional neural network (CNN) and the mapped values in (a) Küingdorf,

(b) Barum, (c) Lamspringe, (d) Klein Ilde, (e) Nette, (f) Adenstedt, and (g) Brüggen, where positive values indicate overestimation of the

model and negative values indicate underestimation.
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The spatial distribution of these differences between the predicted continuous results of the CNN model and the mapped soil

erosion is shown in Fig. 3. Especially in the study areas Barum, Lamspringe, and Klein Ilde, there are notable differences be-

tween the modelled and the mapped soil erosion rates. These large over- and underestimations of soil erosion often occurred in205

close spatial proximity. In contrast, in the areas of Küingdorf, Nette, Adenstedt, and Brüggen, the difference between modelled

and mapped soil erosion was mostly below 5 tha−1yr−1, with no large over- and underestimations occurring simultaneously

in close proximity to each other.

By comparing the log-transformed cumulative distributions of mapped soil erosion rates and the model predictions, distinc-

tions in the capabilities of the different models become even more evident (Fig. 4). The main differences between the models210

are visible in areas with very low mapped soil erosion rates (< 0.25 tha−1yr−1). Here, the CNN aligned most closely with

the mapped soil erosion rates, followed by the RF model. In contrast, the DNN and SNN models seemed unable to accurately

predict very low soil erosion rates. Instead, DNN and SNN frequently predicted a soil erosion rate of 0 tha−1yr−1, which

rarely occurs in the ground truth dataset (see Table 2).

This distinction in model performance for low soil erosion rates is further highlighted by the F1 scores, which indicate how215

well the continuous predictions of each model align with the defined classes of soil erosion severity. The CNN achieved a

higher F1 score in every class compared to the other three models, indicating consistently better performance across all classes.

This is reflected in the weighted average F1 score, where CNN had the highest score (0.70), followed by RF (0.49), DNN

(0.25), and SNN (0.13).

Table 2. F1 score evaluating the performance of the continuous model predictions (in tha−1 yr−1) within the defined soil-erosion classes,

comparing random forest (RF), single-layer neural network (SNN), deep neural network (DNN) and convolutional neural network (CNN)

models. The weighted average F1 scores were computed using the number of mapped grid-cells (n cells) within each class.

F1 score

Soil erosion rate n cells RF SNN DNN CNN

0 655 0.00 0.01 0.01 0.22

< 0.25 113 105 0.54 0.04 0.09 0.83

0.25−< 0.5 22 815 0.27 0.07 0.17 0.41

0.5−< 1.0 13 912 0.24 0.12 0.22 0.31

1.0−< 2.5 17 849 0.37 0.29 0.45 0.55

2.5−< 5.0 10 032 0.40 0.37 0.55 0.65

≥ 5.0 7 073 0.56 0.56 0.75 0.81

Weighted average 0.46 0.11 0.20 0.70
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Figure 4. Empirical cumulative distribution functions (ECDFs) of soil erosion rates for observed mapped soil loss, random forest (RF),

single-layer neural network (SNN), deep neural network (DNN) and convolutional neural Network (CNN).

3.3 Variable importance220

The results of the permutation importance analysis are visualised in Fig. 5 and compared across all models, from the CNN

model with the highest predictive performance on the left to the SNN model with the lowest performance on the right. The

predictor variables are ranked from top to bottom based on their importance to the CNN model.

The variable with the highest importance was the DEM in all four models. Its importance ranges from 15 % in the DNN

to 18.3 % in the CNN. All models also strongly relied on the C and R factors, originating from the empirical erosion model225

USLE. One distinct difference between the neural network-based models and the RF model was the importance of the variables

machining direction vs. aspect and the USLE LS factor. While the three neural network models assigned very low importance

or did not rely on these variables at all, they had a moderate importance of 7.5 % and 6.3 %, respectively, in the RF model.
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Figure 5. Heatmap showing the permutation importance of predictor variables across four modelling approaches: convolutional neural

network (CNN), deep neural network (DNN), random forest (RF), and single-layer neural network (SNN). Models are ordered from left

(highest predictive performance) to right (lowest performance), and variables are ranked by their importance in the CNN model.

Variables with very low importance (< 2 %) across all models were plan curvature, profile curvature, slope length, and flowline

curvature.230

4 Discussion

4.1 Comparison of Model Performance

The results concur with previous studies, such as Sarkar and Mishra (2018), indicating that increasing complexity through

multiple hidden layers in a DNN can improve predictive performance compared to a SNN. Large neural networks have the ad-

vantage of being able to capture the non-linear interrelationships between variables and the predicted output using an extensive235

set of weights. This allows to model these relationships in greater detail, which, as shown in the results, can improve the accu-

racy of the predictions. Similar to the findings by Golkarian et al. (2023), our results showed that the predictive performance
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increases further through the addition of convolutional layers in the CNN, which utilizes filters and shared weights to capture

spatial patterns.

Both RMSE and MAE values indicate that the CNN and DNN had higher predictive performance than the RF model.240

As shown in Fig. 4 and Table 2, the RF model performed second best after the CNN when considering prediction perfor-

mance across different classes of soil erosion severity. However, the RF model failed to capture very high loss rates exceeding

20 tha−1yr−1, resulting in low RMSE and MAE. While the DNN achieved RMSE and MAE values similar to those of the

CNN, its weighted F1 score was low, which can be explained by the imbalance in the mapped erosion data. A large proportion

(81.2 %) of the mapped data is below the threshold of 1 tha−1yr−1 and consequently this value range had a large impact on the245

weighted average F1 score. Thus, by underestimating these low soil erosion rates, the DNN achieved a lower weighted average

F1 score compared to the CNN and RF models. Although mostly attributed to accurate predictions of lower soil erosion rates,

the weighted average F1 score of 0.49 suggests that the RF model remains at least somewhat effective when predictions are

evaluated as classified outputs, which is consistent with previous studies such as Garosi et al. (2019) and Sahour et al. (2021).

Overall, this study reveals that the CNN outperformed all other tested models across all validation metrics. Although the250

DNN achieved similar RMSE and MAE values, the CNN demonstrated a higher accuracy in capturing lower soil erosion rates,

while the SNN failed by predicting large areas with no soil erosion at all. However, it is important to note that the DNN, and

particularly the SNN and RF models, require significantly fewer computational resources than the CNN, which can be bene-

ficial when trained on big datasets or when the model is applied to predict soil erosion for larger areas. Therefore, depending

on the specific use case, the potential trade-off between improved predictive performance and the increased complexity and255

computational demands of large neural networks such as the CNN should be carefully considered.

The permutation importance analysis highlights the combined relevance of topographic, climatic, and anthropogenic (i.e.,

agricultural land management) variables in influencing soil erosion. The variation in importance assigned to the LS factor by

the RF model compared to the other models can be explained by the fundamental differences in how tree-based and neural

network-based models generate their predictions. On the other hand, the consistently high permutation importance (> 5 %) of260

the DEM, C and R factor, machining direction, and the topographic position index across all models underscore their influence

on soil erosion by water processes and the resulting soil erosion rates and patterns. These findings are consistent with studies

such as Bag et al. (2022) and Wang et al. (2020), although differences in study areas conditions, research objectives, and

variable selection make direct comparisons across studies challenging.

4.2 Limitations and Future Research265

Typical challenges and limitations in soil erosion modelling at the landscape scale include the high range of input variables

from different domains for parametrization, leading to simplification in variable estimation and mismatches in the scale of input

and output data, the application of models outside of the validation range and inherent restrictions of the used models. This

study addressed several of these limitations by utilizing a dataset based on a long-term soil erosion monitoring programme

across multiple study areas, capturing long-term patterns of soil erosion by water within these regions. Additionally, input270

variables with relatively high spatial resolution were incorporated into machine learning models capable of capturing non-
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linear relationships at varying levels of complexity. Despite these approaches, several challenges and limitations remain. These

challenges and limitations should be considered when interpreting the results and highlight key areas for future research to

enhance small-scale soil erosion predictions.

The results of this study show notable over- and underestimations occurring in close spatial proximity (Fig. 3). This is likely275

due to the inability of the models to effectively capture the differing scales of soil erosion within small areas. Although the

spatial resolution of the input data is relatively high, increasing it further to a grid resolution of, for example, a resolution of

1 m × 1 m could improve the ability of the models to capture more fine-scale variations in soil erosion patterns. Nonetheless,

certain small-scale variables remain difficult to incorporate and are highly variable in time and space, including the annual

placement of tramlines and temporal variability in crop or ground cover throughout the year.280

The results indicate furthermore that prediction accuracy improves with increasing model complexity (Fig. 2), although the

difference between CNN and DNN was relatively small. However, the DNN model was particularly unable to predict very

low soil erosion rates and often incorrectly predicted no soil erosion at all (Table 2). Whether this generally justifies the use

of a more complex CNN architecture in soil erosion modelling must be carefully evaluated based on the aim and context of

the respective study. Future research could explore this further by testing and comparing different multi-layer neural networks,285

including more novel architectures such as transformers (e.g. Liu et al. 2024).

In particular, large neural networks require large datasets and regularisation to prevent overfitting and improve the gener-

alizability of their predictions. Whether the dataset size and regularisation strength used in this study were sufficient to allow

for reliable extrapolation of the modelled output to other agricultural areas remains to be tested. Future work should assess

how well these models perform when applied to a larger area and whether additional data or adjustments in complexity and290

regularisation are needed to ensure good prediction results, e.g. for agricultural areas in the entire state of Lower Saxony. In

addition, it would be valuable to expand the monitoring dataset used for training, although newly monitored areas will take

time to accurately reflect long-term patterns of soil erosion by water.

5 Conclusions

By comparing different artificial neural network architectures and using a random forest model as a benchmark, this study295

highlights the potential of complex neural networks for modelling soil erosion at a small spatial scale. The convolutional

neural network (CNN) outperformed all other models, achieving a comparatively low RMSE of 1.05 and the highest F1 score

of 0.70. Although the deep neural network (DNN) without convolutional layers achieved a similarly low RMSE of 1.10, the F1

scores indicate that it was unable to accurately predict low soil erosion rates. In contrast, the random forest model performed

better in this regard while also being more computationally efficient. All tested models were highly dependent on the DEM as300

the variable with the highest permutation importance, followed by the USLE C and R factors.

The results suggest that simpler neural networks may lead to lower predictive performances and that more advanced ap-

proaches could offer further improvements in soil erosion modelling. Nevertheless, less complex machine learning models are
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still capable of predicting classified soil erosion rates. To build upon these findings, future research should focus on evaluating

the generalizability of these models and their scalability to larger areas.305
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Code and data availability. The complete dataset and Python scripts used for model training, prediction, and evaluation are available at:

https://doi.org/10.5281/zenodo.16032629 (Barthel, 2025).

17

https://doi.org/10.5194/egusphere-2025-3583
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix A: Pairwise correlation and multicollinearity analysis

Figure A1. Pairwise linear correlation analysis of all predictor variables used in this study based on the Pearson correlation coefficient.
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Figure A2. Variance inflation analysis of predictor variables highlights the level of multicollinearity, with higher VIF values indicating

greater multicollinearity among predictors.
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Appendix B: Model performance

Figure B1. Difference between soil erosion rates predicted by the random forest (RF) and the mapped values in (a) Küingdorf, (b) Barum,

(c) Lamspringe, (d) Klein Ilde, (e) Nette, (f) Adenstedt, and (g) Brüggen, where positive values indicate overestimation of the model and

negative values indicate underestimation.
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Figure B2. Difference between soil erosion rates predicted by the single-layer neural network (SNN) and the mapped values in (a) Küingdorf,

(b) Barum, (c) Lamspringe, (d) Klein Ilde, (e) Nette, (f) Adenstedt, and (g) Brüggen, where positive values indicate overestimation of the

model and negative values indicate underestimation.
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Figure B3. Difference between soil erosion rates predicted by the deep neural network (DNN) and the mapped values in (a) Küingdorf, (b)

Barum, (c) Lamspringe, (d) Klein Ilde, (e) Nette, (f) Adenstedt, and (g) Brüggen, where positive values indicate overestimation of the model

and negative values indicate underestimation.
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