Dear Reviewer,

We sincerely thank you for your detailed and constructive feedback. We have carefully considered

each of your comments and will revise the manuscript accordingly. We are pleased that you

recognize the value of our work and are confident that the revisions made in response to your

suggestions will further strengthen the manuscript. Please find our detailed responses to each of

your points below.

Reviewer comments

Response

1. Introduction:

The introduction is well written and effectively prepares
the reader for the paper. However, the authors largely
restrict their literature review to soil erosion modelling.
While this is understandable to a certain degree, the
claimed novelty of the paper lies in applying “new”
methods such as CNNs and multi-layer neural networks.
These models, however, are not particularly novel in
this context, as CNNs have been applied to soil
prediction tasks at least since 2019 (e.g., Padarian et al.,
2019). The study would offer stronger novelty by
considering more recently proposed methods from the
broader ML literature (for instance, the high-quality
TabArena benchmark by Erickson et al., 2025, which
compares state-of-the-art tabular learners). Several of
these modern methods have already been successfully
tested in soil science, and established approaches such
as CatBoost have been available for even longer. |
understand that it is not feasible to cover every recent
method, but the current comparison does feel
somewhat outdated for a paper that aims to emphasize
on machine learning aspects.

Padarian, J., Minasny, B., & McBratney, A. B. (2019).
Using deep learning for digital soil mapping. Soil, 5(1),
79-89.

Erickson, N., Purucker, L., Tschalzev, A., Holzmiller, D.,
Desai, P. M., Salinas, D., & Hutter, F. (2025). Tabarena: A
living benchmark for machine learning on tabular data.
arXiv preprint arXiv:2506.16791.

We thank the reviewer for the positive feedback on the
introduction and for the valuable comments. We agree that
CNNs have already been applied in soil science for various
purposes, particularly for modelling soil properties such as
soil organic carbon. However, the cited studies and similar
works do not apply complex neural network architectures,
such as CNNs, for quantifying continuous soil erosion rates.
Erosion rates are not a soil property but a function of
various natural and management factors including soil
properties, erosive rainfall, topography, management, etc.
The novelty of our study therefore lies in the application of
complex neural networks to model patterns of continuous
soil erosion rates at the field-to-landscape scale.

The focus of this study is to explore and compare neural
networks with a benchmark method (Random Forest) in this
context. To our knowledge, no previous study has done this
and used CNNs to predict continuous soil erosion rates at
this spatial scale.

Nonetheless, we acknowledge that additional, recently
proposed machine-learning could also provide valuable
insights and should be considered for future research and
we will add these points to the discussion.

33: The use of the term Al does not seem appropriate in
this context and comes across more as a buzzword.
Since the paper exclusively discusses machine learning
methods (e.g., L. 67), | suggest using machine learning
consistently instead of Al.

Thank you for bringing this to our attention. We agree that
consistent terminology is important and will rephrase L33
accordingly.




2. Methodology:

| have several concerns about the hyperparameters and
the validation used in this study. Other comments are
of minor nature:

Hyperparameters:

It remains unclear how the authors tuned their models.
From the description (L. 178—179), it appears that
hyperparameters were adjusted directly on the
validation folds of the 5-fold CV. This approach
introduces data leakage, as the same data are
effectively used both for model selection and for
performance estimation, which reduces the penalty for
overfitting. Proper hyperparameter optimisation
requires a nested cross-validation scheme, where the
data are split into three parts: a training set for fitting
the model, an inner validation set for selecting
hyperparameters, and an outer test set (or fold) for
obtaining a performance estimate.

I looked into the provided code but could not find any
script related to hyperparameter tuning. Instead, in the
models script | found only fixed parameter settings. This
is problematic, as optimal hyperparameters should be
determined separately for each training fold within the
cross-validation. Without such a procedure, the
reported results may not reflect the best achievable
model performance and risk being biased by arbitrary
parameter choices.

Lastly, the search space for the hyperparameters was
not given. This is extremely important for a fair model
comparison, if a poorly tuned RF is compared to a well-
tuned NN, the comparison would not be fair. There is a
lot of studies on how this can induce bias in
benchmarking (e.g., NieBl et al. 2022).

NieRl, C., Herrmann, M., Wiedemann, C., Casalicchio, G.,
& Boulesteix, A. L. (2022). Over-optimism in benchmark
studies and the multiplicity of design and analysis
options when interpreting their results. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 12(2), e1441.

We apologize for our lack of sufficient documentation
regarding the hyperparameter tuning. The tuning of
hyperparameters was conducted separately from the main
training and validation procedure, using a grid search
performed prior to the main cross-validation runs (Raschka
2020; Yu and Zhu, 2020).

We agree that it should be described more thoroughly to
avoid confusion, and we will revise the description in the
manuscript accordingly. In addition, we will include the
hyperparameter tuning scripts and the respective search
space in the referenced repository.

Raschka S. (2020): Model Evaluation, Model Selection, and
Algorithm Selection in Machine Learning,
https://arxiv.org/abs/1811.12808

Yu, T. and Zhu, H. (2020): Hyper-parameter optimization: A
review of algorithms and applications, arXiv preprint
arXiv:2003.05689,
https://doi.org/10.48550/arXiv.2003.05689

Do | understand correctly that this figure shows the
“ground-truth” soil erosion dataset, and that these data
are available in raster format, i.e., the true (or
approximate true) erosion values are known across the

The raster data displayed in Fig. 1 represent spatially
continuous mapped erosion patterns rather than single
point measurements based on erosion pins (as in Gholami
et al., 2021). The dataset is based on empirical long-term

2



https://arxiv.org/abs/1811.12808
https://arxiv.org/abs/1811.12808
https://doi.org/10.48550/arXiv.2003.05689
https://doi.org/10.1016/j.catena.2020.104902
https://doi.org/10.1016/j.catena.2020.104902

entire study area? If so, | find this somewhat
questionable, since such complete “ground truth”
presumably relies on interpolation or modelling itself,
and may therefore not represent true independent
measurements. More importantly, it is unclear why
additional modelling is applied, given that each cross-
validation repetition already uses 80% of the study area
for training. In digital soil mapping, modelling is typically
motivated by sparse point observations, where the
objective is to generate high-resolution maps from
limited data. In contrast, this study seems to assume
ground-truth values for every raster cell, a setup that
almost inevitably leads to overly optimistic performance
estimates with poor generalization value. Would a
strategy such as “leave-one-validation-site-out” not
provide a more realistic evaluation of model
performance? | may be missing a domain-specific
aspect of soil erosion mapping, but from a classical
digital soil mapping perspective this design appears
problematic.

For example in Gholami et al. (2021), which is also cited
in this paper, they used some point data and they have
specified validation points. I am missing something like
this in this study. To me, this makes much more sense
but | do not see this in Fig. 1.

Gholami, V., Sahour, H., & Amri, M. A. H. (2021). Soil
erosion modeling using erosion pins and artificial neural
networks. Catena, 196, 104902.

soil erosion monitoring data obtained in surveys, which
were subsequently aggregated to a raster format to enable
spatial analysis (see Steinhoff-Knopp & Burkhard, 2018). It is

not directly derived from interpolation or modelling, based
on single points.

The aim of our study was to assess how well different
machine-learning models can reproduce these observed
erosion patterns and loss rates at the field-to-landscape
scale and detect underlying relationships.

We thank the reviewer for pointing out the potential value
of a “leave-one-area-out” validation approach. In fact, we
applied this approach during our study, and the results also
show that the CNN achieves the best predictive
performance among the tested models. However, this
approach also has its own limitations given the available
data and was not the primary focus of our analysis.
Nevertheless, we agree that it adds further validity to our
results and provides insight into the models’
generalizability. We will therefore include the
corresponding “leave-one-area-out” results in the revised
manuscript.

Steinhoff-Knopp, B. and Burkhard, B. (2018): Soil erosion by
water in Northern Germany: long-term monitoring results
from Lower Saxony,450 Catena, 165, 299-309,
https://doi.org/10.1016/j.catena.2018.02.017

Minor Comments

104: | may be wrong, but the overall study areas cover a
few hundred ha, but the grid of the original R-factor
was 1 km x 1 km. Even if resampled (how?), is this not
too broad for the study area context. Maybe a
reference which refers to this procedure could be
useful?

The R factor indeed shows only regional variation on a 1 km
x 1 km resolution and does not differ in a relevant manner
within individual study areas. But it differs between the
study areas which are situated in different regions of lower
Saxony resulting in different R factors. We agree that
further details are needed to describe the different
predictor variables and will add a table to the appendix with
comprehensive information on each variable, including the
R factor.

123: It would be more precise to write “a random
subset of the feature [or variables]”. Using a subset of
data (i.e., training data) is also possible as a
hyperparameter but not by definition a classical
parameter in Random Forest.

Thank you for pointing this out. We agree and will change
the phrasing accordingly.



https://doi.org/10.1016/j.catena.2018.02.017

2.3.4 Itis not clear from the section but implied. Did the
authors use a “2D” CNN, with what Y x Y raster cell?

A 2D CNN was used with 7 by 7 pixels. We will add more
details to the description in the manuscript to make this
clearer.

Figure 4: Why do the ECDF curves of the models appear
so smooth? | would expect them, similar to the mapped
erosion rate, to be step functions. This suggests that the
ECDFs may have been constructed differently for the
models and for the mapped erosion rate. Could the
authors please clarify how these curves were
generated?

The ECDFs were generated directly from all continuous
erosion values by sorting the data and plotting the
cumulative proportion of values < x using a step function
(matplotlib.pyplot.step). No interpolation or smoothing was
applied. The smoother visual appearance of the model
ECDFs results from the continuous and smoother nature of
the model estimates.

Figure 5: The unit is missing. It is not simply [%], but
rather increase of MSE in %. While this may be clear
from the context, the figure should explicitly state the
correct unit.

Thank you for highlighting this. The figure represents the
relative permutation importance [%], which is based on each
variable’s normalized contribution to the total increase in
MSE. We will adapt the manuscript and figure label to make
this clearer.




