Dear Reviewer,

We sincerely thank you for your detailed and constructive feedback. We have carefully considered

each of your comments and will revise the manuscript accordingly. We are pleased that you

recognize the value of our work and are confident that the revisions made in response to your

suggestions will further strengthen the manuscript. Please find our detailed responses to each of

your points below.

Reviewer comments

Response

The authors emphasise in several places that their
goal is an accurate soil erosion prediction. If this is
their goal, they fail and will always fail simply
because soil erosion and its drivers are random
quantities (in a statistical sense). Random quantities,
by definition, are never accurate. Hence, the authors
require a more realistic goal.

Thank you for bringing this to our attention. We agree that our
statements can be improved through rephrasing and by
providing additional detail. We do not claim to accurately
predict individual soil erosion events, but rather to reproduce
spatial patterns and average water erosion loss rates derived
from a 20-year monitoring programme at the field-to-
landscape scale. The long-term averages obtained in the
monitoring are still random variables (in a statistical sense) but
can be interpreted as empirical documented site characteristics
defined by soil properties, topography, management, rainfall
erosivity, etc..

Therefore, our modelling goal is to predict these patterns as
accurately as possible relative to the available mapped data
and to detect the underlying spatial relationships. Our focus is
on describing relationships rather than achieving absolute
accuracy. We acknowledge that our phrasing (“accurately
modelling”) may have implied an unrealistic level of accuracy.

Therefore, we will rephrase the relevant text to clarify that our
contribution lies in improving the accuracy of soil erosion
pattern modelling at the field-to-landscape scale.

The authors write that the USLE comes with
comparable low accuracy. This is clearly wrong,
although this claim can often be found in literature.
The USLE comes with the best possible accuracy for
a random quantity. It is the modeller who fails
because they apply the USLE with poor data or poor
knowledge of its usage. It may be that the data
needed to obtain good results are unavailable, but
this is not the fault of the USLE. The data have to be
gathered by the modeller. If we want to progress, it
is essential to be more precise in describing deficits.
Machine learning will likely not improve the
modellers and their available data.

We agree that our phrasing may have suggested that the USLE
model inherently produces low accuracy, and we acknowledge
that we need to be more precise when discussing the
limitations of USLE applications. Indeed, applying the USLE with
poor input data or in non-validated settings can lead to low
accuracy, and it remains the modeller’s responsibility to obtain
high-quality data to achieve reliable results.

The same holds true for machine-learning approaches, which
likewise do not release modellers from the need to collect
reliable input data.

Our goal is to develop modelling approaches that operate at
the field-to-landscape scale. The USLE was originally based on
plot-scale measurements; its first versions were designed for
single slopes to predict soil loss from sheet and small-rill
erosion. Subsequent developments extended the USLE to the
field and landscape scales, incorporating more complex slope
geometries. Our approach builds directly on long-term field
measurements and uses these data to train machine-learning
models. In doing so, it is essential to better understand how
relationships between variables influencing soil erosion
patterns and loss rates can be represented within machine
learning models for the estimation of soil loss (e.g., high- vs.




low-complexity, tree-based vs. neural-network structures) and
to evaluate the advantages and disadvantages of different
machine-learning approaches. We agree that our aims should
be expressed more clearly and will revise the manuscript
accordingly.

The authors claim that Al-supported modelling
approaches are increasingly applied to overcome the
limitations of the USLE (limited number of variables,
low accuracy). This is wrong. | am not aware of any
publication that used an unlimited number of
variables. | am unaware of any application of an Al
modelling approach independent of its developer, as
is the case with the application of the USLE. We do
not know whether Al models will perform better
when widely applied because these models are
unavailable. Hence, a comparison with the USLE is
presently impossible, and it is wrong to write that
such comparisons exist. This is still a long way to go.

We apologize for our very short argumentation here and will
rephrase the relevant paragraph (lines 33 — 38). We are also
not aware of any publication claiming to substitute the USLE by
a machine learning model. Most Al (or to be more precise ML)
driven soil erosion approaches are designed to map erosion
processes not modelled by the USLE or process-based models
(we also refer to WEPP, EROSION 3D and EuroSEM), such as
gully erosion.

In our study, we do not compare our predictions with the USLE,
but rather evaluate different machine-learning models against
long-term monitoring data. Our goal is to develop models
capable of reproducing erosion patterns at the field-to-
landscape scale, independent of the USLE framework. We
thank the reviewer for highlighting this inaccuracy, and we will
revise the text accordingly to make this clearer.

L 77: Which models?

Thank you for pointing this out. We will change phrasing to:
“The study uses data from seven...”.

Data

Chapter Data collection: In general, this chapter does
not give enough details about the sources of data,
the measurement methods, their range, their
resolution, and their quality. The lack of reference to
the sources also makes it impossible for the reader
to get an idea about these relevant aspects.

We agree that the manuscript would benefit from a more
thorough description of the data. We will add a detailed table
to the appendix describing the predictor variables, how they
were acquired and calculated, their native resolution, and
other relevant information.

L 95: What is the accuracy of the data? Were there
independent repeated surveyors to estimate the
accuracy?

A version of the monitoring data collected for the years 2000 to
2016, including a description of the data collection method and
accuracy assessments, is discussed in Steinhoff-Knopp &

Burkhard (2018):

“Our examinations (comparison of multiple measurements by
different observers and data derived by structure-from-motion-
methods) show an error rate of approximately 15%.”

Steinhoff-Knopp, B. and Burkhard, B. (2018): Soil erosion by
water in Northern Germany: long-term monitoring results from
Lower Saxony,450 Catena, 165, 299-309,
https://doi.org/10.1016/j.catena.2018.02.017

How did you know there had been an erosion event,
given that high-intensity rain cells have only a spatial
extent of about 1 km? (see Lochbihler et al. 2017,
Geophysical Research Letters)?

It was not always known in advance of a survey whether an
erosion event had occurred. Surveys were nevertheless
conducted each time (except during winter months) when a
respective 1 km? grid cell recorded a rainfall event exceeding
12.7 mm (we use radar rainfall information from the German
weather service) to ensure that all potential events were
documented. Surveys were also conducted when farmers
reported erosion features.

L 97: What is sheet-to-linear erosion? Isn't this rill
erosion, which is already in the first group?

Sheet-to-linear erosion comprise erosion systems showing both
features of sheet and linear erosion. In the surveys these are
mapped in its own category. See also Steinhoff-Knopp &
Burkhard (2018)



https://doi.org/10.1016/j.catena.2018.02.017
https://doi.org/10.1016/j.catena.2018.02.017
https://doi.org/10.1016/j.catena.2018.02.017
https://doi.org/10.1016/j.catena.2018.02.017

L 101: Nineteen variables are pretty limited. | would
not criticise this, but in L 38, you criticised a limited
number of variables. Your arguments do not match.
(BTW: The (R)USLE uses more than 19 variables to
calculate the final six factors; hence, your data set is
more limited).

Thank you for bringing to our attention that our argumentation
in this regard needs to be refined and partially rephrased. Our
aim is to detect patterns and relationships of soil erosion and
related factors at the field-to-landscape scale. For this purpose,
in addition to the factors of the USLE, we also considered other
variables describing landscape characteristics that may affect
erosion patterns. Many of these variables are themselves
derived from multiple sub-variables (e.g. the included USLE
factors). As mentioned in the discussion section of the
manuscript, we acknowledge that our set of variables is not all-
encompassing. However, we believe they provide a sufficient
starting point for our analysis.

L 110: Better call it the Pearson correlation
coefficient because Pearson and even the regression
have several coefficients. In the following, r is mostly
in italics. Please be consistent.

Thank you for bringing this to our attention. We will fix it
accordingly.

Table 1: DEM is definitely wrong because this is the
entity of all elevation data. Do you mean altitude?

More details about the resolution and the quality of
your DEM have to be given (see the general remark
regarding the data chapter) because many of your
following variables depend strongly on these two
parameters.

We agree that the information represented by the respective
DEM grid cells corresponds to altitude. We will clarify this in
the manuscript and add more detailed information about the
DEM, including its native resolution and quality, to the data
table in the appendix.

How was slope length defined, in the sense of the
USLE or in a geomorphological sense? Was it defined
for the field or for the raster cell? | guess you did not
use slope length, which would be one value for the
entire slope, but you may have used the upslope
length of each raster cell. | do not like guessing what
you did (a similar question could be raised for almost
all variables).

Flow accumulation is described as the total
accumulated runoff. This would require runoff
modelling because runoff will depend on soil, crops,
heterogeneity of rain and other variables. | guess
you mean the upslope drainage area. More
explanation required!

Wetness index: What is a 'modified catchment area
calculation'?

Machining direction: This will differ on different field
parts because of the headland and complex
topography. How was it defined? It may also vary
over time.

Regarding the R and LS factors, see below. How was
the C factor determined? Did you consider individual
rains and the corresponding field states, or did you
use some more generalised C factor? Which degree
of generalisation did you use? K factor, based on
which data?

The table must be complemented with statistical
metrics like mean, SD, min, and max, which give an
idea of the range the data covers. This is essential for
the interpretation of Fig. 5.

We agree that additional details and explanations are
necessary. Therefore, as mentioned above, a table providing
more detailed descriptions and further information on each
predictor variable, including statistical metrics, will be added to
the appendix to improve the comprehensibility of our
methodology. Thank you for highlighting this point.

L 178: Conventional cross-validation is inappropriate
in your case because your raster cells are highly

Thank you for this comment. As part of our study, we applied a
leave-one-area-out approach. We agree that these results




autocorrelated. Hence, the left-out data are not an
independent data set. | suggest using a seven-fold
cross-validation by leaving out one of your study
areas at a time.

provide further insights, and they indeed show similar findings
regarding the performance of the different models. Again, the
CNN performs best. However, this approach also has its own
limitations (which we will add to the discussion). Because the
monitored areas differ considerably in size and characteristics,
the six remaining areas in each iteration cannot fully represent
the entire dataset. Since our primary goal is to compare
different models and their ability to reproduce soil erosion
patterns, the conventional cross-validation remains useful and
will continue to be the main focus of our study. Nonetheless,
the results of the seven-fold leave-one-area-out approach will
be included alongside the current results and discussed
accordingly as it gives insights on the transferability of the
models.

L 185: | cannot see the five pairs in Table 1. Which
pairs do you mean?

Thank you for bringing this to our attention. We will fix the
reference accordingly.

L 187: The correlation between R and altitude is
strange. | am not aware of any meteorological
process that would influence rain within your
altitudinal and spatial range. | guess the correlation
is an artefact of an inappropriate resampling
procedure. Unfortunately, resampling was not
described.

The correlation is explainable: The investigation areas are
situated in three different regions in Lower Saxony. Each of
these regions has a typical (average) altitude correlating with
typical R factors resulting from climatic conditions in Northern
Germany. It is not a resampling artefact.

Fig. 4: The x-axis appears to have a log scale. Then,
zero would not be possible, although shown (likely it
is 0.001) and although being found in the data set. |
recommend using a square-root scale, which allows
for a true zero and does not compress the data in
the relevant range of 0.1 to 50 t because of the
inflation of the irrelevant range between 0.001 and
0.1.

Thank you for this suggestion. We will revise the graph
accordingly.

This also leads to the question: Were there no
negative values in your data set (colluviation)?
Including negative values would be a clear advantage
compared to the USLE. In any case, the reason for
the lack of negative values has to be explained.

Deposition sites are monitored, but due to their qualitative
character, this information was not included in this study.

L 224: The high importance of altitude shows that
the results of your approach lack transferability to
other areas. | can easily imagine a similar erosion
situation (similar topography, similar soils, similar
land use, similar rain), but a few hundred meters
higher (or even a few thousand meters higher if we
think of a high valley in the Andes). The large
importance of altitude would then cause very
strange predictions. The matching of the training and
the application situation is an indispensable requisite
for your approach that does not restrict the input
data to meaningful and universally valid variables
(especially if you request unlimited variables). It is
worth discussing this constraint, which is especially
important in the black box of neuronal networks.
Whether the variables are used meaningfully in view
of the erosion process by the network is unknown
and irrelevant for the result. It is, however, highly
relevant for the transferability. While it is relatively
easy to find out whether, for instance, the K factor
equation is applicable in a specific case (e.g.,

The importance of altitude and its implication on the
transferability is a fair point to discuss. However, at the
landscape scale, and within the extent of our study area, a
DEM can still provide valuable relative information to
distinguish between different rates of soil erosion. The high
importance of altitude does not indicate that absolute
elevation is important, but rather that the relative altitude
between grid cells is important. Nonetheless, it remains true
that transferability to regions outside the training data extent
can be a major limitation for all models trained on spatially
restricted datasets (see chapter on limitations).

Regarding to the Andes example: The application of the models
trained in Northern Germany to significant different
environmental conditions without validation is not a useful
application. As mentioned, the transferability of the models is
limited but not tested yet. Therefore, we do not claim to create
models for all agricultural settings around the world, as training
data cannot reflect the needed variability. Transferability to
croplands in Northern Germany can be achieved — but this is




peatland erosion), it is difficult to find out in which
case a neural network result will fail when
transferred to a different situation.

not tested in our study. We will add further lines to the chapter
limitations to address this topic in more detail.

Fig. 5: The low importance of LS is strange,
particularly because of the higher importance of
flow accumulation and slope. Essentially, LS is the
product of flow accumulation and slope gradient and
thus must be of higher importance. Could LS be
wrongly calculated by assuming straight slopes,
although you have converging and diverging slopes?
Furthermore, did you use the field's LS factor or the
pixel's LS factor, which is entirely different
information? Your M&M section requires clearly
more information. Otherwise, the results cannot be
understood.

At first glance, we had the same impression, as the LS factor
combines several relevant pieces of topographic information.
We used pixel-based LS factors (will be described in the annex),
calculated using the Desmet & Govers (1996) method, which
includes field boundaries as implemented in SAGA GIS, and
cross-checked the results.

The relatively low importance of the LS factor in our models
likely results from the neural network’s ability to internally
reconstruct similar relationships directly from its input
variables (e.g., DEM, slope, and flow accumulation). In other
words, the network can already capture the relationships
between slope and flow accumulation that are represented by
the LS factor, making the explicitly provided LS variable partly
redundant, and therefore less important. Consequently, a
functional relationship between variables does not necessarily
imply equal importance for the model output.

Desmet, P. J. and Govers, G. (1996): A GIS procedure for
automatically calculating the USLE LS factor on topographically
complex landscape units, Journal of soil and water
conservation, 51, 427-433,
https://doi.org/10.1080/00224561.1996.12457102

CNN was the best method in your case. Does this
have any relevance? Will CNN always or at least
often be the best? We don't know because this is an
unreplicated experiment. Usually, we regard
unreplicated results as meaningless. | wonder
whether you could improve the validity of your
analysis. For instance, you could run your seven
study areas separately. Is CNN the best in all seven
cases? Is the ranking of variables similar in all seven
cases (which would allow us to say something about
transferability at least within your region)? You could
run your analysis ten times with a subset of 10
randomly selected variables from your data set. Is
CNN the best method in all cases? Presently, we do
not know, and hence your conclusion that CNN
outperforms other methods remains just a
speculation.

We appreciate the reviewer’s comment on the need for
replication and robustness testing. To address this, we
replicated our comparative analysis using a leave-one-area-out
cross-validation approach, where each of the seven study areas
was used once as an independent test case. The results show a
consistent ranking of model performances across areas, with
the CNN again achieving the highest performance metrics.
While we acknowledge that this approach has its own
limitations, it provides additional evidence for the robustness
and relevance of our findings. The new results and discussion
will be added to the manuscript accordingly.
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