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Abstract.

Integrating fire simulation into climate models enhances our understanding of ecosystem-fire-climate interactions, clarifying

the role of fire in the carbon cycle and other processes. The Interactive Fires and Emissions algorithm for Natural Environ-

ments (INFERNO) is one of the new modules in the upgraded UK Earth System Model (UKESM). Here, we use a version of

INFERNO coupled only with the Joint UK Land Environment Simulator (JULES) to evaluate its performance and biases over5

South America (SA); a region that accounts for ∼15% of global fire carbon emissions. For this, we compared carbon monox-

ide (CO) estimates from INFERNO (2004-2021) with five satellite-based biomass-burning inventories, conducted sensitivity

experiments and developed a machine learning (ML) model targeting biases. INFERNO was able to represent CO emissions

in most of the fire-active zone in SA, particularly the southern Amazon ’Arc of Deforestation’, but overestimates emissions

(∼100%) outside them (e.g. within the Amazon forest). The ML model (R2 = 64%) indicates that tree categories of Plant Func-10

tional Types (PFTs) and soil moisture— through its role in flammability and gross primary productivity (GPP) —significantly

influence spatiotemporal biases. In northern SA, CO emissions were overestimated by approximately 300% due to seasonal

cycle inaccuracies, while INFERNO showed lower biases in southern SA emissions despite lacking seasonal representation.

Both flammability and GPP underpinned the limited simulation of the seasonal cycle. Although INFERNO misrepresented

emissions trends in the Arc of Deforestation, it successfully captured the increase in emissions in the eastern Andean Moun-15

tains from 2014 to 2021, albeit underestimating their magnitude. Sensitivity experiments revealed that the underlying PFT

affected spatiotemporal variability (115%) and trends (167%) in CO emissions, while flammability influenced the seasonal

cycle (116%) and trends (158%). These findings highlight the need for enhanced PFT accuracy and a deeper understanding

of the roles of precipitation/soil moisture in GPP and flammability, as well as the consideration of landscape fragmentation to

represent land management and forest fire vulnerability.20
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1 Introduction

Wildfires (both natural and anthropogenic) are becoming increasingly frequent and intense in key ecosystems around the world,

largely due to climate change and land use practices (Cunningham et al., 2024; Zheng et al., 2021). The recent increase in wild-

fires in tropical and boreal forests has led to a rise in carbon emissions from fires, despite the ongoing decline in global burned25

area (Zheng et al., 2023, 2021). Due to the lack of resilience of these ecosystems to fires, the success of fire-prone ecosystems

is enhanced over the burned area. As a result, these fires cause forests to shift to a negative carbon balance, i.e. becoming a net

source of carbon (Yue et al., 2016). Annually, fires emit 7.3 Pg of CO2 to the atmosphere (van der Werf et al., 2017), along

with large quantities of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O) (Heilman et al., 2014). The

effects of fire emissions, however, become complex with the additional release of large amounts of aerosols, including black30

carbon and organic aerosols, which have different interactions with clouds, radiation, precipitation and atmospheric circulation

(Magahey and Kooperman, 2023; Thornhill et al., 2018; Wu et al., 2011). Other air pollutants, which can be precursors to

ozone (O3) formation, such as nitrogen dioxide (NO2), are also emitted from fires. With this, fire emissions can adversely

impact ecosystems through O3 stress, which affects plant growth (Pacifico et al., 2015). Additionally, fire emissions can alter

the biogeochemical cycles of certain key elements for plant growth, such as carbon, phosphorus, nitrogen, and iron (Bauters35

et al., 2018; Hamilton et al., 2022). Humans significantly influence and are influenced by ecosystem-fire-climate interactions.

These interactions can affect ecosystem functions, crop yields, and overall human health. The increase in air pollutants from

wildfires has led to higher hospitalisation rates, particularly among children (Arrizaga et al., 2023), as well as human lung cell

damage (de Oliveira Alves et al., 2017), and cases of low birth weight (Candido da Silva et al., 2014).

The limited representation of this complex climate-fire-ecosystem interaction in Earth System Models (ESMs) has led to40

large uncertainties in future climate projections (Canadell et al., 2021; Kloster and Lasslop, 2017; Hanan et al., 2022). This

issue is further exacerbated by ESMs often lacking an interactive fire model component to represent the coupling of fire,

land, atmosphere and climate interactions (Lasslop et al., 2019). There is particularly high uncertainty of the impact of fire

on biogeochemical cycles and, in turn, the contribution to ecosystem change and climate (Lasslop et al., 2019). Multiple

coupled models have attempted to understand the complex climate-fire-ecosystem interactions in the last few decades (Hantson45

et al., 2016). Still, including fire models within global climate models is a growing and challenging development. In fact, the

number of fire-related variables submitted by ESMs in the sixth Coupled Model Intercomparison Project (CMIP6) has doubled

compared to its predecessor, CMIP5 (Hantson et al., 2016; Li et al., 2024). Additionally, efforts to enhance our understanding of

fire processes and their representation in global models are being enhanced through collaborations, such as the Fire Modelling

Intercomparison Project (FireMIP) (Li et al., 2019; Hantson et al., 2020).50

To improve the representation of climate-fire-ecosystem dynamics within CMIP7 experiments, the United Kingdom Earth

System Model (UKESM) will couple the Interactive Fires and Emissions algorithm for Natural Environments (INFERNO)

(Mangeon et al., 2016) to its vegetation model (the Joint UK Land Environment Simulator - JULES) and atmospheric model
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(including coupling with the UK Chemistry and Aerosols Model - UKCA). INFERNO coupled to JULES has already partici-

pated in FireMIP, where INFERNO provided an accurate representation of global burned area and carbon emissions (Hantson55

et al., 2020; Teixeira et al., 2021) and outperformed most of the studied coupled models in simulating the spatial patterns of fire

carbon emissions (Hantson et al., 2020). However, the model has also faced challenges in different parts of the world, such as

South America (SA), where INFERNO has been limited by the complexity of socioeconomic and political influences on land

management within the region (Burton et al., 2022). In general, FireMIP showed differences between models and a frequent

overestimation of emissions in this region, where anthropogenic influences on fires (e.g., deforestation) are the main challenge60

(Li et al., 2019; Hantson et al., 2020). Enhancing global model performance in SA is crucial, as the region accounts for 15%

of annual fire carbon emissions. Furthermore, changes in the carbon balance and land cover in the Amazon can provoke sig-

nificant regional and global effects (Snyder, 2010; Zhou et al., 2021; Wang et al., 2023). Moreover, parts of the Amazon have

already become a carbon source due to deforestation and climate change (Gatti et al., 2021).

The current research on simulated fire emissions from INFERNO over SA lacks a thorough evaluation of the sensitivity and65

biases of the model. This study decisively addresses this gap by rigorously assessing the performance of the model, as well as

examining the sensitivity of simulated fire emissions and the biases associated with various model processes and parameters.

For this, we compare the carbon monoxide (CO) emissions from fires simulated by JULES-INFERNO with various biomass

burning inventories and satellite-retrieved total column CO (TCCO). We focus on CO due to its significant emission rate from

fires and the availability of complementary satellite missions that retrieve atmospheric TCCO. In SA, TCCO has been suggested70

as a valuable addition to fire activity monitoring since fire is the main source of CO in the region (Naus et al., 2022; Jury and

Pabón, 2021). Additionally, inventories generally align well with CO emissions in SA (Liu et al., 2020; Hua et al., 2024). To

describe the sensitivity of the estimated CO emissions and their biases, we used sensitivity experiments and a machine learning

(ML) approach.

2 Data and methods75

This study utilised five biomass burning inventories to evaluate INFERNO CO emissions simulations in terms of spatiotemporal

distribution, seasonal cycle, and regional trend in SA from 2004 to 2021. To support the assessment, we also used TCCO

retrievals. The inventories and TCCO products are introduced in Section 2.2 and 2.3, respectively. In Section 2.4, we provide

a brief overview of the JULES-ES setup of the third simulation round of the Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP3). This section also presents the JULES-INFERNO coupling and the key equations that it uses. Throughout80

the study, the JULES-ES model using the ERA5 reanalysis served as the control model for most of the comparisons with

inventories. However, we conducted multiple sensitivity experiments, presented in Section 2.5, that modify the representation

of different processes within JULES-INFERNO. These experiments were compared to the inventories and the control run. We

also developed a machine learning (ML) model to explain CO emissions biases in SA in order to analyse the processes driving

the INFERNO biases.85
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2.1 Study area

This study focuses on continental SA and uses a regional classification that divides SA into three areas: northern SA (North-

SA), central SA (Mid-SA) and southern SA (South-SA). North-SA consider the territory from latitude 0.5◦N to the continental

boundary between Colombia and Panama, Mid-SA ranges from 17.5◦S to 0◦, and South-SA ranges from 55◦S to 17◦S ( see

Fig. S1). This classification aligns with the method used by Li et al. (2024), which identifies the "Arc of Deforestation" zone,90

here referred to as Mid-SA, separating it from the remaining southern hemisphere SA. The region commonly defined as the

"Southern Hemisphere South America - SHSA" (van der Werf et al., 2017) encompasses both Mid-SA and South-SA. To

facilitate a comparative analysis, we will refer to it as Mid-SA/South-SA when convenient.

Multiple factors are responsible for wildfires in SA, both of natural and anthropogenic origin. Yet, most are directly related

to anthropogenic activities in highly fire-prone ecosystems, such as Cerrado and Llanos, and sensitive ecosystems, such as the95

Amazon rainforest (Chen et al., 2013; Menezes et al., 2022; van der Werf et al., 2010). In SA, frequent fire occurrences are

mainly concentrated in the transition forest region, recognised as the "Arc of Deforestation." This area is not only highlighted

by the continued land-use conversion but also for being the world’s largest savanna-forest transition (Marques et al., 2020). The

Arc of Deforestation in this study is located in Mid-SA, and includes the deforestation front of Bolivia, Brazil and Perú. This

study assessed CO emissions on deforestation fronts and particular ecoregions of SA using the shapefiles provided in Pacheco100

et al. (2021) and Dinerstein et al. (2017), respectively. These zones are displayed by Fig. S1b.

2.2 Biomass burning emission inventories

To evaluate the simulated CO, we utilised five biomass burning inventories, including the Global Fire Emissions Database

(GFED), which is frequently used for model output comparisons due to its extensive historical data record. We employed both

the GFED Beta version 5 (GFEDvn5) and version 4.1s (GFEDvn4s) (van der Werf et al., 2017; Chen et al., 2023), alongside the105

Global Fire Assimilation System version 1.2 (GFASvn1.2) (Kaiser et al., 2012) and the Fire INventory from NCAR version 2.5

(FINNvn2.5) (Wiedinmyer et al., 2023). Additionally, a regional inventory, the Brazilian Biomass Burning Emission Model

(3BEM-FRP)(Pereira et al., 2022), was utilised. These inventories are based on three distinct fire products: GFED uses the

burnt area (BA) as the base satellite product, FINNvn2.5 uses active fire hotspots (from which the BA is calculated), and

GFASvn1.2 and 3BEM-FRP are based on fire radiative power (FRP). GFASvn1.2, FINNvn2.5 and 3BEM-FRP had daily data110

with a spatial resolution of 0.1◦ × 0.1◦. While GFEDvn5 and GFEDvn4s were downloaded with a monthly resolution and a

spatial resolution of 0.25◦ × 0.25◦. All the inventories were resampled to a monthly temporal resolution and a spatial resolution

of 0.5◦ × 0.5◦ to match the model outputs dimensions in the JULES-INFERNO configuration (Section 2.4).

GFEDvn4s was the first GFED version to consider a correction for small fires using 500m MODIS bands (van der Werf

et al., 2017). With GFEDvn5, the efforts for including small fires were reiterated by including a correction based on Landsat or115

Sentinel-2 observations (Chen et al., 2023). FINNvn2.5 has a special adjustment to calculate BA in forest areas, where hotspots

of fire activity are clustered together to overcome low visibility caused by tree canopy interference (Wiedinmyer et al., 2023).

GFASvn1.2 uses the MODIS near-real-time FRP product to estimate real-time emissions (Kaiser et al., 2012). 3BEM-FRP

4

https://doi.org/10.5194/egusphere-2025-3579
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



also uses FRP from MODIS observation, applying an adjustment factor to account for fires beyond the spatial and temporal

resolution of the product. This adjustment is based on comparisons with VIIRS and the geostationary satellites GOES and120

SEVIRI (Pereira et al., 2022).

The estimation of CO emissions by these inventories varies significantly due to differences in how each one calculates the

amount of burned dry matter (Hua et al., 2024). However, to convert this burned matter into emissions, all inventories rely on

emission factors (EF) [gkg−1] that vary by land use and land cover. The EFs are consistently derived or partially derived from

the studies conducted by Akagi et al. (2011) and Andreae and Merlet (2001). Particularly, the EF for CO shows less variation125

across different inventories compared to other compounds (Liu et al., 2020; Hua et al., 2024). GFASvn1.2 and 3BEM-FRP use

a combustion factor to determine the amount of biomass burnt by different levels of energy. They rely on external products,

GFEDvn3.1 for GFASvn1.2 and the Fire Energetics and Emissions Research vn1 (FEERvn1) for 3BEM-FRP (Kaiser et al.,

2012; Pereira et al., 2022).

Annual Land cover is another important input for the inventories. Here, the MODIS MDC12Q1 collection 5.1 or 6 is used.130

Specific for Brazil and the Amazon, 3BEM-FRP includes the MapBiomas collection 6, which better captures the deforestation

process in the Amazon and forest formation in northern Cerrado (Mataveli et al., 2023).

2.3 TCCO retrievals

We used the TCCO from the Infrared Atmospheric Sounding Interferometer (IASI) by the University of Leicester IASI Re-

trieval Scheme (ULIRS) (Illingworth et al., 2011), and the version 9 level 2 product from the Measurements Of Pollution In The135

Troposphere (MOPITT) developed by NASA/LARC/SD/ASDC (2022) (Deeter et al., 2022). The IASI TCCO record used in

this study is between 2014 and 2021 since ULIRS was applied to the instrument on Metop-B (satellite launched in September

2012). IASI has a circular footprint at nadir with a diameter of 12 km, extending to an ellipse of ∼39 km × 20 Km at the edge

of the swath. Due to its wide swath, the global coverage is achieved in 12 hours. To estimate the TCCO, ULIRS used the IASI

band centred on 4.7µm, with absorption ranging from 2040 to 2190 cm−1, but because there are other stronger absorbers in140

this domain (e.g., H2O, CO2, O3), then only the range 2143 cm−1 to 2181 cm−1 is utilized. From this, ULIRS uses an optimal

estimation method to determine the CO profile from the measured radiance (Illingworth et al., 2011).

MOPITT is on board Terra and has a horizontal resolution of 22 km ×22 km, a swath of 640 km and a global coverage

every 3-4 days. Three retrieved products are available: TIR-only, NIR-only, and TIR/NIR. For this study, we used the TIR/NIR

product, which has the highest sensitivity in the lower troposphere. MOPITT uses the radiative transfer model recognised as145

the MOPITT operational fast-forward model (MOPFAS) and an optimal estimation-based algorithm to retrieve TCCO (Deeter

et al., 2017).

The TCCO products were gridded at 0.5◦ × 0.5◦ and at a monthly average resolution co-locating the model and inventories.

Only retrievals with a degree of freedom signal (DOFS) ≥1, cloud fraction ≤ 20% and solar zenith angle <90◦ were included

in our analysis. This last criterion was established to focus solely on daytime products, ensuring fair comparisons between the150

retrieval products.
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2.4 JULES-ES: ISIMIP3a setup

The JULES-ES configuration for ISIMIP3a was utilised in this study. This configuration is described in Mathison et al. (2023)

and functions as an offline land/vegetation model, requiring prescribed atmospheric inputs while having a setup similar to that

of the UKESM (Sellar et al., 2019). For this study, we ran the model from 2001 to align with the study period (2004-2021).155

This JULES-ES configuration has a spatial resolution of 0.5◦ × 0.5◦ latitude–longitude grid.

ISIMIP3a includes a core of experiments based on climate-related forcings and direct human forcings (Frieler et al.,

2024). For climate-related forcings, the models used four standard observation-based meteorological datasets: GSWP3-W5E5,

20CRv3-W5E5, 20CRv3-ERA5, and 20CRv3 (Frieler et al., 2024). Some datasets are composites of two separate reanalysis

datasets: historical and recent. Aligned with our study period, we utilised only the most recent part of the dataset. As a result,160

we only considered the climate forcing datasets W5E5, ERA5, and 20CRv3. Both GSWP3-W5E5 and 20CRv3-W5E5 relied

on W5E5 data from 1979 to 2019 (Frieler et al., 2024). The 20CRv3 dataset ends in 2015, while the ERA5 dataset ends in

2021. In this study, ERA5 is used for the control analysis as this covers the study period (2004 - 2021). The other two datasets

(i.e. 20CRv3 and W5E5) were utilised for the flammability experiments described in Section 2.5.

The human-forcing datasets in ISIMIP3a prescribe land use (agricultural and pasture fraction), population density (PD), and165

nitrogen deposition. For this study, the human development index (HDI) was prescribed to represent socioeconomic factors as

suggested by Teixeira et al. (2021), but only for the experimental work (Section 2.5). Since the original version of INFERNO

in ISIMIP3a does not prescribe this, HDI=0 was used in the control run.

In this setup, the land component, JULES, contains 13 plant functional types (PFTs) (listed in Table 1), which include four

managed and nine natural PFTs (Mathison et al., 2023). The four managed PFTs are C3 and C4 crops (C3Cr and C4Cr) and170

pastures (C3Pa and C4Pa). JULES-ES also contains four non-vegetation land covers (soil, lake, ice, urban). The PFTs can

be globally distributed by simulation within JULES-ES using the dynamic global vegetation model (DGVM) called TRIFFID

(Top-down Representation of Interactive Foliage and Flora Including Dynamics), which models the PFTs competition and their

biomass (Burton et al., 2019).

2.4.1 INFERNO175

The INFERNO model developed by Mangeon et al. (2016) uses PFTs as vegetation categories for the estimation of burned

area (BA), emitted carbon (EC) and emitted species (Ex). To calculate the BA, INFERNO uses total ignition (IT ), flammability

(FPFT ) and an average burned area (BAPFT ) as described in Equation 1.

BAPFT = IT FPFT BAPFT (1)

Table 1 lists the BAPFT used for each PFT in this study. IT and FPFT behave as probabilistic variables ranging from 0 to180

1. In INFERNO, IT is split into natural ignition (IN ) and anthropogenic ignition (IA).

Three ignition methods can be used in the model. The first and simplest is "constant ignition", where IN and IA are constant.

Here, IN assumes a multi-year annual mean lightning rate of 2.7 flashes/km2/yr, where 75% are cloud-to-ground, all of which
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Table 1. JULES-ES’s Plant Functional Type (PFT) and their respective Average Burnt Area (BAPFT ) and Emission Factor (EFPFT ) for

INFERNO modelling

PFT Short name BAPFT [km2fire−1] EFCO[gkg−1]

Broadleaf deciduous trees BDT 0.6 93

Tropical broadleaf evergreen trees BET-Tr 0.6 93

Temperate broadleaf evergreen trees BET-Te 0.6 89

Needleleaf deciduous trees NDT 0.6 127

Needleleaf evergreen trees NET 0.6 89

C3 grass C3G 1.4 89

C3 crop C3Cr 0.2 0

C3 pasture C3Pa 1.4 98

C4 grass C4G 1.4 63

C4 crop C4Cr 0.2 0

C4 pasture C4Pa 1.4 63

Deciduous Shrub DSh 1.2 89

Evergreen Shrub ESh 1.2 127

provoke IN . The IA is 1.5 ignitions/km2/month globally, based on GFED estimations (Mangeon et al., 2016). The second

ignition method is "varying natural ignition", which uses constant IA as the first ignition method but varying IN (i.e., lightning).185

The annual seasonality of cloud-to-ground lightning is prescribed. The third method, "varying natural and human ignitions",

uses the same varying IN as the second method and a varying IA, which depends on prescribed PD and optional HDI (Teixeira

et al., 2021, 2023). The IA, described in Equation 2, uses a distinct anthropogenic influence on ignitions in rural versus urban

areas represented by k(PD) = 6.8×PD−0.6. In this equation, α is the number of potential ignitions per person per month per

km2 with a constant magnitude of 0.03.190

IA = k(PD) PDα× (1−HDI) (2)

This third ignition method attempts to include anthropogenic fire suppression, so the fraction of fires not suppressed by

humans (fNS) is included for the calculation of IT in Equation 4. Since HDI is not included in the control model, then HDI=0.

fNS = 7.7(0.05 +0.9× e−0.05PD)× (1−HDI) (3)

195

IT = (IN + IA)
fNS

8.64× 1010
(4)
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For INFERNO, the term FPFT (described in Equation 5) depends on the relative humidity (RH) in %, precipitation rate

(R) in mm day−1 and temperature in K from the prescribed input meteorological dataset. The land surface model, JULES,

provides the inputs of soil moisture content (θ) as a fraction of saturation, and fuel load (leaf carbon and decomposable plant

material) [kg m−2]. These are used to calculate the fuel load index (FL) and the Goff-Gratch saturation vapour pressure (α),200

further explained in Mangeon et al. (2016).

FPFT =





1 for RH < RHlow

α
RHhigh−RH

RHhigh−RHlow
e−2RFLPFT (1− θ) for RHlow ≤RH ≤RHhigh

0 for RH > RHhigh

(5)

For Equation 5, RHlow = 10 % and RHhigh = 90 %. Those are used to scale the influence of RH from 0 to 1. Consequently,

notice that FPFT ranges from 0 to 1.

After calculating BA, the emitted carbon (ECPFT ) is calculated based on the available carbon (Ci) and the combustion205

completeness (CC) for wood and leaves. This last term describes the minimum and maximum carbon fraction burnt in the

fire events and may/may not depend on PFT. For the ISIMIP3a, CCmin,leaf = 0.8, CCmax,leaf = 1, CCmin,wood = 0 and

CCmax,wood = 0.4 regardless of PFT. Equation 6 defines the ECPFT .

ECPFT = BAPFT ×
i∑

leaf,wood

(CCmin,i + (CCmax,i−CCmin,i)(1− θ))Ci (6)

The emission of a compoun X (in this case CO) is described by Equation 7, which includes the ECPFT and the EF for210

compound X. (EFX ) varies for different PFT and is listed in Table 1.

EX,PFT = ECPFT EFX,PFT /[C] (7)

In this equation,[C] describes the dry carbon fraction, which is assumed to be 50% (Mangeon et al., 2016).

2.5 Sensitivity experiments on JULES-INFERNO

JULES-INFERNO refers to the coupled interaction of INFERNO fire simulation in JULES, but throughout the manuscript, we215

refer to this only as INFERNO. We conducted multiple experiments to assess the sensitivity of various processes and parameters

controlling simulated fire emissions. We have divided the experiments into seven sub-groups (Table 2): ignitions, flammability,

burnt area, combustion completeness, emission factor, feedback and PFTs. The label of the experiments described the subgroup

to which they belonged. The experiment names, groups and details are summarised in Table 2. For ignitions, ITN and ITA

used the different types of IT provided by INFERNO and used prescribed HDI with a national and subnational dataset (IT-HDI220

and IT-HDIS), since the control run uses varying natural and human ignitions and HDI=0. Regarding flammability, the control

8
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Table 2. Description of the experiments run with INFERNO

Short name Impacted process Description

Control Varing IA and IN ignition

IT-CST

Ignition

Constant IA and IN ignition

IT-NAT Constant IA

IT-HDI Including HDI dataset national resolution

IT-HDIs Including HDI dataset subnational resolution

F-W5E5
Flammability

Uses W5E5 climate-forcing dataset

F-20CR Uses 20CRv3 climate-forcing dataset

BA-AVG
Burnt area

Average BA regardless of PFT

BA-RND Randomly switched BAPFT through PFT

CC-VAR
CC

Varying CC based on van Leeuwen et al. (2014)

CC-EXT Extended CC from 0 to 1

EF-AVG
Emission factor

Average EF regardless of PFT

EF-RND Randomly switched EFPFT through PFT

NO-FDBK Feedback Turn off outputs from INFERNO to JULES

EC-PFT PFTs Turn off outputs from INFERNO to JULES

experiments used the ERA5 climate-forcing dataset, while F-W5E5 and F-20CR used the W5E5 and 20CRv3 datasets. For the

burnt area, emitted carbon, and combustion completeness, the parameters BAPFT , CC, and EF were modified accordingly.

In addition, a no-feedback experiment was also conducted (NO-FDBK), which disables the outputs from INFERNO being

passed to JULES and TRIFFID (i.e., INFERNO does not contribute to carbon losses and does not influence fire disturbance225

to the PFTs). A prescribed PFT experiment was conducted (EF-PFT), using an annual resolution PFTs dataset generated by

JULES in the ISIMIP3a team (Mathison et al., 2023) based on the work of Harper et al. (2023) and prescribed land use from

the Land-Use Harmonisation dataset provided for ISIMIP3 (Volkholz and Ostberg, 2022). This dataset covers the study period

only until 2019. The dominant prescribed PFTs through SA according to the dataset are illustrated in Fig. 1a compared with

the output from TRIFFID (1b).230

Figure 1a illustrates the dominant PFT for the prescribed dataset, while Fig. 1 b shows the modelled PFT by TRIFFID. The

distribution of PFT presents slight changes in North-SA, where the dominant PFT, according to both, is BET-Tr (∼50%). For

Mid-SA, BET-Tr is also dominant; however, the modelled PFT distribution also presents a high fraction of BDT (13%), C4G

(18%), and soil (15%). BET-Tr for the prescribed dataset is around 50%, while TRIFFID modelled around 27% throughout

the study period. Contrary to the other two regions, in South-SA, the soil cover dominates (∼25%), followed by the PFT C3Pa235

(∼15%) according to both the simulated PFT and the observation-based dataset.
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Figure 1. Average dominant Plant Functional Types over South America from 2004 to 2021 (a) generated by JULES ISIMIP3a team

(Mathison et al., 2023) based on ESA Land Cover Climate Change Initiative (Land_Cover_cci) and the Land-Use Harmonisation datasets

and (b) modelled by TRIFFID for this study.

2.6 CO emissions variability and comparison

We use the Average Relative Range (ARR) of estimated fire CO emissions across different inventories to quantify the level of

variation among them. To calculate the ARR, we first compute the annual range of total CO emission estimates (y) for each

year i in the study period, defined as the difference between the maximum and minimum values across inventories. These240

ranges are then normalized by dividing it by the average emission magnitude of the respective year. The resulting values are

averaged over the entire study period and multiplied by 100 to express the ARR as a percentage as Equation 8 describes.

ARR =
1
N

N∑

i

max(yi)−min(yi)
yi

× 100 (8)

To assess the significance of comparisons between pairs of CO emissions estimated by different inventories or between an

inventory and INFERNO, we employ the non-parametric Mann-Whitney U rank test.245

The emissions trend was determined using the Man-Kendall test based on annual CO emissions. We calculate the trend

for two periods: the complete study period (2004 to 2021), which is the long-term trend, and the period from 2014 to 2021,

which is the short-term trend. The short-term period was chosen based on the availability of the IASI TCCO dataset, which

was retrieved from 2014 for the instrument on board Metop-B. We calculate gridded trends, but general assessments are made

using regional-scale data.250

We utilised the percentage mean bias (MB%) to assess the model’s biases related to spatiotemporal variations, seasonal

cycles, and trends. As Equation 9 describes, this metric calculates the average difference between a set of values based on the
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model (denoted as x) and a corresponding set of observational values (denoted as y). The observational values are used to scale

these differences as the equation shows.

MB% =
1
N

N∑

i

xi− yi

yi
× 100 (9)255

In Equation 9, x and y refer to different variables depending on the MB% to be calculated. For the spatiotemporal MB%,

x and y denote annual CO emissions, while i refers to each year within the 18-year study period. In contrast, for the seasonal

cycle MB%, x and y indicate the seasonal cycle amplitude for each year, determined by subtracting the maximum monthly

CO emissions during the peak period from the maximum emissions during the non-fire season (based on observations), with

i again representing each year. Finally, for the trend MB%, x and y correspond to the trend over a specified range of years,260

and i outlines the sets of years spanning from (2014, 2021), (2013, 2021), down to (2014-n, 2021), ultimately reaching (2004,

2021). It is important to note that for the trend MB%, N equals 11 (total set of years included).

Additionally, x magnitudes were replaced with the corresponding information from every model run, including control and

the experiment proposed in Section 2.5. Similarly, y magnitudes were replaced by the five inventories in this study. So every

model run was compared against every inventory.265

2.6.1 Machine learning for understanding INFERNO CO emission bias

Similar to other studies (Hess et al., 2023; Liu et al., 2022), we employed machine learning (ML) to assess model biases.

Specifically, we calculated the annual biases of INFERNO by taking the difference between the total annual emissions simu-

lated by INFERNO and the average annual emissions estimated by the inventories. Our target variable consisted of pixel-scale

biases. The primary objective of our analysis was to identify the key factors contributing to these biases and to determine270

whether the inputs of INFERNO (both prescribed and modelled variables) were sufficient to explain the entire bias. For this

analysis, we utilised a gradient-boosting framework implemented using the Python library XGBoost.

We selected 20 inputs for the ML model, comprising prescribed data and JULES outputs used by INFERNO to calculate

emissions. These are: population density, lightning flash rates, precipitation rate, relative humidity, temperature, soil moisture,

HDI, Wood carbon, leaf carbon and 11 PFTs. From Table 1 all PFTs were considered; however, NDT and NET were merged275

to a single needle leaf (NT) type, and DSh and ESh were merged to a single shrub (Sh) type. From these, soil moisture,

wood carbon, leaf carbon, and PFTs were directly taken from JULES simulations. The other variables were obtained from

the original datasets prescribed as inputs to INFERNO. The inputs to the ML model are the gridded datasets resampled to an

annual resolution for the study period (2004 to 2021).

The 20 features were compared to remove those that cause redundancy in our predictors and ensure independence between280

features. To evaluate multicollinearity, we calculated the correlation between pairs of factors and the variance inflation factor

(VIF), which describes how much of the variability of a particular feature can be explained by the other features. A VIF lower

than 10 is recommended.
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The data were randomly split into training (80%) and testing (20%) datasets in a five-fold cross-validation exercise to ensure

the independent performance of the specific training/test sets. The model was evaluated using the coefficient of determination285

(R2) metric, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

We ran a hyperparameter tuning to select the parameters that lead to the best model performance. This was conducted using a

random search method on each training set in a five-fold cross-validation. We used Sklearn’s RandomizedSearchCV with 500 it-

erations (i.e., n_iter). The considered parameters were: max_depth, gamma, reg_lambda, colsample_bytree, min_child_weight,

learning_rate, subsample, n_estimators. For information about these parameters, see Chen et al. (2025).290

Since the objective was to identify the key factors contributing to the biases in CO emissions from INFERNO, special

attention was given to the feature contribution methodology. We employed the Shapley additive explanations (SHAP) method,

which assigns an importance value to each feature, known as the SHAP value. This value represents the expected marginal

contribution of a feature and can be either positive or negative. It is calculated by taking the weighted average of all possible

subsets of the selected features in which the specific feature can contribute (Lundberg and Lee, 2017). A SHAP value is295

calculated for every predictor in the testing dataset. We calculate the SHAP values using a five-fold cross-validation approach.

For this, we randomly split the dataset into five groups. In each of the five iterations, four of the groups are used as the training

dataset, while the remaining group serves as the testing dataset. This allows us to calculate a complete set of SHAP values

for the whole dataset and calculate a map of contribution. We finished with 18 groups of SHAP values for every pixel that

correspond to the number of annual CO emission biases included in the analysis.300

We utilise two additional features to assess the SHAP values: the first feature categorises the pixels into North-SA, Mid-SA,

and South-SA, while the second feature identifies the pixel’s location on a map. With this, we can describe SHAP values based

on their geographical location. These extra features were only used after calculating the SHAP values, so they were not used to

train the model. To calculate the dominant feature by pixel, we identify the feature with the largest positive (negative) SHAP

value on pixels with an average positive (negative) CO emission biases. Once we established the most important feature for305

each pixel across the years, we calculated the mode to identify which feature consistently contributes the most.

3 Results and discussion

3.1 Estimated and modelled CO fire emissions in SA

Most of SA’s CO fire emissions are concentrated in the Arc of Deforestation region in Mid-SA, as shown by both the in-

ventories and INFERNO (Fig. 2). Here, FINNvn2.5 estimates the highest annual fire CO emissions (70.8 Tgyr−1), followed310

by GFEDvn5 (37.0 Tgy−1). GFEDvn4s, GFASvn1.2, 3BEM-FRP and INFERNO are approximately one-third of FINNvn2.5

emissions in the Arc of Deforestation with 21.1 Tgyr−1, 19.0 Tgyr−1, 21.2 Tgyr−1 and 26.3 Tgyr−1, respectively. The

estimations of the inventories on the Arc of Deforestation have an ARR of 157% and represent around 30-80% of the total

annual CO emissions from fires in Mid-SA, listed in Table 3. However, this is lower for INFERNO (23%), despite estimating

similar CO emissions as the inventories for both the deforestation front and Mid-SA. This is in part because INFERNO cannot315

accurately reproduce the specific details of the deforestation zone, even though it broadly identifies the area. Many fires in this
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region occur on a smaller scale than the INFERNO resolution, even overlooked by MODIS products (1 km resolution) (Liu

et al., 2020). The inventories display finer detail due to their five times higher resolution and adjustments for smaller fires, such

as those included in GFEDvn4s and GFEDvn5. However, GFEDvn4s demonstrates limitations in identifying emissions on the

eastern side of the Arc of Deforestation in comparison to the updated version, GFEDvn5. According to Teixeira et al. (2021),320

the INFERNO model overestimates emissions in this area by up to 300% compared to GFEDvn4s. However, GFEDvn4s likely

underestimates emissions in this region, as highlighted.

The Mid-SA region also contains the Cerrado ecoregion, a fire-prone ecosystem with a mixture of grasslands, shrublands

and forests, where fire frequency ranges from 3 to 6 years (Júnior et al., 2014). This accounts for around 10% to 20% of CO

emissions in Mid-SA. GFEDvn5, FINNvn2.5 and INFERNO estimate the lower contribution of these zones to the total emis-325

sions. The inventories, however, agree on estimating CO emissions of around 9.3 Tgyr−1 (ARR:39%). INFERNO estimation

of 7.5 Tgyr−1 is in the interquartile range of the annual estimations from most of the inventories (except FINNvn7.5).

It is clear that GFEDvn5 and FINNvn2.5, as well as INFERNO, present particularly high magnitudes of CO emissions in

forest areas (see Figure 1 and 2). This might be related to the higher BA calculated by these inventories. For FINNvn2.5,

only for the forest biome, multiple fire detections in adjacent pixels are assumed to correspond to a large fire (Wiedinmyer330

et al., 2023). However, using this approach plus VIIRS observations led to overestimating CO emissions in the southern part

of the Amazon forest (Wiedinmyer et al., 2023). The version of FINNvn2.5 used in this study (i.e., based only on MODIS fire

hotspots) estimates significantly lower CO emissions than the version that includes VIIRS hotspots for SA. On the other hand,

GFEDvn5 contains an adjusted BA based on Landsat observations, although this is still a beta version. GFEDvn5 estimations

surpass the BA and carbon emissions estimated by GFEDvn4s (Chen et al., 2023; Qi et al., 2024; Blackford et al., 2024), and335

consistently surpass the CO emissions estimated by GFEDvn4s in this study (p-value <0.05).

For this study, GFASvn1.2 has the lowest average annual CO emission in Mid-SA, yet with a similar annual regional dis-

tribution to 3BEM-FRP and GFEDvn4s (p-value≥0.05), see Table 3. However, Naus et al. (2022) suggest an underestimation

of CO emissions from GFASvn1.2 after prescribing the emissions into an atmospheric model and comparing the calculated

TCCO against the TCCO retrieved by MOPITT and IASI (Naus et al., 2022).340

With ∼25% of CO annual emissions in SA, North-SA and South-SA also contain hotspots of particularly high CO fire

emissions. In North-SA, the fire-prone Llanos ecregion, a mosaic of grasslands and savannas between Colombia and Venezuela,

contains around 35% CO fire emissions in the subregion according to most of the inventories, except for 3BEM-FRP, which

estimates 58% of the annual emissions for North-SA contributed by the Llanos ecoregion (4.6 Tgyr−1). The ARR magnitude

for the Llanos ecoregion, including (not including) 3BEM-FRP is 129% (46%). INFERNO estimates a smaller contribution345

of 10% (2.1 Tgyr−1) for the Llanos ecoregion, but within the inventories range, since the annual estimate of CO emissions

for North-SA is significantly higher than for the inventories (p-value <0.05). As in Mid-SA, FINNvn2.5 estimated particularly

high emissions on the deforestation front in the north of the Amazon (2.7 Tgyr−1), four times higher than other inventories, and

two times higher than INFERNO. The ARR of inventories in the Amazon northern deforestation front is 212% (37%) including

(excluding) FINNvn2.5. In South-SA, the Dry and Humid Chaco ecoregion contributes around 37% of CO fire emissions to350

the region according to most of the inventories, except for 3BEM-FRP, which estimates a contribution of around 54% (9.4
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Figure 2. Annual mean fire CO emissions for 2004-2021 estimated by (a) GFEDvn5, (b) GFEDvn4s, (c) GFASvn1.2, (e) FINNvn2.5, (f)

3BEM, and modelled by (g) INFERNO and TCCO retrieved from MOPITT (d) and IASI (h). Note that the average TCCO from IASI ranges

from 2014 to 2021.

Tgyr−1). The high CO emissions from 3BEM-FRP were previously linked to the combustion factor used in the inventory

based on FEERvn1.0 (Pereira et al., 2022). The ARR magnitude for the Chaco ecoregion, including (not including) 3BEM-

FRP is 132% (66%). In this ecoregion, INFERNO estimates lower annual CO emissions than the inventories (2.3 Tgy−1), but

still in the interquartile range of annual emissions estimated by GFEDvn4s, which present significantly lower emissions than355

the other inventories in this ecoregion (see Fig. 2).

These fire active areas assessed in this study (i.e., Arc of Deforestation, Cerrado, Chaco, Llanos, and Amazon northern

deforestation front) explain over 70% of CO emissions in SA; however, they account for around 32% of emissions simulated

for INFERNO in the region. This is potentially caused by e.g. the model resolution and simplified process representation, and

the overestimation of emissions over ecoregions, as within the Amazon forest. The inventories, however, describe a broad split360

of the estimated CO emissions in Mid-SA and North-SA, with ARRs of 138% and 124%, respectively. Without including

FINNv2.5, the ARRs fall even below half, 62% and 65%, respectively , suggesting higher agreement (see Table 3). South-SA

presents an ARR of 75% (73%) including (no including) FINNvn2.5.

In Fig. 2, the TCCO illustrates how these fire emissions are concentrated in Mid-SA on the east side of the Andean mountain,

where emitted CO accumulate enhanced by the longer lifetime of CO over the Amazon (Lichtig et al., 2024). The accumulation365
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at the east and north of the Andean mountain range is evidenced in North-SA. Furthermore, the influence of easterly transport

of the smoke plume from Africa is clear (Holanda et al., 2020; Lichtig et al., 2024).

3.1.1 Intra-annual variability and seasonal cycle of CO fire emissions in SA

SA has a distinct seasonal cycle in fire activity, illustrated in Fig. 3 (b),(c),(d), with high fire activity from August to October

for Mid-SA and South-SA and from January to April for North-SA. The differences between the inventories in the regions370

studied are significantly enhanced during the peak CO emissions periods, which drives the annual differences discussed above.

However, the differences remain consistent through the study period, allowing the inventories to exhibit a high correlation

(R > 0.9) for monthly emissions at the regional scale (see Fig. S2). In Mid-SA during the peak period, the estimated CO

emissions of FINNvn2.5 exceed all other inventories and INFERNO (p-value≤0.05), while GFASvn1.2 has the lowest average

CO emissions, yet this is not significantly less than GFEDvn4a and 3BEM-FRP (p-value>0.05). During the peak fire period in375

North-SA, FINNvn2.5 estimates the largest emissions among inventories, probably due to the larger burned area assumed for

forest cover. 3BEM-FRP has the next highest emissions, which are also higher than GFEDvn5, GFASvn1.2 and GFEDvn4s

(p-value<0.05). These last two inventories demonstrated a similar monthly regionally accumulated distribution (see Fig. 3)

of CO emissions and lower magnitudes than GFEDvn5. For South-SA, the peak CO emissions also showed a significant

difference between pairs of inventories. Here, 3BEM-FRP had the highest magnitudes (p-value≤0.05), while GFEDvn4s had380

the lowest (p-value≤0.05) relative to the other inventories. GFEDvn5 is greater than GFASvn1.2 and FINNvn2.5, while these

had a similar distributions.

Figures 3 (b) and (d) show that INFERNO inaccurately represents the seasonal cycle in both North-SA and South-SA;

However, its representation in Mid-SA is more consistent with the inventories. For North-SA, the peak period of the fire

activity is well represented, but the model generates a second peak slightly higher than the first one, centred on October. This385

might be related to the relatively high contribution of gross primary productivity (GPP) to fire activity in INFERNO. While the

first simulated peak of emissions in the year appears to be driven by high flammability, the second follows GPP variability, with

relative average flammability and precipitation conditions (see Fig. S3). Furthermore, the representation of the seasonal cycle of

precipitation in this region in particular may be deficient due to ERA5 limited representation of the Intertropical Convergence

Zone (ITCZ) (Lavers et al., 2022). In North-SA, INFERNO estimated CO emissions are higher than most inventories (p-value390

≤ 0.05), particularly outside the peak fire periods.

In contrast to North-SA, INFERNO’s CO emissions in South-SA at the observed peak have lower average values than all

inventories; in fact, the peak is barely represented. However, the estimated emissions are higher than those in the inventories

from November to February. In this period, both simulated flammability and GPP contribute to high fire activity, despite being

the peak of precipitation in the east of the Andean Mountains (Grimm) (see Fig. S3). Although fire activity in this arid ecoregion395

is highly susceptible to precipitation accumulation which enhanced GPP, it tends to exhibit a delay following the precipitation

peak (San Martín et al., 2023).

The TCCO in Fig. 3b-d follows the emission season cycle, showing a rapid increase from August to September in Mid-SA,

with a slower decrease corresponding to the long lifetime of CO in the atmosphere. The TCCO in both North-SA and Mid-SA
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Figure 3. (a) Distribution of monthly regionally accumulated CO fire emissions and seasonal cycle for (b) North-SA, (c) Mid-SA and (d)

South-SA and their respective mean TCCO seasonal cycle in the period 2004-2021 (2014-2021 for IASI). The retrieved TCCO is represented

only in panels (b), (c) and (d), and their magnitudes are read from the right y-axis; those cycles are marked with an inverted triangle. Panels

(b), (c) and (d) have different ranges for the left y-axis, while panel (a) has a logarithmic scale for the y-axis. The stars in (a) describe the

mean emissions for the fire activity peak for each region that are: from January to April for North-SA, July to October for Mid-SA and

August to October for South-SA.

presents a bimodal season, which does not mirror the region’s fire CO emissions, but rather evidences transport throughout400

hemispheres, as well as from Africa to SA.

3.1.2 Trends of CO fire emissions in SA

From 2004 to 2021, Mid-SA experienced an average annual decrease of ∼2.8%yr−1 in CO emissions according to the in-

ventories, with a significant trend observed for GFASvn1.2 (see Table 3). The INFERNO model aligns with the inventories,

indicating a negative trend of 1.8% yr−1; however, it does not represent a significant decrease in CO emissions in the Arc of405

Deforestation. In North-SA, both the inventories and INFERNO agree on an increase in CO emissions, with a positive trend

ranging from 0.7% yr−1 to 9.3% yr−1. This is only significant for 3BEM-FRP, which estimates the highest rise in CO emis-

sions. In South-SA, the calculated trend was not significant for the inventories, and there was some disagreement among them

regarding the direction of the trend. Nonetheless, most inventories and INFERNO suggested a negative trend of approximately

-1.0%yr−1.410

The observed trends in CO emissions aligned with the observed reduction in BA of around 2%yr−1 and 1%yr−1 for Mid-

SA/South-SA and North-SA between 2001 and 2020 (Chen et al., 2023). However, as for CO emissions, the BA and the carbon

emissions did not decrease significantly across all SA (Chen et al., 2023; Aragão and Shimabukuro, 2010; Chen et al., 2013).
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Figure 4. Long-term (2004-2021) fire CO emission trend estimation [%/y] based on (a) GFEDvn5, (b) GFEDvn4s, (c) GFASvn1.2, (e)

FINNvn2.5, (f) 3BEM-FRP, and (g) INFERNO and TCCO trend estimated based on retrievals from (d) MOPITT. The areas enclosed by the

black contour represent zones with a significant trend in CO emissions (p-value≤ 0.05)

As Figure 4 shows, although a large fraction of SA presents a negative trend, there are also areas of positive trends in CO

emissions. The inventories agree with the significant reduction of CO emissions in the Arc of Deforestation, particularly in415

the states of Pará and Mato Grosso in Brazil, east and south of the Amazon. The emission also decreases significantly in the

Caatinga ecoregion in the eastern part of Brazil. In contrast, the northeastern part of the Cerrado, in the large agriculture frontier

recognised as MAranhão, TOcantins, PIauí and BAhia (MATOPIBA) presented a positive trend in CO emissions that aligns

with an observed increase of BA in part of this frontier (Milare et al., 2024; Pope et al., 2020). Most inventories also agreed

with an increase in CO emissions in the northern coastal region of North-SA and South-SA around the Río Negro province of420

Argentina, in the middle of the latitude range of the country.

Although contrary to the inventories, INFERNO show an increase in CO emissions in the Arc of Deforestation; it captures

the decrease in emissions in the Caatinga region and the slight increase in emissions in northern Colombia and Venezuela and

the south in Argentina. With this, INFERNO and JULES simulations suggest some underpinning factors driving the observed

trend. For Caatinga, INFERNO identified decreased ignitions and carbon availability (See Fig. S5). On the contrary, more425
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wood carbon and increasing ignition were simulated in Argentina (Figs. S4 and S7). For the northern part of North-SA and the

Arc of Deforestation, INFERNO describes more flammable conditions.

In support of the general decreasing CO emissions trend among inventories, the MOPITT TCCO identifies a general de-

creasing trend of 2%yr−1, particularly significant in the Amazon and Cerrado ecoregions (Fig. 4 (d)). This has previously been

observed for the period 2003 to 2018, where TCCO evidenced decreasing magnitudes, especially in forested areas (Naus et al.,430

2022; Deeter et al., 2018), where smouldering ignition dominates, and CO emission factors are high (Deeter et al., 2018). Naus

et al. (2022) found a high correlation between the decline in TCCO and a decrease in deforestation enhanced by law enforce-

ment policies in Brazil. In contrast, the increase of CO emissions observed in the north of North-SA and in the northeast of

Cerrado was not reproduced by the change in TCCO. Nonetheless, observations suggest an increase in NOx emissions in the

northeast of the Cerrado (2005-2016) (Pope et al., 2020). The increasing emissions from these biomes, with relatively low CO435

emissions, might be offset by the surrounding decrease in CO, while the relatively high rate of NOx emissions is substantial.

Table 3. Estimated CO emissions magnitude, seasonal cycle (SC) and trend summary

Item GFEDvn5 GFEDvn4s GFASvn1.2 FINNvn2.5 3BEM-FRP INFERNO

North-SA

CO emission [Tgy−1] 5.5 (2.0) 4.4 (1.8) 5.0 (1.3) 13.1 (4.4) 7.9 (2.9) 21.0 (3.6)

SC amplitude [Tgy−1] 1.3 (1.1) 1.1 (1.0) 1.1 (0.7) 3.4 (2.5) 1.7 (1.2) -0.2 (2.1)

Trend 2004-2021 [% yr−1] 2.9 3.3 1.4 0.7 9.3 0.8

Trend 2014-2021 [% yr−1] 0.4 -1.1 -0.9 5.9 0.5 -2.4

Mid-SA

CO emission [Tgy−1] 56.6 (23.1) 37.2 (20.3) 35.2 (17.1) 108.4 (53.0) 39.9 (19.5) 70.2 (15.8)

SC amplitude [Tgy−1] 13.5 (7.8) 14.8 (9.8) 9.0 (6.3) 30.7 (18.9) 12.6 (9.0) 17.0 (6.9)

Trend 2004-2021 [% yr−1] -3.4 -1.8 -3.5 -3.5 -1.9 -1.8

Trend 2014-2021 [% yr−1] 0.5 1.1 -0.9 4.9 2.4 3.0

South-SA

CO emission [Tgy−1] 16.8 (4.9) 8.7 (4.0) 11.8 (2.7) 12.5 (3.9) 17.4 (6.4) 13.1 (1.2)

SC amplitude [Tgy−1] 2.4 (1.4) 1.9 (1.6) 2.1 (1.0) 2.5 (1.5) 3.5 (2.5) 0.1 (0.3)

Trend 2004-2021 [% yr−1] -2.0 0.2 -1.2 -2.4 0.0 -0.8

Trend 2014-2021 [% yr−1] 38.2 192.9 14.4 25.06 33.5 2.3

Note: The SC amplitude was calculated by subtracting the maximum monthly CO emissions during the peak period from the maximum emissions during

the non-fire season. The peak period was determined as from January to April for North-SA, July to October for Mid-SA and August to October for

South-SA.

In the short term, from 2014 to 2021, the trend of CO emissions changed to positive for Mid-SA and South-SA according

to inventories. This for Mid-SA is probably partially explained by the recent increase in deforestation in the Brazil portion

of the Amazon, which for 2019 rose by ∼80% after the easing of regulations, which decreased fines and reported infractions

against flora by more than 50% despite the increments (Gatti et al., 2023). In Mid-SA, the CO emission trend switched to ∼440

18

https://doi.org/10.5194/egusphere-2025-3579
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



1.6%yr−1 according to four of five inventories, mainly due to anthropogenic activities exacerbated by the extreme drought

period 2019-2022 (Geirinhas et al., 2023). In 2019, according to the inventories, this region experienced one of the years with

the most fire activity in the recent period. Mid-SA CO emissions were around 116% higher than the average of the previous

five years. This increase aligns with a fivefold rise in deforestation compared to the average during the same period across three

Brazilian states surrounding the Amazon (Silveira et al., 2020), which is consistent with the increase in carbon emissions and445

AOD (Gatti et al., 2023; Yuan et al., 2022). Most of the CO emissions in 2019 came from deforestation fires (Andela et al.,

2022).

Figure 5. Short term (2014-2021) fire CO emission trend estimated based on (a) GFEDvn5, (b) GFEDvn4s, (c) GFASvn1.2, (e) FINNvn2.5,

(f) 3BEM-FRP, and (g) INFERNO and TCCO trend estimated based on retrieved from (d) MOPITT and (h) IASI. The areas enclosed by the

black contour represent zones with a significant trend in CO emissions (p values≤ 0.05)

In the short term, South-SA presents the strongest trends in CO emissions, with a dominant increasing trend of ∼61.0

%yr−1. Significant trends were found for all the inventories studied. Here, the increased CO emissions were concentrated in

the southern parts of Paraguay and Brazil and the northern parts of Argentina according to GFEDvn5, GFEDvn4s and 3BEM-450

FRP, which estimate a trend over 85%yr−1 in this area. This region encompasses the ecoregions of Humid Chaco, Pantanal,

Alto Paraná, and Araucaria. The region experienced unprecedented fire activity in 2020, resulting in emissions that were more

than 208% higher than the average for the previous five years. According to Geirinhas et al. (2023), the 2019-2021 drought
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period was characterised by an unprecedented soil drought triggered by large-scale interannual forcing, particularly La Niña

phase of the El Niño–Southern Oscillation (ENSO), combined with the negative phase of the Pacific Decadal Oscillation. This455

was additionally likely enhanced by the lack of warm and humid air transported from the Amazon, derived from deforestation

(Marengo et al., 2021) and the agricultural expansion in the region (Baumann et al., 2017). Aligned to this, INFERNO describes

a significant increase in flammability of around 10% yr−1 in this region of the SA low-level jet and the low Chaco, where humid

air from the Amazon forest is transported to South-SA (see Fig. S5). The increased fire emissions along the eastern part of

the Andean Mountains in Mid-SA also seem to be caused by the same phenomenon. Some inventories also show a propagated460

pattern in the east of Brazil, reaching the Caatinga. INFERNO does not represent this pattern, although the model represents

increased CO emissions in Caatinga, derived from higher ignitions and available biomass.

For North-SA, three out of five inventories suggest an increasing CO emission of around 1%/yr−1 in the short-term. This

region was also marked by high fire activity in 2020, which caused CO emissions to increase by∼120% for this year compared

with the average of the previous five years. For Colombia, this, in addition to the particular dry conditions from September465

2019 to March 2020 (Gomes et al., 2021), is also associated with the post-conflict transition. After the peace agreement,

when the land occupied by FARC (the Revolutionary Armed Forces of Colombia) was suddenly released, unruled, provoking

"uncontrolled" exploitation of natural resources and causing deforestation and fire ignition (Amador-Jiménez et al., 2020).

These 2020 CO emissions were around 86% of the CO emissions in 2016, when the fire season was prolonged due to the

influence of the El Niño phase of ENSO. Here, as in other studies, INFERNO evidenced the increase in fire activity for this470

year (Fonseca et al., 2017; Burton et al., 2020). However, INFERNO disagrees with most inventories for North-SA, indicating

a negative but insignificant trend in CO emissions. This discrepancy may be due to a model bias in the simulated CO emissions

for 2016, which was estimated to be significantly larger than in the subsequent years. However, the inventories that describe

the same emissions rate in 2020 do not support this estimate (see Fig. S4). In the short term, INFERNO underestimated the

observed increase in CO emissions in northern Venezuela.475

For the short term, satellite retrievals support the finding with a positive trend of TCCO through the SA low-level jet along

the eastern and central Andes (∼1%yr−1). This is particularly clear in the TCCO retrieved from IASI, which has more data

available and is more sensitive to changes in the upper troposphere. An increase in CO emissions is also observed in the eastern

part of SA within the same latitudinal range, which can be attributed to emissions in the Caatinga region. As the inventories

with CO emissions, the retrieval products disagree on the direction of the trend of TCCO for North-SA; still, none of the480

estimates showed a significant trend.

3.2 Sensitivity experiments using INFERNO

Due to the likely overestimation of CO emissions from FINNvn2.5 in Mid-SA and North-SA compared to other inventories,

and the resulting increase in disagreement, we only used GFEDvn4s, GFEDvn5, GFASvn1.2, and 3BEM-FRP to compare the

experiments and calculate the MB% in this section. Here, the INFERNO run assessed in the previous sections is referred to as485

the control experiment.
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Figure 6. INFERNO’s experiments CO emissions biases (i.e. difference between CO emissions from INFERNO and the mean of GFEDvn4s,

GFEDvn5, GFASvn1.2 and 3BEM-FRP). The control run is the same configuration assessed in Section 3.1. The experiment description can

be found in Table 2

The control run shows positive (negative) biases against the average values of the selected inventories over BDT and BET-Tr

(C4G) dominated lands based on the PFTs modelled by TRIFFID (see Figs 1 and 6 a). The overestimation of emissions is

offset only by the ignition experiments (Fig. 6 b-e), which reduce CO emissions through the territory in about 60%, increasing

the underestimation of emissions in the northern part of South-SA and eastern Mid-SA, where most C4G-dominated lands490

are located (see Fig. S6). The low emissions rate of these experiments, particularly the one related to the addition of the HDI

(i.e. IT-HID and IT-HDIs), produces the underestimation of the seasonal cycle amplitude on the three subregions, as Fig. 7

illustrates. The seasonal cycles estimated by the experiments were lower than any estimation from the included inventories and

yet produced a lower absolute MB% in Mid-SA (53.4%) than for the control run (96.5%), whose emissions peak is significantly

higher than the estimations of GFEDvn4s, GFEDvn5, GFASvn1.2 and 3BEM-FRP. In North-SA, the CO emissions estimated495

by the ignition experiments, particularly for IT-HDI and IT-HDIs reduced spatiotemporal MB% since the control run presented

overestimations.
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Both HDI experiments (i.e. IT-HID and IT-HDIs) show the highest level of spatiotemporal agreement with GFEDvn4s in

SA (See Fig. S7). Accounting for socioeconomic factors by including the HDI has demonstrated better performance in SA

and various other regions compared to GFEDvn4s (Teixeira et al., 2021). However, the spatiotemporal comparison against500

GFEDvn5 suggests an increment in the absolute MB% for Mid-SA and South-SA. The spatiotemporal MB% for both HDI

experiments in North-SA is lower than the control experiment against all the inventories (Figure S6). The trend described

by IT-HDI and IT-HDIs in North-SA also shows a lower MB% than the control experiment, as shown in Fig. 8. The better

performance is evidenced by the long-term negative trend of CO emission over the centre of Colombia and the increase of

emission in the north of Colombia and part of Venezuela (see Figs. S7 and S8). Using subnational scale HDI (IT-HDIs), rather505

than national HDI (IT-HDI), did not improve the performance of INFERNO. On the contrary, in North-SA, the performance

on trend MB% of IT-HDIs (-81%) was significantly poorer than that of IT-HDI (-27%).

Figure 7. CO emissions seasonal cycle modelled by the different INFERNO experiments in North-SA (a-d), Mid-SA (e-h) and South-SA

(i-l). The experiments are grouped by type. The inventories range presented in the shaded region omit FINNvn2.5.

Although the Ignition experiment with constant anthropogenic ignition, IT-NAT and IT-CST, performed close to the HDI

experiments (i.e. IT-HDI and IT-HDIs) (see Figs. 7 and 8), they particularly differentiated in the trend estimation in Mid-

SA and South-SA. The two experiments described a more negative trend than IT-HDI, IT-HDIS and the control experiment,510

which reduced biases. However, the strong tendency identified by IT-CST and IT-NAT misses some of the details identified

by the control experiments and described in Section 3.1.2. For instance, the trends calculated for Argentina and Caatinga in
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the long-term and short-term, respectively (see Fig. S8 and Fig. S9). This exhibits the importance of anthropogenic ignition in

this region, which INFERNO can partially describe. Furthermore, IT-NAT and IT-CST have similar CO emissions, even when

IT-NAT have varying natural ignition, which is evidence that the estimated CO emissions have a low sensitivity to the natural515

ignition variation by the lightning annual cycle, as was described previously for burned area simulation (Burton et al., 2022).

In contrast to the ignition experiments, the experiments using other climatic datasets for simulating flammability (i.e. F-20CR

and F-W5E5) do not reduce MB% against the inventories compared to the control experiment run in any of the subregions when

evaluated spatiotemporally (see Figs. 6 f-g and 8). Both datasets 20CRvn3 and W5E5 produced higher CO emissions than the

control experiment (i.e., using ERA5), particularly in the BDT and BET-Tr dominant land cover types. The higher monthly520

estimates of INFERNO based on these two climatologies provide a better representation of emission amplitude in South-SA

(see Fig. 7.i), reaching the emissions range of the inventories at their peak, although still high during the non-fire season. In

North-SA, the incorrect representation of the seasonal emissions cycle was extenuated, with an incorrect increase in emissions

in the non-fire season, as illustrated in Fig. 7.b. This experiment led to the most noticeable changes in the shape of the seasonal

cycle (see Fig. 7b,f,j); however, this is still misrepresented for South-SA and North-SA. This result indicates a systematic bias525

affecting the simulation of the seasonal cycle, likely because a variable outside the experiments conducted (e.g. GPP), since

the simulations only alter the magnitudes of the marked season (see Fig. 7).

The F-W5E5 experiment (i.e., using the W5E5 dataset) represents better trends in the three regions in its shorter run period

(i.e. 2004 - 2019) as Fig. 8 shows. In fact, F-W5E5 long-term data show a more accurate decrease in CO emissions in Bolivia

and an increase in CO emissions in Río Negro, Argentina (See Fig. S8).530

Changing the PFT (i.e. EC-PFT) was the only experiment that consistently switched the negative spatiotemporal MB% over

the TRIFFID C4G-dominated land into positive (see Fig. 6o). This is since the prescribed PFT exhibits rather dominant BET-Tr

and BDT, as Fig. 1 illustrates. In Mid-SA and South-SA, because of the land cover change, the EC-PFT calculates significant

changes in the seasonal cycle amplitude, which were consistently higher on the emissions peak exceeding the inventory range

(see Fig. 7). In North-SA, however, the changed PFT did not significantly affect the calculated MB% (see Fig. 8 a). For535

South-SA, the EC-PFT closely describes the trend observed by the inventories (trend bias ∼12%, see Fig. 8 c).

Since the PFTs were prescribed, the EC-PFT did not include feedbacks, like the NO-FDBK experiment. The NO-FDBK

experiment indicated that, on average, not including fire feedback in the land model produces 8% higher CO emissions than

including it. This can cause a spatiotemporal overestimation of around 50%. Hence, the exclusion of feedbacks could lead to

an increase in biases of EC-PFT emissions.540

As expected, due to the contribution of emissions in BDT and BET-Tr, which exhibit a relatively low BA and high EFCO,

the selection of a random or average scheme (i.e., BA-RND, BA-AVG, EF-RND, EF-AVG) consistently increases (reduces)

emissions led by higher (lower) BA (EFCO). Similarly, by extending both wood carbon CC and leaf CC in CC-EXT, the

model increases emissions, weighting the now higher potential combustion of wood over the lower combustion of leaf. These

experiments also described the influence of the PFT in BA, EF, and CC by comparing the control experiments with BA-AVG,545

EF-AVG, and CC-VAR. The influence of the PFT is distributed as BA>EF>CC, according to the absolute spatiotemporal

MB% of 30%, 10% and 1% against the control run. Notice that CC-EXT managed a large change (111%) in CO emissions,
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Figure 8. Percentage mean bias (MB%) of spatiotemporal, seasonal cycle and trend of CO emissions modelled in the different INFERNO

experiments against the studied inventories. The boxes include the comparison of each experiment against the five inventories, with the

marker describing the median value of the comparison without including FINNvn2.5. The shaded region in the background represents the

absolute median MB% of the control run in each subplot, the reason why it goes from zero to the ± control’s median magnitude. A red line

highlights the zero MB%. Note that every subplot has a different y-axis to facilitate visualisation.

but an extreme and hypothetical range was used for this experiment. Contrary to the flammability and ignition experiment, this

experiment did not drastically change the INFERNO MB% direction. CC-EXT, however, drastically increases emissions at the

same level or higher than any other experiment conducted here. It represented the sensitivity experiment with perturbed input550

values to the INFERNO model which were far outside the typical range used for these factors. In contrast, the intent to use

more accurate CC (CC-VAR), which depends on PFT, did not show a significant change in any assessment.

In general, including only experiments with realistic values/ranges (i.e. excluding CC-EXT), the Ignition, flammability

and PFT sensitivity experiments resulted in the largest changes compared to the control experiment. This is represented in

the average absolute MB% of 115%, 65% and 47% for PFT, ignition and flammability in the spatiotemporal assessment.555

Flammability presented the largest changes to the seasonal cycles (MB% = 116%), followed by PFTs (MB% = 88%) and then
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ignition (MB% = 46%). The changes on the trend were led by PFTs (MB% = 167%), followed by flammability (MB% = 158%)

and ignition (MB% = 142%).

3.3 Understanding of INFERNO CO emission biases through application of ML

As in the previous section, only the inventories GFEDvn4s, GFEDvn5, GFASvn1.2, and 3BEM-FRP were utilised for the560

machine learning approach. The XGBoost model’s target was the bias of the CO emissions estimated from INFERNO when

compared to the average emissions from the selected inventories. After evaluating the features, 14 inputs from INFERNO were

included in the final model: 10 PFTs (BDT, BER-Te, NT, C3G, C3Cr, C3Pa, C4G, C4Cr, C4Pa, Sh), soil moisture, lightning,

population, and HDI. None of the selected features exhibited a correlation greater than 0.6 with any other feature (see Fig.

S10), and the VIFs for these features were below 10. In particular, soil moisture covaries with multiple variables with which its565

correlation is high, such as relative humidity (R = 0.79), leaf carbon (R = 0.73), wood carbon (R = 0.70), BET-Tr (R = 0.70),

and precipitation (R = 0.7). Therefore, these other features were not included directly, but were represented by soil moisture,

since soil moisture highly depends on precipitation and is a key variable for GPP, which in turn affects leaf and wood carbon

that favour PFTs as BET-Tr.

With the best parameters identified through hyperparameter tuning, the ML model trained using 5-fold cross-validation570

yielded an R2 value between 0.62 and 0.68 (average 0.64), an RMSE ranging from 18.8 Ggyr−1 to 21.3 Ggyr−1 (mean of

20.4 Ggyr−1), and a MAE ranging from 7.8 Ggyr−1 to 8.2 Ggyr−1 (mean of 8.0 Ggyr−1). Therefore, the ML model is able

to explain around 64% of the biases with the available data and data accuracy level. Capturing finer temporal and spatial

resolution interactions within the input data can also contribute to reducing the error, since we are using annual datasets. The

ML model has particular difficulties addressing negative biases (see Figure S11). This suggests that there are structural and/or575

parametric deficiencies within INFERNO that particularly limit its ability to represent different fire process patterns through

SA. This finding is consistent with Section 2.5, where none of the experiments manage to represent a consistent low MB%

compared to the control model for all studied subregions.

Figure 9 presents the feature contributions on two levels: subregional (a) and pixel-by-pixel (b). Since SHAP values can be

both positive and negative, we utilised the absolute SHAP values for subregional assessment and the larger positive (or negative)580

SHAP values to identify areas with an average positive (or negative) bias. According to the SHAP values and consistent with

Section 2.5, the BDT fraction (which correlates with BET-Te R=0.6) is the feature of most importance in the three subregions,

as Fig. 9.a shows. The higher the BDT fraction, the higher the SHAP values (R = 0.80), and vice versa. This suggests that

low values of BDT modelled by TRIFFID also contribute to modelling the lower and/or negative bias of INFERNO CO

emissions. BDT is the dominant feature of importance where INFERNO overestimates CO emissions in the Amazon rainforest585

(see Fig. 9.b). While Teixeira et al. (2021) suggested that an overestimation of tree cover might be a potential driver for the

overestimation of emissions in this area, our study shows that even with a lower fraction of tree cover compared to the ESA

land-cover based PFTs, we still observe an overestimation of emissions. This indicates that, in addition to the fraction of tree

cover, there is also a lack of representation of the fire dynamics affecting these PFTs. From this and based on the observed

overestimation of emissions extended in the Amazon forest, we consider that a more accurate representation of fire dynamics590
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Figure 9. (a) Feature contribution of the XGBoost model using absolute SHAP values and (b) map of dominant features based on the largest

positive (negative) SHAP values for pixels where INFERNO’s average CO emission biases are positive (negative). In (a), the hatch marks

describe the correlation between the SHAP values and the annual average magnitude of each feature; only |R| > 0.7 is displayed. The red

(blue) filled circles in front of the bars describe when the complete interquartile range (IQR) of the SHAP values in a specific subregion is

positive (negative). In (b), the dotted areas indicate when INFERNO’s bias is on average positive, while the remaining area shows when the

bias is on average negative.

can be achieved by considering landscape fragmentation, representing both forest vulnerability (see Silva-Junior et al. (2022))

and land management (see Andela et al. (2017)), can lead to improved calculation of burned area and fire suppression effect.

In contrast to the Amazon forest, the BDT contribution in the east of Mid-SA and South-SA is negative when CO emissions

biases are negative (see Fig. 9. b without dotted marks), which is additionally linked to the low modelled BDT fraction in

these areas. In the Chaco region, the negative contribution of BDT highlights a possible underestimation of tree cover, which595

is evident when compared to TRIFFID and the ESA land-cover based PFT (see Fig. 1). In 2019, the tree cover fraction in

Chaco was over 30%; however, Scrublands dominated in the Dry Chaco (38.2%) (San Martín et al., 2023). On average, for the

study period, the TRIFFID modelled C4G, C4Pa, and bare soil as dominant PFTs with 88% cover in the Chaco region; none

of the tree PFTs had an average fraction over 2%. Furthermore, since this region has emerged as a hotspot of deforestation

and agricultural expansion (Baumann et al., 2017), in addition to more accurate PFTs, incorporating landscape fragmentation600

would also be potentially beneficial.

Despite the low correlation between soil moisture feature and the bias (R = 0.18), soil moisture is the second most significant

feature in explaining these spatiotemporal biases in SA, particularly for North-SA and Mid-SA. For North-SA, the soil moisture
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also presents a high but negative correlation with SHAP values (R = -0.70), indicating that the overestimations (underestima-

tions) of CO emissions by INFERNO are related to drier (wetter) conditions. This suggests that fire emissions in North-SA605

are highly sensitive to soil moisture, leading to an inflated response. This aligns with the overestimations observed during the

El Niño event in 2016, discussed in Section 3.1.2. In Mid-SA and South-SA, the correlation between SHAP values and soil

moisture is low. This indicates that both dry and wet conditions contribute to negative and positive biases, suggesting a complex

interaction with other variables included in the analysis. In South-SA, both low and high soil moisture particularly contribute

to explaining positive biases (see Fig. 9. a, positive SHAP values quantiles). This complexity might be related to the role of610

precipitation/soil moisture in flammability and GPP, which have been observed to have different responses from different PFTs

in the region (San Martín et al., 2023). Evidence of deficient representation of the complex interaction between soil moisture

and fire in this region is the misrepresentation of the seasonal cycle (see Section 3.1.1 and Fig. S3), where flammability and

GPP follow the precipitation peak.

The crop fraction, C4Cr, ranks third in contributing to the explanation of the CO emission bias from INFERNO in North-SA615

and South-SA; however, the contribution and the variable magnitudes were not significantly correlated, either positively or

negatively. A few patches where C4Cr contributes the most are visible in Fig. 9.b, similarly for Sh in the south of the Arc of

Deforestation. Since anthropogenic interactions are not associated with the simulated C4Cr, reducing bias through this variable

would mean describing crop activities as harvesting (Li et al., 2013); and socioeconomic factors (Li et al., 2013). Furthermore,

agricultural expansion and landscape fragmentation.620

Although the INFERNO run did not include HDI, this feature appears to be around fourth place in terms of contribution for

North-SA and Mid-SA, where this has demonstrated MB% reduction (see Section 2.5). HDI is then a prospective feature to

address INFERNO biases.

4 Conclusions

We evaluated the fire CO emissions and sensitivity of the global fire model INFERNO estimations in South America (SA). The625

study quantified and assessed the spatiotemporal, seasonal cycle, and trend accuracy of the model’s estimated CO emissions

against five biomass burning inventories. For this, SA was divided into three subregions: North-SA, Mid-SA, and South-SA

to compare differences in fire activity and biomes. With the least forest cover, South-SA exhibited the lowest disagreement

in CO emissions between inventories, including FINNvn2.5 (Relative percentage range = 65%). The agreement was similar

for North-SA and Mid-SA, if excluding FINNvn2.5. INFERNO was able to reproduce emissions in key active fire zones,630

such as deforestation fronts (e.g. Arc of Deforestation) and ecoregions like the Cerrado and Llanos, but likely underestimates

CO emissions in the Chaco region, although still within GFEDvn4s range. Overestimation outside these regions, such as

within the Amazon forest, led to enhanced CO emission overestimations, particularly in Mid-SA and North-SA. In Mid-SA,

INFERNO demonstrated good performance reproducing the seasonal cycle of emissions, although with general overestimation

of the magnitudes. In contrast, over North-SA, INFERNO exhibited a large spatiotemporal bias due to an erroneous bimodal635

representation of the seasonal cycle, while biases on South-SA were low despite the incorrect seasonal cycle. In both places,
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the simulated CO emission closely follows both the flammability and GPP cycles; however, it was when GPP was high that the

emissions incorrectly peaked.

INFERNO was able to reproduce the overall trend direction of CO emissions, although it erroneously reproduced an in-

creasing trend near the Arc of Deforestation from 2004 to 2021. During the period from 2014 to 2021, INFERNO correctly640

estimated an increase in CO emissions along the SA low-level jet region. This region, which crosses Mid-SA and South-SA,

has been particularly dry and vulnerable in recent years due to multiple meteorological factors, including the La Niña phase

of the ENSO, as well as policy and socioeconomic factors. Due to the complexity of the fire regime in this region, INFERNO

underestimates the magnitude of the trend in CO emissions but accurately identifies the direction of the trend. Over the short-

term period, the inventories and satellite retrievals of TCOO disagree on the CO trend in North-SA; however, neither presents645

a significant result.

Multiple sensitivity experiments were conducted by modifying factors related to ignition, flammability, PFT, and also the

individual factors: combustion completeness, average Burned Area, and emission factor. We evaluated the proposed use of the

Human Development Index (HDI) in INFERNO, which improved performance in the Mid-SA and North-SA by reducing CO

emissions; however, further reductions in CO emissions over South-SA resulted in poorer model performance. Additionally, the650

reduction in absolute bias observed when using constant anthropogenic and natural ignition was similar for all regions, although

they described significantly different trends from the results with HDI in Mid-SA. Furthermore, the climatic datasets used

for the control run, ERA5, demonstrate strong spatiotemporal performance. In contrast, using the W5E5 dataset to calculate

flammability shows a lower bias in CO trends for Mid-SA and South-SA. The seasonal cycle across the three subregions

was consistent for all climate input datasets, with ERA5 resulting in fewer monthly emissions. Changes in flammability were655

the most important factor driving changes in the simulated fire CO emissions seasonal cycle (MB%=116) compared with

the experimental run. The experiment, which examines the effects of constant and varying factors on PFT, highlights the

importance of forest cover (Broadleaf deciduous trees and Broadleaf - BDT evergreen tropical trees - BET-Tr) in determining

the simulated fire CO emission magnitudes in SA. Using a prescribed PFT based on the satellite-based ESA Land Cover

product, results in the highest spatiotemporal (MB%=115) and trend (MB%=167) changes against the control run, which are660

related to the relatively higher fraction of BET-Tr in Mid-SA and BDT in South-SA.

In line with the findings from the sensitive experiments, the feature importance analysis of the ML model indicated that

BDT was the most significant feature contributing to the bias in INFERNO’s CO emissions. A large (short) fraction of BDT

contributes to overestimations (underestimations) of the emissions in SA. Both improving PFTs accuracy and incorporating

the representation of human land-use management of the vegetation through variables, such as land fragmentation, might665

help reduce biases. Soil moisture was the second most significant contributor. In North-SA, the positive bias of CO emissions

correlates with dry conditions, suggesting hypersensitivity to soil moisture. In South-SA, INFERNO biases exhibited a more

complex relationship with soil moisture, which is likely associated with varying contributions of soil moisture/precipitation to

GPP and flammability. C4 Crop contribution to the ML model emphasised the potential of including crop fire dynamics into

the model to reduce biases. Similarly, the contribution of HDI suggests potential bias mitigation in North-SA and Mid-SA, as670

was observed in the sensitivity experiments.
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This study highlights the capabilities and limitations of INFERNO in supporting the UKESM’s new developments in a

challenging region. Here, we conducted sensitivity experiments for various parameters and recommend a perturbed parameter

ensemble method for a more in-depth evaluation of INFERNO’s performance and uncertainty. Future research should also

focus on accurately representing the seasonal cycle of fire activity in SA, addressing issues related to the role of precipitation675

on both GPP and flammability through soil moisture.
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