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Abstract. The joint ESA and JAXA Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) satellite, launched on 28 May

2024, carries the first spaceborne 94 GHz Cloud Profiling Radar (CPR) with Doppler velocity measurement capability. As a

successor to the highly successful NASA CloudSat CPR, the EarthCARE CPR offers an additional 7 dB of sensitivity largely

due to its larger antenna size (2.5 m vs. 1.8 m) and lower orbit (400 vs. 700 km), and a receiver point target response that

significantly improves our ability to detect clouds in the lowest km of the atmosphere. The EarthCARE CPR measurements5

can also be indirectly used to estimate the Path-Integrated Attenuation (PIA, in dB), a measure of two-way attenuation caused

by hydrometeors by quantifying the depression in the measured normalized radar cross section (NRCS) relative to a reference

NRCS in the absence of hydrometeors. PIA is a key constraint for improving the accuracy of cloud and precipitation retrievals.

This paper presents the PIA estimation methodology currently operationally implemented in the EarthCARE CPR L2A C-

PRO data product. The retrieval approach follows a hybrid strategy, where the reference unattenuated NRCS is either estimated10

using calibration points surrounding the cloudy profile where PIA is estimated or a model-based estimation that uses a geophys-

ical model that calculates NRCS as a function of wind speed and sea surface temperature (SST). The methodology provides a

full characterization of the uncertainty in PIA estimates and is expected to lead to improved estimates of PIA compared to the

methodology adopted for the CloudSat CPR. This method is particularly useful in PIA estimation in the commissioning phase

of the mission, as it is robust for radar miscalibration and bias of gas attenuation or NRCS modeling.15

1 Introduction

When operated from a spaceborne platform in a nadir-looking configuration, radar systems transmit pulses towards the Earth’s

atmosphere and receive backscattered signals from atmospheric targets. As the radar pulse traverses the atmospheric column,

it experiences two-way attenuation due to two primary mechanisms: (1) absorption by atmospheric gases, and (2) scattering

and absorption by hydrometeors such as cloud and precipitation particles. This cumulative signal loss is referred to as Path-20

Integrated Attenuation (PIA). The total PIA can be decomposed into two components: gaseous attenuation (PIAgas) and

hydrometeor attenuation (PIAhydro), as expressed in Eq. (1) (Lebsock et al., 2011)

PIA = PIAgas + PIAhydro. (1)
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The two terms are particularly large for millimeter wavelength radars that have traditionally been used to study clouds and

precipitation systems (Kollias et al., 2007). The two-way gaseous attenuation component (PIAgas) is estimated using atmo-25

spheric absorption models based on thermodynamic profiles (see Sect. 2.1), whereas the PIAhydro accounts for two-way inte-

grated extinction caused by hydrometeors, assuming negligible effects from multiple scattering (Battaglia et al., 2010, 2011),

and is expressed as:

PIA [dB] =
20

log(10)

H∫

0

kext(z)dz (2)

where kext is the height-dependent extinction coefficient (in m−1) due to cloud and precipitation particles (Haynes et al.,30

2009).

At 94 GHz, the Earth’s surface acts as a strong radar reflector, returning signals with an intensity that is often several orders

of magnitude greater than that from atmospheric targets. When attenuating hydrometeors (e.g., rain, snow, or cloud particles)

are present in the radar beam, they reduce the strength of the surface return. This diminished surface echo, or surface signal

depression, can be analyzed to quantify the attenuation introduced by hydrometeors (Meneghini and Kozu, 1990; Meneghini35

et al., 2004).

At 94 GHz, attenuation by cloud liquid water is well described by Rayleigh scattering theory, resulting in an approximately

linear relationship with the liquid water path (LWP) and exhibiting moderate sensitivity to temperature. In contrast, attenuation

caused by precipitation particles must be modeled using Mie scattering theory, as the interaction of radar waves with larger

hydrometeors depends on both temperature and the drop size distribution (DSD) of the precipitation. Despite these complexi-40

ties, the total Path-Integrated Attenuation (PIA) is largely dominated by the column-integrated liquid water content, making it

a robust proxy for estimating LWP (Lebsock et al., 2011; Battaglia et al., 2020; Lebsock et al., 2022).

Numerous studies have highlighted the effectiveness of using PIA for improving rainfall estimation. Traditional ground-

based radar rainfall retrieval algorithms often rely on the Rayleigh approximation, which assumes that raindrops are small

relative to the radar wavelength. These methods typically employ an assumed DSD to derive a simplified relationship be-45

tween radar reflectivity and rainfall rate. However, for space-borne radars operating in the microwave spectrum, relying solely

on reflectivity is insufficient due to the significant influence of attenuation. High-frequency radars, such as the CloudSat and

EarthCARE 94 GHz radars experience significantly greater attenuation than lower-frequency radars for the same rain intensity

(Haynes et al., 2009). Hence, for high frequency radars, PIA is a useful measurement in rainfall and LWP retrieval (Tridon

et al., 2020). To address this, (L’Ecuyer and Stephens, 2002) proposes a retrieval method specifically designed for attenuating50

radars, emphasizing the use of PIA or estimates of LWP as constraints. A comparative analysis between 14 GHz (Ku-band)

and 94 GHz (W-band) radars demonstrates that reflectivity-based rain rate estimates at 94 GHz become highly uncertain be-

yond 1 mm h−1, whereas the 14 GHz radar provides reliable estimates up to 40 mm h−1. When LWP is incorporated as a

constraint, the retrieval accuracy improves significantly, underscoring the critical role of PIA in rainfall retrieval for high-

frequency radar systems. The CloudSat warm rain retrieval algorithm utilizes this method and employs a hybrid approach,55

using reflectivity-based retrieval at lower rain rates and switching to an attenuation-based method at higher rain rates, where
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attenuation becomes more pronounced. Quantitative analysis of the algorithm reveals that this transition between reflectivity-

dominant and attenuation-dominant retrieval occurs within the rain rate range of approximately 0.1 to 0.5 mm h−1 (Lebsock

and L’Ecuyer, 2011).

Given the importance of PIA in microwave remote sensing, its accurate estimation largely depends on the reliable charac-60

terization of the effective surface backscattering cross section (σ0e). Over the ocean, σ0e can be parameterized as a function

of incidence angle, sea-surface temperature, and wind speed (Li et al., 2005). In contrast, over land, σ0e is highly variable and

depends on factors such as vegetation type, soil moisture, and terrain roughness, making characterization of σ0e far more dif-

ficult (Haynes et al., 2009). Consequently, PIA estimation and PIA-based rainfall retrievals are generally restricted to oceanic

regions, where geophysical models can provide robust estimates of σ0e. Section 2.4, explores in detail how σ0e over the ocean65

varies with wind speed and assess the ability of different geophysical models (Li et al., 2005) to reproduce the EarthCARE σ0e

climatology.

CloudSat’s 2C-PRECIP-COLUMN product (2C-PRECIP-COLUMN Product Description, 2018) employs two complemen-

tary methods for estimating PIA. In regions with scattered clouds, where adjacent clear-sky observations are available, the

Surface Reference Technique (SRT) is used. This method estimates PIA by interpolating the clear-sky surface backscattering70

cross section from nearby cloud-free profiles over the cloudy areas. However, in the presence of extensive, continuous cloud

cover, where no nearby clear-sky profiles are available, SRT cannot be applied. In such cases, PIA estimation relies entirely on

geophysical models (see Sect. 4).

In this paper, we propose a PIA retrieval scheme that mirrors CloudSat’s dual-path strategy but is tailored to the early

operational phase of EarthCARE, when instrument calibration is still evolving. Section 2 outlines the methodology in detail.75

The modeling of gaseous attenuation used to derive PIAgas is detailed in Sect. 2.1, while Sect. 2.2 describes the procedure

for estimating the normalized radar cross section (NRCS). Section 2.3 explains criteria used in selection calibration points

for the SRT. Section 2.4 explores how the σ0e varies with wind speed and assess the performance of different geophysical

models. Section 3 illustrates our retrieval’s performance through several case studies. Comparative analysis with CloudSat’s

PIA estimates is provided in Sect. 4 and Sect. 4.1, highlighting the consistency and potential advantages of the proposed80

method.

2 Methodology

Hereafter the PIAhydro (PIAgas) indicates the two-way PIA associated to the hydrometeors (atmospheric gases). The un-

known is PIAhydro(x) at a given location x (where clouds and/or precipitation are presents). The σ0e, which is effective

back scattering cross section represents the expected surface backscatter signal under no atmospheric attenuation (gases and85

hydrometeors). The measured NRCS at point x denoted by σ0m(x) will be related to the σ0e at the same point by:

σ0m(x) = σ0e(x)−PIAgas(x)−PIAhydro(x). (3)
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If in the vicinity of x there is a location x1 characterized by calibration condition, then:

σcal
0m(x1) = σ0e(x1)−PIAgas(x1) (4)

Section 2.3 provides a detailed explanation on how calibration points are chosen. The effective surface normalized radar cross90

section can be either derived from a geophysical model with σ0e being a function of wind speed and SST (Li et al., 2005) or

from measured NRCS by correcting for gas attenuation. The PIAgas term can be derived from gas attenuation models (given

the atmospheric thermodynamic profile; see Sect. 2.1). With these components, the PIAhydro can be inferred by inverting

Eq. (3) as:

PIAhydro(x) = σ0e(x)−PIAgas(x)︸ ︷︷ ︸
σgas
0 (x)

−σ0m(x) (5)95

On the other hand, by subtracting Eq. (4) from Eq. (3) an alternative relationship for computing PIAhydro(x) is obtained as :

PIAhydro(x, x1) = [PIAgas(x1)−PIAgas(x)] + [σ0e(x)−σ0e(x1)] +σcal
0m(x1)︸ ︷︷ ︸

σgas
0 (x, x1)

−σ0m(x) (6)

where in both Eq. (5) and Eq. (6) σgas
0 (x) and σgas

0 (x, x1) (respectively) represent two ways to estimate the NRCS that would

be measured at x in the absence of hydrometeors (but with the presence of gases).

The advantage of computing PIA by Eq. (6) is that only differences appear on the right hand side of Eq. (6), which makes100

the estimate very robust for radar miscalibration [affecting the values of σ0m but not of the difference (σcal
0m(x1)−σ0m(x)] and

for biases of the gas attenuation or in the σ0e estimation. For any given cloudy/rainy profile at position x, there may be multiple

neighboring calibration points. If such N points are over the contiguous ocean free of ice they can be used as calibration points.

Eq. (6) can be generalized to:

PIAhydro(x, x1, x2 . . .xN ) =

∑N
i=1 wi





σgas
0 (x, xi)︷ ︸︸ ︷

[PIAgas(xi)−PIAgas(x)] + [σ0e(x)−σ0e(xi)] +σcal
0m(xi)





∑N
i=1 wi︸ ︷︷ ︸

σgas
0 (x, x1,..., xN )≡σ̃gas

0 (x)

−σ0m(x) (7)105

In the PIA estimation algorithm used in the EarthCARE product, an optimal number of N = 5, calibration points is used to

ensure that calibration points remain sufficiently close, as more distant points have negligible influence (see Sect. 2.3 for a

detailed explanation of calibration point selection).

Each σgas
0 (x,xi) term in Eq. (7) is assigned a weight wi that reflects the uncertainty introduced when using anchor point xi.

This uncertainty primarily depends on two factors: the distance to the calibration point (d(x,xi)) and the wind speed at that110

cloudy profile (x). To quantify this uncertainty, a large set of clear-sky profiles with measured NRCS (σgas
0 ) and wind speed

is compiled. Clear-sky profiles are chose based on “profile_class” product, from the Level 2 C-PRO FMR dataset (Kollias

et al., 2023). For each profile x, all other profiles xi are used as calibration points to estimate σgas
0 (x,xi) following Eq. (7).
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The difference between the estimated and measured NRCS at x defines a residual that reflects the error associated with using

calibration point xi. The residual is computed as:115

∆σ0(d(x,xi),u(x)) = ∆σ0(x,xi) = σgas
0 (x,xi)−σgas

0 (x) (8)

These residuals are binned by distance and wind speed and for each bin, the standard deviation of residuals is computed to

represent the uncertainty:

σuncer(dk,uj) = std
{
∆σ0(d,u)

∣∣ d ∈ bdk
, u ∈ buj

}
for k = 1, . . .Nd; j = 1, . . .Nu (9)

where bdk
and buj

denote the k-th distance bin and the j-th wind speed bins, respectively.120

In the PIA estimation with Eq. (7), the weights wi assigned to each calibration point xi are defined as the inverse of the

squared uncertainty associated with each calibration point (σuncer(d(x,xi),u(x)), such that points with lower uncertainty con-

tribute more strongly to the estimate: (wi = 1/(σuncer(d(x,xi),u(x)))2). Figure 1 represents the PIA uncertainty look-up table

built by the described method and Fig. 2 is a schematic depiction of the described PIA estimation methodology.

As an alternative to the clear-sky interpolation method, PIA can be estimated directly using Eq. (5), where σ0e is derived125

from a geophysical model or from a climatology-based derived lookup table that estimates σ0e as a function of wind speed

and SST, in case the uncertainty by clear sky interpolation is large. This approach is referred to as the model-driven method

or Wind/SST method. In Fig. 1, the black curve delineates the region beyond which the model-driven method becomes more

reliable than interpolation. In evaluating the error associated with the model-driven method, σ0e is derived from a climato-

logically constructed look-up table based on clear-sky NRCS measurements, corrected for gaseous attenuation, as a function130

of sea surface temperature (SST) and wind speed over the period June 2024 to June 2025. For each SST-wind speed bin, the

mean and standard deviation of σ0e are computed. The uncertainty associated with σ0e as a function of wind speed is estimated

by calculating the weighted mean of standard deviations across SST bins. For wind speeds between 4-15 m/s, and calibration

point distances ranging from ≈ 200 km to ≈ 100 km respectively, interpolation generally yields lower uncertainties, often

below 1 dB. However, as distance increases, the interpolation error rises and the model-driven approach becomes preferable.135

As wind speed reduces, the interpolation generally yield lower uncertainty even for larger calibration point distances.

Hence, during periods when the radar is well-calibrated, a hybrid approach can be employed, combining the interpolation

method using N calibration points (Eq. (7)) and model driven method (Eq. (5)).

The total uncertainty in the two-way PIA estimate at a given location x arises from two main sources, uncertainty in es-

timating the σ̃gas
0 (x), and from the inherent measurement error in radar reflectivity. The first component is estimated from140

weight associated with each calibration points as each weight wi corresponds to the inverse of the variance associated with the

calibration point at xi, leading to a total uncertainty expressed as:

σuncer
gas (x) =

(
N∑

i=1

wi

)−1/2

(10)

In addition to this methodological error, inherent measurement error in radar reflectivity which depends on the signal-to-noise

ratio (SNR) and the number of independent samples (nsamples) also contributes to the overall uncertainty in the PIA estimate.145
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This error is analytically estimated as (Doviak and Zrnić, 1993):

σz[dB] = 10 log10

(
1 +

1 + 1
SNR√

nsamples

)
(11)

The number of samples is estimated from the pulse repetition frequency (PRF), the integration length (Lint), and the ground

satellite velocity (Vsat) as:

nsamples = PRF
Lint

vsat
(12)150

For the EarthCARE Level 2 C-PRO FMR dataset, the integration length is 1 km, the PRF varies between 6100 Hz and 7500 Hz,

and the satellite velocity is approximately 7 km/s. Substituting these values (and assuming high SNR values) yields a measure-

ment error ranging from approximately 0.15 dB to 0.13 dB depending on the PRF. Hence total PIA uncertainty is estimated

as:

σuncer
PIA [dB] =

√
(σuncer

gas )2 + (σz)2 (13)155

Figure 1. Lookup table of two-way PIA uncertainty associated with the clear-sky interpolation method, shown as a function of wind speed at

the cloudy profile and distance to the calibration points. The uncertainty is derived using an ensemble of clear-sky oceanic profiles over the

June 2024–June 2025 period. For each profile location x, the NRCS is estimated using all other clear-sky profiles as calibration points. The

difference between the estimated and measured NRCS at x defines the residual. These residuals are then binned by wind speed and distance

to the calibration points, and the uncertainty in each bin is quantified as the standard deviation of the residuals as in Eq. (9). The solid black

contour delineates the transition boundary beyond which the model-driven method, Eq. (5), yields lower PIA uncertainty compared to the

clear-sky interpolation approach.

This approach is similar to the one already adopted for CloudSat but with two major differences.
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1. In CloudSat, the interpolation method is typically applied only when clear-sky pixels are immediately adjacent to the

cloudy pixel of interest, usually within a window of thirty surrounding profiles, which corresponds to ≈ 30 km (2C-

PRECIP-COLUMN Product Description, 2018). In contrast, the method used here allows interpolation even when the

calibration points are ≈200 km to ≈100 km from the cloudy pixel in wind speed conditions between 4 and 15 m/s (Fig.160

1). This is possible because the variability in the gas absorption profile and in the σ0e due to the modulation of the

atmospheric (temperature and relative humidity profile) and of the surface (SST and wind) properties, respectively, is

accounted for in Eq. (6).

2. Each calibration point used in the PIA estimation is weighted based not only on it’s distance from the point of interest

but also on the potential uncertainty associated with wind speed at that location (see Sect. 2.4).165

Figure 2. Schematic representation of PIA estimation methodology described in Sect. 2. The cloudy profiles of interest (located at positions

x and y) are bordered by N clear-sky calibration points (x1, . . . ,xN and y1, . . . ,yN ). The measured normalized radar cross Section (NRCS)

at a cloudy location is denoted as σ0m(x) and σ0m(y) , while σcal
0m(xi) and σcal

0m(yi) refer to NRCS values at the calibration points. The

effective surface backscatter under clear conditions, σ0e, is modeled as a function of sea surface temperature (SST) and surface wind speed:

σ0e = f(SST,wind). The domain is bounded by sea ice on the left and land on the right, with calibration only valid over ice-free open

ocean.

2.1 Gas attenuation modelling

In high-frequency radars operating at 94 GHz, microwave radiation is significantly absorbed by atmospheric gases, primarily

water vapor and oxygen, as the radar signal propagates through the atmosphere. This absorption contributes to the total path-

integrated attenuation (PIA) and must be accounted for in retrieval algorithms. In the EarthCARE C-PRO FMR dataset (Kollias

et al., 2023), gaseous attenuation is estimated using the Rosenkranz absorption model (Rosenkranz, 1998), with temperature170

and moisture profiles provided by X-MET, matched to the radar observations.

2.2 Derivation of normalized surface backscattering cross section

The normalized surface back-scattering cross section, σ0m (first term on the right-hand side of Eq. (3)), is derived from the

received reflectivity profile by identifying Zclutter(rsurf ), which is the reflectivity corresponding to the surface (Kanemaru
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et al., 2020), (EarthCARE CPRL1b ATBD, 2017). The expression used is:175

σ0m =
π5|Kw|2

λ4

cτp

2
Lp Zclutter(rsurf ) (14)

where Kw is derived from the refractive index of water at 3 mm-wavelengths (|Kw|2 assumed equal to 0.75) and Lp is a peak

loss factor (that can be computed from calibration), that accounts for the receiver transfer function and for the fact that the

pulse shape is not a perfect top hat.

The EarthCARE CPR has a vertical range sampling of 100 meters (∆r), meaning the actual surface height (rsurf ) often180

falls between two discrete range bins and is generally missed. The “surface_bin_number” (nsurf ) variable in CPR L1B data

represents the range bin index where the peak reflectivity was detected and the corresponding height (r(nsurf )) is the sampled

range closest to the surface range. The NRCS reported in CPR L1B data corresponds to this “surface_bin_number”and therefore

must be corrected for potential peak loss due to the coarse vertical resolution. For accurate estimation of surface height,

gaussian fitting is performed on the surface reflectivity peak in the CPR L1B data (EarthCARE JAXA L2 ATBD, May 2024).185

The variable “surface_bin_fraction” (fsurf ) represents the offset between actual surface range (rsurf ) obtained by the fitting

and the closest sampled range (r(nsurf )) expressed as a fraction of the bin size. In EarthCARE the fsurf ranges from -0.5 to

0.5 where negative fsurf values indicates that the actual surface range is above the closest sampled range and viceversa. The

actual surface height can be calculated as:

rsurf = r(nsurf )− fsurf ∆r (15)190

In computation of σ0m with the Eq. (14), the reflectivity at bin nsurf , Zclutter(r(nsurf )), is used (reported in CPR L1B

data) and a correction is applied for the peak loss. To compute the correction term for σ0m, a large ensemble of clear-sky

profiles over ice-free open ocean was collected. For each profile, actual surface height is estimated using Eq. (15) and profiles

were aligned relative to the distance from this surface detected height so that if the radar samples actual surface height (rsurf ),

the peak reflectivity will be at 0 m. These profiles were then averaged to derive best point-target response (PTR) function195

(Coppola et al., 2025). In the derived PTR, the reflectivity loss within +50 m is 0.48 dB and for -50 m is 0.138 dB.

Substituting the constants into Eq. 14 indicates that a surface reflectivity of approximately 29.65 dBZ produces a σ0m of

0 dB (when assuming Lp = 1). So the Eq. 14 can be re-written as:

σ0m(dB) = Zclutter(rsurf )(dBZ)− 29.65 (16)

The peak loss correction LdB
r (fsurf ) is expressed as:200

LdB
r (fsurf ) =




−0.965fsurf , −0.5≤ fsurf ≤ 0

0.276fsurf , 0 < fsurf ≤ 0.5

and, σ0m is corrected for peak loss as:

σcorr
0m (dB) = σ0m(dB) +LdB

r (fsurf ) (17)
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The NRCS measurement is available unless the surface signal is completely attenuated by heavy precipitation or thick cloud

layers. The minimum detectable reflectivity of EarthCARE CPR is approximately -35 dBZ. Over ocean surfaces with wind205

speeds of 6-8 m/s, the most frequently observed σ0e values range between 10 and 15 dB (Fig. 4). Using Eq. (16), a surface

reflectivity of -35 dBZ corresponds to a measured σ0m of -64.65 dB. Assuming σ0 e of 10 dB, the maximum detectable PIA,

limited by the radar’s sensitivity, is approximately 74.65 dB and if PIA were any greater, then the surface signal would fall

below the radar’s detection threshold.

2.3 Selection of calibration points210

In the PIA estimation methodology proposed here, clear-sky and thin ice cloud only profiles are used as calibration points for

interpolating the NRCS over cloudy regions. Therefore, accurate selection of these calibration points is critical for ensuring

reliable PIA estimates. Currently, calibration points are identified exclusively using radar-based products, specifically the sig-

nificant detection mask, or “profile_class”, from the Level 2 C-PRO FMR dataset (Kollias et al., 2023). A profile flagged as

clear by the mask is confirmed as a calibration point only if, within a 10 km along-track segment centered on it, at least six215

other profiles are also classified in the same way, and the standard deviation of their NRCS is less than 0.3 dB. This threshold

is derived from global climatological statistics of standard deviation of NRCS, computed over 10 km along-track segments

that contain at least six clear-sky profiles, consistent with the calibration point selection criteria. The global climatological

analysis of NRCS standard deviation reveals that the most frequently occurring values lie between 0.2 dB and 0.3 dB, and

higher standard deviation is observed near coastal regions. The standard deviation threshold helps to avoids selecting isolated220

clear-sky profiles that may be incorrectly flagged due to noise or retrieval errors and guarantees selected profiles represent

typical, stable clear-sky surface conditions. Figure 3 shows the global distribution of calibration point fraction, defined as the

ratio of the number of calibration points to the total number of profiles within each 1◦×1◦ grid cell. The black dashed contour

lines in Fig 3 indicate the fraction of profiles where clear-sky interpolation method was applied, relative to the total number of

profiles for which PIA was estimated. A general trend can be observed with the fraction of profiles using clear-sky interpolation225

declining as the availability of calibration points decreases.
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Figure 3. Global distribution of the calibration point fraction, defined as the ratio of valid calibration points to the total number of radar

profiles within each 1◦×1◦ grid cell. A profile is considered a valid calibration point if it is flagged as clear by the“profile_class” mask in the

Level 2 C-PRO FMR dataset and is located within a 10 km along-track segment that contains at least six other clear profiles, with a standard

deviation of measured NRCS below 0.3 dB. Black dashed contour lines indicate the fraction of profiles where the clear-sky interpolation

method is applied, highlighting regions where this approach is frequently used for PIA estimation.

2.4 σ0e modelling

The effective normalized radar cross Section (σ0e) over the ocean surface is a key parameter in the estimation of PIA, as

it captures the expected variability of surface backscatter as a function of radar viewing geometry, surface wind speed, and

SST. The dependence on wind speed arises from wind-driven waves that increase surface roughness, which is characterized230

by the effective mean square slope (MSS) of the ocean surface. According to quasi-specular scattering theory, σ0e is inversely

proportional to the square of MSS. The MSS itself is primarily a function of wind speed and has been empirically related to

wind velocity through models developed by Cox and Munk (1954), Wu (1972, 1990), and Freilich and Vanhoff (2003)(Li et al.,

2005). Additionally, SST influences σ0e through its effect on the refractive index of seawater, which alters the Fresnel reflection

coefficients. The σ0e can either be estimated using a geophysical model using wind and SST measurements from ECMWF data235

or can be estimated from measured NCRS at clear-sky conditions by correcting for gaseous attenuation. Figure 4 illustrates

the variation of measured σ0e with wind speed, based on clear-sky profiles observed by the EarthCARE CPR between June

2024 and February 2025. Clear-sky conditions were identified using the “profile_class” variable from the Level 2 C-PRO FMR

product (Kollias et al., 2023), and the analysis was limited to ice-free oceanic regions as indicated by the ECMWF auxiliary

sea-ice mask. The figure demonstrates a clear dependence of σ0e on wind speed, with mean values ranging from approximately240

5 dB to 18 dB. The error bars represents the standard deviation, capturing the variability of data. Notably, greater variability

10

https://doi.org/10.5194/egusphere-2025-3573
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



in σ0e is observed under low wind conditions, where surface roughness is minimal and NCRS is more sensitive to small-scale

variations(Haynes et al., 2009).

Figure 4. Distribution of measured σ0e derived from EarthCARE NRCS observations under clear-sky conditions, corrected for gaseous

attenuation, over the period June 2024-June 2025, shown as a function of wind speed. The black curve represents the mean σ0e at each wind

speed, with error bars indicating the standard deviation. The red circle highlights the low wind speed regime, where σ0e exhibits greater

variability and a higher standard deviation.

Figure 5 shows the variability of σ0e, expressed as the standard deviation computed over 10 km along-track segments under

clear-sky conditions. The calculation is performed only when at least six clear-sky pixels are available within each segment. The245

black curve indicates the median of the resulting distribution and error bars represent 25 and 75th percentiles. In higher wind

regimes, the median standard deviation is approximately 0.25 dB, reflecting the expected reflectivity measurement uncertainty

associated with signal-to-noise ratio (SNR). As wind speed decreases, the median standard deviation increases, reaching up

to 1 dB in low-wind conditions. This reflects the increased sensitivity of the σ0e to small-scale surface variations under calm

ocean conditions.250
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Figure 5. Variability of measured σ0e from EarthCARE over the period June 2024-June 2025, expressed as the standard deviation within

10 km along-track segments. Only segments containing at least six clear-sky pixels are included. The black curve represents the median of

the distribution, and the error bars indicate the 25th and 75th percentiles.

The measured σ0e should align with σ0e, estimated from geophysical models, and this is examined in Fig. 6.

Figure 6 shows a comparison between the mean σ0e from EarthCARE measurements and different geophysical model esti-

mates. The σ0e estimated using the Cox and Munk (1954) empirical relationship provides the best agreement with the measured

mean σ0e, showing minimal bias across most wind speed ranges, except at very low wind speeds below 2 m/s. To reduce po-

tential biases associated with geophysical model based estimates across different wind speed regimes, the current PIA retrieval255

algorithm in the EarthCARE Level 2 C-PRO FMR product derives the σ0e from a climatologically constructed look-up ta-

ble. Figure 7 presents the look-up table of σ0e as a function of wind speed and sea surface temperature (SST), derived from

EarthCARE observations over the period June 2024 to June 2025.
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Figure 6. Comparison of mean σ0e from EarthCARE with estimates from various geophysical models. The top panel shows the mean σ0e

measured by EarthCARE across wind speed bins, alongside the corresponding mean σ0e values from different geophysical models. The

bottom panel displays the differences between the EarthCARE measurements and each model estimate.

Figure 7. Look-up table of the effective surface backscattering cross section (σ0e) derived from EarthCARE measurements collected between

June 2024 and June 2025, shown as a function of sea surface temperature (SST) and wind speed. The table is constructed by averaging

clear-sky NRCS observations corrected for gaseous attenuation within discrete SST and wind speed bins. Results indicate that σ0e exhibits

significantly greater variability with respect to wind speed than SST.
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In the EarthCARE analysis, wind data are obtained from ECMWF reanalysis. Given the high variability of the σ0e in low-

wind conditions, coupled with potential errors in ECMWF wind speed estimates, PIA retrievals particularly in the regions260

highlighted by red circles in Fig. 4 are expected to exhibit increased uncertainty and reduced reliability. This increased uncer-

tainty is also reflected in the PIA uncertainty look-up table (Fig. 1), resulting in higher reported PIA uncertainty for cloudy

profiles occurring at low wind speeds.

3 EarthCARE case studies

To demonstrate the performance of the proposed PIA estimation methodology under varying atmospheric and surface condi-265

tions, several case studies using EarthCARE observations are presented in Fig. 8-10. In each case, the first panel displays the

vertical profiles of the radar reflectivity factor as a function of the along track distance with the calibration points selected

based on the criteria outlined in Sect. 2.3 and shaded in grey. The second panel shows the measured NRCS (σ0m), which may

be attenuated by hydrometeors, alongside the estimated gas-only NRCS (σgas
0 ). The σgas

0 and corresponding PIA are com-

puted using five clear-sky calibration points as defined by Eq. (7). The third panel presents the resulting PIA estimates, with270

shaded regions indicating profiles where negative PIA values are obtained. The fourth panel shows the total PIA uncertainty

estimate, calculated using Eq. (13), which includes both the uncertainty from the PIA uncertainty look-up table (Fig. 1) and a

fixed contribution of 0.15 dB from inherent measurement noise, corresponding to a PRF of 6100 Hz. The shading in the panel

represents calibration points where PIA is not estimated.

Figure 8 depicts a scene of scattered cumulus clouds over the Southern Ocean. Note that, thanks to the sharp EarthCARE275

point target response (Burns et al., 2016; Lamer et al., 2020; Coppola et al., 2025), the profiles of radar reflectivity are not

contaminated by clutter down to 500 m. In this case, numerous calibration points are situated close to the cloudy profiles,

allowing for high-confidence PIA estimates with relatively low uncertainty. The farthest calibration point is approximately

50 km away, and the maximum PIA uncertainty is 0.4 dB which is presented in fourth panel. Wind speeds in this scene range

between 3.5 and 8.8 m/s.280
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Figure 8. EarthCARE Case 1: Scattered shallow cumulus clouds observed off the southeastern coast of Africa. The first panel highlights the

selected calibration points (shaded areas). The second panel compares the measured NRCS (σ0m) with the estimated clear-sky NRCS (σgas
0 ),

representing the expected NRCS in presence of gas only, derived using Eq. (7). The third panel presents the resulting PIA estimates, with

shaded regions indicating profiles where the estimated PIA is negative. The fourth panel presents the error in PIA estimate derived based on

the PIA uncertainty look-up table (Fig. 1).

Figures 9 and 10 depict extensive, continuous cloud systems with few or no nearby calibration points. Figure 9 shows a

persistent stratocumulus deck over the southeastern Atlantic Ocean, off the southwestern coast of Africa. These clouds are

typically shallow with flat tops and are capped by a temperature inversion. Although the resulting PIA values remain relatively

low (generally below 2-3 dB), accurate estimation is essential for reliable rainfall retrievals. In this case, for profiles in the

middle of the precipitating system, the farthest calibration point can be located approximately 480 km away, corresponding to285

a maximum PIA uncertainty of 0.8 dB as shown in the fourth panel. Wind speeds in the scene range from 7 to 11 m/s, and the

cloud deck extends roughly 1170 km in length. Figure 10 illustrates a widespread stratiform cloud system over the southeastern

Atlantic Ocean near the western coast of Africa. The cloud cover stretches nearly 930 km, with limited or no nearby calibration

points. The farthest calibration point is about 340 km away, resulting in a maximum estimated PIA uncertainty of 0.45 dB

which is represented in the fourth panel. Wind speeds in this region range from 7 to 10.5 m/s.290
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Figure 9. EarthCARE Case 2: Stratocumulus case seen over the southeastern Atlantic Ocean, off the southwestern coast of Africa. The first

panel highlights the selected calibration points (shaded areas). The second panel compares the measured NRCS (σ0m) with the estimated

clear-sky NRCS (σgas
0 ), representing the expected NRCS in presence of gaseous attenuation only, derived using Eq. (7). The third panel

presents the resulting PIA estimates, with shaded regions indicating profiles where the estimated PIA is negative. The fourth panel presents

the error in PIA estimate derived based on the PIA uncertainty look-up table (Fig. 1).
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Figure 10. EarthCARE Case 3: Stratiform cloud seen over southeastern Atlantic Ocean near the western coast of Africa. The first panel

highlights the selected clear-sky calibration points (shaded). The first panel highlights the selected calibration points (shaded areas). The

second panel compares the measured NRCS (σ0m) with the estimated clear-sky NRCS (σgas
0 ), representing the expected NRCS in the

presence of gaseous attenuation only, derived using Eq. (7). The third panel presents the resulting PIA estimates, with shaded regions

indicating profiles where the estimated PIA is negative. The fourth panel presents the error in PIA estimate derived based on the PIA

uncertainty look-up table (Fig. 1).

In all the cases above, the negative PIA values are small, typically fractions of a dB. These negative estimates arise from the

noisiness in the measured σ0m associated to the fluctuations of the backscattering returns and from the uncertainties associated

in σgas
0 (e.g. associated to the ECMWF reanalysis wind speed and SST used as inputs).

These diverse case studies highlight the flexibility and robustness of the proposed PIA retrieval approach across different

cloud morphologies, calibration point availability, and wind conditions.295

4 CloudSat PIA testbed

As briefly discussed in Sect. 1, CloudSat employs a hybrid approach to estimate PIA, combining two complementary methods

similar to the one proposed in this study. The first approach, referred to as the Wind/SST method, estimates the NRCS at

cloudy region in absence of hydrometeor and presence of gaseous attenuation (σgas
0 ) as a function of surface wind speed

and SST using geophysical models (Li et al., 2005) and second one is interpolation-based approach, where clear-sky profiles300

surrounding cloudy profile are used to estimate the σgas
0 . In the interpolation-based method, a search is performed within 30

profiles (approximately 30 km) surrounding cloudy profile for clear-sky conditions. If at least five clear profiles are found, a

weighted average of their observed NRCS is computed, with weights based on the distance of each clear profile to the cloudy
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profile (2C-PRECIP-COLUMN Product Description, 2018). If the minimum requirement of five clear-sky profiles is not met,

the Wind/SST method is used instead.305

Figure 11 presents a case study from 02 January 2008, using CloudSat observations. The PIA estimation methodology

proposed in this study is also applied to this case for direct comparison with CloudSat method. CloudSat provides estimates of

the unfiltered PIA (i.e., without discarding negative values), along with the measured NRCS (σ0m). Therefore the estimate of

NRCS at cloudy region in presence of gas only (σgas
0 ) for the CloudSat products can be obtained by just summing the PIA and

the measured σ0m.310

The second panel of Fig. 11 shows the measured NRCS (σ0m), the σgas
0 based on CloudSat method (σgas

0 CloudSat), and

the estimated σgas
0 based on our methodology proposed for EarthCARE (σgas

0 EarthCARE). Abrupt jumps up to nearly 1 dB

are observed in the CloudSat-derived σgas
0 , particularly at transition points between the two estimation methods. These dis-

continuities are marked by red circles in the second panel of Fig. 11. The variable “Diagnostic_PIA_method” in the CloudSat

2C-PRECIP-COLUMN product indicates which method is used at each profile, which is represented by two shading in the sec-315

ond panel of Fig. 11. Blue shading represents the interpolation-based method, while grey shading corresponds to the Wind/SST

method.

Figure 11. CloudSat Case Study. Top panel: vertical reflectivity profile as a function of the along track distance. Bottom panel: the measured

normalized radar cross Section (NRCS), denoted as σ0m (black curve), along with the estimated clear-sky NRCS (σgas
0 ) within cloudy

regions, derived using the proposed EarthCARE method (blue curve) and the CloudSat-based estimate (red curve). The red circle highlights

the jump in σgas
0 in CloudSat estimate. The grey and blue shading in second panel represent the two estimation methods employed in CloudSat

methodology, which are Wind/SST method which utilizes geophysical model and clear-sky interpolation method. The jumps present in σgas
0

CloudSat generally occur when there is switch in two methodologies.

18

https://doi.org/10.5194/egusphere-2025-3573
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



The 30 km limit of CloudSat’s clear-sky interpolation often leads to frequent switches to the Wind/SST-based method,

causing nonphysical jumps in σgas
0 and PIA. In contrast, the EarthCARE approach allows interpolation over much longer

distances typically between 200 km to 100 km depending on the surface wind speed, significantly reducing such transitions320

and yielding smoother, more consistent estimates. Although method transitions may still introduce occasional discontinuities

in the EarthCARE estimates, their frequency is markedly lower compared to the CloudSat approach.

4.1 Statistical comparison with the CloudSat PIA estimates

To facilitate a direct comparison between the PIA estimation methodology implemented in EarthCARE and that used in Cloud-

Sat, the proposed method is applied to a four-month subset of CloudSat data, spanning January to April 2007. The effective325

normalized radar cross Section (σ0e) is derived using a look-up table based on ECMWF wind speed and SST, generated

over the entire CloudSat mission epoch spanning from 05 August 2006, to 16 December 2021. Clear-sky profiles are identi-

fied solely using radar-based products. In particular, the “CPR_Echo_Top” variable from the 2C-PRECIP-COLUMN product

(2C-PRECIP-COLUMN Product Description, 2018) is used to distinguish between clear-sky and cloudy profiles. Calibration

points are selected according to the criteria detailed in Sect. 2.3. Figure 12 presents a statistical comparison of PIA estimates330

derived from the proposed method and those reported by CloudSat, considering only cloudy profiles on a global scale. The

distributions are displayed on a logarithmic scale to better represent the range of occurrences. The results indicate that both

methods produce similar statistical characteristics, with histograms peaking in the same range (0-1 dB) and exhibiting compa-

rable widths, reflecting overall agreement. The EarthCARE method shows a slightly lower occurrence of small negative PIA

values (0 to -1 dB) and a marginally higher occurrence of small positive values (0-2 dB) compared to CloudSat. Additionally,335

while the EarthCARE approach yields a higher number of PIA estimates in the larger negative range (-2 to -5 dB), these cases

remain relatively rare, resulting in a low associated probability density. Overall, the consistency in histogram shape and central

tendency supports the validity of the EarthCARE PIA estimation methodology.
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Figure 12. The global probability distributions of PIA estimates obtained from the EarthCARE retrieval methodology applied to CloudSat

observations (January–April 2007) and from the PIA from CloudSat retrievals are compared on a logarithmic scale. The overlapping dis-

tributions demonstrate strong consistency in the statistical characteristics of the two retrieval approaches, supporting the robustness of the

EarthCARE method when applied to CloudSat data.

As described in Sect 4, CloudSat employs a hybrid strategy for PIA estimation that combines clear-sky interpolation and

the wind/SST-based method. The variable “Diagnostic_PIA_method” from the CloudSat 2C-PRECIP-COLUMN product (2C-340

PRECIP-COLUMN Product Description, 2018) indicates which retrieval method is applied to each profile. Leveraging this

information, profiles are categorized based on the applied PIA estimation method, enabling a more granular comparison. Within

each category, the CloudSat PIA estimates are compared against those produced by the proposed EarthCARE methodology,

allowing for a detailed assessment of consistency and potential differences across retrieval strategies.

Figure 13 presents the distribution of differences between PIA estimates from those derived using the EarthCARE method345

and Cloudsat method, categorized by the PIA retrieval approach applied in CloudSat. For profiles where the clear-sky interpo-

lation method is implemented in Cloudsat, the differences are generally minor, with the histogram centered around 0 dB and

most values falling within the ±0.5 dB range. It indicates that, for profiles where CloudSat used clear-sky interpolation, the

PIA estimates from both CloudSat and the EarthCARE method are in close agreement. In contrast, for profiles retrieved using

the wind/SST method, the discrepancies are significantly larger, with differences reaching up to approximately±2 dB, indicat-350

ing greater divergence between the two methods in these cases. Here, since the difference is calculated as PIA (EarthCARE)

minus PIA (CloudSat), the distribution skews more positive, indicating that EarthCARE’s PIA estimates tend to be higher than

CloudSat’s for these profiles. This difference arises primarily because the EarthCARE methodology relies less frequently on

the Wind/SST approach than CloudSat. Specifically, in the EarthCARE implementation, clear-sky interpolation is applied to

77.14% of the profiles, with the Wind/SST method used in only 22.86% of cases. Conversely, the CloudSat method applies355

clear-sky interpolation to just 33.91% of profiles, relying on the Wind/SST method for the remaining 66.09%.
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Figure 13. Probability distributions of the differences between PIA estimates from EarthCARE and CloudSat for cloudy profiles. The gray

histogram represents cases where CloudSat applies the clear-sky interpolation method, showing a narrow distribution centered around 0 dB.

The purple histogram corresponds to profiles where the wind/SST method is used in CloudSat, exhibiting a broader distribution with larger

discrepancies.

These statistical comparison indicates that the PIA estimates derived from the proposed EarthCARE method are largely con-

sistent with those from CloudSat. Moreover, the newly proposed EarthCARE method demonstrates improvement, exhibiting a

reduced occurrence of negative PIA values.

5 Summary360

This study presents a robust methodology for estimating path-integrated attenuation (PIA) over oceanic regions, which is

currently under implementation and will be incorporated into the PIA estimation component of the EarthCARE CPR Level 2A

C-PRO product. The approach is specifically designed to be resilient to potential radar calibration biases, such as those that may

arise during the early phases of the mission, thereby enhancing the reliability of attenuation-based retrievals under non-ideal

instrument conditions. It combines two complementary approaches: a clear-sky interpolation technique and a model-driven365

(wind/SST) method. The clear-sky interpolation method estimates PIA at a cloudy profile by leveraging surrounding calibration

points selected based in criteria described in Sect. 2.3, as defined in Eq. (7). Importantly, the clear-sky interpolation method, as

described in Eq. (6), estimates PIA by computing the difference between the measured normalized radar cross section (NRCS)

(or effective surface backscattering cross section corrected for gaseous attenuation) at the cloudy profile and that at surrounding

clear-sky calibration points, rather than relying on their absolute values. The method uses multiple calibration points, optimally370

weighted based on their distance from the cloudy profile and the surface wind speed at the cloudy profile, so that the nearest

calibration points are weighted higher and the PIA estimate at a cloudy profile at low wind conditions report larger uncertainty.
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In situations where suitable clear-sky calibration points are not available within a distance that permits accurate interpolation,

the retrieval defaults to a model-based approach, as described in Eq. (5). The model-based method estimates PIA using the

effective normalized radar cross section (σ0e), derived from climatology-based look-up table that relates σ0e to surface wind375

speed and sea surface temperature (SST), based on collocated ECMWF data. The hybrid method can be applied when the radar

is well calibrated.

The performance of the EarthCARE method was evaluated by applying it to CloudSat observations over four months

and by comparing the resulting PIA estimates to those reported in CloudSat’s 2C-PRECIP-COLUMN product (2C-PRECIP-

COLUMN Product Description, 2018). CloudSat uses a similar hybrid strategy, choosing between clear-sky interpolation and380

a wind/SST-based approach depending on the availability of nearby clear-sky profiles. However, CloudSat applies clear-sky

interpolation only within a 30 km, while the EarthCARE approach allows interpolation from calibration points located 100 to

200 km away from cloudy profile, depending on the surface wind speed. This extended interpolation capability reduces the

number of transitions between estimation methods and improves the spatial consistency of the retrieved PIA.

A detailed case study and global statistical analysis confirm the effectiveness of the proposed EarthCARE methodology. For385

profiles where CloudSat applies clear-sky interpolation, both methods yield highly consistent PIA values, with most differences

falling within±0.5 dB. In contrast, for profiles where CloudSat switches to the wind/SST method, larger discrepancies emerge,

with differences occasionally reaching up to ±2 dB. This is partly because CloudSat applies the wind/SST method more

frequently, over 66% of profiles globally compared to 23% in the EarthCARE method, which maintains a higher reliance on

clear-sky interpolation. In general EarthCARE method provided PIA estimate with marginally lesser negative PIA estimates390

and higher occurrence of positive PIA estimates.

Overall, the proposed retrieval scheme demonstrates strong agreement with CloudSat’s established method. In future work,

other EarthCARE instruments beyond the radar, such as the Multi-Spectral Imager (MSI) and the Atmospheric Lidar (ATLID),

can be leveraged in order to better identify clear-sky profiles, to validate the PIA estimates and to improve estimates of the LWP

product (Lebsock et al., 2022). A brightness temperature product for the CPR, envisaged to be developed in the next months395

similarly to what was done for CloudSat (Battaglia and Panegrossi, 2020), could help in better constraining such product as

well.
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