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Abstract.

The link between rainfall extremes, usually defined as a given percentile or for a given return period, and temperature

has been widely investigated using measurement data and / or convection permitting model outputs. A focus was notably on

whether findings are consistent with Clausius-Clapeyron relation. A scale dependence of the rate of increase with temperature

is commonly reported.5

Here we investigate how rainfall extremes and more generally variability across scales change with temperature, relying

on the scale invariant framework of the Universal Multifractals. Rainfall and temperature data from three high resolution

measurement campaigns that took place in France between 2018 and 2025 are used. Scaling behaviour is confirmed on two

distinct ranges of scales, first at event scale (30 s - 1h) and then up to synoptic scale (roughly 11 days). Then we find that across

both ranges of scales, the scale invariant maximum observable singularity increases on average with greater temperature, which10

provides a framework to interpret previously observed trends.

1 Introduction

Precipitation extremes in general are expected to increase under climate change (Masson-Delmotte et al., 2021). These ex-

tremes, at sub-hourly scale, daily scale or larger scale have strong influence on river flooding, storm water management, local

(including urban) flooding, debris flows, erosion... (Borga et al., 2014; Fowler et al., 2021), and can trigger in some cases15

natural disasters.

The main process mentioned in the literature to explain why rainfall extremes increase with temperature is thermodynamic

Clausius-Clapeyron (CC) relation which quantifies the ability of warmer air to hold more moisture. It is often referred to as

CC scaling, but we will not use this formulation here to avoid confusion with the scaling of rainfall fields which we will

discuss later. More precisely, it states that on average, air can hold 7% more moisture per oC. Actually, this rate decreases with20

increasing temperature. It is of 7.3 %oC−1 at 0 oC, 6.4 %oC−1 at 15 oC and 6 %oC−1 at 25 oC (Panthou et al., 2014). It

is often assumed that rainfall extremes should increase at the rate suggested by CC relation. Such statements relies on three

assumptions: (i) relative humidity stays roughly the same in future climate conditions, (ii) heavy rainfall events are primarily
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influenced by the atmospheric water content, and (iii) atmospheric circulation patterns do not undergo significant changes in

the future climate (Panthou et al., 2014).25

Numerous papers have studied the influence of temperature on rainfall extremes (usually quantified with the help of per-

centiles, typically 90, 95 or 99th; or return period) and how well CC relation is retrieved. For example, Moustakis et al. (2020)

used a combination of data and convection permitting model to show that CC expected rate holds over most part of mid and

high latitudes while deviations are found in the tropics. In a later analysis, centered on US, Moustakis et al. (2021) showed that

for a studied duration of one hour, a 20 year return rainfall event becomes a 7 year one over roughly 75% of grid points.30

In an earlier work, Lenderink and van Meijgaard (2008) explained that climate models outputs seem consistent with the CC

relation, while using data from Netherlands they showed some differences according to studied time scales. For example, they

found that the increase of hourly extremes with temperature goes twice stronger than expected with CC relations. This was

further confirmed in a more recent study over Netherlands and related to the physics of convective clouds (Lenderink et al.,

2017).35

Haerter et al. (2010) used 30 years of 5 min data from six stations in Germany and showed that CC relation does not provide

a good explanation at all scales. Indeed, they found a stronger increase of extremes with temperature at shorter scales and

reported continuous changes.

Chen et al. (2021) studied data from Eastern China, and also found greater increase of rainfall extremes than expected with

CC relation. Wettest 10 hours increased twice faster than CC, while the 10 heaviest daily rainfalls increase three time faster.40

Changes not only with temporal scale, but also with region are found. For example Panthou et al. (2014) studied rainfall data,

and more precisely the 90 and 99th percentiles, with time steps ranging from 5 min to 12 h for more than 100 meteorological

stations across Canada. They also found that with longer durations, the increase of extreme rainfall with temperature was

less pronounced. They report differences according to regions. For example, CC relations holds for coastal regions and short

durations, while it is not the case for inland regions where super CC is observed, before an upper limit is reached.45

A dependence on temperature is also observed. For example, Sharma and Mujumdar (2019) used data from India and

observed at daily scale deviations from CC relation, with stronger increase of extremes between 25oC to 30oC, and less for

greater temperature.

Precipitations are complex as they arise from the interplay between various non-linear processes. It leads to increases or

decreases with regards to thermodynamic relation alone, i.e. CC relation. Such changes in local atmospheric dynamics explain50

deviations from CC relations. As discussed above, it appears that such deviations depend on temporal scale, with shorter

duration rainfall exhibiting a increase rate stronger than expected (Fowler et al., 2021). Similar dependence on spatial scale is

also reported by Peleg et al. (2018) who studied high resolution radar data.

In order to quantify the impact of climate change on rainfall extremes, some authors used another approach. They rely

on a model for extreme value and they study the dependence of key parameters on temperature. For example, Marra et al.55

(2024) fitted, on data from Switzerland, a non-asymptotic statistical model for extreme rainfall whose parameters depended on

temperature. Moustakis et al. (2021) found an increase in tail heaviness of rainfall, and related this to changes in characteristic

parameters according to temperature.
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Table 1. Summary information for the various measurement campaigns during which the data used in this paper were collected.

Campaign name Start date End day Number of days

ENPC Campus 1 08/01/2018 22/07/2020 927

ENPC Campus 2 14/10/2021 25/05/2025 1320

SIRTA 16/11/2016 19/09/2017 308

Pays d’Othes 11/12/2020 24/07/2023 956

In the previously mentioned studies, the underlying idea is to first properly characterize the link between rainfall extremes

and surface air temperature, and then to use temperature as a proxy to predict future rainfall extremes. This study also fits in60

this overall context with the aim of overcoming some of the previously reported limitations.

More precisely, a key observation is that there seems to be a strong scale dependence on the increase of rainfall extremes with

temperature, i.e. the increase seems stronger, and stronger than expected from CC relation only, for short duration (typically

sub-hourly). Another limitations of these studies is that only a few percentiles or a few return periods are studied, and not the

whole variability across scales of rainfall fields. In this paper, we suggest to investigate how rainfall extremes and more gener-65

ally rainfall variability across scales, change with temperature. Indeed, rainfall is known to exhibit scale invariant features (see

Lovejoy and Schertzer (1995) for an early review or Schertzer and Tchiguirinskaia (2020) for a more recent one), and relying

on these features enables to suggest an innovative approach to explore the link between rainfall extremes and temperature.

More precisely, this paper relies on the framework of Universal Multifractals (UM). It is a physically based, mathematically

robust framework which has been designed to analyze and simulate geophysical fields exhibiting extreme variability across70

wide range of space-time scales such as wind (see Schertzer and Tchiguirinskaia (2020) for a review).

The paper is structured as follows. In section 2, the data from three high resolution measurement campaigns over France is

presented as well selection of studied samples at synoptic and event scale. Then the methodology, is presented with a recap of

basic and needed multifractal properties, and a focus on the notion of maximum observable singularity. Finally, results at both

synoptic and event scales are discussed in section 4.75

2 Data

2.1 Three measurement campaigns

Data collected during three measurement campaigns with devices operated as part of the Hydrology Meteorology and Com-

plexity laboratory TARANIS observatory (exTreme and multi-scAle RAiNdrop parIS observatory) of the Fresnel Platform

of École nationale des ponts et chaussées (https://hmco.enpc.fr/Page/Fresnel-Platform/en) are used. Summary information for80

each measurement campaign can be found in Tab. 1, and locations in Fig. 1.
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Figure 1. Location of the three measurement campaigns used in this paper.

The first campaign, called ENPC-Campus, takes place on the roof of the Carnot building on the campus of ENPC. In this

paper, we use the rainfall data (only the rain rate in mm.h−1) measured with the help of a Parsivel2 disdrometer manufactured

by OTT, and temperature obtained with the help of a sensor by Campbell Scientific. Both devices provide data with 30 s time

steps. The corresponding data base, references presenting the devices, description of the campaign, as well as complete samples85

of data can be found in Gires et al. (2018). The rainfall and temperature time series used in this paper for the second part of

ENPC-Campus campaign are displayed in Fig. 2 as an illustration.

From November 2016 to September 2017 the instruments were moved to SIRTA (Site Instrumenté de Recherche par Télédé-

tection Atmosphérique) on the Ecole Polytechnique campus for a joint intensive measurement campaign over the Ile-de-France

region, where Paris is located. The site is about 38 km away from ENPC campus towards south east of Paris. This campaign is90

denoted SIRTA in this paper.

The last measurement campaign used in this paper took place at a wind farm operated by Boralex and located at the Pays

d’Othe (name of the campaign), approximately 120 km southeast of Paris in a slightly sloping area. As for the other campaigns,

a Parsivel2 disdrometer with 30 s time steps provides rainfall data. Temperature data is collected with the help of a mini

meteorological station manufactured by Thies Clima and operated with a sampling rate of 1 Hz. Temperature data is upscaled95

to 30 s time steps to match rainfall ones. The devices were installed on a meteorological mast at a height of 45 m. Complete

description of the campaign and samples of data can be found in Gires et al. (2022).

The whole rainfall and temperature times series for each measurement campaign can be accessed in Gires (2025).
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Figure 2. (Left) Temporal evolution of the rain rate during campaign "ENPC Campus 2". (Right) Temporal evolution of the temperature

during campaign "ENPC Campus 2". 30 s time steps are used in both cases.

2.2 Sample selection at synoptic scale

In a first step, analysis are carried out up to synoptic scale, which corresponds to the typical duration of a meteorological100

situation at planetary scale. More precisely, for each measurement campaign, the whole time series is split into successive

samples of 215 time steps, which corresponds to roughly 11.4 days. The total number of samples per measurement campaign

can be found in Appendix (Tab. A1).

2.3 Sample selection at event scale

Analysis are also implemented at event scale. To achieve this, rainfall events are selected by considering that an event is a rainy105

period of time during which more than 1 mm is collected and that is separated by more than 15 min of dry conditions before

and after. The number of events per measurement campaign can be found in appendix (Tab. A2).

Then, a studied sample length is set. For technical reasons (see next section), it must correspond to a power of 2. Longer

sample length enables to study rainfall across a wider range of scales, getting more robust results, but they impose to discard

shorter events. As a trade-off, a sample length of 128 time steps corresponding to 64 min (∼ 1h) is used. Then, in order to110

study the maximum possible data, the process illustrated in Fig. 3 is implemented. For each event: (i) the maximum number of

sub-events, i.e. non overlapping samples of size 128, is computed. (ii) The portion of length equal to the product of number of

samples time 128 with highest cumulative depth is found. (iii) It is split into sample(s).
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Figure 3. Illustration of how samples of 128 time steps (64 min) are extracted from a rainfall event that was collected during the ENPC-

Campus campaign. In that case, three samples are extracted.

3 Methodology

3.1 Universal Multifractal framework115

In this paper, variability and ultimately extremes of the rainfall fields across various ranges of scales, are quantified in the

framework of Universal Multifractals (UM). Here, only the key elements are reminded and interested readers are referred to a

recent review by Schertzer and Tchiguirinskaia (2020) and references therein for more details.

To introduce the framework, let us consider a conservative field ϵλ at a resolution λ. It is defined as the ratio between the

outer scale (T ) and observation scale (t), i.e. λ = T/t. For multifractal fields, the moment of order q of the field is power law120

related to the resolution:

⟨ϵq
λ⟩ ≈ λK(q) (1)

where K(q) is the scaling moment function. It can be shown that, in an equivalent way, the probability of exceeding a scale

dependent threshold (λγ) defined with the help a scale invariant singularity γ, also scales with the resolution as:
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Pr(ϵλ ≥ λγ)≈ λ−c(γ) (2)125

where c(γ) is the codimension function (Schertzer and Lovejoy, 1987). The functions K(q) and c(γ) fully characterize the

variability across scales of the field ϵλ and are linked by a Legendre transform (Parisi and Frish, 1985). This notably means

that a singularity can be associated uniquely to each moment and vice-versa. As it can be seen on Eqs. 1 and 2, multifractal

properties are statistical properties which are valid on average over numerous samples.

In the specific framework of UM (Schertzer and Lovejoy, 1987, 1997), which are a limit behaviour of all multiplicative130

cascades processes, K(q) and c(γ) are characterized with the help of only two parameters with physical interpretation:

– C1, the mean intermittency co-dimension, which measures the clustering of the (average) intensity at smaller and smaller

scales. C1 = 0 for an homogeneous field;

– α, the multifractality index (0≤ α≤ 2), which measures the clustering variability with regards to the intensity level.

Greater values of α and C1 correspond to stronger extremes. For UM, we have:135

K(q) =
C1

α− 1
(
qα− q

)
(3)

A Trace Moment (TM) analysis basically consists in checking the scaling behaviour of the field and estimating K(q) by

plotting Eq. 1 in log-log. To achieve this, the field is upscaled from its maximum resolution Λ by averaging over adjacent

time steps, then raised to various powers q, and finally the ensemble average (over various samples independently upscaled) is

performed to obtain an estimate of the empirical moments and their scaling behaviour. UM parameters are estimated with the140

help of the Double Trace Moment techniques which is an extension of TM tailored for UM (Lavallée et al., 1993).

Let us now consider a non-conservative field, denoted ϕλ, i.e. we have ⟨ϕλ⟩ ̸= 1. In that case, it is usually assumed that it

can be written as (with an equality in probability distribution):

ϕλ
d= ϵλλ−H (4)

where ϵλ is a conservative field (⟨ϵλ⟩= 1) of moment scaling function Kc(q) (the sub-index “c” refers to the conservativity145

of ϵλ), and H the non-conservation parameter. Kc(q) only depends on UM parameters C1 and α. H characterizes the scale

dependence of the average field, and is equal to zero for a conservative field.

H can easily be related to spectral analysis. Indeed, for scaling fields, the power spectrum follows a power law with regards

to wave number:

E(k)≈ k−β (5)150

and the spectral slope β is related to H with the help of the following formula (Tessier et al., 1993):
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β = 1 +2H −Kc(2) (6)

TM and DTM technique should theoretically be implemented on a conservative field ϵλ. However if H < 0.3− 0.4, it can

be implemented directly on ϕλ, and will not generate biased estimates. In case of greater H , ϵλ should be used. Retrieving ϵλ

from ϕλ theoretically requires a fractional integration of order H (equivalent to a multiplication by kH in the Fourier space).155

A common approximation, which provides reliable results, consists in taking ϵΛ as the absolute value of the fluctuations of ϕΛ

at the maximum resolution and renormalizing it (Lavallée et al., 1993).

3.2 Maximum observable singularity

The insight one can get of a statistical process is limited by the size of the studied sample. For multifractal processes, this will

result in a maximum singularity γs and corresponding moment order qs beyond which the values of the statistical estimates of160

respectively the codimension and scaling moment functions are not considered as reliable (Lovejoy and Schertzer, 1989, 2007).

More precisely, let’s consider Ns independent samples with a resolution λ. In a d-dimensional space, there are λd values

per sample (d = 1 for the time series studied in this paper). The maximum singularity (γs) that one can expect to observe is

defined by:

Nsλ
dPr(ϵλ ≥ λγs)≈ 1 (7)165

Introducing the notion of sampling dimension ds: Ns = λds (dS = 0 for a single sample as it will be the case here), is yields:

c(γs) = d + ds (8)

which enables to estimate γs. For γ > γs one expects that c(γ) = +∞, which means that the estimates of c(γ) will not

be reliable. As a consequence of the Legendre transform, the estimates of K(q) becomes linear for q > qs = c′(γs): K(q) =170

γS(q−qs)+K(qs). γs quantifies the extremes that can be expected within a time series. It is especially useful to quantify how

extremes evolve when α and C1 exhibit different trends. Relying on this tools Royer et al. (2008) showed that rainfall extremes

are expected to increase over France in the context of climate change. Douglas and Barros (2003) used it to discuss the concept

of maximum probable rainfall. Qiu et al. (2024) relied on this tool to quantify the impact of rainfall space-time variability on

the usefulness of natured-based solutions in urban environment.175
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Figure 4. For the campaign "ENPC campus" with ensemble analysis at synoptic scale. (a) Spectral analysis, i.e. Eq. 5 in log-log. (b) TM

analysis, i.e. Eq. 1 in log-log. (c) Scaling moment function K(q): empirical estimate and theoretically fitted shape using UM parameters

from DTM analysis.

4 Results

4.1 Synoptic scale

In this subsection, we implement multifractal analysis up to synoptic scale (see section 2.2). In a first step, an ensemble analysis

is carried out, that is to say all samples are upscaled independently and used to compute average statistical moments in Eq. 1

or spectra in Eq. 5. Such analysis is used to study general features of scaling.180

Let us illustrate the results with the ENPC-Campus campaign. Outcome of spectral analysis, i.e. Eq. 5 in log-log, is displayed

in Fig. 4.a. An excellent scaling behaviour on scales ranging from roughly 1/2 h to 11 days is found, and smaller scales will be

investigated in next subsection. The spectral slope β is smaller than 1, meaning that on this range of scales the studied field is

conservative and multifractal analysis can be implemented directly on the field. Trace Moment analysis (i.e. Eq. 1 in log-log)

outcome is displayed in 4.b. The coefficients of determination of the linear regressions are all greater than 0.99 for q > 0.5 and185

we use the one for q = 1.5 as a metric. Results confirm the excellent scaling behaviour on this range of scale.

UM parameters estimated with the help of DTM technique are reported in Tab. 2. These values are typical for this range of

scales (Ladoy et al., 1993; de Lima and Grasman, 1999). An excellent agreement is retrieved when comparing the empirical

scaling moment function K(q) derived from TM analysis and the theoretical one plotted using Eq. 3 and DTM estimates of

UM parameters (Fig. 4.c). The discrepancies that can be noticed for q < 0.5 are explained by a multifractal phase transition190

associated with the numerous zeros which are in the time series (see Gires et al. (2012) for more details on this phenomenon).

Very small values of H (last column of Tab. 2), i.e. smaller than 0.1 corresponding to almost conservative field, are retrieved

on this range of scales.

Same excellent scaling behaviour is observed on this range of scales for the two other measurement campaigns. Similar UM

parameters are retrieved with only limited variations of α and C1 (see Tab. 2).195
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Table 2. Summary of UM parameters assessed at synoptic scales (32 min - 11 days) using ensemble analysis

Campaign name r2 α C1 β H γs

ENPC Campus 0.997 0.746 0.448 0.582 0.076 2.93

SIRTA 0.997 0.639 0.488 0.549 0.0732 3.07

Pays d’Othe 0.997 0.746 0.448 0.608 0.0956 3.19

Table 3. Slope (×10−2°C−1) (corresponding R2) of the linear regression of the value of the studied parameter vs. < T > (individual sample

analysis) at synoptic scale. Illustration in Fig. 5 for "ENPC" Campus campaign.

Campaign name α C1 β H γs

ENPC Campus -1.29 (0.131) 1.52 (0.281) -1.90 (0.0943) -0.209 (0.00782) 1.07 (0.302)

SIRTA -0.0700 (0.000) 0.478 (0.0364) -2.226 (0.195) -0.841 (0.201) 0.516 (0.0927)

Pays d’Othe -1.28 (0.113) 1.39 (0.221) -1.93 (0.129) -0.302 (0.0233) 0.947 (0.222)

All -1.21 (0.112) 1.41 (0.240) -1.94 (0.108) -0.283 (0.0162) 0.994 (0.259)

In a second step, a UM analysis is implemented on each sample individually using the same range of scales. In addition

the average temperature < T > for each sample is computed from the available data. Individual samples with bad scaling, i.e.

with r2 < 0.9 for q = 1.5 are discarded (see appendix for numbers of samples kept in analysis). Scatter plots of retrieved UM

parameters vs. < T > are displayed in Fig. 5 for ENPC-Campus campaign. Significant scattering is observed for all parameters.

Potential overall trends are identified with the help of a simple linear regression. It is displayed through the red line on the plots.200

Assessed slope and corresponding coefficient of determination r2 are displayed in Tab. 3.

The r2 coefficients are low, which is expected given the observed scattering. It means that the retrieved trends are only valid

on average over numerous events. We observe a decreasing trend for α and an increasing trend for C1. Hence the consequences

on extremes are not obvious and γs is needed to combine the effects of both. It appears that γs exhibits an increasing trend

with < T >. It means that stronger variability and extremes are retrieved on studied samples with increasing temperature. A205

slightly decreasing trend is found for β and very slightly decreasing one for H .

4.2 Event scale

In this subsection, analysis are carried out at event scale (see section 2.3). The same analysis as for longer samples at synoptic

scale are carried out, with ensemble analysis first, to identify scaling behaviour, and then individual sample analysis.
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Figure 5. For the campaign "ENPC campus" with individual sample analysis at synoptic scale: r2 for q = 1.5 in TM analysis (a), α (b), C1

(c), β (d), H (e) and γs (f) vs. < T >

Results are illustrated with the data from ENPC-Campus campaign. Spectral analysis (Fig. 6.a) shows that data exhibits a210

very good scaling behavior on the whole range of scales from 30 s to 1 h. The spectral slope β is of 1.73 meaning that on this

range of scales, the studied field is not conservative. Hence the analysis is done on the conservative part (see section 3.1). Fig.

6.b shows TM analysis. The excellent scaling behaviour on the whole range of studied scales (30 s - 64 min) is confirmed, with

coefficients of determination all greater than 0.99 for q > 0.5.

UM parameters obtained via DTM analysis are in Tab. 4. These values around 1.7-1.8 for α and 0.2 for C1 are consistent215

with those commonly reported in the literature for this range of scales (Gires et al., 2016; de Montera et al., 2009; Mandapaka

et al., 2009; Verrier et al., 2010; Jose et al., 2024). As for the results at synoptic scale, there is a very good agreement between

the empirical scaling moment function K(q) and the theoretical one. Some differences become visible for q ≈ 2.3−2.5 which

is slightly smaller than the expected value of qs equal to 2.7 in this case.

Very similar qualitative and quantitative (see Tab. 4) are retrieved on this range of scales for the two other measurement220

campaigns.

As for the synoptic scale, a UM analysis is implemented on each event individually using the same range of scales and the

average temperature < T > for each event is also assessed. Individual samples with bad scaling, i.e. with r2 < 0.9 for q = 1.5,
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Figure 6. For the campaign "ENPC campus" with ensemble analysis at event scale. (a) Spectral analysis, i.e. Eq. 5 in log-log. (b) TM

analysis, i.e. Eq. 1 in log-log. (c) Scaling moment function K(q): empirical estimate and theoretically fitted shape using UM parameters

from DTM analysis.

Table 4. Summary of UM parameters assessed at event scale (30 s - 64 min) using ensemble analysis

Campaign name r2 α C1 β H γs

ENPC Campus 0.994 1.73 0.180 1.63 0.478 2.70

SIRTA 0.988 1.75 0.190 1.50 0.421 2.59

Pays d’Othe 0.995 1.88 0.206 1.52 0.459 2.31

and / or average temperature lower than 2 oC are discarded (see appendix for numbers of samples kept in analysis). The latter

condition enables to focus only on rainfall events and avoid looking at snowfall ones.225

Scatter plots of retrieved UM parameters vs. < T > are displayed in Fig. 7 for ENPC-Campus campaign. Stronger scattering

than for the synoptic scales is retrieved. Similarly potential overall trends are computed with the help of linear regressions.

Slopes and R2 are reported in Tab. 5 for all measurement campaigns.

In general similar results but with less pronounced trends (smaller r2) are retrieved for UM parameters with a slightly

decreasing α, an increasing C1 and an increasing γs. It means that extremes and variability also tend to increase with tem-230

perature over this range of scales. Contrarily to what is observed at synoptic scale, β and H are increasing with temperature,

corresponding to a greater non conservativeness of the field.

4.3 Link with other studies

As discussed in the introduction, numerous studies report a scale dependence of the increase of rainfall extremes with temper-

ature, i.e. that the increase is stronger in percentage for shorter durations (Fowler et al., 2021; Haerter et al., 2010; Lenderink235

and van Meijgaard, 2008; Lenderink et al., 2017; Panthou et al., 2014).
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Figure 7. For the campaign "ENPC campus" with individual sample analysis at event scale: r2 for q = 1.5 in TM analysis (a), α (b), C1 (c),

β (d), H (e) and γs (f) vs. < T >

Table 5. Slope (×10−2°C−1) (corresponding r2) of the linear regression of the value of the studied parameter vs. < T > (individual event

analysis) at event scale. Illustration in Fig. 5 for "ENPC" Campus campaign.

Campaign name α C1 β H γs

ENPC Campus -0.170 (0.001) 0.597 (0.0799) 0.897 (0.0181) 0.922 (0.0714) 0.761 (0.0843)

SIRTA -1.39 (0.0414) 0.587 (0.162) 1.60 (0.0944) 1.20 (0.214) 0.664 (0.102)

Pays d’Othe -1.15 (0.0277) 0.346 (0.0293) 1.82 (0.063) 1.11 (0.0956) 0.285 (0.0114)

All -0.592 (0.00728) 0.508 (0.0626) 1.31 (0.0371) 1.03 (0.089) 0.589 (0.0518)

In this study we find in general an increase of the scale invariant concept of maximum observable singularity γs of rainfall

time series with temperature. The rainfall extreme that one can expect to observe in a sample at resolution λ behaves as λγs .

We remind that λ is the resolution, i.e. the ratio between the outer scale and the observation scale, and that it increases with

shorter duration. Hence, an increase of the scale invariant γs with temperature results in greater increase of extreme rainfall in240
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percentage at higher resolution, i.e. with shorter observation scales. Indeed, this percentage of increase %incr can be written

as:

%incr = 100×
(
λγs(T1)−γs(T2)− 1

)
(9)

for a change from temperature T1 to T2. Hence the changes with temperature in the scale invariant γs provide a framework

to explain changes in increase of rainfall extremes with temperature according to scale (mainly from hourly to daily) which are245

reported in previous studies.

5 Conclusions

In this paper, we study how rainfall extremes and more generally variability across scales changes with temperature. For this,

we use data coming from three high resolution measurement campaign that took place in France between 2018 and 2025; and

we rely on the framework of Universal Multifractals. More precisely, we first confirm scaling behaviour and then estimate UM250

parameters α, C1, the corresponding maximum observable singularity γs, and H for each sample and study their dependence

to temperature.

It appears that for scales ranging from 32 min up to the synoptic scale of roughly 11 days, an excellent scaling behaviour is

retrieved and we observe a decrease of α with average temperature, an increase of C1 which yields an increase of γs. There

is a slight decrease of H . Similar trends but less pronounced are observed at event scale, i.e. for scales ranging from 30 s to255

roughly 1 h, for α, C1 and γs. On the contrary, an increasing trend with average temperature is found for H .

This increase of γs with temperature confirms previous findings of expected increase of rainfall extremes with temperature.

It confirms them in a scale invariant way and enables to explain the dependence of the rate of increase with observation scale

that is reported in previous studies.

Consistent results are found here between event and synoptic scales and over three measurement campaigns. It suggests that260

findings are robust. It would be relevant to expand the analysis to much wider areas using data from various climates to expand

our understanding on the dependence of rainfall extremes with temperature. Investigating the geographical dependence of the

rate of change of UM parameters with temperature would notably be insightful and should be pursued in upcoming studies.

Code and data availability. Data used in the paper, i.e. the rainfall and temperature time series with 30 s time steps for the three measurement

campaign, along with a python scrip containing the functions needed to implement the spectral and multifractal analysis carried out in this265

paper can be found in Gires (2025).
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Table A1. Number of studied samples in individual sample analysis at synoptic scale.

Campaign name # of sample in total # of events after removing too short ones or missing T # events after criteria on r2 and < T >

ENPC Campus 197 196 172

SIRTA 27 27 20

Pays d’Othe 84 84 84

Table A2. Number of studied event in individual event analysis at event scale.

Campaign name # of event in total # of events after removing too short ones or missing T # events after criteria on r2 and < T >

ENPC Campus 785 (2071) 644 583

SIRTA 113 (207) 84 74

Pays d’Othe 389 (1043) 316 288
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