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Author Comments – Response to Referee 1 

 

Referee comments are marked in black and author responses are marked in blue.  

 

General comments: 

This is a well-written paper that reports on 2 decades of CO2 exchange measurements at an 

intensively managed grassland in Switzerland with the aim of disentangling the influence of 

management amidst variable environmental conditions and ongoing climate change. The paper 

builds up on Feigenwinter et al. (2023) who analyzed the first 16 years, here the focus is more 

on the analysis of the drivers using a machine learning approach. I think the manuscript is ready 

for publication following some minor changes, detailed below. 

 

Dear Dr. Wohlfahrt, 

Thank you for your positive comments! We appreciate the opportunity to improve the 

manuscript based on your constructive feedback. We have addressed your comments and 

suggestions in the responses below. 

 

There are however two terminology issues that I struggle with and ask the authors to consider: 

• The authors analyze what they refer to as regrowth periods in between management 

events, especially harvesting. What I struggle with is the terminology “GPP/RECO 

regrowth rates” which the authors use to refer to the GPP/RECO during the regrowth 

periods. The terminology to me however suggests GPP/RECO “to regrow”, i.e. rebound, 

during these periods, which may not be the case. In fact, the negative SHAP values for 

days since last management and GPP suggest a negative relationship. I think the authors 

could simply say something like GPP/RECO during regrowth periods, which may be a 

little awkward at times, but less ambiguous. 

 

Thank you for pointing out this ambiguity. We will change the term to “GPP or Reco during 

regrowth periods” throughout the text. For each regrowth period, cumulative GPP and Reco 

were first calculated and then averaged based on the length of the regrowth period.  

 

Moreover, taken together with the comments from Referee 2, to put more emphasis on 

“regrowth periods” instead of just “regrowth”, we will also modify the title of the manuscript 

as “Drivers of long-term grassland CO2 fluxes: effects of management and meteorological 

conditions during regrowth periods”. 

 

• The authors suggest, e.g. in the abstract but also elsewhere, that the fact that there was 

no trend in CO2 exchange over the two decades despite ongoing climate change shows 

that the farmers are using a climate-smart management. This statement to me implies 

that the management is deemed climate-smart as it prevented a decrease in the CO2 sink 

strength. This ignores the possibility that an alternative (truly climate-smart?) 

management could have profited from ongoing climate change and increased the sink 

strength. Neither option (a decrease or increase in sink strength was prevented by the 

actual management) can be answered with the present data that are conditional on the 

actual management. This would need a manipulative experiment (with alternative 

management like in Ammann et al. 2007) or the use of some model which represents 

management and the resulting consequences on CO2 fluxes (which would be an 

intriguing follow-up). I thus suggest to down-tune the climate-smart aspect and rather 

leave it with saying that the adaptive management that the farmer practiced in response 

to interannual and intra-seasonal variability in weather conditions apparently was able 
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to keep CO2 exchange stable in the face of ongoing climate change during the two 

decades of observations. 

 

We appreciate this input. ‘Climate-smart’ agriculture (CSA) includes a set of practices and 

technologies that improve productivity, while enhancing resilience and reducing GHG 

emissions during on-going climate change (FAO, 2019; World Bank, 2024). The FAO defines 

CSA as “an approach that helps guide actions to transform agri-food systems towards green and 

climate resilient practices”. Similarly, the World Bank defines CSA as “an integrated approach 

to managing landscapes—cropland, livestock, forests and fisheries—that address the 

interlinked challenges of food security and climate change.”. Science communities have been 

using this term as well since long (e.g., Lipper et al., 2014; Walter et al., 2017). We will include 

this context in the introduction. 

 

With more frequent extreme events in recent years that were observed in our time series, we 

would expect a decreasing trend in GPP during regrowth periods and ultimately a decrease in 

CO2 sink strength. In contrast, the non-significant trend detected in our GPP data shows that 

the existing management practices were able to maintain productivity, thus suggesting 

resilience to extreme events which is considered ‘climate-smart’. Meanwhile, we also agree 

that more “climate-smart” management practices aiming to improve resilience and 

sustainability or even increase productivity of agroecosystems under ongoing climate change – 

albeit in the absence of extreme events, have to be tested with experiments or certain models, 

for example to see the effect of the timing and intensity of certain management practices on 

productivity and GHG emissions. We indeed have ongoing work in the group using the process-

based model MONICA (Nendel et al., 2011) on this exact topic (Kamali et al., submitted). With 

all these considerations in mind, we will put our argumentation in context and explain this 

aspect better throughout the manuscript. 

 

Detailed comments: 

1. l. 8: the temporal development of management practices and meteorological conditions 

is uncertain? Aren’t the interactive effects of these on grassland CO2 fluxes uncertain? 

 

We argue that both the temporal development of the drivers themselves and their impact/effects 

are uncertain. We will rephase this sentence into “… CO2 fluxes of managed grasslands are 

substantially influenced by land management practices and meteorological conditions, but the 

temporal development of drivers and their effects are still uncertain”.  

 

2. l. 9-10: this sentence could be removed in the abstract without loss of information 

 

We wanted to introduce the terms of NEE, GPP, and Reco in the very beginning, but we also 

introduced these terms again in the introduction. We will delete this sentence as suggested and 

introduce the abbreviations when they are first mentioned in the abstract.  

 

3. l. 42: GPP and RECO are the essential part of C cycling of any ecosystem 

 

Agreed. We will change the sentence into “As an essential part of ecosystem C cycles…”. 

 

4. l. 71: in my view Wohlfahrt et al. (2008, 10.1029/2007JD009286) were one of the first 

grassland papers to look into the interactive effects of management and environmental 

drivers and in fact also analyzed data in periods stratified by management (harvesting) 

events 
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Thank you for the comment. We were aware of this study and cited it later in the discussion. 

Here we focused on “long-term studies”, but we will mention this 6-year study in the 

introduction as well.  

 

5. l. 130: what about the self-heating correction of the Li-7500 – I guess at least during the 

early phase of the time series the used models required this correction? In addition, the 

early Li-7500 models had some intrinsic lag of the digital signals that could be increased 

on the software side to result in a lag that is some multiple of the sampling rate in order 

to be removed – what lag value was set – 0.3 s? 

 

Regarding self-heating: No self-heating correction was applied to open-path LI-7500 fluxes. 

There are several reasons for this decision: 

 

(1) We found that the current standard self-heating correction (Burba et al., 2008) produced 

unsatisfactory and unreliable results at multiple Swiss FluxNet sites. Comparative analysis 

using parallel (en-)closed path measurements (LI-7200 vs. LI-7500) at these sites revealed 

significant, conflicting biases depending on the dataset (e.g., strong underestimation or 

overestimation of NEE, as detailed in Figures R1-1 and R1-2, respectively). Our observations, 

demonstrating that the standard correction can lead to fluxes substantially deviating from the 

"true" flux, are consistent with similar findings by Wohlfahrt et al. (2008, their Fig. 3), who 

utilized an earlier correction version (Burba et al., 2006). Furthermore, we note that the Burba 

et al. (2008) correction was derived from a limited dataset, validated specifically for vertically 

mounted IRGAs, and does not account for the non-vertical (15° tilted) installation geometry of 

the LI-7500 at our site. 

 

 
Figure R1-1. Cumulative NEE fluxes from Feb 2015 until Apr 2017 at the cropland site CH-

OE2. Shown is a comparison of self-heating correction approaches: open-path LI-7500 fluxes 

(only WPL corrected, red) with enclosed-path LI-7200 fluxes (black, assumed to show the “true” 

flux). Also shown are cumulative fluxes after applying the Burba et al. (2008) correction as 

implemented in EddyPro using the single linear regression method (SLR, blue) and the multiple 

regression method (MLR, purple). 
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Figure R1-2. Cumulative NEE between Jan 2016 and Dec 2017 at the forest site CH-LAE. 

“True” flux from LI-7200 (black), no self-heating correction for LI-7500 fluxes (red), after 

correction in EddyPro Burba 2008 (blue) and after correction Kittler 2017 (orange). 

 

(2) The absence of concurrent validation data from a co-located (en-)closed path IRGA, such 

as the LI-7200, introduces a significant methodological uncertainty when applying the self-

heating correction. Without these parallel measurements, we cannot independently validate the 

corrected fluxes, creating an unverified "black box" scenario. This black box application of any 

available correction poses a substantial risk to data quality, a concern echoed by Deventer et al. 

(2021). They highlighted that utilizing current self-heating corrections without parallel 

reference flux measurements "[...] yields uncertainties that are larger than random flux errors - 

substantially degrading confidence in ecosystem carbon [...] budgets", underscoring the 

necessity of empirical validation. 

 

(3) For forest sites in the Swiss FluxNet, we apply the correction described in Burba et al. (2006), 

with the modification that we also apply a scaling term ξ to account for the tilted angle of the 

LI-7500 (similar to Kittler et al., 2017; see orange line in Figure R1-2). The scaling term is site-

specific and must therefore be determined empirically from parallel measurements. We have 

tried to generalize ξ, based on data from other non-forest sites (grassland, cropland), and found 

that ξ can be complex with variations over the course of one day and differences between 

daytime and nighttime data. We concluded that the correction is not possible without parallel 

measurements. 

 

(4) We are cautiously optimistic that the self-heating effect at this site is small. In July 2025, we 

started parallel measurements at CH-CHA. We found a mean difference of approx. 3% between 

the LI-7500 and LI-7200 fluxes, with the open-path showing slightly more uptake (Figure R1-

3). The main difference was found during a time period characterized by high temperatures >= 

32°C at the end of July 2025. However, during the preceding weeks in July, NEE from the two 

IRGAs were virtually identical. We are aware that the correction was originally meant for colder 

climate conditions, in particular with air temperatures < -10°, but we currently have no winter 

LI-7200 data from CH-CHA. In a comparison of parallel measurements during winter for a 

high-altitude alpine grassland (CH-AWS, about 2000 m a.s..l.) with a comparable setup, we 

found that the self-heating effect was small, similar to Haslwanter et al. (2009). Parallel 

measurements at CH-CHA will continue, and we will investigate more data once available. 
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Figure R1-3. Cumulative, directly-measured (not gap-filled) NEE fluxes measured at the 

grassland CH-CHA in 2025. Fluxes were measured with an open-path LI-7500 (IRGA75, green) 

and (en-)closed path LI-7500 (IRGA72, blue). 

 

We will add more details in the Methods on this aspect. 

 

Regarding intrinsic lag: All raw data coming from the sonic and IRGA were directly logged 

using the custom made, real-time logging software sonicread (concept described in Eugster and 

Plüss, 2010), circumventing the LICOR software to store data. Found time lags for the LI-7500 

CO2 and H2O signals were between 0.20 s and 0.35s throughout all years. We detected the time 

lags on a yearly basis and collected results from a detailed analysis (results available online: 

https://holukas.github.io/dataset_ch-cha_flux_product/L0.html#openlag-runs-to-determine-

final-lag-ranges).  

 

6. l. 135: which approach for flux partitioning was used – day or nighttime? 

 

The nighttime partitioning method was used. We mentioned this in the next paragraph (line 143 

in the original manuscript). We will add this info earlier in a revised version of the manuscript. 

 

7. Fig. 1e: given the length of the time series I feel a bit overwhelmed with the day-to-day 

variability and thus I suggest showing CO2 fluxes on a monthly timescale, possibly as a 

stacked bar chart that might nicely visualize the interplay between GPP and RECO on 

NEE 

 

Thank you for this comment. We presented daily fluxes to show the basis of our analysis. Since 

this site is being intensively managed, common aggregation methods (e.g., monthly mean/sum 

or weekly mean/sum) do not represent this complex situation and information about 

management will – in the best case – be lost, or – in the worst case – bias the results during any 

longer aggregation. Therefore, we prefer to keep Figure1e as is. In Figure 3, we actually already 

show GPP and Reco aggregated for on the regrowth periods.  

 

https://holukas.github.io/dataset_ch-cha_flux_product/L0.html#openlag-runs-to-determine-final-lag-ranges
https://holukas.github.io/dataset_ch-cha_flux_product/L0.html#openlag-runs-to-determine-final-lag-ranges
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8. Fig. 1: would it possible to add an additional panel that shows the cutting events, grazing 

periods and re-sowing events? 

 

Thank you for the suggestion. The original Figure A2 was meant to present all management 

information in detail. Given the width of the figures and the frequency of the management 

events within each year, putting all these events as an additional, sixth panel would make the 

figure very crowded. However, we received further comments from colleagues supporting the 

wish to not “hide” this management info in the appendix, since such info is typically very rare 

in such detail. In a revised version of the manuscript, we will thus move Figure A2 to the main 

text as a panel in Figure 3 (see below, comment 10). 

 

9. Table 1: is huge but conveys limited information and might thus go into the supplement? 

 

Agreed. We will move this table to the appendix as Table A2. 

 

10. Fig. 3: I suggest adding Fig. A2 as a third panel here; overall the information content of 

this figure is limited - GPP/RECO is smaller during the off-season period with short 

days and larger during the warm period with long days 

 

Thank you for this comment. We will combine the original Figure A2 with the GPP and Reco 

panels as a new Figure 3 as shown below (also answering to comment 8 above).  

 
Figure R1-4. New Figure 3 for the revised manuscript 
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11. l. 270: DaysSinceUse shows negative SHAP values for GPP – correct? Does that mean 

that GPP declines the more time has passed since the start of the regrowth period? If so, 

might be worthing spelling this out 

 

Thank you for the question. Indeed, DaySinceUse shows negative SHAP values for GPP in 

Figure 4 (based on SHAP analysis 1). Since the bars presented in Figure 4 are based on average 

SHAP values from each regrowth period, they represent the average effect of this variable on 

GPP, always compared to the grand mean or mean prediction of all GPP for all 115 regrowth 

periods. On the daily scale (Figure R1-5 below), SHAP values for DaySinceUse are normally 

very negative directly after moving/grazing (DaySinceUse < around 10 days) and then increase. 

This correctly reflects the effect of mowing/grazing: the more days since use, the higher GPP 

since the grassland could regrow, i.e., the more days since use, the larger the SHAP value for 

this driver, compared to the mean prediction (as explained in the figure caption). To avoid such 

confusion, we will add the partial dependence plot of DaySinceUse and its SHAP value in the 

appendix as part of new Figure A3. We will also add a sentence in Section 3.1 at current line 

271: “When averaged over the entire regrowth period, SHAP values of management events (i.e., 

mowing and grazing, represented by DaysSinceUse) on GPP were often negative (Fig. 4a). 

However, at daily scale (Fig. A3c), SHAP values for DaySinceUse were first negative and then 

steadily increased before staying stable after around 20 days, indicating that GPP increased the 

more time had passed since the last management event.”. 

 
Figure R1-5. SHAP dependence plot for DaySinceUse of GPP (zoomed in to the first 60 days 

after management) 

 

12. l. 311: these significant differences are not visible from Fig. 6b-c 

 

Thanks for pointing this out. This significant difference is more obvious in Figure 2. with higher 

VPD and lower SWC on a monthly scale. We will change the sentence into “Focusing on years 

with more extreme summer months (i.e., July and August of 2018, July of 2019, July of 2022, 

and June of 2023; Fig. 2), we found normal daily PPFD (Fig. 6a), but significantly higher-than-

normal daily temperature and VPD, accompanied by lower-than-normal soil water content (Fig. 

6bc). Mean monthly air temperature in July 2018, 2019, 2022 was 1.2, 1.2, and 1.1 °C above 

the 20-year monthly average (19.6 °C) respectively, while 1.8 °C higher in August 2018 
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compared to 20-year monthly average (18.6 °C). All extreme summer months had SWC more 

than 10% lower than the 20-year monthly averages.”. 

 

13. l. 372-377: these data should be first introduced in the Results section 

 

Thank you for the suggestion. We mentioned these cumulative NEE numbers already in Section 

3.1 (lines 230-233 in the original manuscript). We will add the numbers for renewal years to 

current line 232 as “… (Fig. A1). In 2012 and 2021 two grassland renewal events (i.e., 

ploughing and reseeding of the grassland) took place, with very different effects on annual NEE: 

while the event in 2012 led to a strong net CO2 loss (cumulative NEE of 139 g C m-2 yr-1; Fig. 

A1), the event in 2021 resulted only in a weaker-than-normal net CO2 uptake (cumulative NEE 

of -163 g C m-2 yr-1; Fig. A1). All three flux components…”. We will reformulate the discussion 

at current line 372 as “… such events. The observed differences in annual NEE during the two 

renewal events at the Chamau grassland (139 vs. -163 g C m-2 yr-1 for 2012 and 2021, 

respectively; Fig. A1) might be explained by differences in seasons (February 2012 versus 

August 2021) and soil disturbance intensities (ploughed at 20 cm in 2012 and 3-4 cm in 2021), 

which subsequently influenced the establishment and regrowth of the new sward. Other …” 

 

14. l. 471: … in C cycle model simulations … 

 

Thank you for the comment. We will change the sentence to “… creating large uncertainties in 

C cycle model simulations at all scales”. 
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