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Abstract. There is a growing consensus on the critical role that solid Earth processes play in influencing marine ice sheet

dynamics over centennial timescales. A large body of literature shows that the feedback mechanisms associated with the solid

Earth’s gravitational, rotational, and deformational (GRD) response to ice mass loss slow the progression of ice sheet instabil-

ities. However, due to the limited availability of efficient coupled system models, the specific characteristics of the feedback

mechanisms, their sensitivities to ice sheet processes, and their impacts on sea level projections remain largely unexplored.5

This paper introduces a straightforward method that enables ice sheet models to address this limitation by capturing GRD

effects with virtually no additional software development and computational costs. The proposed method utilizes precomputed

Green’s functions and convolves these with ice mass changes within the ice sheet model primarily via matrix multiplication.

This approach straightforwardly and accurately retrieves induced geoid and bedrock topography fields and paves the way for

efficient coupling between ice sheet dynamics and leading-order solid Earth processes.10
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1 Introduction

An improved understanding of ice sheet dynamics is essential for producing accurate global and regional sea level projections.

To achieve this, sophisticated ice sheet models that capture higher-order processes and feedback mechanisms are necessary.

The ice sheet modeling community has increasingly recognized the importance of dynamic interactions between ice sheets and15

solid Earth processes over decadal and longer timescales. As ice mass changes, it exerts spatio-temporal variation in pressure

on the solid Earth’s surface, changing bedrock topography, geoid field, and thus sea level. These alterations in topography

and sea level significantly influence marine ice sheet dynamics. They do so by affecting the retrograde bed slope, reinforcing

pinning points and bedrock ridges, altering ocean heat transport patterns due to the modified shape of sub-shelf cavities, and

influencing gravitational driving stress and surface mass balance through surface elevation and slope changes (e.g., Gomez20

et al., 2012; Adhikari et al., 2014; Larour et al., 2019; Albrecht et al., 2024; Kreuzer et al., 2025).
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Several established methods of varying complexity exist for capturing solid Earth feedback in ice sheet models. The most

straightforward approach treats the solid Earth as a two-layer system consisting of an elastic lithosphere that overlies a relaxing

mantle half-space (e.g., Meur and Huybrechts, 1996; Ivins and James, 1999; Adhikari et al., 2014). A more complex method

involves modeling a self-gravitating, density-stratified, viscoelastic Earth with a radially symmetric structure that typically25

includes an elastic lithosphere, a multi-layered Maxwellian mantle, and an inviscid core (e.g., Peltier, 1974; Farrell and Clark,

1976). Generally used in glacial isostatic adjustment (GIA) studies, this class of models enables capturing the full gravitational,

rotational, and deformational (GRD; Gregory et al., 2019) feedback to ice sheet dynamics (e.g., Gomez et al., 2012; Larour

et al., 2019; Han et al., 2022). More comprehensive approaches, such as those involving three-dimensional Earth structure

(e.g., Albrecht et al., 2024; Gomez et al., 2024) and sophisticated non-Maxwellian mantle rheology (Houriez et al., 2025), are30

currently being explored to enhance our understanding of feedback mechanisms.

All these models come with important caveats, especially in light of their suitability for high-resolution coupled simulations.

Downsides may range from being too simplistic (e.g., half-space models) to involving complex numerical implementations

and demanding significant computational costs (e.g., global GIA models). As a result, many ice sheet models, including those

involved in the Ice Sheet Model Intercomparison Project (ISMIP), often omit the GRD feedback, possibly leading to biased35

sea level projections over centennial timescales. GIA emulators (Lin et al., 2023; Love et al., 2024) and more realistic regional

models (Swierczek-Jereczek et al., 2024) are emerging as promising options that require smaller computational costs. However,

these approaches still require adapting the module into an existing ice sheet modeling framework, necessitating a certain level

of model development. Additionally, in some cases, model fidelity remains a subject of scrutiny.

This paper aims to enable ice sheet models to effectively capture solid Earth feedback at the regional scale without neces-40

sitating further model development or incurring significant computational costs. Our approach leverages an extensive library

of precomputed solid Earth response signals to a unit surface load, generally referred to as Green’s functions, for plausible

radially-symmetric Maxwellian Earth structures (Adhikari and Caron, 2024). We recast the convolution equation involving

time-variable Green’s functions and ice load changes in matrix formalism. This allows for accurate retrieval of the evolv-

ing geoid and bedrock topography fields as ice sheet models march forward in time and enables a straightforward coupling45

between the ice sheet and solid Earth processes. An efficient coupling enhances our understanding of feedback mechanisms,

facilitates sensitivity analysis, and allows uncertainty quantification based on extensive ensemble simulations. Ultimately, these

improvements will lead to more reliable projections of ice sheet contribution to sea level change.

2 Proposed method

Assuming that atmospheric pressure variability does not induce meaningful solid Earth deformation on decadal and longer50

timescales, the surface loading problem in the present context only requires resolving the lateral mass transport between the ice

sheet and the ocean. A conditional function describing the ice and ocean load on the solid Earth surface, termed the “loading
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Figure 1. Schematics of the loading function and spatiotemporal grids. (a) Longitudinal cross-section of a marine ice sheet as it flows into

the ocean. If ice thickness H is larger than the flotation height F , a function of the bedrock topography B and mean sea level S (equation

2), it is assumed to be grounded, exerting pressure on the solid Earth’s surface. Elsewhere in the ocean (including the floating ice shelves),

ocean water (expressed here as the relative sea level R≡ S−B) loads the underlying solid Earth (equation 1). (b) An example spatial grid

illustrating the cell centroid x′, where the elemental surface load is applied (equation 3), and the vertex x, where the desired solid-Earth

response signal is evaluated (equation 4). The two locations are separated by the great circle distance α. (c) Temporal decomposition of

the continuous surface load L into discrete loading L using the Heaviside step function (equation 3). The discrete loading time t′ and the

evaluation time t are separated by τ (see equations 4 and 5).

function" L [kg m−2], at a given point in time t may be expressed as follows:

L(x, t) =
ρiH(x, t) if H(x, t) > F (x, t)

ρwR(x, t) otherwise.
(1)

Here H is the ice thickness [m], R(x, t) = S(x, t)−B(x, t) is the mean sea level S [m] relative to the bedrock topography B55

[m], commonly referred to as the relative sea level, ρi is the ice density [kg m−3], ρw is the ocean density [kg m−3], and x is

the 2-D position vector on the solid Earth surface. (Note that S and B must be defined relative to the same reference ellipsoid.)

The flotation height for ice F [m] follows the principle of hydrostatic equilibrium and is given by

F (x, t) =
ρw

ρi
max[R(x, t),0] . (2)

The condition in equation (1) implies that the solid Earth is loaded by the ice sheet in the grounded portion of the marine (and60

terrestrial) ice sheet and by the ocean otherwise (Figure 1 panel a).

Numerical modeling requires discretizing the continuous loading function into p computational grids (having q nodes) and

m time intervals: [t0, t1], [t1, t2], ..., [tm−1, tm]. Spatial grids and time intervals do not have to be uniformly discretized. We

may now express equation (1) – in the units of mass [kg] and with the new notation L – in its discrete form as follows:

L(x′, t) =
[
L̄(x′, t0) +

∑m
i=1

[
L̄(x′, ti)− L̄(x′, ti−1)

]
H(t− ti)

]
A(x′),

= L(x′, t0) +
∑m

i=1 ∆L(x′, ti)H(t− ti),
(3)65

Here x′ is the position of the center of the grid-cell or element, A [m2] is the elemental area, and L̄ [kg m−2] is the spatial mean

of L over that area. As shown in Figure 1 (panel b), we recommend placing the surface load at the grid centers, x′, instead of at
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Figure 2. Time-dependent Green’s functions for vertical land motion (VLM) (upper panels) and geoid (lower panels). Panels (a) and (d)

show the elastic signals derived for the preliminary reference Earth model (Dziewonski and Anderson, 1981). Viscous signals, derived here

by subtracting the elastic (panels a and d) from the total viscoelastic solutions, are shown for two earth models: (b, e) WAIS-earth and (c,

f) EAIS-earth. WAIS-earth represents the laterally-averaged viscosity structure beneath the West Antarctica Ice Sheet (WAIS) featuring 50

km thick lithosphere and 1×1019 Pa s upper mantle viscosity. EAIS-earth mimics the scenario beneath the East Antarctic Ice Sheet (EAIS),

with 150 km thick lithosphere and 5×1020 Pa s upper mantle viscosity. Lower mantle viscosity in both cases is fixed at 2×1022 Pa s. Notice

the contrasting response signals: solid Earth attains isostasy within ≈500 years in WAIS-earth, while in EAIS-earth, the noticeable viscous

response starts emerging only after 100 years. Note the different y-axis limits and log scale on the x-axis.

the nodes or vertices, x, where we assess the solid Earth response. This is important because the Green’s functions we intend

to use contain inherent singularities at the loading point. In the above equation, H is the Heaviside step function that takes the

value of unity for t≥ ti and zero otherwise. It ensures that we impose the stepwise load change on the solid Earth surface at70

the end of each time interval (Figure 1 panel c). For the period −∞< t < t1, the surface load is held constant to its initial or

reference value L(x′, t0), and we assume that the solid Earth is in hydrostatic equilibrium. As such, only the change in load

induces solid Earth response, which can be evaluated at any time t≥ t1.

For m = 1 and in the limit of p→∞ for a structured mesh (or, equivalently, A→ 0) , setting in equation (3) the other-

wise zero loading function to unity strictly at a single computational grid and at time t = tm corresponds to a mathematical75
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description of a point load. Harmonic solid Earth response to the point load sustained on the surface of a radially symmetric

layered solid Earth is traditionally computed as the time-dependent Love numbers (Love, 1909; Shida, 1912). We may assem-

ble the Love numbers analytically to determine Green’s functions (Appendix A). Adhikari and Caron (2024) calculated the

time-dependent Love numbers for 483 radially stratified Maxwellian Earth models. They also derived corresponding Green’s

functions, relevant for estimating vertical land motion (VLM) and geoid change, which in the present context is equivalent to80

the mean sea level (MSL) change as defined in Gregory et al. (2019). These solutions are based on seismologically constrained

elastic Earth structure (Dziewonski and Anderson, 1981) and include sufficient sampling of lithosphere thickness and upper

mantle viscosity to investigate the seasonal to centennial timescale solid earth response to the evolution of ice sheets. Figure 2

shows Green’s functions for two models, each representing the laterally-averaged Earth structure in West and East Antarctica

based on seismic mapping and interpretations of Lloyd et al. (2020) and Ivins et al. (2023b).85

Given the precomputed Green’s functions (Adhikari and Caron, 2024), we can retrieve the solid Earth response signals

induced by the loading function with any complexity through direct spatiotemporal convolution:

X(x, t) = GX(α,τ) ⊗ ∆L(x′, t′), (4)

where X is the GRD field of interest [m], GX is the corresponding Green’s function [m kg−1], α is the (great circle) distance

between the loading position x′ and where the response signal is determined x, and τ is the time elapsed between the loading90

time t′ and when the response signal is evaluated t (Figure 1). Let ϕ and λ be the geographic latitude and longitude of the

evaluation and loading points: x≡ (ϕ,λ) and x′ ≡ (ϕ′,λ′), respectively. Then, the distance between the two points can be

written as α = r

[
2arcsin

√
sin2

(
|ϕ−ϕ′|

2

)
+ cosϕcosϕ′ sin2

(
|λ−λ′|

2

)]
, where r is the Earth’s surface radius. Note that ∆L

in the above equation represents the change in load over the preceding interval to the loading time (Figure 1 panel c). In the

present context, X represents VLM or the bedrock topography B and MSL or geoid S.95

The convolution operator⊗ appearing in equation (4) can be straightforwardly evaluated with scientific computational tools.

For example, the desired GRD signal X at a given point in space xk and time t and can be evaluated as follows:

X(xk, t) =
p∑

j=1

m∑

i=1

GX(αk,j , t− t′i) ∆L(x′j , t
′
i), for t′m ≤ t. (5)

Once again, p and m are the total number of loading points in space and time. The GRD field can be obtained by iterating

over discrete points k ∈ [1, q], where q is the total number of computational nodes (Figure 1 panel b). For simulations of100

ice/Earth coupling at a centennial timescale, we expect q to be several orders of magnitude larger than m (a direct function of

coupling interval, typically 10 years). A more efficient convolution approach could involve retrieving the GRD field induced

by a Heaviside load and iterating along the time dimension. Appendix B presents an algorithm for such a scheme.

3 Accuracy of the Proposed Method

We scrutinize the proposed method by comparing example GRD results against self-consistent solutions acquired from simu-105

lating the Ice-sheet and Sea-level System Model (ISSM; Adhikari et al., 2016; Larour et al., 2019; Houriez et al., 2025). In
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the latter, self-consistency is sought in the ocean loading and GRD solutions for a given ice loading. We accomplish this by

solving the sea level equation (Farrell and Clark, 1976; Milne and Mitrovica, 1998; Spada and Melini, 2019) on an unstruc-

tured Earth’s surface mesh that conserves the total mass of ice and ocean. No regional model, including our proposed one, can

resolve self-consistency in global surface loading and the solid Earth response. The critical question is how well the regional110

model reproduces the self-consistent solutions. For identical representation of ice loading and solid Earth in the regional and

global self-consistent models, the difference in predicted GRD solutions stems from the treatment of ocean loading and the

rotational feedback. Here, we aim to quantify this difference for the predicted change in VLM and MSL. As such, our regional

model solutions only include the ice loading effect (i.e., R = 0 in equation 1) and do not account for the rotational feedback,

which Larour et al. (2019) have shown to be negligible.115

First, we examine the elastic Earth response to the observed trend in Antarctic ice mass change derived from the Gravity

Recovery and Climate Experiment (GRACE) and its Follow On (FO) mission data. A key aspect of the load model is the

significant mass loss occurring in the Amundsen Sea Sector and Wilkes Land, contrasted by a moderate mass gain in Dronning

Maud Land (Figure 3 panel a). This pattern is also evident in the near field of self-consistent ocean loading (Figure 3 panel

b), where there is a reduction in ocean load near the areas of ice loss and an increase in ocean load near the areas of ice gain.120

Predicted VLM and MSL fields show minor differences between the regional and global models, implying the high accuracy

of the proposed method. Self-consistent VLM solution is systematically larger (Figure 3 panel e) due to the reinforcing effect

of the ocean load, but this is insignificant (Figure 3 panel f). An equally insignificant difference in the MSL field appears to be

primarily dominated by the Earth’s rotational effect (Figure 3 panels h and i).

Next, we evaluate the proposed method for two viscoelastic Earth models using a sample of the future evolution of the125

Antarctic Ice Sheet until 2300. We use precomputed ice sheet model solutions – ‘experiment 05’ of ISMIP6 Antarctica 2300

projections under the SSP5-8.5 scenario based on the UKESM climate model (Seroussi et al., 2024; Han et al., 2025) – and

load the solid Earth every 10 years between 2010 and 2300 CE. In this load model, the ice sheet mass change does not

contribute much to sea level change during the first half of the analysis period (Figure 4 panel a). The sea-level contribution

increases rapidly after around 2150, reaching a total change of about 1.5 meters. The cumulative ice thickness change suggests130

substantial mass loss from West Antarctica and along the coastal regions of East Antarctica (Figure 4 panel b). In contrast, the

inland areas of the ice sheet achieve a modest mass gain. As introduced in Figure 2, we consider two Earth models representing

the laterally-averaged structure beneath West and East Antarctica. In the case of WAIS-earth, the predicted responses of the

solid Earth exhibit significantly larger amplitudes and more pronounced high wave number features (Figure 4 panel c) than

those for EAIS-earth (Figure 4 panel e). However, the predicted solutions derived from the regional and global models are135

very similar, irrespective of the choice of solid Earth model. These solutions differ only by a few percent in areas experiencing

significant mass loss and subsequent bed uplift (Figure 4 panels d and f). Like in the previous experiment (Figure 3), regional

and global model differences are systematic: the ocean load generally enhances the predicted VLM fields, while the rotational

feedback dominates the disparity in MSL fields that show a contrasting pattern in East and West Antarctica.

Last, we examine coupled ice/Earth simulations for Thwaites Glacier, building on a recent study by Houriez et al. (2025),140

to assess the utility of our proposed method in simulating ice sheet dynamics. Their approach uses an anisotropic mesh to
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Figure 3. Method accuracy for elastic Earth models. We force the solid Earth by the observed ice load, dH/dt, derived from the GRACE/-

FO mission data over 2002-2024 (a). We quantify the associated self-consistent ocean load, dR/dt, by solving the sea level equation (b-c).

We use the self-consistent solutions (not shown) for the bedrock topography and geoid change – that capture both the ice and global self-

consistent ocean loads (panels a-c) – to validate the proposed method. (d) Our estimate of vertical land motion (VLM) rate, dB/dt, induced

by the ice load alone (panel a). (e) The difference in VLM rate between the self-consistent solution and the regional solution over the Antarctic

domain (shown in panel d). It is at least an order of magnitude smaller than the signal, especially in regions with larger displacement. Indeed,

the two solutions appear virtually the same within the ice sheet domain (f), confirming the validity of the proposed method. (g-i) Same as

panels (d-f), but for the rate of change in mean sea level (MSL), dS/dt.

7

https://doi.org/10.5194/egusphere-2025-3561
Preprint. Discussion started: 4 October 2025
c© Author(s) 2025. CC BY 4.0 License.



(a)

(b)

(c) (d)

(e) (f)

Figure 4. Method accuracy for viscoelastic Earth models. We use the evolving ice thickness data for 2010-2300 based on a solution that

applied climate forcings from the recent Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6; Seroussi et al. (2024)) to a coupled

ice-sheet/solid-Earth/sea-level model (Han et al., 2025): (a) Global mean sea level (GMSL) change at 10-year intervals between 2010 and

2300, and (b) the cumulative changes in (thickness equivalent) ice load, dH , over 290 years. (c) Total vertical land motion (VLM) by 2300

due to ice load alone, calculated for WAIS-earth using the proposed method. (d) Difference between the self-consistent solution (not shown)

and the one shown in panel (c). (e-f) Same as panels (c-d), but for EAIS-earth. Regardless of Earth models, VLM errors are two orders of

magnitude smaller than the signals, especially in regions with larger displacement.

capture kilometer-scale grounding line migration and allows for a coupling interval as short as one year. The ice sheet model

is initialized by optimizing basal friction and ice rheology to match observed surface velocity (Rignot et al., 2014). It handles

basal melt via PICOP parameterization (Pelle et al., 2019). Model inputs for ocean temperature, salinity, and surface mass

balance are based on the Community Earth System Model (CESM) SSP5-8.5 scenario (Danabasoglu et al., 2020). The Earth145

model complies with the Maxwellian structure constrained by Global Navigation Satellite System (GNSS) data (Barletta et al.,

2018) and further considers a transient relaxation of the asthenosphere and upper mantle based on the laboratory experiments

of Extended Burgers materials (Faul and Jackson, 2015; Ivins et al., 2023a). Figure 5 shows predicted grounding line positions

and sea level contributions from a standalone ice sheet simulation and two coupled simulations: one captures the ocean loading
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Figure 5. Method accuracy for coupled simulations. We leverage high-resolution coupled simulations for 2000-2350 that try to find con-

sistency in ice sheet dynamics (hence, ice loads), Earth’s gravitational, rotational, and deformational (GRD) response, and ocean mass

distribution (Houriez et al., 2025). We reproduce key diagnostics of such simulations by coupling the ice sheet and solid Earth with the

exclusion of ocean loads and rotational feedback. (a) Predicted grounding line positions at 2350 for standalone (uncoupled) ice sheet model

and two coupled simulations. (b) Global mean sea level (GMSL) contributions and the GRD feedback captured in coupled simulations.

effect and rotational feedback (i.e., self-consistent solution), and the other does not (equivalently, the proposed method). The150

latter coupled model excellently reproduces the self-consistent solutions, capturing the GRD effect on sea level contributions

within 1% for most of the time. This discrepancy increases up to 2% by the end of the simulation as a viscous response to

ocean loading accumulates over time. However, it is insignificant compared to the large disparity in the centennial-timescale

projections of the Antarctic Ice Sheet (Seroussi et al., 2024).

These examples demonstrate the high accuracy of the proposed method in capturing self-consistent solutions within the ice155

sheet domain. We show that the predicted MSL and VLM fields and their impact on ice dynamics are primarily influenced

by the direct ice load, which the proposed method can easily handle. The impacts of ocean load and rotational feedback are

minimal, although our method can still capture some of these signals. For instance, the ocean load near the ice sheet may be

derived and refined iteratively from the VLM and MSL fields, as in the classical sea level solver. However, refined ocean loads

may not perfectly align with the self-consistent solutions. Additionally, the centrifugal potential perturbed by ice (and near-field160

ocean) and its effect on the MSL and VLM fields can be computed semi-analytically. Since the ice load alone captures most of

the near-field signals with great accuracy – and given that our primary focus in this paper is on the straightforward retrieval of

9

https://doi.org/10.5194/egusphere-2025-3561
Preprint. Discussion started: 4 October 2025
c© Author(s) 2025. CC BY 4.0 License.



the leading-order solid Earth signals within the ice sheet model domains – we do not recommend pursuing these higher-order

signals, as it may require a more complex workflow for a minimal gain in solution accuracy.

4 Conclusions165

We propose a straightforward method that allows ice sheet models to accurately capture solid Earth feedback on decadal to

centennial timescales. This method only involves interpolating precomputed Green’s functions and performing matrix multi-

plication with the evolving ice loading. Consequently, it does not introduce any numerical complexity or significantly increase

the computational costs for ice sheet models.

We demonstrate the high accuracy of our method in capturing self-consistent solutions for the time-dependent geoid and170

bedrock topography fields within the ice sheet domain. Recent studies highlight the high sensitivity of solid Earth feedback

to ice sheet model resolution and coupling time interval (Han et al., 2022; Houriez et al., 2025). In coupled simulations

involving a global sea level solver, frequently capturing kilometer-scale features, such as subtle migrations of grounding lines

and evolving bedrock ridges, can be exceptionally challenging. In contrast, our approach allows ice sheet models to determine

the spatiotemporal resolution of solid-Earth response signals without added complexity or significant computational costs.175

Therefore, the proposed method offers a strategic advantage over global self-consistent sea level models for ice sheet modelers

seeking to capture solid Earth feedback in their simulations on centennial timescales.

The core idea of our method is to leverage precomputed Green’s functions. An extensive collection of these functions is

available for radially symmetric Maxwellian Earth models (Adhikari and Caron, 2024). This library includes many plausible

solid-Earth structures, from those with a thin lithosphere and a relatively softer upper mantle, such as that mapped in West180

Antarctica (Lloyd et al., 2020) or in Wilkes and Aurora Subglacial Basins in East Antarctica (Hansen and Emry, 2025), to

models with a cratonic lithosphere and a stiffer mantle typically used in glacial isostatic adjustment studies. We aim to enhance

this library by performing additional computations for more refined Earth structures and comprehensive linear viscoelasticity

featuring transient rheology. Such data may be critical to accurately capturing the ice/Earth feedback at basin scales.

A primary motivation for this research is to enhance current and future undertakings of the Ice Sheet Model Intercompar-185

ison Project (ISMIP) by enabling greater participation in coupled ice/Earth simulations, with direct implications for future

Intergovernmental Panel on Climate Change (IPCC) reports that cater to planners and policymakers. We, therefore, focus on

capturing near-field signals over centennial and shorter timescales. The proposed method does not substitute a sea level solver,

which is essential for global loading studies across timescales. This includes modeling glacial isostatic adjustment processes,

interhemispheric ice sheet interactions (Gomez et al., 2020), and far-field geodetic observables induced by ice sheets.190

Code availability. In Appendix B, we provide an algorithm with some useful Matlab code blocks to facilitate the implementation of the

proposed method. Our self-consistent model simulations were conducted using the Ice-sheet and Sea-level System Model (ISSM), an open-

access software code available at https://github.com/ISSMteam.
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Data availability. We provide time-dependent Maxwellian Love numbers and Green’s functions for 483 combinations of lithosphere thick-

ness and upper mantle viscosity in Adhikari and Caron (2024). The lower mantle viscosity is fixed at 2× 1022 Pa s.195

Appendix A: Love numbers and Green’s functions

The gravitational and deformational response of the solid Earth to a point load applied at its surface is commonly known as

the loading Love numbers. These Love numbers play a crucial role in loading studies, including glacial isostatic adjustment

theory, under the assumption of radial Earth symmetry. They are derived from the so-called yi system of equations based on

the principles of mass conservation, momentum conservation, and Poisson’s equation (Alterman et al., 1959; Peltier, 1974).200

Here, we leverage the recently coded Love number capability (Caron et al., 2025) of the Ice-sheet and Sea-level System Model

(ISSM) that solves the yi system in the Laplace domain for a suite of linear viscoelastic rheologies, including compressible

elastic, Maxwell, Burgers, and Extended Burgers materials. It employs the Post-Widder method to convert the spectral solutions

to the time domain (Spada and Boschi, 2006). The code has been optimized for parallel performance at high spherical harmonic

degrees, targeting to resolve kilometer-scale processes critical for understanding ice sheet and solid Earth interactions (Larour205

et al., 2019; Houriez et al., 2025). It has been validated against community standards (Spada et al., 2011). The Love numbers

related to radial deformation, hn(t), and gravitational potential, kn(t), are particularly relevant here. Figure A1 shows example

Love numbers for two models representing the solid Earth beneath West and East Antarctica (also see Figure 2).

Time dependent Love numbers can be assembled to derive the displacement and geoid response to the surface point load

(Longman, 1962; Farrell, 1972). These response functions, called Green’s functions, may be written as follows:210

GU (α,t) = D
∞∑

n=0

hn(t)Pn(cosα), (A1)

GΦ(α,t) = D

∞∑

n=0

[1 + kn(t)]Pn(cosα). (A2)

Here GU and GΦ are Green’s functions for VLM and geoid (or MSL), Pn are Legendre polynomials of degree n, α is the arc

length between the location of point load and the location at which the solid Earth response is evaluated (see Section 2), and

D = 3/(4πr2ρe) is the dimensioning constant with ρe denoting the mean Earth density.215

We may evaluate the infinite sum in the above equations by truncating the series at a sufficiently high degree, say at n = N .

A truncation at N = 104 may be sufficient to capture high wave-number features, such as subtle migration of grounding lines or

uplift of subglacial mountains and ridges, critical for understanding the ice/Earth feedback mechanisms (Houriez et al., 2025).

However, it appears insufficient to yield accurate and smooth Green’s functions, especially in the near field of the loading

point (Figure A2). Noting the asymptotic nature of hn(t)→ h∞ and nkn(t)→ k∞ as n→∞ (see Figure A1), Farrell (1972)220

suggests employing the so-called Kummer’s transformation to get rid of these noises. For a sufficiently high-degree truncation,
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(a) (b)

(c) (d)

Figure A1. Viscoelastic Love numbers. We show example solutions for two Earth models introduced in Figure 2: WAIS-earth (left panels)

and EAIS-earth (right panels). Love numbers hn (upper panels) and kn (lower panels) are relevant for vertical land motion (VLM) and geoid

estimation, respectively. Note the asymptotic nature of hn(t) and nkn(t) towards their respective constants h∞ and k∞ as n→∞. These

constants solely depend on the elastic structure of the Earth. For the preliminary reference Earth model (Dziewonski and Anderson, 1981),

we find h∞ ≈ h10,000 =−6.214 and k∞ ≈ 104k10,000 =−3.055. Notice the different y-axis limits, highlighting the contrasting response

signals for the two Earth models. The low viscosity regime in WAIS-earth yields larger-amplitude viscous signals. The thinner lithosphere in

this model implies a significant viscous response at high wave numbers (n≈ 400 as opposed to n≈ 200 in EAIS-earth).

we may invoke h∞ ≈ hN and k∞ ≈NkN and express Green’s functions as follows:

GU (α,t)≈D

{
h∞

2sin(α/2)
+

N∑

n=0

[hn(t)−h∞]Pn(cosα)

}
, (A3)

GΦ(α,t)≈D

{
1

2sin(α/2)
− k∞ ln

[
2sin(

α

2
)
]
+

N∑

n=1

[kn(t)− k∞
n

]Pn(cosα)

}
. (A4)
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(a) (b)

Figure A2. Evaluation of infinite sum in Green’s functions. Since evaluating Love numbers up to infinitely large degrees is impractical, we

have to truncate the sum appearing in equations A1 and A2 at a sufficiently high degree n = N . Even if we truncate the sum at N = 104,

Green’s functions oscillate in the near field of the applied point load (see blue lines). We handle these oscillations inherent to infinite sums by

leveraging the asymptotic nature of Love numbers (see Figure A1) and using the Kummer transformation that partitions Green’s functions

into an analytic part whose exact solution exists and the finite sum that yields zero for n≥N . The transformed expressions (equations A3

and A4) accurately capture Green’s functions in the near field, hitting the inherent singularity at the loading point (red lines).

As shown in Figure A2, these expressions behave smoothly and are free from oscillatory artifacts. Adhikari and Caron (2024)225

deliver such solutions of Green’s functions and corresponding Love numbers for numerous Earth models. These datasets

resolve viscoelastic signals within 5,000 km and over 1,000 years after applying a sustained point load on the Maxwellian

Earth surface. The spatiotemporal domain and sampling of these signals for a broad range of radially symmetric Earth structures

will enable high-resolution coupled ice/Earth simulations on centennial timescales.

Appendix B: A strategy for implementing the proposed method230

Here, we summarize a strategy that may be adapted to evaluate key matrices and convolution. The example we provide is

written for Matlab and shall be adapted in any language.

Distance matrix α(x,x′): We assume that the ice sheet mesh does not evolve in lateral dimensions, allowing us to compute

the distance between the loading points (assumed to be elemental centroids) and evaluation points (assumed to be elemental

vertices) only once. Let xk ≡ (ϕk,λk) for k = [1, q] and x′j ≡ (ϕ′j ,λ
′
j) for j ∈ [1,p] be the geographic coordinates (in radians)235

of elemental vertices and centroids. The distance matrix will be of q×p size, where q and p are the total numbers of evaluation

and loading points in space (Figure 1 panel b). We may compute α as follows:
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1: f o r k = 1 : q

2: dp h i = abs ( phi2 − ph i1 ( k ) ) ;240

3: dlam = abs ( lambda2 −lambda1 ( k ) ) ;

4: a l p h a ( k , : ) = r *2* a s i n ( s q r t ( s i n ( dph i / 2 ) . ^ 2 + cos ( ph i1 ( k ) ) . * cos ( ph i2 ) . * s i n ( dlam / 2 ) . ^ 2 ) ) ;

5: end

Green’s function GX(α,τ): We assume that the loading time t′ and the evaluation time t are relative to the same reference245

point and that their discrete representations are known apriori. It allows us to predetermine a set of unique non-negative τ ,

where τ = t− t′ (Figure 1 panel c), and prepare Green’s function matrix only once before model run.

1: t a u = u n iq ue ( t r a n s p o s e ( t ) − t _ p r i m e ) ;

2: t a u = t a u ( t a u >= 0 ) ;250

We may now load "greensfunctions.nc" (Adhikari and Caron, 2024) and extract desired solutions for the chosen solid Earth

model. All non-defined variables in the following example code are the default variables in the NetCDF file. (We may need to

interpolate the solutions further if the desired lithosphere thickness or mantle viscosity does not match those provided.) In this

example, we only load Green’s functions required for VLM estimation.255

1: l i t h o _ i d x = f i n d ( l i t h o _ t h i c k == t h i s _ l i t h o ) ; % t h i s _ l i t h o : u s e r d e f i n e d l i t h o t h i c k n e s s [km]

2: mant_ idx = f i n d ( m a n t _ v i s c o == t h i s _ m a n t ) ; % t h i s _ m a n t : u s e r d e f i n e d ma n t l e v i s c o s i t y [ Pa s ]

3: g r e e n s _ h _ f o r _ d e s i r e d _ e a r t h = s q u e e z e ( g r e e n s _ f u n c t i o n _ h ( l i t h o _ i d x , mant_idx , : , : ) ) ;

4: g r e e n s _ h _ a t _ d e s i r e d _ t i m e s = z e r o s ( l e n g t h ( d i s t ) , l e n g t h ( t a u ) ) ;260

5: f o r i i = 1 : l e n g t h ( d i s t )

6: g r e e n s _ i n p u t = g r e e n s _ h _ f o r _ d e s i r e d _ e a r t h ( : , i i ) ;

7: g r e e n s _ h _ a t _ d e s i r e d _ t i m e s ( i i , : ) = i n t e r p 1 ( e v a l _ t i m e s , g r e e n s _ i n p u t , t a u ) ;

8: end265

Finally, we may prepare a three-dimensional Green’s function matrix, which will be untouched throughout the coupled

model simulations. The following example uses a structure with dynamic variables to access specific Green’s functions during

convolution easily. The structure "Gvlm" has the same number of fields as the number of τ and each field has a size of q× p,

where p and q are once again the total number of elements and vertices.
270

1: f o r i i = 1 : l e n g t h ( t a u )

2: t i m e _ t a g = [ ' t a u ' , num2str ( t a u ( i i ) ) ] ;

3: Gvlm . ( t i m e _ t a g ) = i n t e r p 1 ( d i s t , g r e e n s _ h _ a t _ d e s i r e d _ t i m e s ( : , i i ) , a l p h a ) ;

4: end275
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Loading function ∆L(x′, t′): Let m be the total number of Heaviside loads prior to the specific coupling time t (Figure 1

panel c). The loading function ∆L(x′, t′) would have a size of p×m, where p is the number of elements. The ice sheet model

computes this function (in units of kg), which we refer to in the following code as "deltaload".

Convolution X(x, t) = GX(α,τ) ⊗ ∆L(x′, t′): We may perform the spatiotemporal convolution and retrieve the desired

GRD signal (vertical land motion "vlm," in this example) as follows.280

1: vlm = z e r o s ( q , 1 ) ;

2: f o r i i = 1 :m

3: t a u = t − t _ p r i m e ( i i ) ;

4: t i m e _ t a g = [ ' t a u ' , num2str ( t a u ) ] ;285

5: vlm = vlm + sum ( b s x f un ( @times , Gvlm . ( t i m e _ t a g ) , t r a n s p o s e ( d e l t a l o a d ( : , i i ) ) ) , 2 ) ;

6: end
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