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Abstract. In the Finite-Element Sea Ice Model (FESIM), a part of the Finite-Element Sea ice Ocean Model (FESOM), sea ice

albedo is treated as a tuning parameter defined by four constant values depending on snow cover and surface temperature. This

parametrisation is too simple to capture the spatiotemporal variability of observed sea ice albedo. Here, we aim for an improved

parametrisation by discovering an interpretable, physically consistent equation for sea ice albedo using symbolic regression,

an interpretable machine learning technique, combined with physical constraints. Leveraging daily pan-Arctic satellite and5

reanalyses data from 2013 to 2020, we apply sequential feature selection which identifies snow depth, surface temperature, sea

ice thickness and 2 m air temperature as the most informative features for sea ice albedo. As a function of these features, our

data-driven equation identifies two critical mechanisms for determining sea ice albedo: the high sensitivity of sea ice albedo to

small changes in thin snow and a weighted difference of the sea ice surface and 2 m air temperature, serving as a seasonal proxy

that indicates the transition between melting and freezing conditions. To understand how additional model complexity reduces10

errors, we evaluate our discovered equation against baseline models with different complexities, such as multilayer perceptron

neural networks (NNs) and polynomials on an error-complexity plane, showing that the equation excels in balancing error and

complexity and reduces the mean squared error by about 51% compared to the current FESIM parametrisation. Unlike NNs,

our discovered equation allows for further regional and seasonal analyses due to its inherent interpretability. By fine-tuning its

coefficients we uncover differences in physical conditions that drive sea ice albedo. This study demonstrates that learning an15

equation from observational data can deepen the process-level understanding of the Arctic Ocean’s surface radiative budget

and improve climate projections.

1 Introduction

Sea ice, formed from frozen sea water, modulates the transfer of heat, moisture, and momentum between the ocean and the

atmosphere (Stroeve and Notz, 2018). During spring and summer, its high albedo allows it to reflect a large amount of incoming20

solar radiation, whereas during winter, it insulates the colder atmosphere from the relatively warm ocean (Hunke et al., 2010). In

recent decades, observations have shown a decrease in the extent and thickness of Arctic sea ice (Kwok, 2018). Most Coupled

Model Intercomparison Project Phase 6 (CMIP6) models (Eyring et al., 2016) project the disappearance of multiyear ice, i.e.
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ice that remains for at least one summer, before 2050 in all CO2 emission scenarios (Notz and Community, 2020). Thinner and

younger sea ice, prevalent due to these changes, has a lower albedo, which leads to a higher absorption of the solar radiation by25

the sea ice surface, thereby promoting sea ice melting and the formation of melt ponds (Perovich et al., 2002; Light et al., 2022;

Niehaus et al., 2024). The loss of sea ice exposes the darker ocean, increasing solar absorption and accelerates the melting of

remaining ice (Curry et al., 1995; Stroeve and Notz, 2018). This cycle, termed the ice-albedo feedback, is the second leading

feedback mechanism for Arctic amplification, following the lapse-rate feedback (Pithan and Mauritsen, 2014).

However, a wide spread remains in the projections of Arctic sea ice extent and volume across all CMIP6 models and little30

improvement in overall model performance has been achieved along the previous CMIP phases (Selivanova et al., 2024). One

of the main sources of uncertainty in projecting Arctic sea ice is the representation of sea ice albedo (α), which has been

oversimplified in ESMs (Curry et al., 2001; Pirazzini, 2009). Over the past decades, sea ice albedo parametrisations of various

complexities have been developed by incorporating spectral band dependencies (Holland et al., 2012), cloud conditions (Jäkel

et al., 2024), and explicitly resolving melt ponds (Flocco et al., 2010; Hunke et al., 2013). More sophisticated models use sea35

ice radiative transfer schemes that compute an albedo from inherent optical properties, including those of ice, snow, ponds,

and included absorbers (black carbon, algae) instead of prescribing an albedo based on surface type (Briegleb and Light, 2007;

Holland et al., 2012).

The Finite-Element Sea Ice Model (FESIM; Danilov et al., 2015), part of the Finite-Element Sea ice Ocean Model (FESOM;

Danilov et al., 2017), employs a very simplified sea ice albedo parametrisation based on Parkinson and Washington (1979,40

hereafter PW79). In FESIM, PW79 is augmented with an implicit treatment of melt ponds by distinguishing between melting

and non-melting conditions. Fixed broadband albedo values are assigned to four surface types: snow-covered ice (α = 0.81),

bare ice (α = 0.7), wet (melting) snow (α = 0.77), and wet (melting) ice (α = 0.68). Following a zero-layer thermodynamic

scheme (Parkinson and Washington, 1979), FESIM uses these four values as tuning parameters to compensate for other biases

within the model. Thus, the spatiotemporal variability of sea ice albedo is not captured in its full complexity. We argue that45

a more realistic formulation of the sea ice albedo is needed to disentangle model errors resulting from the thermodynamic

scheme.

Machine learning (ML) has become a pivotal tool in Earth system science. The era of big data originating from a diversity

of observational products, reanalyses and climate data from CMIP models provides high-dimensional datasets that ML can

leverage to reveal hidden patterns and accelerate discoveries beyond conventional approaches (Eyring et al., 2024; Vance50

et al., 2024; Bracco et al., 2024; Camps-Valls et al., 2023). In particular, data-driven equation discovery, an interpretable ML

method, has the potential to bridge the gap between the ML and Earth system science community by providing transparency

and reliability in ML predictions. Analytical expressions identified from data allow the user to interpret the ML prediction

ad hoc, providing trustworthiness in the decision-making process of the ML algorithm and advancing scientific discoveries

(Huntingford et al., 2025; Song et al., 2024). Use cases in Earth system modelling focus on improving the representation of55

subgrid processes, such as the representation of clouds (Grundner et al., 2024) and ocean eddies (Zanna and Bolton, 2020).

Integrating ML with physical modelling aims to create hybrid Earth system models (ESMs) that combine traditional physics-
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based frameworks with data-driven methods, offering a promising pathway to improve climate projections and deepen our

understanding of the Earth system (Rasp et al., 2018; Camps-Valls et al., 2023; Eyring et al., 2024).

This study applies symbolic regression, a data-driven equation discovery approach, to discover an equation for sea ice albedo60

directly from observational data, improving upon the simple PW79 sea ice albedo parametrisation within FESIM. Our aim is

to derive a simple and physically consistent equation using the PySR library (Cranmer et al., 2020), leveraging satellite and

reanalyses data. Following Beucler et al. (2024) and Grundner et al. (2024), we adopt a Pareto-optimal strategy, identifying

parsimonious models that perform well using few input features. This approach reduces model complexity while maintaining

accuracy and improves comprehensibility and interpretability. We address the following main questions:65

1. Do we find a physically consistent equation for sea ice albedo using data-driven equation discovery that performs better

than PW79 based on reanalysis data and observations?

2. Do we improve our physical understanding of the surface radiative budget of the Arctic Ocean with our data-driven

equation and discover deficiencies in how sea ice thermodynamics are treated in FESIM?

This paper is organised as follows: Section 2 outlines the satellite and reanalysis data and the methodologies used in the70

Pareto-optimality framework, including data preprocessing, multilayer perceptron neural network (NN) hyperparameter tuning,

sequential feature selection (SFS), and model complexity and error evaluation. Section 3 provides a physical interpretation of

the best-performing equation, while Sec. 4 compares this equation with PW79 and baseline models, including the trained NN

and polynomials, on our observational dataset. Section 5 demonstrates the versatility of the equation through regional and

monthly optimisations, and Sec. 6 offers conclusions and future perspectives.75

2 Material and methods

2.1 Data

This study integrates multiple data products from satellites and reanalyses listed in Table 1, which we carefully select to ensure

high-quality coverage of the entire pan-Arctic region on a daily basis. Furthermore, we only consider variables available both

in FESIM and FESOM since these are our target ocean-sea ice models. By intersecting the temporal and spatial domains of80

the data products, the overlapping period is from 2013 to 2020, during the months of March to September when sunlight is

present in the whole pan-Arctic region. The final dataset consists of five sea ice and five atmospheric input features. For better

readability, we refer to input features as features.

2.1.1 Satellite data

The Polar Pathfinder - Extended Climate Data Record (CDR) product (Key et al., 2016, 2001) includes broadband albedo,85

surface temperature (T0m), and binary cloud mask (clear-sky/cloudy) with a temporal resolution of 12 hours and a spatial
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Table 1. Description of variables used in this study. Reanalysis data products are italised. The final dataset covers the years 2013–2020 as

this is the period where the temporal coverages of all data products coincide.

Variable Source Spatial

resolution

Temporal

resolution

Output

Surface broadband albedo VIIRS 25 km 12 hourly

Features - Sea ice variables

Sea ice thickness (hice)
CS2SMOS

TOPAZ4

25 km

12.5 km

daily

daily

Snow depth (hsnow)
AMSR2

TOPAZ4

25 km

12.5 km

daily

daily

Sea ice speed NSIDC 25 km daily

Surface temperature (T0m) VIIRS 25 km 12 hourly

Age of sea ice NSIDC 12.5 km weekly

Features - Atmospheric variables

2 m temperature (T2m) ERA5 0.25° hourly

Rain (cumsum of last 7 days) ERA5 0.25° hourly

Snowfall (cumsum of last 7 days) ERA5 0.25° hourly

Relative humidity (RH) ERA5 0.25° hourly

10 m wind speed ERA5 0.25° hourly

For masking purposes (see Sec. 2.2.1)

Sea ice concentration

CS2SMOS

TOPAZ4

AMSR2

25 km

12.5 km

3.125 km

daily

daily

daily

Cloud cover VIIRS 25 km 12 hourly

Surface downward thermal radiation,

all-sky

ERA5 0.25° hourly

Surface downward thermal radiation,

clear-sky

ERA5 0.25° hourly

resolution of 25 km. From 2013 until 2020, measurements are taken from the Visible Infrared Imaging Radiometer Suite

(VIIRS). Compared with the SHEBA data, the albedo shows an uncertainty of about 7% (Key et al., 2001).

The Level 4 SMOS-CryoSat (CS2SMOS) merged product (Ricker et al., 2017) includes daily sea ice thickness (hice) and sea

ice concentration on a 25 km grid for March and April. The uncertainty, ranging from 0.1 m to 0.5 m, is due to measurement90

inaccuracies and merging algorithms compared to airborne electromagnetic measurements.
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The Advanced Microwave Scanning Radiometer 2 (AMSR2) satellite instrument provides daily snow depth data (hsnow) for

March and April (Rostosky et al., 2018) and sea ice concentration data for the whole year (Spreen et al., 2008). Snow depth has

a spatial resolution of 25 km, whereas sea ice concentration has a finer spatial resolution of 3.125 km. The uncertainty of snow

depth is larger with increasing thickness, and slightly higher over multiyear ice than first year ice. Moreover, wrongly retrieved95

negative snow depth can occur over thin ice due to the signal coming from the ocean water. For sea ice concentrations below

65%, the uncertainty in measurements reaches a maximum of 25%, whereas at higher sea ice concentrations, the uncertainty

is reduced to less than 10%. These uncertainties stem from instrument-related errors, variability in atmospheric and surface

conditions, and sensitivity of the algorithm to independent measurement validation.

The Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors (Version 4) product (Tschudi et al., 2019a), which100

integrates data from various observations and reanalyses, gives sea ice velocity information. The EASE-Grid Sea Ice Age

(Version 4) product (Tschudi et al., 2019b), with a spatial resolution of 12.5 km, provides weekly sea ice age with a temporal

resolution of a year, meaning that an age of one indicates that the sea ice is up to one year old.

2.1.2 Reanalyses data

Satellite-based data for sea ice and snow depth are confined to the winter months (October/November–March/April) due to105

the limitations of satellite retrieval methods arising from the presence of melt ponds in summer (Ricker et al., 2017; Rostosky

et al., 2018). To fill the gaps in the summer months (May–September), we use daily data of snow depth, sea ice thickness,

and sea ice concentration from the Arctic Ocean Physics Reanalysis TOPAZ4b (European Union-Copernicus Marine Service,

2020). We deem it reasonable to use reanalysis data to fill the gaps as the correlation matrices of the satellite and reanalysis

data are comparable for March and April (see Appendix A1). TOPAZ4b operates at a 12.5 km spatial resolution available from110

1991 to 2023, based on the HYCOM ocean model (Bleck, 2002) coupled to a zero-layer scheme (Parkinson and Washington,

1979) with the elastic-viscous-plastic (EVP) rheology (Hunke and Dukowicz, 1997). ERA5 reanalysis data is used as forcing

at the ocean surface. Sea ice concentration is assimilated with OSI-SAF (European Union-Copernicus Marine Service, 2015),

while sea ice thickness data is assimilated with CS2SMOS. Observations reveal that sea ice concentration on the sea ice edges

retreats too rapidly in early summer and refreezes too fast in early winter, with the thicker sea ice being underestimated. Snow115

depth is also underestimated, noticeably in June. From the ERA5 reanalysis product (Copernicus Climate Change Service,

2018a, b), we acquire hourly atmospheric surface data on a regular 0.25° longitude/latitude grid: 2 m temperature (T2m), rain,

snowfall, relative humidity (RH), and 10 m wind speed, and surface downward thermal radiation under all-sky and clear-sky

conditions.

2.2 Methods120

Building on the principles outlined by Beucler et al. (2024) and Grundner et al. (2024), this study employs a Pareto optimality-

based workflow as illustrated in Fig. 1.
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Figure 1. Pareto optimality-based workflow based on Beucler et al. (2024) and Grundner et al. (2024), exemplarily for discovering equations

with symbolic regression. The process involves: (1) preprocessing of observational and reanalyses data to ensure consistency for the machine

learning workflow, (2) training of multilayer perceptron neural networks (NNs), (3) sequential feature selection (SFS) for dimensionality

reduction and identification of key features out of ten features governing sea ice albedo, (4) symbolic regression as data-driven equation

discovery approach, and (5) comparison between the best-performing equations and baseline models (polynomials and NNs with reduced

feature sets chosen by the SFS algorithm) on an error-complexity plane to evaluate how increasing model complexity reduces error.

2.2.1 Data preparation

This section describes the efforts taken to reconcile the different datasets from Sec. 2.1 and to illustrate the combined regional

and temporal coverage. Using xESMF (Zhuang et al., 2024), remapping all data products (Table 1) to a common daily frequency125

on the albedo grid as reference grid ensures consistency and reliability of the final dataset and little modification of the albedo

values as albedo is our target variable.

For albedo, we rely exclusively on daytime data due to its higher accuracy compared to nighttime data. To increase the

sampling frequency of the weekly sea ice age data, we address gaps by applying the age value of the week’s first day across

the subsequent days. For ERA5 data, we calculate daily means for T2m, RH, 10 m wind speed, and surface downward thermal130

radiation under clear-sky and all-sky atmospheric conditions. Additionally, we adjust rain and snowfall data using a cumulative

sum from the preceding seven days to consider a weekly memory effect. When transitioning from finer to a coarser grid, which

is the case for TOPAZ4, NSIDC, ERA5 data, and AMSR2 for sea ice concentration, we employ a conservative regridder that

maintains the integral of the source field by computing a weighted area mean over intersecting grids. For hice, hsnow, sea ice

speed and concentration from CS2SMOS, bilinear regridding is sufficient for smoothly varying variables which match the135

resolution of the target grid.

Furthermore, we perform two masking operations to ensure equivalent atmospheric conditions and consistent spatial cover-

age across both observational and reanalyses products: cloud and sea ice pack masking. In terms of cloud masking, we use data

samples where cloud conditions match across all data products, discarding the transition zone between clear-sky and cloudy
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conditions as cloud cover in the VIIRS product is a binary variable, only distinguishing between clear-sky and cloudy condi-140

tions. Since the total cloud cover variable in ERA5 is known to be overestimated in the Arctic region, Zampieri et al. (2023)

proposed to compute the difference in surface downward thermal radiation between clear-sky and all-sky atmospheric condi-

tions ∆STRD to determine cloud conditions. Zampieri et al. (2023) defined ∆STRD ≤ 15 W m−2 to be clear-sky, 15 W m−2

< ∆STRD ≤ 40 W m−2 as the transition zone and ∆STRD > 40 W m−2 as cloudy. In addition, we only consider data samples

where the sea ice concentration exceeds 80%, defining a sea ice pack, with the aim to isolate the effects of the sea ice surface145

without the influence of ocean water. To omit adjacency effects such as land contamination, we perform a land mask with a

buffer of 50 km. Figure 2 shows the number of data samples per month and Arctic subregion defined by Meier and Stewart

(2023). In total, the final dataset consists of 7,903,463 data samples, with the Central Arctic being the most dominant region

with 5,060,064 data samples.
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Figure 2. Panel (a) shows the monthly (March–September) and panel (b) the regional distribution of preprocessed dataset on a logarithmic

y-axis with panel (c) illustrating the Arcitic subregions defined by Meier and Stewart (2023).

Let X be an m×n matrix representing the dataset, where m is the number of features, n is the number of samples and150

σ = (σ1,σ2, ...,σm) ∈ Rm is the vector of standard deviations for each feature. For our machine learning workflow, we split

the dataset temporally into a training (2013–2018) and validation set (2019–2020) and standardise each sample Xj ∈ Rm by

dividing the feature values xi,j by the corresponding standard deviation σi of the training set, yielding

Zj =
Xj

σ
=

(
x1,j

σ1
,
x2,j

σ2
, ...,

xm,j

σm

)
. (1)

Z is the resulting m×n standardised dataset matrix, with standardised samples Zj ∈ Rm. By this, we avoid preferential155

treatment of features that natively assume larger values.
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2.2.2 Neural network architecture

We train a multilayer perceptron NN using PyTorch (Paszke et al., 2019) by setting the hyperparameters to the default values

in PyTorch and refining the number of layers, hidden units, learning rate, and batch size manually (Table 2). We fix Adam as

the optimiser and the mean squared error (MSE) as the loss function, which measures the mean squared difference between the160

model prediction α(Zj) ∈ R (sea ice albedo) and the respective ground truth value yj

MSE def=
1
n

n∑

j=1

(α(Zj)− yj)2. (2)

Table 2. Hyperparameters of multilayer perceptron neural network using PyTorch (Paszke et al., 2019).

Hyperparameters Values

Number of layers 3

Number of units 32

Learning rate 0.001

Batch size 32

Optimiser Adam

2.2.3 Sequential feature selection

Using the same NN architecture as described in Sec. 2.2.2, we use it as an estimator to perform forward SFS with Sequen-

tialFeatureSelector from the scikit-learn library (Pedregosa et al., 2011). SFS provides a ranking of feature importance which,165

in addition to helping us to maximise predictive performance using sparse models, can provide an intuition of the underly-

ing physics. There are two reasons why we strive for reducing dimensionality: Symbolic regression performs best on low-

dimensional data (see Sec. 2.2.4), and we seek parsimonious models, i.e. models that depend on few features to lower the

model complexity and improve interpretability. Forward SFS begins by training the optimised NN with one feature and evalu-

ating its performance based on the MSE on the validation set. The feature leading to the lowest MSE on the validation set can170

be considered to be the most informative from the set of features considered. In the following iterations, additional features

are incorporated sequentially, retaining those that minimise the MSE. To reduce computational resources while still preserving

robust results, we create ten subsets from the whole dataset with 105 data samples each and perform SFS on each subset. To

retrieve the overall ranking of the features, we average the ranking of each feature across all subsets.

2.2.4 Symbolic regression175

Symbolic regression fits equations to the dataset, searching through the space of mathematical expressions based on predefined

mathematical operators (+,−,sin, ...). Following Grundner et al. (2024), we use the PySR library by Cranmer et al. (2020) due

to its flexibility and high success rate in benchmarking tests (De Franca et al., 2024). PySR is based on genetic programming

and implements tree-based candidate solutions with tournament selection, local leaf search, and multiple populations.
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We find five features to be the practical upper bound which we retrieve from the ranking of our previous SFS results. Given180

that PySR is capable of discovering compact and interpretable equations of low complexity, it can operate effectively with

a reduced dataset. Consequently, we downsample the training set to 10,000 data samples, leveraging the efficiency of PySR

in handling limited data. Multiple runs of PySR with varying hyperparameters are needed as there is no guarantee that the

discovered equations are optimal for their complexity, producing about 800 equations in total. We directly filter out equations

with a storage size greater than 1500 bits to neglect long and complex equations.185

To ensure physical consistency, the equations should satisfy the following physical constraints (PC): (1) The value of sea

ice albedo α should be between 0 and 1; (2) snow depth hsnow significantly increases sea ice albedo (Grenfell and Maykut,

1977; Grenfell and Perovich, 2004); (3) under freezing conditions, thicker ice hice has a higher sea ice albedo than thinner ice

(Perovich, 1996); (4) with rising surface temperature, sea ice melts, driving melt pond formation, which decreases the sea ice

albedo significantly (Grenfell and Maykut, 1977; Perovich, 1996); (5) the function should be smooth over the entire domain.190

We can mathematically formalise these physical constraints for all samples Zj

PC1 :α(Xj) ∈ [0,1]

PC2 :∂α(Xj)/∂hsnow ≥ 0

PC3 :∂α(Xj)/∂hice ≥ 0

PC4 :∂α(Xj)/∂T0m ≤ 0195

PC5 :α(Xj) is a smooth function.

As some equations are too complex to be solved analytically, each equation α(X) is checked for these PCs by approximating

the first-order partial derivative with respect to a feature x with the central difference method

∂α

∂x
≈ α(x + h)−α(x−h)

2h
, (3)

where h = 10−5 defines the step size for finite difference.200

Keeping the physically consistent equations that satisfy all PCs, we perform a secondary optimisation on a subset of 105

data samples from the training set. This involves introducing an additional coefficient for each feature in the equation, unless

PySR has already generated it. The minimize function from the SciPy library (Virtanen et al., 2020) allows a robust framework

for minimisation using the Nelder-Mead (Nelder and Mead, 1965) and Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods

(Nocedal and Wright, 2006), common choices for general nonlinear optimisation problems.205

2.2.5 Pareto-optimal models

Having found the best-performing equations that satisfy the PCs, we compare the equations with baseline models within an

error-complexity graph, illustrating the gain of increasing model complexity with respect to the error. The baseline models

are polynomials of degree one to four using PolynomialFeatures from the Scikit-learn library (Pedregosa et al., 2011), and the

trained NN from Sec. 2.2.2. Furthermore, we also include the parsimonious NN models from Sec. 2.2.3. Likewise, we perform210
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SFS on the polynomials, analogous to how it is described in Sec. 2.2.3, and include them in the error-complexity graph. The

measure of error is the MSE, while the model complexity is defined as the number of tunable parameters. Therefore, the model

complexity can be increased in two ways: increasing the feature dimensionality and increasing the degree of a polynomial. For

the NN architecture used in this study, adding one feature does not substantially increase the model complexity since adding

one feature is equivalent to adding a single node in the NN.215

3 Analysis of the best-performing equation

3.1 Feature importance in the baseline models

The numbers in brackets indicate the averaged ranking across the ten subsets. When no bracket is indicated, the ranking of a

feature remains consistent across all subsets. Let Pd be a polynomial of degree d ∈ {1,2,3,4}. The SFS algorithm reveals the

following feature rankings for P1−4 and NN:220

P1 : hsnow → T0m → T2m → rain→ snowfall→ hice → RH→ wind speed→ ice speed→ age

P2 : hsnow → T0m → hice → T2m → snowfall→ RH→ ice speed(7.5)→ rain(7.9)→ wind speed(8.6)→ age

P3 : hsnow → T0m → T2m → hice → snowfall→ RH→ age(7.1)→ wind speed(8.8)→ rain(8.9)→ ice speed(9.2)

P4 : hsnow → T0m → hice (3.2)→ T2m (3.9)→ RH(6.6)→ age(6.8)→ wind speed(7.4)→ snowfall(7.6)

→ ice speed(8.2)→ rain(8.4)225

NN : hsnow → T0m → hice (3.2)→ T2m (3.8)→ snowfall(5.6)→ RH(7.0)→ rain(7.8)→ wind speed(8.0)

→ ice speed(8.2)→ age(8.4)

In all model families, there is a consistent pattern in the ranking of the most informative features. All model types identify

hsnow as the most informative predictor and T0m as the second most informative predictor. hsnow being the most informative

predictor is plausible since snow is the most reflective medium in nature and, when present, constitutes the uppermost layer230

where solar radiation initially impacts. Snow has a low optical depth due to the scattering of incoming solar radiation in diffu-

sive directions, implying that a snow layer of a few centimeters significantly increases surface albedo (Grenfell and Maykut,

1977). Additionally, at the spatial scales of our dataset (25 km), snow depth is likely related to snow fractional coverage which

is also impactful for the albedo. T0m as the second most informative predictor is in agreement with the fact that T0m is a proxy

of whether the surface is under melting or freezing conditions, as the presence of melting water reduces albedo. For instance,235

fresh snow exhibits a higher albedo compared to wet snow (Grenfell and Maykut, 1977). Sea ice albedo parametrisations that

do not explicitly resolve melt ponds include the radiative effect of melt ponds implicitly with T0m (e.g. PW79). Excluding the

linear model, the top predictors after hsnow and T0m are hice and T2m. As sea ice has a higher optical depth than snow, hice

ranked below hsnow seems plausible, implying that variations in hsnow may be more crucial to albedo than variations in hice.

The inclusion of T2m among the most informative predictors is unexpected given the high correlation (0.92) between T0m240

and T2m (see Appendix A2), which would suggest redundancy in T2m, ranked below T0m. Nevertheless, SFS quickly chooses
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T2m as an additional predictor after T0m is accounted for, indicating that sea ice albedo is not only dependent on surface

conditions, but is also influenced by atmospheric conditions near the surface, affecting the optical properties of the sea ice

surface. Additionally, this may be in part due to the fact that T2m can go above the melting point, whereas T0m cannot. To the

best of our knowledge, existing sea ice albedo parametrisations in ESMs with an implicit scheme of melt pond representation245

do not include T2m. Sea ice models that explicitly resolve melt ponds, e.g. Flocco et al. (2010) and Hunke et al. (2013), use

T2m to compute the surface melting rate to calculate the melt water accumulation in the ponds.

In implicit schemes, the transition of T0m around the freezing point of sea ice is used as information to implicitly determine

melting and freezing conditions, which characterise the wetness of sea ice surface, altering sea ice optical properties. Examining

in-situ measurements of T2m from the MOSAiC expedition and satellite swath data of melt pond fraction with a resolution250

of 1.2 km, Niehaus et al. (2024) have reported that T2m is one of the main driver of the formation and evolution of melt

ponds, explaining short-lived changes in melt pond fractions and thus, decreasing albedo. Although they concluded that ERA5

reanalysis data are not well suited to study local melt pond characteristics due to the coarse spatial resolution, here we show that

T2m of ERA5 is a valuable predictor to understand the large-scale mechanisms that modulate sea ice albedo in the pan-Arctic

region.255

The ranking of the remaining features shows some variability across model families, but some patterns can be identified.

For instance, snowfall and RH tend to be ranked higher than wind speed, ice speed, and age in most model families. On a

large scale, features related to thermodynamics are more relevant to describe the sea ice albedo than features related to sea ice

motion.

3.2 Physical interpretation of the best-performing equation260

PySR selects the four best ranking features chosen by the SFS algorithm for the NN (see Sec. 3.1), namely hsnow, T0m, hice,

and T2m, and neglects snowfall. This results in the following physically consistent equation with the lowest MSE

α(hsnow,hice,T2m,T0m) =
tanh2(p̃snowh2

snow + p̃icehice + ã)
b̃− tanh(p̃T2mT2m− p̃T0mT0m + c̃)

. (4)

Equation 4 contains seven coefficients for which the optimised values are as follows

{p̃snow, p̃ice, p̃T2m , p̃T0m , ã, b̃, c̃}= {63.13
1

m2
,0.11

1
m

,0.14
1

°C
,0.30

1
°C

,0.84,2.19,0.95},265

where p̃x denotes the weight of a feature x. The following subsections highlight the main physical findings discovered by Eq.

4 and which role the coefficients play.

3.2.1 High sensitivity to small variations in thin snow

In the numerator of Eq. 4, the squared hyperbolic tangent asymptotically approaches 1, causing changes in hsnow to have a

greater impact on α than changes in hice for smaller values. For x→ 0 we have270

tanh(x) = x + O(x3) (5)
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due to Taylor’s theorem. Squaring Eq. 5 yields

tanh2(p̃snowh2
snow + p̃icehice + ã)≈ (p̃snowh2

snow + p̃icehice + ã)2 (6)

for small values. As hsnow and hice increase, their impact on α diminishes due to the asymptotic nature of the hyperbolic

tangent. Figure 3 illustrates how α changes rapidly within the first 20 cm of snow and then approaches an upper limit, whereas275

the relationship with hice is approximately linear with a small rate of change. The rapid increase of α within the first centimetres

of snow aligns with known sea ice physics, as surface albedo is highly sensitive to small changes in thin snow, but becomes

insensitive to differences in thicker snow and sea ice (e.g. Grenfell and Maykut, 1977; Perovich, 1996). Conversely, Perovich

(1996) showed in a laboratory experiment that sea ice albedo also behaves asymptotically with increasing sea ice thickness.

Here, due to the low weight value of hice, there is little difference in albedo response when increasing hice.280

0 1 2 3 4 5
hice (m)

0.5

0.6

0.7

0.8

hice
hsnow

0.00 0.05 0.10 0.15 0.20 0.25 0.30
hsnow (m)

Figure 3. The response of Eq. 4 to varying snow depth (hsnow) and sea ice thickness (hice). While varying snow depth hsnow or sea ice

thickness hice, the other features are fixed to their mean values during the validation period (2019–2020), shown in Table B1 (see Appendix

B).

3.2.2 The weighted difference between the surface and 2 m air temperature as a seasonal proxy

Let ∆T ∗ be the weighted temperature difference that incorporates the weights:

∆T ∗ = p̃T2mT2m− p̃T0mT0m (7)

PySR highlights that ∆T ∗ is more critical than the individual temperatures, with T0m having double the impact on the denomi-

nator’s hyperbolic tangent function in Eq. 4 compared to T2m, according to their weights. This supports the feature importance285

ranking (see Sec. 3.1), where T0m is ranked higher than T2m, while both rank among the top four features despite their strong

linear correlation of 0.92 (see Appendix A2). Although T0m holds more weight than T2m, their importance remains interlinked

due to this correlation, making their joint behaviour informative.

The hyperbolic tangent function in the denominator is strictly monotonically increasing, ranging between -1 and 1, approach-

ing -1 as its input tends to negative infinity and 1 as it tends to positive infinity. Up to a constant, the ∆T ∗ controls both the290
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sign and the magnitude in the argument of tanh. Assuming p̃T2m and p̃T0m are always positive, if ∆T ∗ is positive, tanh(∆T ∗) is

pushed towards 1 and increases the overall value of α(hsnow,hice,T2m,T0m). If ∆T ∗ is negative, tanh(∆T ∗) is shifted towards

-1, decreasing the overall value of α(hsnow,hice,T2m,T0m).

Figures 4a and b illustrate how transforming the temperature difference ∆T = T2m−T0m to ∆T ∗ elucidates its relationship

with observed α. At higher ∆T ∗, α consistently remains high (α = 0.85), unlike ∆T , where high α occurs between -15 °C and295

15°C. Notably, when ∆T ∗ approaches zero, α decreases rapidly, an aspect which is not obvious with ∆T . Plotting the seasonal

cycle in Fig. 4c, ∆T ∗ decreases steadily from winter, reaching a minimum of -0.19 in mid-July and then increases towards the

fall, while ∆T shows two cycles with minima in May and mid-July. Consequently, ∆T ∗ serves as a seasonal proxy, where high

∆T ∗ corresponds to winter, early spring, and autumn, implying freezing and freeze-up conditions, whereas low ∆T ∗ aligns

with late spring and summer, indicating melting conditions. The combined information of the sea ice surface and atmospheric300

conditions in ∆T ∗ can be interpreted as indicator for the transition between freezing and melting conditions.
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Figure 4. Comparison between the temperature difference ∆T = T2m−T0m and the weighted temperature difference ∆T ∗ = ˜pT2mT2m−
˜pT0mT0m. Panel (a) and (b) show the density heat map for the observed sea ice albedo α and ∆T and ∆T ∗, respectively, on a logarithmic

scale. Panel (c) illustrates the seasonal cycle of observed ∆T and ∆T ∗ from March 1 to September 30 averaged from 2013 until 2020.

Since tanh(x) asymptotically approaches -1 and 1, the function becomes insensitive to large temperature differences, which

is consistent with physical expectations, since extreme temperature differences do not significantly affect albedo once the ice

is either fully melted or frozen.
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3.2.3 Control of the upper and lower limit of sea ice albedo and the transition between melting and freezing305

conditions

In the following, we analyse the impact of the coefficients ~a, ~b and ~c on the sea ice albedo predictions. Equation 4 approaches

its infimum (αinf) when snow and ice are not present and when the denominator is maximised

αinf =
tanh2(ã)
b̃+ 1

for ~b >−1. (8)

Equation 8 highlights that ã controls the lower limit of the albedo, as depicted in Fig. 5a, which examines how α depends on310

hsnow with different ã values, while other features are set to their mean during validation (Table B1 in Appendix B). The analysis

focuses solely on hsnow due to its greater influence on α compared to hice (see Sec. 3.2.1). The coefficient ã controls how quickly

tanh2(h2
snow +hice) grows from its lower limit, as increasing ã shifts h2

snow +hice + ã to the right, making tanh2(h2
snow +hice + ã)

reach higher values more quickly. So, increasing ã raises the lower limit and makes the function grow faster from its minimum.
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Figure 5. The impact of the coefficients ã, b̃ and c̃ on the functional behaviour of Eq. 4. Panels (a) and (b) illustrate the dependency of sea

ice albedo (α) on snow depth (hsnow) with varying ã and b̃, respectively. Panel (c) demonstrates the response on the difference between 2m

temperature (T2m) and surface temperature (T0m) with varying c̃. The other coefficients are kept fixed at their optimal values and the other

features at their mean values during the validation period (2019–2020) denoted with bar overhead (Table B1 in Appendix B). The red line

indicates Eq. 4 with the optimised coefficient values (see Sec. 3.2).

Equation 4 approaches its supremum (αsup) when the numerator is maximised and the denominator is minimised, while b̃ is315

controlling the upper limit of the albedo

αsup =
1

b̃− 1
for ~b > 1. (9)

As b̃ increases, the upper limit decreases and vice versa (Fig.5b). Since the denominator must be greater than 1 to keep α within

its physical range (0 to 1), b̃ should be greater than 2 to ensure physical consistency. Plugging in the optimised coefficients, we

get αinf = 0.15 and αsup = 0.84.320
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The coefficient c̃ shifts the response curve of Eq. 4, thereby modulating the transition between freezing and melting con-

ditions (Fig. 5c). Decreasing c̃ shifts the response curve to the right, meaning that melting conditions already occur at higher

∆T ∗, and vice versa, suggesting the presence of other sources (e.g., oceanic heat) influencing sea ice optical properties, which

are not accounted for in Eq. 4.

4 Comparison of Eq. 4 with PW79 and baseline models325

4.1 Balancing model error and complexity

Figure 6 presents the five best-performing equations in terms of MSE discovered by PySR (see Appendix C for the equations

ranked second to fifth) and baseline models, including polynomials and NNs, on an error-complexity plane (see Sec. 2.2.5).

Optimising PW79 using the Nelder-Mead method reduces the MSE from 0.08 to 0.03. Despite this improvement, all models

outperform the tuned PW79.330
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Figure 6. Error-complexity plane. The mean squared error (MSE) on the validation set is on the x-axis, while model complexity, defined as

the number of tunable parameters, is plotted on a logarithmic y-axis. We compare the five best-performing physically consistent equations

derived with PySR with the tuned FESIM parametrisation and with baseline models of different types: polynomials of different degrees

P1−4, and neural networks (NNs). For each model type, models with an increasing number of features, chosen by the sequential feature

selection (SFS) algorithm, are evaluated. With the exception of the NNs, those can be read from right to left with increasing number of

features. Models with all ten features are marked with a cross. The Pareto front traces out the best models for a given maximum complexity.

Notably, increasing the polynomial degree from one to two yields a significant reduction in MSE of approximately 0.005.

However, further increasing the degree to three or four does not result in substantial performance gains, indicating that model

complexity beyond this point does not lead to significant improvements. Moreover, increasing feature dimensionality leads to
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a convergence of model performance within each model family, typically after adding the fourth or fifth feature. This suggests

that the first four or five features chosen by the SFS algorithm represent the key features that govern albedo, while the remaining335

features are redundant, contributing less marginal information or introducing noise.

The full-set NN exhibits slight overfitting (MSE = 0.0125), since it is less skilful than the 7-feature NN (∆MSE = 0.0002).

Thus, we find that sparsity can help the NN to generalise. Interestingly, polynomials and NNs show similar performance, with

polynomials requiring additional features to match the accuracy of NNs. For instance, comparable performance is observed in

models like 1-feature NN and 3-feature P1, and 2-feature NN and 4-feature P2. The comparable model performances suggest340

that simpler polynomial models are sufficient to capture the underlying patterns between the features and albedo, and are as

effective as NNs, which may be overly complex for this problem. Furthermore, the need for additional features in polynomials

may be beneficial, as it can help to compensate structural uncertainty in the parametrisation.

4.2 Sea ice albedo distribution

Figure 7a compares the sea ice albedo distributions during the validation period between the ground truth and model predic-345

tions, all illustrated within the physical range between 0 and 1. The model predictions are: Equation 4, 4-feature P3 (Eq. D1

in Appendix D), and 4-feature NN to compare models with the same number of features. The Hellinger distance measures the

similarity between two discrete univariate probability distributions P and Q

H(P,Q) def=
1√
2
||
√

P −
√

Q||2. (10)
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Figure 7. Comparison of the sea ice albedo distributions during the validation period (2019–2020) between the VIIRS product (Key et al.,

2001, 2016) as ground truth and the predictions from the best-performing models in each model class in terms of MSE. Panel (a) illustrates

the distribution of the ground truth alongside predictions from the best-performing equation (Eq. 4), the 4-feature polynomial of degree three

P3, and the 4-feature neural network (NN), all within the physical range between 0 and 1. The Hellinger distance for each model is shown

next to the legend in their respective colors. Panel (b) shows predicted albedo values falling outside the physical range for the polynomial of

degree three with four features, plotted against the observed sea ice albedo.

The three model predictions exhibit a bimodal distribution similar to the ground truth (with peaks at 0.46 and 0.84). Among350

the models, 4-feature P3 shows the greatest similarity to the ground truth, with a Hellinger distance of 0.218 and MSE of
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0.0145. This is followed by the 4-feature NN, with a Hellinger distance of 0.294 and MSE of 0.0133, and Eq. 4, with Hellinger

distance of 0.356 and MSE of 0.0156. However, some of the predicted sea ice albedo values from 4-feature P3 fall outside the

physical range of 0 and 1, as illustrated in Fig. 7b, violating the first PC. Additionally, none of the models fully capture the

long tail of the ground truth towards higher albedo values. Instead, both 4-feature NN and Eq. 4 demonstrate a notable peak355

at higher albedo values (0.82 and 0.83, respectively), with Eq. 4 having an upper limit for sea ice albedo at 0.83. At the lower

end of the albedo scale, the 4-feature NN best captures the long tail, although all model peaks at lower albedo values are more

shifted compared to the ground truth: 0.42 for the 4-feature P3, 0.39 for the 4-feature NN, and 0.42 for Eq. 4.

During training, we do not account for uncertainties associated with various satellite products. For the VIIRS product, the

overall uncertainty for albedo retrieval is 0.1, and for surface temperature, it is 1.98 K, based on RMSE comparisons with in-situ360

measurements from the SHEBA campaign (Key et al., 2001, 2016). Light et al. (2022) assessed the albedo of eight individual

sea ice surface types of sea ice based on field measurements from the MOSAiC expedition, finding that early autumn snow

exhibits the highest albedo values between 0.8 and 0.9, while dark ponds have the lowest albedo values between 0.12 and

0.25. Thus, we conclude that the long tails of the ground truth albedo, values below 0.12 and above 0.9, are likely due to

measurement, data processing, and retrieval errors. Moreover, our dataset has a spatial resolution of 25 km, which covers a365

variety of sea ice surface types, providing spatially averaged albedo values. In contrast, Light et al. (2022) reports highly

localised albedo values for each surface type. Based on these considerations, we conclude that the upper albedo limit of Eq. 4

is physically reasonable, given that the ground truth is noisy and reflects average albedo over a large area.

4.3 Spatial maps of sea ice albedo

Figure 8 illustrates the sea ice albedo exemplarily for May 23rd, 2020, with ground truth (Fig. 8a), computed with the tuned370

PW79 (Fig. 8b), and Eq. 4 (Fig. 8c). Figures 8d-e depict deviations from the observed albedo. The tuned PW79 demonstrates

two areas distinguishing between high and low albedo zones due to its constant albedo values representing surface types,

namely snow-covered ice (α = 0.66), and melting snow (α = 0.40). As PW79 is not a smooth function, PW79 causes a sharp

border between the two surface types. Conversely, the spatial variability of the observed albedo is better captured with Eq. 4,

reducing the MSE by about a half (0.0156) compared to the tuned PW79 (0.0300). Biases remain in the Hudson Bay and along375

the sea ice edges, but are much reduced in the Central Arctic.

4.4 Seasonal cycle of sea ice albedo

Figure 9 presents the seasonal albedo cycle of the ground truth, Eq. 4, and tuned and untuned PW79 for the period March to

September, averaged from 2013 to 2020. The untuned PW79, unlike the other parametrisations, maintains a constant albedo

at about 0.81, showing no seasonality. In contrast, the other three datasets display strong seasonality, with maximum sea ice380

albedo occurring during the winter period between March and April, followed by a steady decrease during the melting period

between May and July, where it reaches its minimum. Equation 4 demonstrates a strong agreement with the ground truth,

achieving an R2 score of 0.94, whereas both untuned and tuned PW79 reach 0.57. During the winter period, the tuned PW79

starts with much lower albedo values around 0.66 compared to the ground truth and Eq. 4, which display sea ice albedo of
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Figure 8. Comparison between (a) the sea ice albedo observed via the VIIRS satellite instrument (Key et al., 2001, 2016) as ground truth,

(b) the tuned FESIM parametrisation, and (c) the best-performing equation (Eq. 4) for May 23rd, 2020. The deviations to the ground truth

are illustrated in panel (d) for PW79 and panel (e) for Eq. 4.

similar magnitude of around 0.77. While the tuned PW79 reaches its minimum in July at 0.42, Eq. 4 reveals its minimum at385

0.39, which is closer to the ground truth with 0.27. During the freeze-up period in August and September, the tuned PW79

demonstrates a rapid increase in sea ice albedo, similar in magnitude to the winter period. In contrast, the ground truth and Eq.

4 depict a more gradual increase, with sea ice albedo not recovering as rapidly to winter magnitude in August.

While Eq. 4 remains gradually increasing in September, the ground truth shows a decrease of sea ice albedo, which contra-

dicts the expected freeze-up behaviour of Arctic sea ice (Pistone et al., 2014; Light et al., 2022). Peng et al. (2018) showed390

that the quality and accuracy of the VIIRS albedo product decrease with increasing solar zenith angle in September. Despite

being trained on the ground truth, Eq. 4 provides a more physically reasonable prediction for September, likely due to the

sparse observational data available for that month, as reduced sunlight over the pole limits September data availability (see

Appendix E), resulting in less weight being given to these observations during training. Therefore, PySR relies more heavily

on the complete data from March to August (see Sec. Fig. 2 ). As a result, PySR implicitly captures seasonal patterns, particu-395

larly temperature-driven trends (see Sec. 3.2.2), which extend naturally into September. In doing so, Eq. 4 effectively corrects

for potential measurement artefacts in the September data by leveraging the functional relationships between ∆T ∗ and sea ice

albedo learnt from better sampled months.
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Figure 9. Seasonal sea ice albedo cycle from March 1 to September 30 averaged from 2013 until 2020 observed via the VIIRS satellite instru-

ment (Key et al., 2001, 2016) as ground truth, and computed with the best-performing equation (Eq. 4), and the sea ice albedo parametrisation

by Parkinson and Washington (1979), here reffered to as PW79. The untuned PW79 corresponds to the standard configuration of the Finite-

Element Sea Ice Model (FESIM; Danilov et al., 2015), while for a fair data-driven comparison, PW79 is tuned to the training set, including

data from 2013 to 2018, using the Nelder-Mead method (Nelder and Mead, 1965).

Both tuned and untuned PW79 exhibit very low standard deviations during the winter period and September, with higher

values around 0.13 during the melting season for the tuned PW79. Conversely, the ground truth shows high standard deviations400

with a maximum of 0.19, which are attributed to the spatial variability of sea ice albedo and measurement, data processing,

and retrieval errors as already discussed in Sec. 4.2. Equation 4 reveals lower standard deviations with a maximum of 0.16,

potentially eliminating errors, and are attributed solely to the spatial variability of the albedo. The low standard deviations

in the tuned and untuned PW79 stem from its simplistic nature, relying on constant albedo values based on snow cover and

surface temperature, where each constant represents a sea ice surface type. This results in PW79 perceiving the sea ice as405

highly uniform during the winter and September, whereas the tuned PW79 captures more variability during the melting season.

Overall, Eq. 4 presents a clear improvement over PW79, aligning with observed sea ice albedo variations by capturing both

the seasonal progression and its magnitude. The untuned PW79 does not capture the observed albedo seasonality, maintaining

a high value of 0.81 year-round. It should be noted, that the sea ice albedo is calculated for each of these methods with observed

melting conditions, which could differ from the conditions in FESIM.410

Although the tuned PW79 better captures sea ice albedo seasonality, it significantly deviates in magnitude, inaccurately

reflecting albedo changes and showing an earlier, quicker freeze-up than the ground truth. Both the ground truth and Eq. 4

align with previous field campaigns from SHEBA (Perovich et al., 2002) and MOSAiC (Light et al., 2022), identifying five

phases of Arctic sea ice: dry snow (March-Aril), melting snow (May), pond formation (June), pond development (July), and

freeze-up (August-September). It is noticeable that these studies were based on highly localised measurements, whereas this415

study investigates spatially averaged data over a 25 km resolution.
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5 Regional and monthly optimisation of Eq. 4

5.1 Comparison between the optimisation strategies

Figure 8e reveals regional differences in model performance for Eq. 4, suggesting that the global optimisation approach on

the entire training set is not able to capture the underlying patterns uniformly across all regions. This finding motivates us to420

explore spatial and temporal variations in model performance by conducting optimisations on regional and monthly subsets.

As Eq. 4 provides physically meaningful coefficients, as demonstrated in Sec. 3.2.3, we are able to gain insights into the

underlying physical mechanisms governing model performance. In contrast, optimising NNs on subsets would not offer the

same level of interpretability due to their inherent black-box nature. To ensure consistency across all subset optimisations, we

divide our training set into monthly and regional subsets, utilising 20,000 data samples for each region and 105 data points for425

each month.

Both monthly (MSE = 0.0122) and regional (MSE = 0.0117) optimisation strategies outperform global optimisation (MSE =

0.0156) in terms of reducing overall MSE (Fig. 10a-c) albeit making the coefficients depend on the region or month greatly

increases the complexity of Eq. 4. This improvement is likely due to the ability of Eq. 4 to capture regional and monthly vari-

ations in the data. The regional optimisation approach leads to significant reductions in MSE for certain regions, such as the430

Barents Sea (from 0.0460 to 0.0220), Kara Sea (from 0.0409 to 0.0263), and East Greenland Sea (from 0.0335 to 0.0148) (Fig.

10e). However, these regions, which border the North Atlantic, continue to exhibit high MSEs across all optimisation strate-

gies, suggesting that they may be influenced by physical processes not well-represented by Eq. 4, such as Atlantic Oceanic

heat transport or strong winds prevailing in these regions (Screen and Simmonds, 2010; Årthun et al., 2012; Liu et al., 2024).

Another potential reason is that the underlying physics operate on a time scale smaller than our data, which are on a daily basis435

due to the temporal resolution of the satellite data.

In terms of the magnitude of improvement, regional optimisation yields higher proportional improvements compared to

monthly optimisation (Fig. 10d-e). The greatest proportional improvements in the reduction of MSE are observed for the

Chuckshi Sea with regional optimisation (75%), September with monthly optimisation (69%), and the Beaufort Sea (59%).

However, the Central Arctic shows little improvement with regional optimisation, likely due to its dominant representation in440

the dataset (64% of the entire dataset). As a result, the global optimisation is already greatly influenced by the Central Arctic

data, and the optimal coefficients are likely biased towards this region, leaving little room for improvement with regional

optimisation.

One limitation of the regional optimisation approach is that it produces sharp borders in the error map (Fig. 10c), reflecting

the regional focus of the optimisation process, which leads to a lack of a smooth error transitions between regions. Additionally,445

some instances of overfitting are observed, where regional or monthly optimisation results in high MSE values compared to

global optimisation. For example, the MSE of July with monthly optimisation (0.0088) is higher than with global optimisation

(0.0080), and similar patterns are seen for Hudson Bay with regional optimisation (0.0138 vs. 0.00116), and Laptev Sea with

regional optimisation (0.0185 vs. 0.0172).
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Figure 10. Monthly and regional analysis. Panels (a), (b) and (c) illustrate the mean squared error on the validation set (MSE) for each grid

cell for the global, monthly, and regional optimisation, respectively. Panels (d) and (e) show the MSE for each month and region, respectively,

when fine-tuning Eq. 4 globally (brown), on each month (green), and on each region (red).

5.2 Case study: Barents Sea450

The optimised coefficients for each region and month resulting in the analysis in Sec. 5.1 are displayed in Appendix F and

Appendix G, respectively. Physical interpretation of each region and month goes beyond the scope of this study. Instead,

we focus on the Barents Sea as a case study. This region exhibits the highest MSE from global optimisation and significant

improvement with regional optimisation. For a direct comparison, the coefficients are standardised to their unitless form (Table

3).455
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Table 3. Unitless coefficients, divided by the respective standard deviations of the training set (2013–2018), for the whole dataset representing

the entire pan-Arctic region and Barents Sea, optimised on the validation period (2019–2020).

p̃snow,std p̃ice,std p̃T2m,std p̃T0m,std ã b̃ c̃

pan-Arctic 0.85 0.09 0.99 2.16 0.84 2.19 0.95

Barents Sea 0.03 0.64 0.34 1.89 0.34 2.29 -0.04

In the Barents Sea, the effect of hsnow becomes significantly smaller (p̃snow, std = 0.03) compared to the pan-Arctic region

(p̃snow = 0.85), while hice becomes more important (p̃ice,std = 0.64) than in the pan-Arctic region (p̃ice,std = 0.09). These dif-

ferences reflect the distinct physical conditions in these regions. The Barents Sea experiences high seasonality, with thin sea

ice prevalent and little to no snow present, compared to the whole pan-Arctic region (Smedsrud et al., 2013). Consequently,

variations in thin sea ice play a more significant role in sea ice albedo in the Barents Sea, whereas variations in thin snow460

influence sea ice albedo in the pan-Arctic region.

In both cases, T0m has the highest weight (of around 2). However, T2m is less significant in the Barents Sea (p̃T2m,std = 0.34)

than in the pan-Arctic region (p̃T2m,std = 0.99). In the pan-Arctic region (c̃ = 0.95), smaller ∆T ∗ are required to trigger melting,

while in the Barents Sea, the lower value of c̃ =−0.04 triggers melting conditions already at higher ∆T ∗. The shift of the

transition to higher ∆T ∗ implies other heat sources affecting sea ice optical properties which are not considered in Eq. 4, as465

already discussed in 5.1.

Our findings indicate that the pan-Arctic region represents a stable ice regime, in which snow and small ∆T ∗ modulate sea

ice albedo, while the Barents Sea represents a fragile ice regime, where ice properties and temperatures already at higher ∆T ∗

regulate albedo sensitivity. The Barents Sea is one of the most rapidly changing regions, becoming ice-free in summer and

contributing to approximately one-quarter of the Arctic sea ice loss in winter. This change is associated with surface warming470

in the Gulf Stream and the increase of the Atlantic oceanic heat transport passing the Barents Sea Opening (Yamagami et al.,

2022; Årthun et al., 2012; Smedsrud et al., 2013; Stroeve and Notz, 2018).

6 Conclusions

In this study, we derived an interpretable, physically consistent equation for sea ice albedo through the integration of several

multi-year satellite and reanalyses data covering the pan-Arctic region and the application of various machine learning tech-475

niques, including NNs, SFS, and symbolic regression with PySR. Our best-performing data-driven equation (Eq. 4) combines

two mechanisms that critically impact sea ice albedo: high sensitivity to small changes in thin snow, and the temperature dif-

ference between the sea ice surface and 2 m air, weighted in a way such as to reflect the current season. While the PW79 sea

ice albedo parametrisation only uses the surface temperature as a proxy to define freezing and melting conditions, our equation

shows that a weighted temperature difference between the surface and the air at 2 m better quantifies the rate of change in sea480

ice albedo.
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The error-complexity graph demonstrates that NNs are overly complex and that lower-complexity models are sufficient

to achieve comparable performance. Equation 4 significantly outperforms PW79, reducing the MSE on the observational

validation set by half and improving the representation of the spatial variability and seasonal cycle of sea ice albedo. Moreover,

Eq. 4 sets lower and upper limits for sea ice albedo due to the functional behaviour of the hyperbolic tangent, that are physically485

plausible and yield realistic sea ice albedo values. By adapting the coefficients of Eq. 4 to subsets of the dataset, it demonstrates

its flexibility in regional and monthly assessments, allowing for a more in-depth analysis of the underlying physics within each

subset as the optimised coefficients can be directly interpreted.

One methodological constraint in our approach is the selection of features that are available on a daily basis across the entire

pan-Arctic region and are also represented in FESIM and FESOM, our primary target ocean-sea ice models. This deliberate490

feature selection ensures compatibility with our modelling objectives, but overlooks other relevant factors that may substantially

impact sea ice albedo. This includes explicit melt pond information, which is known to significantly reduce sea ice albedo, as

demonstrated in numerous studies (e.g. Perovich et al., 2002; Webster et al., 2022; Niehaus et al., 2024). Although a coupled

FESOM-Icepack version was developed (Zampieri et al., 2021; Hunke et al., 2023), which explicitly resolves melt ponds,

computational constraints for including Icepack in the Alfred Wegener Institute Climate Model (AWI-CM3; Streffing et al.,495

2022) led us to prioritise FESIM’s simpler sea ice thermodynamics formulation with the PW79 parametrisation. Furthermore,

snow grain size also substantially determines sea ice/snow albedo (Perovich, 1996; Perovich et al., 2002), but there is no

data available on a daily, pan-Arctic scale. Nevertheless, since the objective of this study is to capture large-scale patterns at

25× 25km2 resolution, Eq. 4 sufficiently explains the variance in observed sea ice albedo, indicating that small-scale features

may have a limited marginal effect at this scale.500

Another consideration of our approach is that this study aimed to minimise global MSE on the validation set, with the

Central Arctic dominating the dataset spatially and temporally. As this mirrors real-world conditions, other subregions are

underrepresented in our dataset. Consequently, the ranking resulting from SFS and Eq. 4 is likely optimised for the Central

Arctic, as evident from monthly and regional differences in MSE. To balance the data, dominant subregions or months could

be downsampled, which results in a more diverse training set, but this would most likely lead to a higher MSE overall. In future505

studies, focused on regional-scale modelling, we recommend to optimise Eq. 4 to the region of interest as we did exemplarily

in Sec. 5.

This study demonstrates the first use of interpretable ML in sea ice modelling to foster trust and transparency in the Earth

system community. Bridging a gap between the ML and the Earth system science community, we leveraged interpretable ML

techniques to gain a deeper understanding of the physical mechanisms driving sea ice albedo. Our approach contributes to the510

growing body of research that establishes ML as a valuable tool in Earth system science, with applications in data assimilation,

numerical weather predictions, and climate emulators.
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Code and data availability. The data sources of the datasets forming the basis of this paper are given in the references provided through-

out the text and are summarised in Table 1. The code will be published under https://github.com/EyringMLClimateGroup/atmojo25tc_

equationdiscovery_seaicealbedo.515

Appendix A: Correlation matrices

A1 Comparison between observational and reanalysis data for March and April (2013–2020)

Satellite instruments are not able to reliably retrieve hsnow and hice during the summer months (May-September) due to the

presence of melt ponds which distort the signal coming from the snow and sea ice (Rostosky et al., 2018; Ricker et al., 2017).

To fill the data gaps, reanalysis data seem to be useful as they provide spatio-temporal coverage assimilated with observational520

data. To assess whether filling data gaps with reanalysis data is appropriate, Fig. A1 compares the correlation matrices of the

datasets for the period March until mid April from 2013 to 2020 with hsnow and hice retrieved from satellite observations (Table

1, Fig. A1(a)), and from the Arctic Ocean Physics Reanalysis TOPAZ4b (Fig. A1(b)). The correlation matrices of both datasets

look similar as the linear correlations between all features have the same signs of comparable magnitude, which justifies using

TOPAZ4b for hsnow and hice to fill the gaps during the summer months.525

A2 Correlation matrix of final dataset (from March until September, 2013–2020)

Figure A2 presents the correlation matrix of the preprocessed dataset from several data products as described in Table 1,

consisting of data from March until September from 2013 to 2020.

Appendix B: Mean values of the features during the validation period (2019–2020)

Table B1 shows the mean values of the features hsnow, hice, T0m and T2m during the validation period (2019–2020).530

Table B1. Mean values of the features during the validation period (2019–2020).

Feature Mean values

h̄snow 0.12 m

h̄ice 1.80 m

T̄0m -5.49 °C

T̄2m -5.38 °C

Appendix C: Selected Symbolic Regression Fits

The best-performing equations discovered by PySR are listed that satisfy the physical constraints (see Sec. 2.2.4) and show-

cased in Fig. 6, ranked in increasing MSE order with the MSE/number of parameters in brackets. Equations 1, 2, and 3 are
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Figure A1. Correlation matrices for comparing snow (hsnow) and sea ice thickness (hice) data retrieved from (a) the satellite observations

AMSR2 (Rostosky et al., 2018) and CS2SMOS (Ricker et al., 2017), respectively, and (b) Arctic Ocean Physics Reanalysis TOPAZ4b

(European Union-Copernicus Marine Service, 2020) from March until mid April (2013–2020). The red marking indicates the comparing

linear correlations between satellite observations and reanalysis.

optimised with the Nelder-Mead solver, and equations 4 and 5 with the BFGS-solver. Note that the equations are shown in

their standardised form following Eq.1. Equations 1, 3 and 5 are Pareto-optimal, which are denoted in bold:535

1. [0.155/7]: α(hice,hsnow,T2m,T0m) = tanh2(0.09hice+0.85h2
snow+0.84)

2.19−tanh(0.98T2m−2.17T0m+0.93)

2. [0.0159/8]: α(hice,hsnow,T0m) =−0.92 +
√

0.32+(0.83T0m+0.35)2

1.05hice
√

hsnow+1.52(1.04h2
snowT 2

0m+1.18)2

3. [0.0161/6]: α(hice,hsnow,T0m) = 0.83
(

1 + −0.43

1.74h4
snowT 4

0m+
√

2.01h2
icehsnow+|−0.95T0m+1.70|

)2

4. [0.0162/7]: α(hice,hsnow,T0m) = 0.84
(
1 + −0.66

0.83hice
√

hsnow+(1.18h2
snowT0m−1)2+(−0.71T 2

0m−0.68T0m+0.97)2

)2

5. [0.0180/5]: α(hice,hsnow,T0m) = 0.84
(
1 + −0.79

2.04
√

hsnow+(1.24h2
snowT0m−1.55)2

)2

540
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Figure A2. Correlation matrix of preprocessed dataset from several data products (Table 1. From March until mid April, hsnow and hice are

retrieved from satellite observations (Rostosky et al., 2018; Ricker et al., 2017). The data gaps from mid April until September are filled with

the Arctic Ocean Physics Reanalysis TOPAZ4b (European Union-Copernicus Marine Service, 2020) as described in Sec. 2.1.2.

Appendix D: 4-feature polynomial of degree three P3

Equation D1 represents the 4-feature polynomial of degree three P3 for which the distribution of predicted sea ice albedo

during the validation period (2019–2020) is shown in Fig. 7. P3 consists of the features hsnow,T0m,T2m,hice. Note that Eq. D1

is shown in its standardised form following 1.

α(hsnow,T0m,T2m,hice) = 0.2266 +0.3046hsnow− 0.1694T0m + 0.0129T2m + 0.1331hice− 0.1385h2
snow

− 0.1267hsnowT0m− 0.0212hsnowT2m + 0.0159hsnowhice− 0.0928T 2
0m + 0.0081T0mT2m

+ 0.0116T0mhice + 0.0254T 2
2m + 0.0687T2mhice− 0.0313h2

ice + 0.0087h3
snow

+ 0.0055h2
snowT0m− 0.0062h2

snowT2m + 0.0097h2
snowhice− 0.0180hsnowT 2

0m

+ 0.0287hsnowT0mT2m + 0.0210hsnowT0mhice− 0.0469hsnowT 2
2m− 0.0132hsnowT2mhice

− 0.0050hsnowh2
ice− 0.0193T 3

0m + 0.0125T 2
0mT2m− 0.0144T 2

0mhice− 0.0047T0mT 2
2m

+ 0.0218T0mT2mhice− 0.0093T0mh2
ice + 0.0011T 3

2m + 0.0070T 2
2mhice + 0.0028T0mh2

ice

+ 0.0026h3
ice

(D1)545
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Figure E1. Comparison of sea ice albedo maps between the VIIRS product (ground truth) and Eq. 4 on September 1, 15 and 30, 2018.

Appendix E: Comparison of spatial maps between the VIIRS product and Equation 4

Figure E1 shows the differences in spatial maps between the VIIRS product (ground truth) and Eq. 4 exemplarily for September

1, 15 and 30, 2018.

Appendix F: Regional optimisation

Figure F1 displays the regionally optimised coefficients in their unitless form using the BFGS-optimiser which we plug in to550

Eq. 4 to compute the MSE on the validation set shown in Sec. 5, Fig. 10.

Appendix G: Monthly optimisation

Figure G1 displays the regionally optimised coefficients using the BFGS-optimiser which we plug in to Eq. 4 to compute the

MSE on the validation set shown in Sec. 5, Fig. 10.
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