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Abstract. Fires play an important role in the Earth system but remain complex phenomena that are challenging to model nu-
merically. Here, we present the first version of BURNN, a data-driven model simulating burned area on a global 0.5° x 0.5° grid
with a monthly time resolution. We trained Long Short-Term Memory networks to predict satellite-based burned area (GFEDS)
from a range of climatic, vegetation and socio-economic parameters. We employed a region-based cross-validation strategy
to account for the high spatial autocorrelation in our data. BURNN outperforms the process-based fire models participating in
ISIMIP3a on a global scale across a wide range of metrics. Regionally, BURNN outperforms almost all models across a set of
benchmarking metrics in all regions. Through eXplainable AI (XAI) we unravel the difference in regional drivers of burned
area in our models, showing that the presence/absence of bare ground and C4 grasses along with the fire weather index have
the largest effects on our predictions of burned area. Lastly, we used BuRNN to reconstruct global burned area for 1901-2019
and compare the simulations against independent long-term historical fire observation databases in five countries and the EU.
Our approach highlights the potential of machine learning to improve burned area simulations and our understanding of past

fire behaviour.

1 Introduction

Fire plays an important role in the Earth system by influencing ecosystem dynamics, biogeochemical cycles and atmospheric
composition (Bowman et al., 2020). Fires drive ecosystem dynamics by affecting plant evolution (Simon et al., 2009), vege-
tation species composition and the physical, chemical and biological properties of soils (McLauchlan et al., 2020). Many of
these ecosystem characteristics in turn also shape fire behaviour (Archibald et al., 2018). Emissions from vegetation fires affect
the radiative balance of the Earth as the gases (H,O, CO,) trap energy through the greenhouse effect, while the aerosols reduce
the amount of solar radiation that reaches Earth’s surface (Bowman et al., 2009; Ward et al., 2012). Smoke of fires affects a
wide range of systems including the radiative balance (Hodzic et al., 2007; Chakrabarty et al., 2023), plant fertilization (Fritze
et al., 1994; Bauters et al., 2021), albedo (Beck et al., 2011; Veraverbeke et al., 2012) and air quality (Carvalho et al., 2011;
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Chen et al., 2017). Fires act as a big natural hazard and can also precondition post-fire hazards such as floods, landslides and
large-scale erosion (Zscheischler et al., 2020; Jacobs et al., 2016; Girona-Garcia et al., 2021; Brogan et al., 2017; Shakesby,
2011). Global observations of fire activity are typically provided by satellite products. However, these observations contain sub-
stantial uncertainties due to their spatial resolution, cloud cover and temporal resolution affecting their ability to detect small
and short-lived fires. Moreover, smoke, rapid regrowth and obscuration by unburned vegetation further complicates satellite-
based fire detection. Nonetheless, satellites provide the most reliable estimates of global fire activity to date. Vegetation fires
burn approximately 3.5-4.5 million km? of surface area per year (Giglio et al., 2018; Lizundia-Loiola et al., 2020) and emit
between 1.8 and 3.0 Pg Cyr'1 (Lizundia-Loiola et al., 2020; van der Werf et al., 2017). More recent estimates from Global
Fire Emissions Database version 5 (GFEDS) however suggest the amount of surface area burned per year to be around 6.5-9.5
million km? (Chen et al., 2023b) with an emission of 2.9-3.7 Pg Cyr’' (Chen et al., 2023b), comparable to around 20-30%
of the annual emissions from anthropogenic greenhouse gases (Friedlingstein et al., 2025). Fires thus play an active role in
our Earth system. Yet, despite their key role, it is not fully understood and quantified how socio-economical development and
climate change have affected fire occurrence in the past, and how these will affect future fire dynamics. Moreover, satellite
observations suffer uncertainties due to (i) cloud cover, (ii) limited spatial resolution, which affects the detection of small fires,
(iii) rapid regrowth and (iv) obscuration by unburned vegetation (Chen et al., 2023b). All of these uncertainties are propagated
further into modelling efforts.

To understand how climate change and socio-econmic conditions affect vegetation fires, researchers typically model fire
activity with fire-coupled Dynamic Global Vegetation Models (DGVMs) (e.g., Burton et al., 2024; Park et al., 2024). These
process-based fire models simulate vegetation fires as a function of vegetation characteristics, weather, socio-economic condi-
tions, lightning and land use (Hantson et al., 2016). Vegetation dynamics are typically supplied by the DGVM, while the other
factors are provided as inputs derived from climate and integrated assessment models (Frieler et al., 2024). From these drivers,
most fire models simulate ignitions (natural + anthropogenic), fuel (dry vegetation), fire spread and fire suppression, which are
then transformed to fire characteristics such as burned area, fire intensity and fire emissions (Rabin et al., 2017; Li et al., 2019;
Hantson et al., 2020). However, this extensive processing chain requires fine-tuning many parameterizations and formulae,
each of which has the potential to alter the outcome substantially. As a result, current state-of-the-art process-based fire models
are not always able to reproduce observed fire events (Burton et al., 2024; Park et al., 2024), and their projections contain
substantial spread (Teckentrup et al., 2019; Lange et al., 2020; Thiery et al., 2021; Grant et al., 2025). Moreover, (sub)national
fire databases are often incomplete and inconsistent (Bowman, 2018; Gincheva et al., 2024)

Machine learning algorithms have the advantage of being able to fit (non-linear) functions to data rather than prescribing
them manually. In complex tasks, such as fire modelling, where the real world relations and interactions are hard or near-
impossible to pin down mathematically, machine learning can provide a valuable solution (Qi and Majda, 2020; Bracco et al.,
2025). At the same time, machine learning often lacks interpretability (Rudin, 2019; Yang et al., 2024; Bracco et al., 2025),
which can be a disadvantage compared to process-based models when process understanding or fine-grained control is the
primary objective. Thus, machine learning can serve as a complementary rather than a substitutive approach to process-based

fire modelling.
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Here we present a data-driven fire model "BUrned area modelling by Recurrent Neural Networks (BuRNN)". BuRNN
combines traditional fire model inputs and intermediary DGVM outputs such as Gross Primary Production (GPP) with machine
learning to predict burned area. We first describe the architecture and training process of the model. Then, we evaluate the
skill of BuRNN against satellite data, using state-of-the-art process-based wildfire models as benchmark. Next, we attempt to
understand the inner workings of BuRNN through XAI methods. Finally, we apply BuRNN to generate a monthly gridded
burned area reconstruction from 1901 to 2019 at 0.5° x 0.5° spatial resolution and evaluate this new dataset against regional

wildfire records.

2 Materials & Methods
2.1 Data

To train BuRNN, we make use of five different data sources. BuRNN is trained on a monthly timescale and receives 24
features as input, each providing information on (i) climate, (ii) land or vegetation properties or (iii) socio-economic conditions
(Table 1). Climate-related variables are: (i) monthly mean of the daily maximum temperature, mean monthly precipitation
and mean monthly wind speed from the daily NOAA-CIRES-DOE 20th Century Reanalysis version 3 homogenized to W5ES
(20CRv3-WS5ES) product (Compo et al., 2011; Slivinski et al., 2021; Lange, 2019; Lange et al., 2021), (ii) monthly mean
Fire Weather Index (FWI) calculated from 20CRv3-WS5ES and (iii) lightning density. The land and vegetation characteristics
are (i) land cover from the Community Land Model (CLM), which are generated based on Land Use Harmonization phase 2
(LUH2; Hurtt et al., 2020), (ii) land use provided by Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) also based
on LUH2 and (iii) intermediate DGVM outputs (ensemble mean) from the ISIMIP biome sector for GPP (n=7), Carbon Mass
in Vegetation (cVeg) (n=3) and Leaf Area Index (LAI) (n=5) Table Al. Lastly, socio-economic conditions are provided by
ISIMIP in terms of population densities and Gross Domestic Product (GDP) (Table 1). The LUH2 derived data from ISIMIP
and CLM was linearly interpolated from a yearly to monthly timescale. Moreover, we removed and grouped a number of
related land use/land cover classes in order to bring the total number of features down. We chose these input variables as all
are available on a monthly timescale from 1901 onwards at a 0.5° x 0.5° spatial resolution (or higher) and represent many
drivers, or proxies thereof, of fire behaviour. To train BURNN, we use GFEDS as target data (Chen et al., 2023b), we remapped
the original 0.25° x 0.25° grid to 0.5° x 0.5° using area-weighted regridding from the Python Package Iris - SciTools. GFEDS5
derives burned area estimates for 2001-2020 from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1
product (Giglio et al., 2018), applying region-, land cover-, and tree cover-specific corrections for commission and omission
errors based on spatiotemporally aligned Landsat and Sentinel-2 burned area observations. Burned area in croplands, peatlands,
and deforestation regions is separately estimated using MODIS active fire detections (Giglio et al., 2016). To extend the record
back to 1997, active fire data from the Along-Track Scanning Radiometer (ATSR) and the Visible and Infrared Scanner (VIRS)
were used, which carry higher uncertainties (Chen et al., 2023b). Although GFEDS almost doubles the observed burned area
compared to other satellite products, we consider it most suitable for ground truth as it matches high-resolution burned area

observations for Africa (Chuvieco et al., 2022). Moreover, literature suggests that ’traditional’ burned area products, such



90 as FireCCI51 severely underestimate actual burned area (Zhu et al., 2017; Franquesa et al., 2022; Khairoun et al., 2024),
supporting our choice for GFEDS as target dataset.

Table 1. List of the 24 features provided to BuRNN along with their origin.

Type Source Description Number of
Features
20CRv3- We aggregate the daily values for daily maximum temperature (tasmax; in K), total precipi- | 3
WSES tation (pr; in kg m™ s™') and near-surface wind speed (sfcWind; in m s™') to monthly means.

Canadian FWI calculated on a daily timescale from tasmax, pr, tasmax and near-surface | 1
relative humidity (hurs; in %) (van Wagner, 1987). These daily values are then aggregated
to monthly means through CDO.

HistLight Lightning density provided by combining HistLight (1901-2009) and WGLC (2010-2019) | 1
& WGLC (Kaplan and Lau, 2022a, b).

CLM Land cover maps originating from LUH2 (Hurtt et al., 2020) and processed for use as input | 11
to the Community Land Model (CLM, Lawrence and Chase, 2007; Lawrence et al., 2019).
We regrouped the original 17 land cover types into 11 groups (all represented as fraction
of grid cell area): Urban, Lake, Crop, Bare Ground, Needleleaf tree, Broadleaf evergreen
tree, Broadleaf deciduous tree, Broadleaf shrub - temperate, Broadleaf deciduous shrub -
boreal, C3 grass and C4 grass.

ISIMIP Land use maps originating from LUH2 and processed for use in ISIMIP (Volkholz and | 2

Ostberg, 2022). Given the similarity between the land cover and land use datasets, only the

grid cell fractions managed pastures and rangeland were added to the feature list.
ISIMIP ensemble mean of Leaf Area Index (LAI; n=5), Gross Primary Production (GPP; | 3

n=7) and Carbon stored in Vegetation (CVeg; n=3).
ISIMIP Rural and urban population along with GDP from ISIMIP3a (Volkholz et al., 2024; Sauer | 3
et al., 2024) .

2.2 Model Description

We aim to design a machine learning model that is able to learn the lagged and cumulative effects of climate variability, land
use and socio-economic conditions on fire dynamics. Unlike traditional machine learning algorithms, which often treat each
95 observation independently, Long Short-Term Memorys (LSTMs) are capable to capture non-linear temporal dependencies in
sequential data (Hochreiter and Schmidhuber, 1997), making them ideal for our use case. Although LSTMs were originally
designed for natural language processing (Gers et al., 2000), LSTMs have also successfully been applied in a number of climate
related applications such as modelling vegetation dynamics (Reddy and Prasad, 2018), predicting river streamflow (Hunt et al.,
2022), weather forecasting (Karevan and Suykens, 2020) and even detection of forest fires (Cao et al., 2019). Therefore, we

100 chose the LSTM as main component of BURNN. The LSTM maintains its own hidden states acting as memory, which is
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updated dynamically in interaction with the input features. The hidden state at each time step is mapped to three outputs
using a dense neural layer. The first of the outputs is be used as a binary classifier, determining whether it burns or not. The
second and third represent parameters (mean and variance) of the modelled burned area distribution. Predicted burned area is
constructed via Eq. (2), assuming a normal distribution. Despite the simple model architecture, a couple of hyperparameters
have to be chosen. To automate the search for optimal hyperparameters, we used the Optuna framework (Akiba et al., 2019).
We used the Tree-structured Parzen Estimator (TPE) sampler inside the framework to find appropriate values for the learning
rate, number of LSTM layers, hidden size of the LSTM layer(s), activation functions, number of dense neural layers, size of
the dense neural layers and dropout fraction (Bergstra et al., 2011). Currently, BuRNN is a single layered LSTM with a hidden
size of 64 connected to a dense neural layer with Rectified Linear Unit (ReLU) activation function given in Eq. 1 (see also

Fig. 1):

ReLU(z) = max(0,z) (1)

§=1{p>05}(u + 507) )

Given the nature of our data, our input variables (and targets) contain a high degree of spatial autocorrelation. Applying a
traditional random train-test split or random train-test folds would likely lead to an overestimation of performance and poor
predictive power (Diniz-Filho et al., 2008; Le Rest et al., 2014; Meyer et al., 2019). Therefore, we trained our LSTM networks
according to a region-based cross-validation. We split our data according to 43 Intergovernmental Panel on Climate Change
(IPCC) land regions (we removed the two Antarctic regions and Greenland) and manually grouped these regions into 11 folds
(Fig. A1), whereby we made sure that the 3-4 regions in each fold represent different continents and biomes (Iturbide et al.,
2020). For each fold, we use two different folds as validation set and the remaining 8 folds as training set. We repeat this five
times for each fold, each time with two different folds as validation set. For example, when fold 1 is chosen as test fold, we
first select folds 2 and 3 as validation set and folds 4-11 as training set. Then we choose folds 4 and 5 as validation set and
folds 2-3 and 6-11 as training set, etc. This results in a total of 55 (11 times 5) models. Then, when we make predictions with
our model for an IPCC region, it is the mean estimate of five LSTMs which have never seen data for that IPCC region before.
The validation folds are used to monitor model convergence and overfitting by using the early stopping algorithm; As soon as
model performance on these validation folds started to decrease after a given set of training iterations, training was stopped
and the best model was restored. This model was then used to make predictions on the independent test set.

Before training, we combine the data from all different sources, convert the time dimension to have identical units and split
them into the 11 pre-defined folds. We normalize the training data and use the mean and standard deviation of the training
set to normalize the validation folds (and the test fold during prediction). Each time we change the training folds, we undo

the normalization operation, and redo it based on the mean and standard deviation of the new training set. Additionally, we



135

140

ISIVIPEE)

GSWPS

GDP W5ES Ligihtning  Pop Land Use

Sector

[ e | EEEN

BURNN

LSTM (features, hidden size) = (27, 64)

Dense Layer (64, 1) %}“D

RelLU 9

Burned Area

Figure 1. Structure of BuRNN. The top row denotes the origin of all the features supplied to our model, split into the main sources. The red

rectangle reflects the architecture of BuRNN.

log-transform the target variable (GFEDS percentage burned area) as the original data is strongly right-skewed We do this
by applying the natural logarithm of one plus the target (loglp). After this, we normalise the targets by subtracting the mean
and dividing by the standard deviation. Pre-processing of our data happens through a combination of Xarray and NumPy. We
use PyTorch and PyTorch Lightning to build our model architecture and to handle training and validation (Paszke et al., 2019;
Falcon and The PyTorch Lightning team, 2019). In the training phase the LSTM layer is followed by batch normalization.
During training, we provide the samples in batches of 32, an error is calculated based on the cumulative error of the predictions
for these 32 samples (see further) after which the model is updated/improved. Batch normalization normalizes the features
of each batch (based on the batch’s mean and standard deviation) and results in faster and more stable training (Santurkar
et al., 2018). This layer is followed by a dropout layer for which the optimal dropout fraction was found to be 0.2. This

randomly ignores, on average, 20% of the connections between the LSTM and dense layer, which has been proposed to
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improve generalisation and reduce overfitting (Srivastava et al., 2014). During training we ignore the first 36 predictions (3
years) to allow the LSTM’s memory state to spin up and then evaluate the predictions of the following 3 years using a custom
loss function. In each epoch, we pass each gridcell in the training set once and randomly select a 6 year time slice. The spinup
period of 3 years was chosen based on fire-process understanding and the prediction length of 3 years was chosen in function
of model convergence speed. The loss function expects three outputs from the model, the first is used as a binary classifier
(will it burn or not) and is scored through binary cross entropy (Eq. (3)), the second represents the mean (log-transformed
and normalised) burned area and the third is the (log-transformed and normalised) variance. This mean and variance are used
in a Gaussian negative log likelihood loss (Eq. (4)). Then, the Gaussian negative log likelihood loss is multiplied by 1000 so
it reaches a similar magnitude as the binary cross entropy loss, after which both loss terms are added up. After training, the

normalisation and log-transform can be inverted to obtain predictions in fraction of burned area per cell again.

Lyce(y,p) = —[ylog(p) + (1 —y)log(1—p)]. 3)

Here, y € {0,1} is the binary target (fire occurrence) and p € (0,1) is the predicted probability of fire occurrence.

1 _ 2
»CNLL(yaMao}) = 5 log(02)+(y0.72ﬂ) : (4)

Here, y is the observed value, 1 is the predicted mean, and o is the predicted variance of a Gaussian distribution.
2.3 Model Evaluation

We evaluate our predictions for 2003-2019, the common period between the full availability of Terra/Aqua in MODIS and
the ISIMIP fire sector simulations (forced with the GSWP3-WS5ES reanalysis). We evaluate our 3D (time, latitude, longitude)
data cubes for several metrics in different dimensions (spatial, temporal and spatio-temporal). By calculating the Root Mean
Squared Error (RMSE) between the modelled and observed 3D cubes, we obtain an error expressed in % burned area. Similarly,
by calculating the Pearson correlation we obtain a metric that informs on spatial and temporal patterns, ignoring the mean
and scale bias the process-based models and BuRNN have (Hantson et al., 2020; Burton et al., 2024). The spatial pattern is
evaluated by computing the mean over time, resulting in a 2D data cube (latitude, longitude), and we calculate both spatial
RMSE and correlation. Similarly, by taking the sum over the spatial domain (latitude and longitude), we arrive at a monthly
and yearly time series of global burned area. We calculate yearly correlation, which assesses the interannual variability, and

monthly correlation, which represents seasonality.
2.4 Driver Analysis

To better understand the inner workings of BURNN, which is in se a black box model, we employ an explainable AI method.
Integrated Gradients (IG) is an attribution method for differentiable models, like LSTMs, that quantifies the contribution of

each input feature to a specific prediction. IG compares the prediction at an input z to the prediction with a reference baseline
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input x(y and integrates the model’s gradients along a straight-line path between them (Sundararajan et al., 2017). Here, we
applied the global mean for each feature as baseline. Thus, the IG results need to be interpreted as "How strong does each
feature affect burned area in this region compared to the global mean of this feature’. A caveat of this approach is that when a
feature in a region tends to be close to the global mean, then attribution for that feature will be low as the integration between
sample and baseline will be performed over a short path. Moreover, our approach does not inform on the direction of influence
as the direction can vary based on the timing of the feature. For example, precipitation a year before a fire can actually increase
burned area by stimulating vegetation growth and increasing future fuel loads, but precipitation right before a fire typically
negatively affects burned area. As to not average these two effects out, we take the absolute value of each attribution and thus
only look at how important each feature is, not at the actual effect (positive or negative) of each feature. Lastly, highly correlated
features will have their attributed importance spread across each other and hence be lower than if only a single of these features
was provided. For each of the 55 LSTMs, we pass it the test data of 2002-2008 and attribute the predictions of 2005-2008
(using 2002-2004 as spinup period; see Section 2.2) and store this per GFED region. The total number of attributions is the
multiplication of the number of models per gridcell (n=5) by the number of land gridcells in the dataset (n=65797) by each
predicted timestep (n=48, since we don’t attribute the 3 years spinup i.e., 2002-2004) by the number of features (n=24) and by
each considered timestep in the attribution. For the latter, we consider the previous 3 years and the features of the predicted
timestep itself (n=37). Resulting in a total of 14 billion attributions, or around 580 million attributions per feature. We take the
absolute value of these attributions and average this per region per feature. We note here upfront that IG does not provide causal
insights into the real-world processes underlying the data. Instead, IG offers a post hoc explanation of the model’s internal logic
by attributing contributions to input features in a way that reflects the model’s learned associations. When applied to structured
or interdependent data, IG values can be difficult to interpret because feature dependencies may obscure how importance is
distributed, and the method may not capture the full complexity of how the model uses such inputs. Nevertheless, IG can still
provide a useful high-level view of the patterns and dependencies the model has learned. Thus, our analysis aims to characterize

the statistical associations encoded by the model rather than to infer mechanistic relationships in the underlying system.
2.5 Burned Area Reconstruction

After training, we use the models to simulate burned area for the period 1901-2019. During training we employed a 3 year
spinup period (see Section 2.2). Therefore, we add 1901-1903 in front of the dataset so this can be used as spinup. We analyse
this full reconstruction per region and also compare it against a 1997-2019 run to verify the stability of the model.

Moreover, we compare the reconstruction to the FireCCiLT11 product, which is based on Advanced Very-High-Resolution
Radiometer (AVHRR; Otén et al., 2021). FireCCiLT11 is available from 1982-2018, with the exception of 1994. We calculate
the regional 1982-1993 correlations for annual burned area between BuRNN and FireCCiLT11 and compare those to the 1997-
2018 correlations between BuRNN and FireCCiLT11 and between GFEDS and FireCCiLT11. Ideally, the latter values are high,
indicating both observational products are in agreement. If this is the case, then a good reconstruction (1982-1993) should have

a similar correlation (to FireCCiLT11) for both periods.
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Additionally, we compare the reconstruction to regional datasets where available (see subsection 3.3). For Canada, we assess
the National Burned Area Composite (NBAC) and National Fire Database (NFDB) datasets. NBAC is fire polygon database
from Landsat (30m) starting from 1972 and contains data on ~35000 fires (Canadian Forest Service, 2024). NFDB combines
data from various Canadian agencies and contains data for over 700 000 fires between 1959 and 2022 (Hanes et al., 2019). For
the Unites States, we compare our reconstruction to Monitoring Trends in Burn Severity (MTBS) and Fire Occurrence Database
(FOD). MTBS estimates burned area from Landsat and provides data on fires >2km? since 1984 (Picotte et al., 2020). FOD
encompasses fire records from several US agencies for 1992 to 2020 and excludes prescribed burning (Short, 2022). For Brazil
we use data from the MapBiomas project, which produces gridded burned area over Brazil from 1985 to 2023 based on Landsat
(Souza Jr et al., 2020). For Chile, the database is managed by Chilean Forest Service (CONAF) and is also based on Landsat,
it contains information on over 200 000 fires from 1985 to 2021. We obtained the Chilean data from Gincheva et al. (2024).
European Forest Fire Information System (EFFIS) provides us with country-level data on non-agricultural fires for 21 countries
in the EU (excluding Austria, Belgium, Denmark, Ireland, Luxembourg and Malta). The data comes from the individual EU
countries and is available for different time periods for each country, the earliest is 1980 for Portugal. Lastly, we also asses
fires over Australia, making use of data from over 75% of the Australian surface area. Data was provided by different state and
territory agencies and was combined by Gincheva et al. (2024) and is available from 1950 to 2021. All these datasets come
with a number of caveats, especially in the earlier periods. They are (i) often incomplete, (ii) use different protocols between
products, but also for different time periods within a dataset and (iii) they report different things (some exclude agricultural
and/or managed fires, others exclude small fires) (Gincheva et al., 2024). Nonetheless, they are the best independent reference

data we have available.

3 Results
3.1 Model Evaluation

Our global-scale evaluation results highlight that BURNN outperforms all process-based fire models on each of the skill metrics
we consider (Fig. 2) with respect to GFEDS and in all but one metric with respect to FireCCI51 (Fig. A7). Moreover, for spatial
RMSE, spatial correlation and monthly correlation its performance falls in the inter-observational uncertainty. This implies
that BuURNN’s performance for these metrics is indiscernible from observational products and that further improvement is
meaningless until inter-observational uncertainty is decreased. BURNN has a RMSE of 1.59, while the process-based fire
models fall between 1.92 and 3.00 and inter-observational uncertainty is 1.18. Similarly, the correlation factor is 0.7 between
0.01 and 0.51 for the FireMIP models and 0.85 between GFEDS and FireCCI51. The spatial RMSE of BuRNN is 0.49, the
process-based models fall between 0.82 and 1.32 and the inter-observational spatial RMSE is 0.49. The spatial correlation is
0.88 for BURNN, between -0.01 and 0.67 for the FireMIP models and 0.90 for GFEDS and FireCCI51. Monthly correlation,
representing seasonality, is 0.86 for BURNN, between -0.12 and 0.73 for the FireMIP models and 0.87 for FireCCIS1 and
GFEDS. BuRNN’s yearly correlation, representing interannual variability, is 0.87, while it is between -0.37 and 0.76 for the

process-based models (Fig. 2) and 0.94. Three example maps of burned area prediction by BuRNN are shown alongside those
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Spatial Correlation 0.61 0.56 0.42 0.53
Monthly Correlation 0.46 0.53 0.22 0.45
Yearly Correlation 0.51 0.57 0.23 0.08
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Figure 2. Global evaluation scores of BuRNN and the FireMIP models for 2003-2019. Colour scaling has been done based on the normalized
values (value - row mean)/(row standard deviation) with the minimum and maximum values set to -2 and 2, respectively. Better scores (lower

for RMSE and higher for Pearson correlation) are marked in blue, while worse performance is in red.

of GFEDS and the two best-performing process-based models in Figs. A4 to A6. Hence BuRNN scores better than any other
fire model for each considered performance metric (total of 54 model-metric combinations). These evaluation results thus
overall indicate that at the global scale, BuRNN largely outperforms state-of-the-art global wildfire models. Fig. 4 depicts the
mean monthly burned area from GFEDS (upper left), BuRNN (upper right) and the nine FireMIP models. In general, the spatial
pattern of BURNN matches closely the pattern of GFEDS. This is made further clear in Fig. 5, which shows the difference in
mean monthly burned area between BURNN and GFEDS (upper right) and between the FireMIP models and GFEDS. The
density plot in the upper left depicts the distribution of the error over all land pixels for BuRNN and the FireMIP models,
where the difference between GFEDS5 and each of the models is considered the error. The distribution of BURNN falls more

closely around zero than any of the FireMIP models, indicating again better spatial performance.

We also evaluate our results across 14 fire regions defined by Giglio et al. (2010) in Fig. 6 and ??. Interannual variability

is relatively well modelled, although the amplitude is lower than observed for some regions. However, there are differences
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in performance across regions. Regions such as Temperate North America (TENA), Northern Hemishphere South America
(NHSA) and Southern Hemisphere Africa (SHAF) are excellently modelled by BuRNN. In the majority of the regions, BURNN
captures the pattern of the interannual variability well. In the Middle East (MIDE), BuRNN simulates the mean annual burned
area well, while the interannual variability and long-term trend are off. In Boreal Asia (BOAS), our model simulates too
little burned area, which is likely due to having a similar environmental setting as Boreal North America (BONA) where
annual burned area is much lower. In Central Asia (CEAS) and Australia and New Zealand (AUST), interannual variability
is reasonably modelled, but the highest burning years are underestimated e.g., 2001-2008 in CEAS and 1998-2002 in AUST.
Global annual burned area is mostly dominated by the (African) savannah regions; therefore the ability of BUuRNN to capture
mean burned area, interannual variability and long-term trend is reflected in the good global performance Table A2. In most
regions BURNN outperforms the process-based fire models over most metrics (Fig. 3). Lastly, we compare the distributions of
observed and modelled burned area Fig. A23. We note that the rare high burned areas (>50% of land surface area) are generally
not modelled by BuRNN.

Next, we repeat this evaluation procedure using the 2001-2019 FireCCI51 observational dataset as reference. We do this
because our model is specifically trained to predict GFEDS burned area, while the process-based models are not. Although
the absolute values between FireCCI51 and GFEDS differ, a similar pattern as Fig. 3 is observed when comparing BuRNN
and the process-based models against FireCCI51 (Fig. A8). BUuRNN tends to outperform the process-based models, although
less strongly than before. Especially the in the 3D RMSE BuRNN is often not the best performing model anymore. This
makes sense as total burned area in FireCCI51 is about half of GFEDS5 so BuRNN is expected to make larger errors. In
the correlation metrics however, BuRNN still clearly outperforms the process-based models most of the time. There are two
regions/metrics for which the FireCCI51 and GFEDS observational products show notable differences (Table A3). First the
yearly correlation for Southeast Asia (SEAS) between the two observational products is only 0.42. Second, the 3D correlation
in Central America (CEAM) is only 0.58, notably lower than all other regions and similar to the 3D correlation in Equatorial
Asia (EQAS). Therefore, any (dis)similarity of any model with any observational product should be taken with relatively large

observational uncertainty in mind.

RMSE metrics vary in magnitude across different regions as they have different total burned areas. However, also the
correlation metrics show large inter-regional differences. For example, in MIDE, BuRNN has a very low yearly correlation
of 0.13. However, only a single process-based model scores better in this metric. In SEAS, four out of the nine fire models
outperform BuRNN in yearly correlation, but BuRNN still has a high correlation of 0.73 in this region. Similar observations
can be made over the spatial correlation, where Northern Hemisphere Africa (NHAF) and SHAF are the regions with the best
modelled spatial burned area and BONA and TENA the two regions where the spatial pattern is least well modelled of all
regions. The likely reason for the lower spatial correlation (both for BuRNN and the process-based models) in these regions is
the stochastic nature of fires on these spatial and temporal scales. For example, large regions (many pixels) of Canadian forest

are quasi-identical in terms of how their monthly input features look like. In these regions large fires are associated with periods
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Figure 3. Regional evaluation scores of BURNN. Colour scaling has been done based on the ranked values compared to the nine process-
based fire models, with the minimum RMSE and maximum correlations coloured blue (best) and the highest RMSE and lowest correlation

coloured red (worst).

of high fire weather danger, which usually occurs over many pixels on this scale. However, when a large fire event happens
only a few pixels will see very high burned areas, where exactly these will occur is difficult to predict. Therefore, BuRNN and
many process-based models do not predict these large fires in specific pixels but spread out the burned area over a larger area.

This in turn leads to lower spatial predictive power in these regions.
3.2 Drivers of BuRNN

We find that the climatic variables FWI and monthly mean of daily maximum temperature (temp) are the most impactful fea-
tures across all regions (Fig. 8). This suggests that although the Canadian FWI was originally designed to be used in Canadian
forests, it can provide relevant information for many, if not all, regions in the world. However, important to consider here is that
vegetation characteristics are spread across many more variables, giving each individual vegetation feature a lower importance.
Moreover, we see that GDP, a variable often neglected in process-based fire models (Burton et al., 2024), often shows up high
in the importance list. We also see bare ground as important indicator in all but one region (EQAS), which is to be expected as
a high value of bare ground fraction should immediately render all other features for that grid cell irrelevant. Several regional
differences in feature importance can be observed. For example, C4 grasses show up in regions with considerable grassland/sa-
vannah coverage e.g., SHAF, SHAF, Southern Hemishphere South America (SHSA) and AUST. Needleleaf trees (needletree)
only show up in BONA and BOAS, and broadleaf evergreen trees are important in regions with important rainforests e.g.,
in South-America (NHSA and SHSA) and EQAS. Croplands show up in regions with noteable agricultural burning such as
SEAS, EQAS and MIDE (Hall et al., 2024). Interestingly enough, in Europe (EURO) croplands also are an important indicator,

yet Europe does not have as extensive cropland fires as many other regions (Hall et al., 2024). Lastly, monthly average daily
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Figure 4. Mean monthly burned area (in % land surface area) over 1997-2019 for the GFEDS satellite product, BuRNN and the nine FireMIP

models.
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Figure 5. Spatial difference in mean monthly burned area (in % land surface area) over 1997-2019 between GFEDS5 and the model simulations

(including BuRNN). The left upper panel shows the distribution of pixel values per model, the more closely centered around 0, the better the

modelled burned area pattern.
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Figure 8. Feature importances for BuRNN per region, indicating which features affect the predictions of BuRNN most in each region. IG
attribution values indicate the strength by which a feature affects the prediction of a model compared to that feature’s global mean. The top

eight are shown for each region, with climate variables in blue, vegetation variables in green and socio-economic variables in orange.

wind speed is often not present in the top indicators regionally. Even though wind speed is incredibly important for fire spread,
it might (i) be averaged out by the spatial (0.5 by 0.5) and temporal (monthly) scale we are working at, and (ii) it only affects
burned area in the month it is actually burning. This is important as we take the average feature importance over many timesteps

and hence is likely reduced by this aggregating operation. All of this indicates that BURNN tends to prioritize specific features
305 in their expected places.
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3.3 Application: a burned area reconstruction for the 20** Century

Fig. 9 shows the global and regional annual burned area as modelled by BuRNN for the period 1901-2019. BuRNN simulates
that globally, from 1901-1960 there has been a slight increase in burned area, which is mainly attributed to an increase in burned
area in SHAF in that same period. In TENA BuRNN simulates an increasing trend in burned area from 1901 until ~1955 after
which a decline is observed from ~1960 until ~1990. In EURO a first period of high burned area with large interannual
variability is modelled from 1901 until ~1950, after which a stark declining trend is modelled by BuRNN. The latter, more
recent declining trend is also observed in the EFFIS database. Lastly, for SHAF a positive burned area trend is modelled for the
1901-2010 period, after which burned area again decreases in the last ~10 years. Next, we also want to compare the 1982-1997
part of the BuRNN reconstruction to FireCCiLT11. Fig. A2 shows the 1982-2017 regional annual burned area from BuRNN
and FireCCiLT11. The annual burned area correlations for 1982-1993 and 1997-2017 between FireCCiLT11 and BuRNN are
listed in Table A4 along with the 1997-2017 annual burned area correlations between GFEDS and FireCCiLT11. The annual
correlation between the two products is relatively low (0.29). However, the uncertainty in burnt area estimates for this period is
relatively high, and on average the correlation between BuRNN and FireCCiLT11 for the early period is higher than between
the two observational products themselves for 1997-2017 Table A4.

Additionally, we compare our reconstruction to regionally available burned area databases. Fig. 10 shows the burned area
from EFFIS reported by 21 countries in the EU. Both correlation and bias between this EFFIS database and BuRNN is generally
high, with BuRNN simulating higher burned areas than EFFIS. We note however that the reported burned area by EFFIS does
not include cropland fires, as opposed to BuRNN, explaining part of the absolute bias. In Fig. A3, a further comparison is made
for 5 more regions (Canada, US, Brazil, Chile and Australia) where the correlation between national databases and BURNN
is only high in Brazil. The likely explanation for this discrepancy lies in the data collection. Correlation between BuRNN and
EFFIS is high for individual countries, but is close to O when assessed over the 21 European countries combined for the entire
period. As each national dataset inside the EFFIS database has a different start and end date, it makes calculating interannual
variability inconsistent (unless we restrict the database to only those years available in all countries, which is 2017-2019).
Similarly, many of the other national databases, like those in Canada, US and Australia, are composed of regional data sources
that come available in different time periods mixed in with satellite images (usually LandSat) when available. In contrast,
MapBiomas in Brazil has a single data source (LandSat) and thus does not suffer from this, there correlation (1985-1996) with
BuRNN is high (0.74). Therefore, we believe BURNN shows a good correlation with these independent data sources whenever
the data sources have consistent reporting of burned area. Moreover, in Europe a decreasing trend in annual burned area has
been reported, especially in the Mediterranean (Rodrigues et al., 2013; Turco et al., 2016; Chen et al., 2023b). This is in line

with the reconstruction of BuRNN.
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Figure 9. BuRNN’s simulation of total annual burned burned area (in Mha) from 1901 to 2019 (orange) for each of the fourteen GFED5
regions and globally, along with the 1997-2019 GFEDS satellite-based burned area.
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4 Discussion

Scientific performance aside, BURNN has a second benefit compared to process-based models i.e., speed and cost of running
the model. Running the full 1901-2019 reconstruction (for all the 55 models) takes approximately an hour in total on a single
CPU core on our HPC cluster. This is in stark contrast to the computational cost required to run fire-coupled DGVMs, which
require hundreds up to tens of thousands of CPU hours. Of course, the major cost of running BuRNN is in the training phase,
which typically takes around 10 hours on a single GPU (NVIDIA GeForce 1080Ti). Although the speed and performance of this
first version of BURNN are excellent, it does come at the expense of interpretability. As with most deep learning architectures,
BuRNN does not physically relate drivers to responses. We have done effort to alleviate this through our XAI analysis, which
approximates feature importance, but this understanding is not on par with our knowledge of the mechanisms in process-based
models. Conversely, data-driven models can potentially contribute to improved process understanding: if we can unravel why
and how BuRNN outperforms these process-based fire models, we can leverage that knowledge to improve the process-based
models.

During training, we explicitly aimed to prevent overfitting and maximize generalisability in several ways. We employed
a region-based cross validation to counteract the high spatial autocorrelation in our data, we used early stopping, applied
normalization during preprocessing on the training data, batch normalization after the LSTM layer and dropout after the
linear layer. We subsequently evaluated BuRNN in multiple ways over a number of metrics against multiple products. First,
we evaluated the performance of BuRNN by assessing its error scores to GFEDS, taking into account that for any region in
the world, BURNN has never seen data from that region before. Then we calculated spatiotemporal, spatial and temporal error
scores and correlation of BURNN to GFEDS and FireCCI51. We repeated this for the process-based fire models participating in
ISIMIP3a and compared the relative performances, showing that in most regions over most metrics BURNN outperforms state-
of-the-art fire models. Our burned area reconstruction holds major promise for assessing spatial fire patterns in the pre-satellite
era. To assess its quality, we compared our 1982-1993 reconstruction to the FireCCiLT11 remote sensing product and national
census data. However, the low correlation between GFEDS and FireCCiLT11, highlights important observational uncertainty
in the early satellite record, calling for caution when interpreting our Al-based reconstruction relative to FireCCiLT11 in this
period. By comparing our reconstruction of BuRNN to national databases wherever available, we can potentially obtain a sense
of regional product quality. We find particularly good correlation with national databases in the EU and Brazil. Databases from
Canada, US, Chile and Australia showed poor correlation to the BURNN reconstruction, likely caused by the heterogenous
nature of these reference datasets. However, three main sources of uncertainty and drawbacks need to be raised. First, our
model will learn relationships between population densities, GDP and fire occurrence. These might have changed over the last
120 years and nor BuRNN, nor the process-based models can account for this currently. Secondly, BuRNN also relies on three
inputs from DGVMs, which are of course reliant on the performance of the model ensembles for these variables. Lastly, in

BuRNN there are currently no fire-vegetation feedbacks, which are present in most process-based models.
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5 Conclusions

Compared to process-based fire models, BURNN pushes the state of the art in terms of simulation quality of burned area,
demonstrating the potential for machine learning to improve the predictive capabilities in regional-to-global scale fire mod-
elling. As fire behaviour is expected to have changed and continue to change due to climate change, understanding how
they have evolved and will evolve is important for understanding our ecosystems, emissions and land use changes. BURNN
substantially improves our capabilities for simulating fire behaviour in all regions of the world compared to state-of-the-art
process-based fire models. However, as a machine learning model its interpretability remains below that of conventional fire
models. To address this limitation, we applied XAl to unravel some of the inner workings of BuRNN. From this, we conclude
that in most regions, BURNN prioritizes features that are relevant for that region. This includes, for example, FWI and temper-
ature in all regions, C4 grasses in regions with notable savannah areas and tree subtypes in regions with extensive forests. As an
application, we apply BuRNN to reconstruct global monthly burned area at 0.5° x 0.5° spatial resolution over the period 1901-
2019. While a valuable dataset for studying historical burned area patterns, it is a challenge to assess the quality of the product,
given considerable discrepancy between different satellite-based burned area products and between the satellite products and
national inventories. As the effects of climate change and socio-economic drivers on fire behaviour are largely unknown (quan-
titavely), BURNN can aid in better unravelling past burned area patterns, which can improve carbon cycle modelling, help fire

risk prevention and inform policy makers.
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Figure Al. “Division of the 43 regions into 11 folds, used for training the models. The regions marked in yellow represent the 3-4 AR6
regions in that fold. During training we set each fold aside once, then train 5 models on the remaining 10 folds, each time with 8 folds as
training and 2 folds as validation. E.g., Fold 1 is set aside as testing fold, then folds 2-3 are used as validation and folds 4-11 as training.
Then, folds 4-5 are used as validation and folds 2-3 and 6-11 as training. This is followed by folds 6-7 as validation and folds 2-5 and 8-11

as training, etc.”
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Figure A2. Annual sums of regional burned area by BURNN (orange) and the FireCCiLT11 observations (blue) for 1982-2018.
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Figure A4. Comparison of BURNN to GFEDS5 along with two process-based models (SSiB4 and CLASSIC) for April 2007.
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Figure AS. Comparison of BURNN to GFEDS5 along with two process-based models (SSiB4 and CLASSIC) for August 2008.
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Figure A6. Comparison of BURNN to GFEDS5 along with two process-based models (SSiB4 and CLASSIC) for December 2009.
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BuRNN CLASSIC ELM-ECA  INFERNO- S?I:‘It/IJIEE(SE- GUESS- Lfgl_\l/lzll'sg- OR%TJZ?.EE- TRIFFID- VISIT

VN6P3 BLAZE SPITFIRE FIRE

RMSE 1.81 2.00 1.95 2.1 1.73
Spatial RMSE 0.59 0.60 0.70 0.69
Correlation 0.32 0.27 0.25 0.27
Spatial Correlation 0.61 0.58 0.44 0.54
Monthly Correlation 0.49 0.63 0.49 0.49
Yearly Correlation 0.59 0.40 0.26 0.10

good average bad

Figure A7. Global evaluation scores of BURNN and the FireMIP models compared to FireCCI51 for 2003-2019. Colour scaling has been
done based on the normalized values (value - row mean)/(row standard deviation) with the minimum and maximum values set to -2 and 2,

respectively. Better scores (lower for RMSE and higher for Pearson correlation) are marked in blue, while worse performance is in red.
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AUST BOAS BONA CEAM CEAS EQAS EURO Global MIDE NHAF NHSA SEAS SHAF SHSA TENA

RMSE 048 | 092 | 1.12 | 0.68
Spatial RMSE 0.10 | 0.51 | 0.27 0.11 1.36 1.43
Correlation 0.27
Spatial Correlation 0.35 0.13
Monthly Correlation 0.83 | 0.53 0.77 0.88
Yearly Correlation 0.72 0.17 0.72
L [ T

best average worst

Figure A8. Regional evaluation scores of BURNN compared to FireCCI51 for 2003-2019. Colour scaling has been done based on the ranked
values compared to the nine process-based fire models, with the minimum RMSE and maximum correlations coloured blue (best) and the

highest RMSE and correlation coloured red (worst).
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Yearly Correlation
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ELM-ECA  INFERNO- Scl;aE%SE- GUESS- L?g!\'/lzll'gg- OR%T&?_EE- TRIFFID- VISIT
VNG6P3 SPITFIRE FIRE
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0.71 0.92
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0.55 0.41
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Figure A9. Evaluation scores of BURNN and the FireMIP models in AUST. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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BuRNN CLASSIC ELM-ECA INFERNO- SCIEI\L/JIE;SE- GUESS- Ll‘]:é!\[/lzlfsg- OR%T(I;?.EE- TRIFFID- VISIT
VN6P3 SPITFIRE FIRE
BLAZE
RMSE 1.18 1.32 1.31 1.34 1.35 1.31 1.34 1.30 1.51
Spatial RMSE 0.27 0.37 0.48 0.36 0.36 0.38 0.37 0.36 0.36
Correlation 0.05 0.08 0.09 0.06 0.04 0.14 0.03 0.19
Spatial Correlation 0.41 0.22 0.26 0.35 0.21 0.33
Monthly Correlation 0.08 0.48 0.15 0.68 0.02 0.72
Yearly Correlation 0.35 0.22 -0.13 0.24 -0.02 -0.04 -0.12

Figure A10. Evaluation scores of BuRNN and the FireMIP models in BOAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.

32



RMSE

Spatial RMSE

Correlation

Spatial Correlation

Monthly Correlation

Yearly Correlation

LPJ-

JULES- LPJ- SSIB4-
BuRNN CLASSIC ELM-ECA INFERNO- Scl;aEﬁRSE- GUESS- Ll:g!\'/lzll'sg- OR%,ITCI:?_EE- TRIFFID- VISIT
VN6P3 SPITFIRE FIRE
BLAZE
0.46 0.44 0.43
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0.48 0.70
0.26 -0.05

Figure A11. Evaluation scores of BURNN and the FireMIP models in BONA. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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BuRNN CLASSIC ELM-ECA  INFERNO- SCISI\LIJIEI??SE- GUESS- Ll:é!\'/lzll'sg- OR%TCI:?_EE- TRIFFID- VISIT
VN6P3 SPITFIRE FIRE
BLAZE
0.98 1.21 1.21
0.39 0.57 0.69
0.27 0.22 0.21
0.19 0.13 0.16
0.89 0.91 0.72 0.70
0.85 0.85 0.86 0.18

Figure A12. Evaluation scores of BuRNN and the FireMIP models in CEAM. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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BuRNN CLASSIC ELM-ECA INFERNO- S(?HE%SE-_ GUESS- L?é!\[/lzll'sg- OR%T(I;?.EE- TRIFFID- VISIT
VN6P3 SPITFIRE FIRE
BLAZE
RMSE 1.35 1.33 1.54 1.66 1.28 1.45
Spatial RMSE 0.37 0.44 0.45 0.50 0.40
Correlation 0.03 0.00 0.01 0.09 0.08 -0.00
Spatial Correlation 0.02 -0.12 -0.05 0.24 0.08 -0.02
Monthly Correlation 0.58 0.20 0.42 0.21
Yearly Correlation 0.28 0.09 0.03 0.33

Figure A13. Evaluation scores of BURNN and the FireMIP models in CEAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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0.66 0.49 0.54 0.60 0.72
0.33 0.18 0.21 0.20 0.28
0.39 0.30 0.13 0.18 0.20
0.41 0.22 0.09 0.13 0.25
0.89 0.83 0.88 0.77 0.86
0.95 0.86 0.93 0.85 0.94

Figure A14. Evaluation scores of BuURNN and the FireMIP models in EQAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.

36



LPJ-

JULES- LPJ- SSIB4-

BuRNN CLASSIC ELM-ECA INFERNO- S(IEI\L/JIE;SE- GUESS- LI‘I:é!\IA:II_R?g- OR%T(I;?.EE- TRIFFID- VISIT

VN6P3 SPITFIRE FIRE

BLAZE

RMSE 0.43 0.49 0.42 0.56 0.49 0.73 0.93

Spatial RMSE 0.18 0.16 0.15 0.20 0.18 0.38
Correlation 0.05 0.01 0.03 0.04 0.06 0.04 0.06
Spatial Correlation 0.00 -0.02 0.05 0.04 0.12 0.03 0.12

Monthly Correlation 0.44 0.57 0.48 0.47 0.49 0.56
Yearly Correlation -0.05 0.19 -0.01 -0.04 0.39 0.28

Figure A15. Evaluation scores of BuRNN and the FireMIP models in EURO. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.

37



LPJ-

JULES- LPJ- SSIB4-
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VN6P3 SPITFIRE FIRE
BLAZE
RMSE 0.68 0.72 0.58 0.68
Spatial RMSE 0.16 0.30 0.33
Correlation 0.00 0.07 0.07 0.01
Spatial Correlation -0.01 0.20 0.11 0.01
Monthly Correlation 0.63 0.61
Yearly Correlation 0.08 0.04 -0.18 -0.26

Figure A16. Evaluation scores of BURNN and the FireMIP models in MIDE. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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JULES- LPJ- SSIB4-
BuRNN CLASSIC ELM-ECA INFERNO- S(fhl-/JIEI??SIE- GUESS- L?él\lel_gg- OR&TCI:?_EE- TRIFFID- VISIT
VN6P3 SPITFIRE FIRE
BLAZE
RMSE 4.74 4.95 4.16 5.14
Spatial RMSE 217 1.95 1.76 2.53
Correlation 0.38 0.28 0.20 0.56
Spatial Correlation 0.43 0.57 0.32 0.65
Monthly Correlation 0.85 0.53 0.61 0.90
Yearly Correlation 0.40 0.45 0.66 0.27

Figure A17. Evaluation scores of BuRNN and the FireMIP models in NHAF. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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VN6P3 SPITFIRE FIRE
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RMSE 0.75 0.79 1.37 1.55 1.28 1.10 0.83 1.02
Spatial RMSE 0.31 0.55 0.43 0.39 0.52 0.41 0.45 0.44 0.70
Correlation 0.58 0.36 0.48 0.30
Spatial Correlation 0.77 0.71 0.63 0.55 0.58
Monthly Correlation 0.84 0.83 0.86
Yearly Correlation 0.64 0.74 0.43 0.38

Figure A18. Evaluation scores of BuRNN and the FireMIP models in NHSA. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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Figure A19. Evaluation scores of BURNN and the FireMIP models in SEAS. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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Figure A20. Evaluation scores of BURNN and the FireMIP models in SHAF. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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VN6P3 SPITFIRE FIRE
BLAZE
RMSE 1.18 2.08 1.81 2.27 1.25 1.01 1.28
Spatial RMSE 0.70 0.69 0.91 0.98 0.56 0.75
Correlation 0.34 0.26 0.17 0.27 0.26
Spatial Correlation 0.43 0.38 0.20 0.32 0.20
Monthly Correlation 0.94 0.90 0.79 0.90 0.85 0.58 0.90 0.92 0.62
Yearly Correlation 0.76 0.70 0.50 0.47 0.66 0.50 0.67 0.57

Figure A21. Evaluation scores of BURNN and the FireMIP models in SHSA. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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Figure A22. Evaluation scores of BuURNN and the FireMIP models in TENA. Colour scaling is based on the normalized values with the

minimum and maximum values set to -2 and 2 (sigma). Better scores are marked in blue, while worse performance is in red.
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Figure A23. Histograms of the observed (blue) and modelled (orange) burned area (in % land surface area) for 1997-2019.
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Table A1. Models used for the calculation of the ISIMIP Biome characteristics.

cVeg

GPP

LAI

JULES-ES- ORCHIDEE- SSiB4- VISIT
VNG6P3 MICT TRIFFID-Fire
X X
X X X X
X X X
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Table A2. Theil-Sen slopes of observed and modelled annual burned area for 2003-2019. The cells depict mean £ 2SD of annual burned

area trend in Mha per year.

GFEDS BuRNN

Global -845+3.09 -4.78+2.21
BONA -0.01 £0.12 -0.00 & 0.08
TENA  -0.05£0.10 -0.11+0.17
CEAM -0.08 £0.25 -0.09 +0.25
NHSA -0.09£0.20 -0.09 +0.16
SHSA  -1.81+1.17 -0.36 £0.95
EURO -0.12£0.09 -0.07+£0.10
MIDE  0.05+0.09 -0.01 +£0.04
NHAF -370£2.24 -124+1.64
SHAF -059+1.15 -157+1.44
BOAS -120£1.02 -0.05=+0.36
CEAS  -125£091 -042+0.30
SEAS -0.08 £098 -0.30 £0.52
EQAS  -0.11£0.24 -0.03+0.45
AUST  -0.10£2.09 -0.04 +1.07
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Table A3. Regional comparison of the observational products GFEDS and FireCCI51.

BONA TENA CEAM NHSA SHSA EURO MIDE NHAF SHAF BOAS CEAS SEAS EQAS AUST

RMSE 029 030 096 053 073 025 020 240 237 086 082 261 036 1.08
Correlation 077 077 058 082 074 079 081 088 08 076 076 055 071 092
Spatial RMSE 005 009 044 021 031 008 007 109 112 021 022 105 012 021

Spatial Correlation 0.65 069 065 08 072 092 09 091 088 085 080 0.62 081 098
Monthly Correlation 0.86 0.77 093 094 093 08 092 098 099 095 081 08 095 098
Yearly Correlation 096 090 088 094 080 08 097 094 068 094 091 042 098 098
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Table A4. Regional correlation of annual burned area of BuRNN and FireCCiLT11 (1982-1993 and 1997-2018) and between FireCCiLT11
and GFEDS (1997-2018).

BuRNN-FireCCiLT11: 1982-1993  BuRNN-FireCCiLT11: 1997-2018  GFEDS5-FireCCiLT11: 1997-2018

BONA 0.52 -0.01 -0.07
EURO 0.67 0.18 0.05
MIDE -0.08 -0.41 0.29
BOAS 0.15 -0.19 -0.04
TENA 0.32 0.05 -0.23
CEAS -0.28 0.26 0.29
CEAM 0.61 0.07 0.12
SEAS -0.01 -0.59 0.32
NHSA -0.01 0.25 0.24
EQAS -0.17 -0.10 -0.06
SHSA 0.27 -0.25 0.23
NHAF 0.26 0.47 0.52
SHAF 0.55 0.53 -0.06
AUST -0.01 -0.06 0.19

49



390

395

400

Code and data availability. All code for the pre-processing, training and post-processing of BuRNN is openly accessible on GitHub (https:
//github.com/VUB-HYDR/BuRNN)) and is archived on Zenodo under copyright license CC BY 4.0 (https://zenodo.org/records/17834206;
Lampe, 2025a). The 1901-2019 burned area simulation of BuRNN is available on Zenodo as well along with all raw and pre-processed data to
train BuRNN (https://zenodo.org/records/17778519; Lampe, 2025b). GFEDS, HistLight and WGLC can be retrieved originally from Zenodo
(https://zenodo.org/records/7668424, https://zenodo.org/records/6405396 and https://zenodo.org/records/15215319; Chen et al., 2023a; Ka-
plan and Lau, 2022b; Kaplan, 2025). The original ISIMIP data is also available through the ISIMIP data repository (https://data.isimip.org/).
The CLM data is automatically generated during the pre-processing for a CLM model run.
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