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10 Abstract. Arctic rivers represent important components of the Arctic and global hydrological and climate systems,
serving as dynamic conduits between terrestrial and marine environments in some rapidly changing regions. They
transport freshwater, sediments, nutrients, and carbon from vast watersheds to the Arctic Ocean and affect ocean
circulation patterns and regional climate dynamics. Despite their importance, modeling Arctic rivers remains
challenging because of sparse data networks, unique cryospheric dynamics, and complex responses to

15 hydrometeorological variables. In this study, a novel hybrid deep learning model is developed to address these
challenges and predict Arctic River discharge by incorporating Kolmogorov-Arnold Networks (KAN), Long Short-
Term Memory, and the attention mechanism with seasonal trigonometry encoding and physics-based constrains. It
integrates several novel components: 1) The KAN-based deep learning component learns and captures intricate
temporal patterns from nonlinear hydrometeorological data; 2) Explicit physical constrains designed for the

20 characteristics of permafrost-dominated watersheds govern snow accumulation and melt processes through the
architectural design and loss function; 3) The seasonal variations are accounted for using trigonometry functions to
represent cyclical patterns; 4) A residual compensation stricture allows the proposed model to revisit systematic
errors in initial predictions and helps capture complex nonlinear processes that are not fully represented. The
Kolyma River, which is significantly dominated by the permafrost, is adopted to test the performance of the newly

25 developed model. It obtains more robust and accurate predictive performance compared to baseline models. The role
of physical constraints, the residual compensated architecture, and the trigonometry encoding are assessed by
ablation analysis. The results indicate that these components positively contribute to improving the predictive
performance. This novel approach addresses the unique challenges of hydrological forecasting in cold, permafrost-
dominated regions and provides a robust framework for predicting Arctic River discharge under changing climate

30 conditions.

1. Introduction

Arctic rivers are integral to the Arctic's hydrological cycle and global climate systems and have undergone

significant changes in recent years (Rawlins and Karmalkar, 2024). They are essential for transporting vast amounts
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of freshwater, sediments, and organic matters from terrestrial sources to the Arctic Ocean and sustaining the

35 biodiversity of the region and supporting unique ecosystems (Bring et al., 2016; Tank et al., 2023a; Vonk et al.,
2025). The intricate connections between Arctic rivers and other cryospheric and atmospheric components make
them highly sensitive to climate change (Feng et al., 2021). The response to climatic shifts, including changes in
precipitation patterns, temperature regimes, snowmelt timing, and evapotranspiration rates in Arctic watersheds, has
far-reaching implications for ecosystem stability and introduces significant uncertainties into future climate

40  projections (Peterson et al., 2002).
Predicting hydrodynamics of Arctic rivers remains challenging due to the region’s unique environmental conditions,
data scarcity, complex feedback mechanisms, and their nonlinear responses to temperature, rainfall, and
evapotranspiration. For example, warming temperatures can accelerate permafrost thaw and alter hydrological
cycles in Arctic regimes. Temperature thresholds play a crucial role, particularly around the 0°C mark, where phase

45 changes in precipitation and surface water create abrupt shifts in river dynamics (Prowse et al., 2011; Walvoord and
Kurylyk, 2016). These temperature dependents transitions are further complicated by permafrost thawing, which
destabilizes riverbanks, modifies groundwater flow paths, changes groundwater-surface water interactions, and
increases sediment and nutrient loads, creating intricate feedback loops and complicates flow predictions
(McClelland et al., 2004; Wang et al., 2021).

50 Over the last several decades, significant efforts have been directed towards forecasting the responses of river
discharge to hydrometeorological conditions and understanding the underlying driving mechanisms (Gelfan et al.,
2017; Jin et al., 2024a; Wang et al., 2021; Zhang et al., 2023; Zhou and Zhang, 2023a). These approaches can be
broadly categorized into process-based models and empirical models. Process-based models simulate detailed
physical and chemical processes within hydrological systems. For example, Gelfan et al. (2017) employed process-

55 based hydrological models, including the HY drological Predictions for the Environment (HYPE) and ECOlogical
Model for Applied Geophysics (ECOMAG), to simulate the hydrodynamics of the Lena and Mackenzie Rivers and
assessed the impacts of climate change. Similarly, Krogh et al. (2017) developed a physics-based hydrological
model that accounted for key hydrological processes for quantifying water losses at the tundra-taiga transition in a
small Arctic basin. While these process-based approaches yield valuable insights into the underlying hydrological

60 processes and mechanisms, their successful implementation usually requires extensive parameterization and detailed
characterization of environmental conditions, such as topography, spatially distributed hydrological parameters, and
vegetation patterns. Such comprehensive data requirements pose significant challenges in Arctic regions, where
remote locations, limited infrastructure, and harsh climatic conditions constrain field measurements and sustained
monitoring campaigns (Gao et al., 2020). In contrast, empirical models, particularly data-driven approaches, focus

65 on establishing direct mappings between input and output variables without requiring comprehensive understanding
of the underlying hydrological systems (Zhou and Zhang, 2022b).
Recently, data driven models have been increasingly developed and used to simulate hydrodynamics and
characterize hydrological systems in Arctic regions. For instance, Zhang et al. (2023) simulated the streamflow
changes of several major Arctic rivers with meteorological conditions using a Support Vector Regression model.

70 This machine learning model was then used to estimate responses of these rivers to the elevated temperature and
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precipitation conditions. Singh et al. (2020) implemented several convolutional neural networks models (CNN),
including UNet, SegNet, Deeplab and DenseNet, to estimate surface concentration of river ice. Their approach
demonstrated improved estimation performance compared to existing methods by addressing the key challenge of
noise and errors in the limited available training data. Sergeev et al. (2024) developed a hybrid model integrating

75 wavelet transform with long short-term memory (LSTM) networks for predicting Arctic methane concentration with
greenhouse gases data monitored from the Belyy Island in Russia.
Despite these advances, significant challenges remain in modeling intricate river systems. Current deep learning
approaches often struggle to capture complex and nonlinear relationships between meteorological variables and river
discharge (Jin et al., 2024b; Zhou et al., 2024a). To improve the performance when dealing with nonlinear data such

80 as rainfall-runoff relationship, many technologies have been developed. For example, Basu et al. (2022) proposed a
nonlinear autoregressive model with exogenous variables for flooding prediction in Ireland. Bakhshi Ostadkalayeh
et al. (2023) used Kalman Filter (KF) to manage nonlinear systems and improve LSTM performance for forecasting
streamflow. Zhou et al. (2024b) integrated the ensemble empirical model decomposition technology with temporal
fusion transformers and developed a new hybrid deep learning model for discharge prediction, which outperformed

85 baseline models. Liu et al. (2024) proposed Kolmogorov-Arnold Networks (KAN) based on the theoretical
foundation in the Kolmogorov-Arnold theorem. Unlike traditional neural networks that use fixed activation
functions, the KAN model parameterized learnable activation functions on the connections between nodes, which
significantly enhances the model's capacity to capture complex nonlinear relationships in data.
In addition, the scarcity of training data in Arctic regions limits the generalization of traditional deep learning

90  models, leading to less satisfying performance (Alzubaidi et al., 2023). Physics-informed neural networks (PINN)
and physics-guided deep learning approaches offer a promising solution by incorporating physical constraints and
domain knowledge into the learning process (Karniadakis et al., 2021). By embedding physical laws into the loss
function, these hybrid approaches can improve prediction accuracy while ensuring physically consistent results
(Zhong et al., 2024). A variety of physics-informed deep learning models have been developed and demonstrated

95 promising results in various hydrological applications. For example, Yang et al. (2020) proposed a hydrological
model that integrated the physical process with a machine learning model for simulating daily streamflow. This
hybrid model obtained accurate predictions for long-term daily streamflow with limited training data and
demonstrated the effectiveness of this approach for reducing data requirements. Xie et al. (2021) integrated physical
mechanisms into a deep learning model through both modified loss functions and synthetically generated training

100 samples for forecasting streamflow. Their model outperformed traditional models and highlighted the value of
incorporating physical constraints into deep learning frameworks for hydrological modeling.
To address these challenges and improve predictive performance in permafrost-dominated Arctic rivers, a novel
hybrid residual compensated deep learning model that integrated seasonal patterns, physics-based constraints, KAN,
LSTM and attention is proposed for forecasting Arctic River discharge in this study. This newly proposed model
105 introduces several key innovations that serve specific purposes: (1) a KAN-based deep learning model coupled with

LSTM and the attention mechanism, which enables sophisticated feature representation and temporal patterns

recognition for nonlinear hydrometeorological data; (2) physical constrains that explicitly govern snow
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accumulation and melt processes, which ensure physical consistency through the architectural design and loss
function; (3) a residual compensation structure that combines a physics-informed main network with a specialized
110 residual network, which allows the model to capture physically governed patterns and local anomalies; and (4) a
temporal pattern recognition system that incorporates cyclical encoding of seasonal features for seasonal variations.
This integrated approach is specifically designed to address the challenges of hydrological forecasting in cold,
permafrost-dominated regions, where snow accumulation and melt play a crucial role in seasonal discharge patterns.
The innovative components are integrated to enhance its predictive accuracy, physical consistency, and ability to

115 handle complex seasonal dynamics and hydrological processes that characterize Arctic River systems.

2. Study area and data acquisition

To assess the performance, the newly developed model is tested on the Kolyma River located in the northeaster
Siberia. The Kolyma River is one of the major Arctic rivers with a mean annual discharge of 136 km?/year and the
largest river system draining into the East Siberian Sea. The Kolyma watershed is Earth’s largest watershed that is

120 100% underlain by continuous permafrost (Holmes et al., 2012). The extensive permafrost coverage makes the
Kolyma watershed particularly sensitive to climate warming, leading to its unique hydrological behaviors (Spencer
et al., 2015). With a drainage basin of approximately 647,000 km?, the Kolyma River flows through diverse
landscapes including the Kolyma Mountains, permafrost regions, and tundra ecosystems. The river's discharge
regime is characterized by a distinctive seasonal pattern, with peak flows occurring during the spring snowmelt

125 period (May-June) and low flows during the winter months when the river is ice-covered (Bring et al., 2016).
In this study, monthly temperature (7), precipitation (P) and potential evapotranspiration (PET) are used as input
variables for forecasting discharge values of the Kolyma River. The Kolyma discharge records (1978-2020) at the
Kolymsk gauge station (68.73°N, 158.72°E) are obtained from the ArcticGRO Discharge Dataset (Version
20231204). Note that the historical discharge data of the Kolyma River is not used as input variables in this study,

130  which allows the model to establish direct relationships between hydrometeorological drivers and river discharge
without incorporating autoregressive components, thereby focusing specifically on how climatic factors influence
discharge patterns in permafrost-dominated watersheds. Gridded monthly average 2-m temperature and potential
evapotranspiration with a resolution of 0.5° are obtained from CRU TS v. 4.07 (Harris et al., 2020). Additionally,
monthly precipitation data at a 0.5° resolution are obtained from the Global Precipitation Climatology Centre

135 (GPCC) dataset (Schneider et al., 2022). The complete dataset spans from January 1978 to December 2020, which is

partitioned into training (80%) and testing (20%) datasets for model development and performance assessment.



https://doi.org/10.5194/egusphere-2025-3540
Preprint. Discussion started: 8 September 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

140

145

150

155

Pan-Arctic watershed

Permafrost
coverage

ARCTIC
OCEAN

")
AVGREENLAND %Y

£
’ 1DENMAF’(V%‘

ICELAND. RUSSIA

FINLAND

NORWAY g\ eren

Figure 1: The geographic location of the Kolyma River, modified from Tank et al. (2023b).

3. Methodology

Hydrological forecasting in Arctic and permafrost-dominated regions presents unique challenges due to the strong
influence of snow accumulation, permafrost thawing, and seasonal melt dynamics on river discharge. To address
these issues, a novel hybrid residual-compensated physics-informed KAN-LSTM with attention model (RCPIKLA)
that leverages strengths of multiple deep learning structures while embedding physical constraints related to
snowmelt energy balance and seasonal variations directly into the training process for improved prediction accuracy
and reliability.

As shown in Fig. 2, monthly precipitation, temperature and evapotranspiration data are preprocessed and
standardized to ensure all features contribute appropriately to the training process. In regions dominated by
permafrost, snow accumulation and melt typically exhibit strong seasonal periodicity (Andersson et al., 2021;

Ernakovich et al., 2014). To include these cyclical patterns and facilitate smooth temporal transition, the month of

. . . . . . 2 2
the year is encoded using trigonometric transformations as Monthg;, = sin (%) and Month.,s = cos (%),

where m refers to the month m € {1,2, ..., 12}. The trigonometric features are concatenated with other input
variables, including temperature, precipitation and evapotranspiration, and fed into the residual-compensated
physics-informed KAN-LSTM model with attention. The newly proposed model leverages the KAN component as a
feature transformation layer to extract and learn complex nonlinear patterns from hydrological and meteorological
datasets. The LSTM component captures short- and long-term dependencies and effectively simulates sequential
patterns and discharge variability. To further refine temporal learning, the attention mechanism is introduced and
integrated, which allows the proposed model to selectively emphasize historically significant time steps, particularly
those driving major and seasonal hydrological transitions. An important innovation is the residual compensation

structure, which explicitly addresses the challenges of predicting extreme discharge events. By learning systematic
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error patterns, the residual structure can adjust simulations based on residual predictions and improve performance
during high-variability sceneries. Unlike conventional data-driven models that ignore fundamental physical

160 constraints, the newly developed model incorporates physics-informed loss functions, ensuring that snow
accumulation and melt timing adhere to thermodynamic energy balance principles. Additionally, the model employs
seasonality-aware encoding using trigonometric transformations to recognize the cyclic nature of hydrological
processes. This architecture is designed to provide an accurate and robust framework for forecasting river discharge

in Arctic and permafrost-dominated environments.
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First stage: physis-enhanced prediction

[ Final outputs Qfiar, J

Figure 2: The architecture of the residual compensated physics-informed KAN-LSTM model with

attention.

165 3.1. Kolmogorov-Arnold Networks

In the Kolmogorov-Arnold representation theorem, it states that any continuous multivariate function can be
represented as a superposition of continuous functions of a single variable (Kirkova, 1992). Based on this
theoretical foundation and the mechanism of decomposing the multivariate function into various univariate
functions, the Kolmogorov-Arnold Networks model (KAN) was developed by replacing all weight parameters with
170 univariate functions parameterized as splines, rather than using Multi-Layer Perceptrons (MLPs) in traditional
neural networks (Liu et al., 2024). This structure allows the KAN model to dynamically adapt its processing to
various aspects of the data and emphasize finer details by modulating the granularity of these splines (Granata et al.,

2024). With learnable activation functions and structured transformations, it can effectively extract nonlinear
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relationships and capture intricate patterns, making it well-suited for modeling complex hydrological systems like
175 Arctic River discharge.
In this newly developed hybrid model, the KAN module is used as an advanced feature transformation block and a
nonlinear feature extractor that processes raw hydrological and meteorological inputs before the sequential modeling
stage. The architecture of the KAN module is composed of several parts: 1) input expansion: the raw input features
including precipitation, temperature and evapotranspiration are first projected into a higher dimensional space by a
180 fully connected layer that increases the representational capacity. The dimension expansion of the input features
allows the model to isolate some nonlinear interactions between variables, such as temperature-driven snowmelt
thresholds or precipitation-phase transitions; 2) Nonlinear activation: a Gaussian Error Linear Unit (GELU)
activation is then applied to the expanded features. The GELU function introduces smooth nonlinearity and enables
the network to capture intricate patterns in the input data, which approximates the role of univariate functions in the
185 Kolmogorov-Arnold theorem while avoids the computational overhead of spline optimization; 3) Dimensionality
reduction: a second linear layer then compresses the activated features down to a lower-dimensional space which is
then fused with physics-based constrains, such as snowpack dynamics and fed into the LSTM-Attention network for
temporal integration. It aims at effectively distilling the information into a compact, yet expressive representation
that is more amenable for subsequent processing. The KAN transformation and processing steps can be expressed as

190 the following equations accordingly:

H, = W,X + by, 1)
H, = GELU(H,), 2
KAN(X) = W,H, + b,, 3)

where X is the input features; W, and W, refer to the expansion and compression weight matrices; b; and b are the
195 corresponding bias vectors; GLUE is the Gaussian Error Linear Unit activation function.

Neural Networks with MLP Kolmogorov-Arnold Networks

Learnable activation
functions on edges

Fixed activation
functions on nodes

Learnable weights
on edges

All neurons have a fixed activation function

Edges can have different activation functions

Figure 3: The structure of Kolmogorov-Arnold Networks (KAN) compared to MLP.

3.2. Long Short-Term Memory

Following the Kolmogorov-Arnold transformation, the processed input features will enter the Long Short-Term
Memory (LSTM) module. LSTM is a modified variant of recurrent neural networks (RNNs), specifically designed
to address the vanishing gradient problem while learning long-term dependencies in sequential data (Hochreiter and

200 Schmidhuber, 1997). By incorporating the gating mechanism and a hidden state, LSTM can efficiently regulate
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information flow through the network and selectively remember or forget information in long sequences. Because of
its ability to capture temporal dependencies inherent in river systems, the LSTM model has been widely used in a
variety of hydrological models (Gao et al., 2020; Zhou and Zhang, 2023b). It aims at learning and identifying
important historical patterns in meteorological variables (such as temperature and precipitation) that influence

205  current river discharge, while simultaneously recognizing the varying time lags between these inputs and their
hydrological responses. This capability makes LSTMs especially suitable for modeling Arctic River systems, where
discharge patterns are influenced by both immediate meteorological conditions and longer-term processes such as
snowmelt and permafrost dynamics (Kratzert et al., 2018).
The memory cell of LSTM is primarily composed of three gates: the input gate (i;), forget gate (f;), and output gate

210 (0s). The input gate determines which new information should be stored in the cell state, while the forget gate
decides what information should be discarded from the previous cell state. The output gate controls how much of the
cell state should be exposed to the next layer. This gating mechanism allows LSTMs to maintain and update relevant
information over long sequences while filtering out irrelevant details (Hochreiter and Schmidhuber, 1997). At any
time step ¢, the hidden state (%) and the cell state (c;) are calculated based on the previous hidden state (/..1) and cell

215 state (c..1) with three logic gates as follows:

fo = o(WpX, + Ushy_y + by), )
i, = o(W;X; + Uih,_, + b)), )
c; = tanh(W.X, + U h,_, + b,), 6)
¢=iQ®ct—1)+i Qcf, @)
220 o, =o(W,X; + Uyh,_, +b,), ®)
h, = o, @ tanh(c,), )

Where c;, c¢, and h, are the cell state, candidate cell state, and hidden state at time step ¢, respectively; X, refers to
the input variables processed by the KAN module; W, U and b are weight matrices and bias vectors whereas
subscripts £, i, ¢, and o denote the forget gate, input gate, candidate cell, and output gate; o and tanh are the sigmoid

225 and hyperbolic tangent activation functions; & is the element-wise operation.

© @ ©

Ce—2 N Ct-1 /H Ct Ct+1
ftl i 0
11849
i 1

he—2 he_y N J h htsq

Figure 4: The architecture of the LSTM model.

3.3. Attention
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A global attention mechanism is incorporated into the LSTM component of the newly proposed model to assign
different importance weights to past time steps when making predictions, which enables the model to dynamically
weight and aggregate information across temporal sequences. As the influence of historical conditions on current
230 discharge exhibits complex temporal dependencies in hydrological modeling, the attention mechanism can help
capture both short-term fluctuations and long-range interactions in input variables. The attention score for each time

step can be computed as (Vaswani et al., 2017):

e, = v tanh(W_h; + b,), (10)
__exp(er)
%= Zjexp(e;)’ (an
235 C=3,ah, (12)
Q = W.C +b,, (13)

where I and b denote weight and bias parameters; e, refers to the attention score at time step #; h, is the hidden
state from the LSTM component at time step #; v is a learnable vector which determines the importance of each
hidden state; a, is the attention weight; C is the context vector that represents a weighted sum of all hidden states; Q

240  refers the discharge prediction using the context vector calculated from the context vector.

3.4. Physics-informed mechanisms

Physics-informed neural networks improve hydrological modeling by combining established physical information
with deep learning architectures, which creates a synergistic approach that leverages the strengths of both
methodologies. In this study, a hybrid physics-informed approach is implemented through two complementary

245 mechanisms: 1) a dedicated snowpack layer directly integrated into the model architecture, and 2) a physics-
constrained loss function. The snowpack layer explicitly simulates snow accumulation and melting processes based
on temperature and precipitation. It tracks precipitation falling as snow when temperatures drop below freezing (7 <
0°C, where T represents temperature) and computes snowmelt using a temperature-dependent rate function (Hock,
2003):

250 M, = f,, - max(T,0), (14)
where M, is the melting rate, and f,, is the melting factor coefficient. The melting factor of 0.5 mm/°C/day is adopted
in this study based on empirical studies of Arctic snowpack dynamics (Hock, 2003). The snowpack mass balance is
estimated as follows (DeWalle and Rango, 2008):

S; = S + PO — M, (15)

255 where S; and S;.; denote the snowpack water equivalent at time 7 and #-1; M, is the actual snowmelt, which is
calculated as M; = min (S;_;, M,.); P7™°" refers to the snowfall fraction of precipitation, which is determined by the
following equation (Harpold et al., 2017):

P, ifT <0°C
0, otherwise’

o = (16)

where P, is the precipitation rate. A key architectural innovation is that the calculated snowmelt amount is directly
260 added to the data-driven neural network output before the final activation function of the first stage as shown in Fig.

2, creating a hybrid prediction that leverages both physical understanding and learned patterns:
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Q= ReLU(Qpsrm + My), a7
Where Q; and Qs are the predicted discharge from the first stage and the output from the LSTM with attention
component, respectively; ReLU refers to rectified linear unit activation function.

265 In addition to the snowpack layer, a physics-constrained loss function is implemented for enforcing physical

consistency through the term:
1 ~
Lphys =;Zimax(Mt— Qi: 0)’ (]8)

where n is the number of samples, and £ refers to the physics-constrained loss function term. This term

phys
penalizes physically inconsistent predictions where the modeled discharge is less than the calculated snowmelt

270 contribution. This dual physics-guided approach is particularly valuable for Arctic rivers where seasonal snow
accumulation and permafrost melt dominate the hydrological regime. In these regions, river discharge often exhibits
complex, threshold-dependent behaviors and memory effects related to temperature-controlled phase changes in
water, processes that purely statistical models often struggle to capture accurately without explicit physical

constraints. By incorporating both a direct snowmelt contribution mechanism and physics-consistency loss penalties,

275 the proposed model maintains physical realism even when data limitations exist.

3.5. Residual compensated mechanism

While the physics-informed deep learning model may improve prediction accuracy by embedding domain
knowledge, they may still fail to capture certain discrepancies between observed and predicted discharge values
caused by sources, such model simplifications, missing hydrological processes, noise in the input data, and extreme
280 events. To address this limitation, a residual compensated mechanism is incorporated. As shown in Fig. 2, the
residual compensated framework in the newly proposed model operates in a two-stage process. First, we train a
physics-informed KAN-LSTM model that incorporates snowpack dynamics and constraints through the combined
loss function (£ ompinea):
Leompinea = @Luse(Q, Qops) + BLphys> (19)
285 where £, refers to the mean squared error between the prediction § and the observation Q,,; @ and § are
weighting coefficients which can be obtained by trial-and-error. In the second stage, the residuals (R;) between
observations and physics-based predictions are computed: R; = Q,p5,; — 0;. These residuals represent the
information discrepancies that the physics-informed KAN-LSTM model fails to capture. A separate residual model
(M,..s) which has a KAN-LSTM architecture without physics-informed components is trained to specifically learn
290 the discrepancies: R; = M, (X;). The final discharge prediction (Q fina1,i) 1S obtained by combining results from the
first and second stage:
Qfinari = Qi + R;. (20)
This residual compensated approach has several advantages: on one hand, it preserves the physical consistency by
incorporating the physics-informed component during the first stage. On the other hand, the residual prediction in
295 the second stage can focus exclusively on missed patterns and systematic anomalies, creating a specialized

representation for complex processes. As a result, it enables end-to-end training where each component focuses on

10
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complementary aspects of the hydrological system: the physics-informed deep learning model captures the first-
order processes driven by hydrometeorological variables, while the residual model captures secondary influences
and complex feedback mechanisms. It is especially benefit for Arctic River systems, where seasonal transitions and

300 complex cryospheric processes may not be fully captured by simplified physics representations.

3.6. Evaluation metrics

To assess the performance of the proposed model in the Kolyma River, two popular evaluation metrics are adopted
in this study: Nash-Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) (An et al., 2020; Zhou and
Zhang, 2022a). NSE is a dimensionless metric widely used in hydrological modeling that measures how well the

305 model predictions match the observed data compared to using the mean of the observations as a predictor. An NSE
value of 1 indicates a perfect fit, while values approaching zero or negative suggest that the model performs no
better than using the mean value of the observed data. The NSE value can be calculated as:

21 (Qobsi~0finati)’

NSE =1-— 2
Z?=1(ng5,i—Q)

2]

where Q,5,; and Q are the observed discharge value at time step # and the average discharge, respectively. In

310  hydrological modeling, NSE values above 0.75 indicate very good model performance (D. N. Moriasi et al., 2007).
RMSE is an absolute error metric that quantifies the average magnitude of prediction errors in the original units of
discharge being predicted. RMSE gives higher weight to large errors due to its squared terms, which makes it
particularly useful for evaluating models where large errors are especially undesirable, such as in flood prediction.

Lower RMSE values indicate better model performance, with RMSE = 0 representing a perfect fit. It is defined as:

1 ~ 2
315 RMSE = \/;Z?=1(Qobs,i - innal,i) . (22)

These two metrics complement each other in our evaluation framework. While NSE provides a normalized measure
that facilitates comparison across different time periods, RMSE provides an intuitive measure of error magnitude in
the original units. Together, they provide a comprehensive assessment of the model's ability to capture both the
temporal dynamics through NSE and the absolute accuracy through RMSE of river discharge predictions in the

320 Kolyma River system.

4. Results
4.1. Performance comparison among various baseline models with various time steps

The newly proposed model and baseline models are trained in the training dataset of the Kolyma River, and then the
fine-tuned models are applied to the unseen testing dataset for the assessment of the predictive performance. The
325 model performance across different time steps (1-12 months) reveals variations in predictive capabilities among the
models tested. To ensure stable results, each model is run 10 times at each time step, and the evaluation metrics are
averaged. Presented in Fig. 5, it shows the comparison of NSE values (Fig. 5 Left) and RMSE values (Fig. 5 Right)
for the Kolyma River discharge predictions using several different model architectures, which include the simple

RNN, LSTM, and GRU models, which are popular temporal baseline models widely used in many hydrological

11
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studies, and the newly proposed Residual Compensated Physics-Informed KAN-LSTM with Attention (RCPIKLA).
The NSE values demonstrate that the newly proposed RCPIKLA model consistently outperforms all baseline models
across all time steps, achieving the highest NSE values ranging from 0.78 to 0.86. This superior performance is
particularly obvious at the time step of 9 months, where RCPIKLA reaches peak NSE values of approximately 0.86.
The traditional deep learning models, including the simple RNN, GRU, and LSTM models, show similar
performance patterns with NSE values ranging between 0.65 and 0.76. These models exhibit a noticeable decline in
performance at medium-range time steps (4-8 months), with their lowest NSE values observed around months 5-6,
which suggests limitations in capturing seasonal transitions in Arctic River systems. The RMSE analysis
corroborates these findings, with RCPIKLA achieving the lowest error values (6.5 mm -8.5 mm) across all time
steps. Again, the RCPIKLA model demonstrates substantially lower prediction errors compared to other baseline
approaches, which exhibit RMSE values ranging from 9.5 mm to 11.5 mm. The higher RMSE values for Simple
RNN, GRU, and LSTM at medium-range time steps further highlight their difficulties in accurately predicting
discharge during critical seasonal transition periods.

To further evaluate the robustness and generalization ability of each model, we conduct the box plots of 10
independent runs for each architecture and compute the distributions of NSE and RMSE across all time steps. These
box plots, as shown in Figure 7, provide insight into the statistical variability and stability of model performance.
The RCPIKLA model demonstrates the best overall performance with the highest median NSE and lowest median
RMSE, along with the narrowest interquartile range. This indicates not only high accuracy but also low variability
across runs, suggesting a stable learning and prediction process. Moreover, outliers are less frequent and less
extreme for RCPIKLA, which indicates a consistently reliable model output. LSTM and Simple RNN exhibit greater
variance in both NSE and RMSE distributions, with wider interquartile ranges and more outliers. This means higher
sensitivity to random initialization and potential overfitting or underfitting in different runs. GRU shows moderately
better consistency than LSTM and Simple RNN but still falls short of the stability achieved by RCPIKLA. The
newly proposed RCPIKLA model consistently outperforms all other models across different time steps and obtains
robust performance. These results demonstrate that incorporating physical constraints with the KAN-LSTM model
and complementing them with residual learning significantly improve predictive performance for capturing complex

patterns in Arctic River discharge.
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Figure 5: NSE (left) and RMSE (right) values of multiple models over various time steps. The models
include the residual-compensated physics-informed KAN-LSTM model with attention (RCPIKLA), simple
RNN, LSTM, and GRU.

NSE RMSE (mm)

GRU LST™M Simple_RNN ~ RCPIKLA GRU LSTM Simple_RNN  RCPIKLA

Figure 6: The box plot of NSE (left) and RMSE (right) values of multiple models of various time steps (1-12

months) for 10 runs.

4.2. Performance comparison among various deep learning models at different value ranges

As shown in Fig. 5, the optimal performance of the proposed RCPIKLA model is obtained when the time step is 9
360  months. In addition to temporal comparisons, the predictive performance across different discharge value ranges is
further assessed to understand how well each model captures the full spectrum of hydrological variability. The
predicted and observed values of the proposed model and baselines when the time step is 9 months are presented in
Fig. 7. The red dash line angled at 45 degrees represents the line of perfect agreement between observed and
predicted values. The performance metrics reveal substantial differences in model accuracy. The RCPIKLA model
365  demonstrates more robust performance compared to others across all value ranges with the highest NSE coefficient
of 0.856 and the lowest RMSE of 7.077 mm. This indicates that the proposed hybrid approach, which integrates
physics-informed constraints with residual compensation, captures the nonlinear and non-stationary characteristics
of the Kolyma River discharge more effectively than other architectures. The GRU model achieves an intermediate
performance level (NSE = 0.750, RMSE = 9.418 mm), which overperforms other recurrent neural networks but
370 falling short of KNN based models. Both LSTM and Simple RNN exhibit similar and relatively poorer performance
metrics, which demonstrates their limitations in capturing the complex hydrological dynamics of Arctic River
systems when used without additional enhancements.
It is worthwhile to note that all models perform reasonably well for low to moderate discharge values (0-30 mm),
but significant differences emerge at higher discharge events (>80 mm), which is crucial for flood forecasting.
375  Although the proposed RCPIKLA model maintains better prediction accuracy for these high discharge events, there

is room for improvement, which may be attributed to the limited number of high discharge events in the training
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380

385

390

dataset. This systematic underestimation of peak flows represents a common challenge in hydrological modeling of
Arctic rivers, where extreme discharge events are relatively rare but carry significant implications for water resource
management and hazard mitigation. Future work could address this limitation through specialized sampling

techniques or physics-informed constraints specifically designed to better capture high-magnitude discharge events.
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Figure 7: The predicted and observed values of multiple models when the time step is 9 months, including

RCPIKLA, LSTM, GRU and Simple RNN models.

4.3. On the role of the physics informed constrains and residual structure

To isolate and evaluate the contribution of the physics-informed constraints and the residual learning structure,
ablation experiments, which have been adopted by many other studies (Zhi et al., 2023; Zhou, 2025), are conducted
using three model variants in Fig. 8, including the complete RCPIKLA model (incorporating both physics-informed
constraints and residual compensation), RCKLA-no physics-informed (retaining the residual structure but without
physics constraints), and PIKL.A-no residual (including physics-informed constraints but without residual
compensation). The boxplot summarizes the NSE and RMSE values of three models for time steps ranging from 1 to
12 months in 10 independent runs. It reveals that the complete RCPIKL A model achieves the highest median NSE
performance (approximately 0.83) with an interquartile range spanning from 0.81 to 0.84. The RCKLA model
without physics-informed constraints shows a slightly lower median NSE (approximately 0.81) with greater
variability in interquartile range from 0.79 to 0.83. The PIKLA model without residual compensation demonstrates
the lowest median NSE performance (approximately 0.79) with an interquartile range from 0.78 to 0.81. The

distribution of RMSE value is consistent with NSE values. These comparative results highlight two important
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aspects of the model architecture: 1) The physics-informed constraints contribute to overall model robustness and
395 performance stability. By incorporating physical principles of snowpack accumulation and melt processes through
the specialized SnowpackLayer, the model better captures the underlying hydrological dynamics of the Arctic River
system. The physics-informed loss function, which mathematically enforces the relationship between melted snow
and discharge, helps maintain physical consistency in the predictions. 2) The residual compensation mechanism
addresses model inadequacies by learning the systematic errors in the physics-based predictions. This is particularly
400  valuable for handling complex nonlinear processes that are not fully captured by the simplified physical
representations. The performance difference between PIKLA and RCPIKL A demonstrates that the residual structure
successfully compensates for approximation errors in the physics-informed component. The synergistic integration
of both components yields a new structure that balances data-driven flexibility with physical consistency. This
hybrid approach is particularly advantageous in data-limited environments like Arctic Rivers, where the physics-

405 informed constraints and the residual compensation help overcome model simplifications and data uncertainty.

NSE RMSE (mm)

RCKLA-no physics-informed PIKLA-no residual RCPIKLA RCKLA-no physics-informed PIKLA-no residual RCPIKLA

Figure 8: The role of the residual structure and physics-informed constrains.

4.4. the role of seasonal variations and trigonometric encoding

Seasonality plays a significant role in Arctic hydrological systems (Hékkinen and Mellor, 1992), where discharge
patterns are strongly influenced by annual cycles of temperature, snow accumulation, and melt. Accurately capturing
such periodic behaviors is essential for robust long-term forecasting models. To address this, a trigonometric

410 encoding (TE) of seasonal features is incorporated as input variables using sine and cosine transformations of the

calendar month. Specifically, the timestamp is mapped to two features using the following equations:

. M M
Monthg;, = sin (ZHE); Month,,s = cos (Zn E)’ (23)
where M refers to the calendar month. These encodings aim at capturing cyclical temporal patterns without

introducing artificial discontinuities between December and January. They are added to the input feature set of all

415 models, which allows the proposed model to better associate temporal patterns with hydrometeorological signals.
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As shown in Fig. 9, the box plot compares NSE and RMSE distributions for multiple model variants with and
without trigonometric encoding (TE) of monthly seasonality. The results demonstrate that trigonometric encoding
substantially improves performance across all model architectures. The proposed RCPIKLA model maintains the
highest median NSE (approximately 0.83) with trigonometric encoding, while the removal of TE (denoted by "-no

420 TE") leads to degraded performance (median NSE around 0.80) and wider value ranges. This pattern is consistent
across all architectures, with GRU, LSTM, and Simple RNN models all exhibiting substantial performance
degradation when seasonal encoding is removed. The widths of the box plots, representing interquartile ranges, also
decrease substantially with TE, indicating greater consistency and reduced variability across model runs. Similar
improvements are observed in GRU, LSTM, and Simple RNN models. In particular, the LSTM and Simple RNN

425 models without trigonometric encoding show greater instability, with some runs achieving NSE values below 0.5,
which shows severely compromised predictive capability. Regarding RMSE, the incorporation of TE effectively
reduces median errors and decreases variability, particularly for RCPIKLA, where RMSE values exhibit the
narrowest range. Outliers observed in models without trigonometric encoding suggest that omitting seasonal
encodings can lead to occasional severe prediction errors, likely caused by the model’s inability to account

430  effectively for seasonal patterns.
Overall, the strong performance degradation observed when removing trigonometric encoding indicates the strong
seasonality of Arctic River discharge. This seasonality can be characterized by processes including winter low flow
due to frozen conditions, spring peak flow during snowmelt, and moderate summer flows influenced by rainfall and
evapotranspiration. Without explicit encoding of this cyclical pattern, models struggle to establish accurate temporal

435 context for the meteorological inputs, resulting in compromised predictive accuracy.

NSE RMSE (mm)

Figure 9. The comparison of models with and without trigonometric encoding for seasonal variations as

inputs.

5. Conclusion
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Arctic river systems play a critical role in global climate regulation, carbon cycling, and regional ecosystems, yet
they remain challenging in hydrological modeling due to sparse data networks, the complex dynamics of
permafrost-dominated landscapes, and nonlinear characteristics. In this study, a novel hybrid residual compensated
440 deep learning model is proposed and designed specifically for Arctic River discharge forecasting. By integrating
Kolmogorov-Arnold Networks (KAN), long short-term memory (LSTM) and the attention mechanism with seasonal
encoding and physics-based constraints, the newly proposed approach aims at addressing the unique challenges of
hydrological forecasting in permafrost-dominated regions, making it particularly valuable for modeling complex
seasonal dynamics in Arctic River systems where snow accumulation and melt dominate discharge patterns. The
445 KAN structure leverages the strengths of learnable activation functions and structured transformations to effectively
extract nonlinear and intricate patterns from the input data. The newly proposed model is applied to the Kolyma
River and compared with several baseline models, including LSTM, GRU, and simple RNN model for assessing the
role and contribution of various components. Future applications could extend to other Arctic watersheds, snow-
dominated river systems in mid-latitudes, and potentially other environmental domains. The results are summarized
450  as follows:
1). The predictive performance of the newly proposed model and baseline models are plotted and evaluated across a
range of time steps, from 1 to 12 months. As illustrated in Fig. 5, the newly proposed model consistently
overperforms other baselines at all time steps and produces robust predictive performance. It obtains the highest
NSE values ranging from 0.78 to 0.86 and the lowest RMSE values between 6.5 mm to 8.5 mm. The model
455 performs the best at a time step of 9 months, suggesting that the permafrost covered Arctic River discharge exhibits
a relatively long memory or delayed response to preceding hydrometeorological conditions.
2). The predictive performance across different discharge value ranges is further assessed to understand how well
each model captures the full spectrum of hydrological variability. All models perform reasonably well for low to
moderate discharge values (0-30 mm), but more obvious differences emerge at moderate and high discharge events.
460  Although the proposed RCPIKLLA model maintains improved prediction accuracy, challenges remain in accurately
predicting extreme high discharge events, with all models showing a tendency to underestimate peak flows. This
limitation may be partially attributed to the relatively sparse representation of high discharge events in the dataset,
which constrains the model’s ability to generalize under extreme hydrological scenarios.
3). Both physics-informed constraints and residual compensation contribute distinctly to model performance. The
465 physics-informed component, which incorporates snowpack accumulation and melt processes, provides the
proposed model with basic domain knowledge that helps overcome data limitations in the permafrost-dominated
Kolyma River basin. The residual compensation mechanism examines systematic errors in the physics-based
predictions and helps capture complex nonlinear processes that are not fully represented.
4) By transforming month values into sine and cosine components that preserve the cyclical nature of seasonal
470  patterns, the incorporation of trigonometric seasonal encoding can improve the predictive performance. This
approach enhances prediction accuracy across all architectures, with improvements of 4-6% in performance metrics,

highlighting the importance of representing the pronounced seasonal dynamics of Arctic rivers characterized by
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frozen winter conditions, spring snowmelt peaks, and moderate summer flows. The trigonometric seasonal is

particularly effective when combined with the RCPIKLA architecture.
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