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Reviewer 2:
Summary: The manuscript is recommended for publication if the above suggestions are

addressed or answered.

Reply: We sincerely thank the anonymous reviewers for the positive comments and
constructive feedback. We have carefully revised the manuscript, added references and

addressed comments in the manuscript.

1. One of the primary advantages of Kolmogorov-Arnold Networks is their enhanced
interpretability compared to traditional MLPs. KAN is usually used to improve the

interpretability of the relations between inputs and output, but there is no mention of that.

The manuscript fails to leverage or discuss this fundamental strength of KAN

architecture. Specifically, there is no:

e Visualization of the learned univariate functions

e Symbolic regression analysis

e Interpretation of what relationships the KAN component discovered between
hydrometeorological inputs and Arctic discharge

e Physical insights into the processes governing snowmelt-driven streamflow in

permafrost regions
Include a dedicated subsection on KAN interpretability analysis containing:

e Visualization of learned activation functions for key input-output relationships

e Symbolic approximations of these functions where feasible (using symbolic
regression tools available in KAN libraries)

e Physical interpretation of discovered patterns in the context of Arctic hydrology

e Comparison with known physical relationships in snowmelt hydrology from the
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literature

Reply: Implemented. We thank the reviewer for this insightful comment regarding the
interpretability advantages of Kolmogorov-Arnold Networks. We will add a new
subsection to visualization of the learned univariate functions with symbolic regression
analysis and discuss the interpretability of KAN.

4.3. Interpretability analysis of Kolmogorov-Arnold Networks

Kolmogorov-Arnold Networks can learn interpretable univariate functions that can be
visualized and approximated symbolically (Liu et al., 2024). The learned activation
functions from the KAN component for each input feature are derived and presented to
examine how each hydroclimatic input is transformed prior to temporal aggregation by
the LSTM-attention block. While the overall model remains a sequence model, the KAN
component offers mechanistic insight into learned input transformations.

The learned univariate KAN functions for the primary hydroclimatic predictors and the
seasonal encodings are plotted against standardized inputs. The learned mappings show
distinct behaviors across variables. Temperature exhibits threshold-dependent behavior
and an increasing response for positive standardized values, which are consistent with
degree-day snowmelt formulations (Hock, 2003). The minimal response at very low
temperatures reflects periods when all precipitation accumulates as snow with no melt
contribution to discharge. The strengthening positive trend at high temperatures captures
accelerated snowmelt during warmer periods and melt-season activation. The PET
function remains relatively constant across most of the range but drops at extremely high
PET values. This negative response at high evapotranspiration demand is physically
meaningful in permafrost watersheds where shallow active layers and restricted
groundwater storage make baseflow highly sensitive to evaporative losses during warm,
dry periods. The transition may represent a threshold where evaporative water losses
begin to substantially reduce streamflow, consistent with observations of increased Arctic
river sensitivity to evapotranspiration under warming (Nijssen et al., 2001). Precipitation
shows minimal direct transformation with a nearly flat or slightly negative function. It

can be caused by winter precipitation accumulating as snow and contributing to discharge
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only after spring melt, which creates multi-month lags (Gelfan et al., 2017). The learned
functions for the temporal encoding variables (Monthsi, and Monthcos) shows how the
KAN components represent seasonality. Monthsi, exhibits a clear, smoothly varying
nonlinear transformation, whereas Monthcos remains comparatively flat. The monotonic
tendency in the Monthsi, curve suggests an asymmetric seasonal influence. It shows that
the model responds differently to the rising and falling portions of the annual cycle,
which is consistent with the sharp melt-season transition and the comparatively gradual
recession that often follows peak flow. Importantly, because trigonometric encoding
provides a continuous cyclical representation of annual timing, the KAN transformation
can capture seasonal structure without introducing an artificial discontinuity at the year
boundary.

It is worthwhile to note that, as a hybrid architecture, RCPIKLA is primarily interpretable
at the KAN stage. As the KAN module represents input—feature mappings through
learnable univariate functions, the learned curves and their symbolic approximations
provide a transparent description of how each hydroclimatic predictor is transformed
before being passed to the sequence model. However, this interpretability does not extend
to a fully closed-form, end-to-end explanation of the final discharge prediction: the
downstream LSTM block integrates information across multiple antecedent months and
mixes transformed features through recurrent dynamics and temporal weighting.
Consequently, the KAN-derived functions should be interpreted as input transformations,
rather than as a complete mechanistic decomposition of the full temporal prediction

process.
Reference:

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljaci¢, M., Hou, T. Y., and
Tegmark, M.: KAN: kolmogorov-arnold networks,
https://doi.org/10.48550/ARXIV.2404.19756, 2024.

Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104—

115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.



Sam Houston State University
DEPARTMENT OF ENVIRONMENTAL AND GEOSCIENCES

Nijssen, B., O’Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic
sensitivity of global rivers to climate change, Clim. Change, 50, 143—-175,
https://doi.org/10.1023/A:1010616428763, 2001.

Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A., Krylenko, 1., and
Lavrenov, A.: Climate change impact on the water regime of two great arctic rivers:
modeling and uncertainty issues, Clim. Change, 141, 499-515,
https://doi.org/10.1007/s10584-016-1710-5, 2017.

2. what are the hyperparameters (epochs, batch size, learning rate) and details of the

architecture of the RNN, GRU and other neural nets used for comparison.
The manuscript lacks essential details for all baseline models (RNN, GRU, LSTM):

e No specification of hyperparameters (epochs, batch size, learning rate)

e No architectural details (number of layers, hidden units, activation functions)

¢ No information about initialization methods

e No training procedure details (optimizer type, learning rate schedules, dropout
rates)

e No stopping criteria or early stopping procedures

e No hardware specifications or training times

Reply: Implemented. A subsection of model implementation and training (Section 3.7)
has been added to introduce the model architectures, hyperparamters, stopping criteria

and other details.

3.7 Model implementation and training
As shown in Fig. 4, prior to model training, the input variables, including monthly

precipitation, temperature and evapotranspiration data, are preprocessed and standardized
. o . X-
using the Z-score normalization technique: Xy = TH’ where ¢ and o are the mean and

standard deviation computed from the training dataset; X and X4 denote the input

values before and after standardization, respectively. This standardization process ensures
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that features with different scales contribute appropriately to the training process and
improves model convergence (LeCun et al., 1998).

In regions dominated by permafrost, snow accumulation and melt typically exhibit strong
seasonal periodicity (Andersson et al., 2021; Ernakovich et al., 2014). Discharge patterns
are strongly influenced by annual cycles of temperature, snow accumulation, and melt in
Arctic hydrological systems (Hékkinen and Mellor, 1992). Accurately capturing such
periodic behaviors can help develop robust long-term forecasting models. To include
these cyclical patterns and facilitate smooth temporal transition, a trigonometric encoding
(TE) of seasonal features is incorporated as input variables using sine and cosine
transformations of the calendar month. Specifically, the timestamp is encoded to two
features using the following trigonometric transformations:

Monthg;, = sin (Zn 1"—2), Month.,s = cos (27‘[ %),

where m refers to the calendar month m& {1,2,--+,12}. These encodings aim at capturing
cyclical temporal patterns without introducing artificial discontinuities between
December and January. The trigonometric features are concatenated with other input
variables, including temperature, precipitation and evapotranspiration, and fed into the
residual-compensated physics-informed KAN-LSTM model with attention.

Table 1 summarizes the hyperparameters and configuration settings used in this study.
The choice of hyperparameters balances model capacity with overfitting risk, given the
limited training data available. The LSTM hidden dimension of 64 units and a dropout
rate of 0.3 prevent overfitting while capturing essential temporal patterns. The batch size
and epoch size are set to 32 and 150, respectively. The optimal physics constraint weight
(f = 0.3) and the MSE weight (a = 0.7) are adopted by conducting grid search over a €
{0.1,0.3,0.5,0.7,0.9} (Figure S1 in Supplementary Material). With these hyperparameters,
the newly proposed model trained in the training dataset of the Kolyma River, and then
the fine-tuned models are applied to the unseen testing dataset for the assessment of the
predictive performance. The prediction performance is compared with several popular
temporal baseline models, including the simple RNN, LSTM, and GRU models. To

assess model stability and minimize the effects of stochastic processes in the training
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procedure, each model configuration is trained 10 times independently on Google Colab.
This repeated training protocol allows assessment of performance variability arising from
the inherent stochasticity in the optimization process, including random batch shuffling
and numerical precision variations.

Table 1 Model hyperparameters and configuration settings

Parameters Values
Training Epochs 150
Batch size 32
Learning rate 0.0005
Optimizer Adam
Early stopping patience 10
MSE weight (@) 0.7
Physics constraint weight () 0.3
KAN grid size 5
KAN number of layers 2
LSTM hidden dim 64
Baseline models hidden dim 64
Dropout 0.3
Attention activation Tanh
Output activation ReLLU
Number of runs 10

In summary, this newly proposed hybrid model leverages the KAN component as a

feature transformation layer to extract and learn complex nonlinear patterns from

hydrological and meteorological datasets. The LSTM component captures short- and

long-term dependencies and effectively simulates sequential patterns and discharge

variability. To further refine temporal learning, the attention mechanism is introduced

and integrated, which allows the proposed model to selectively emphasize historically

significant time steps, particularly those driving major and seasonal hydrological

transitions. An important innovation is the residual compensation structure, which

explicitly addresses the challenges of predicting extreme discharge events. By learning

systematic error patterns, the residual structure can adjust simulations based on residual

predictions and improve performance during high-variability scenarios. Unlike

conventional data-driven models that completely ignore fundamental physical

constraints, the newly developed model incorporates physics-informed loss functions.
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Additionally, the model employs seasonality-aware encoding using trigonometric
transformations to recognize the cyclic nature of hydrological processes. This
architecture is designed to provide an accurate and robust framework for forecasting river

discharge in Arctic and permafrost-dominated environments.

References:

LeCun, Y., Bottou, L., Orr, G. B., and Miiller, K.-R.: Efficient BackProp, in: Neural
networks: tricks of the trade, vol. 1524, edited by: Orr, G. B. and Miiller, K.-R., Springer
Berlin Heidelberg, Berlin, Heidelberg, 9-50, https://doi.org/10.1007/3-540-49430-8 2,
1998.

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law,
S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B.,
Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal
arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124,
https://doi.org/10.1038/s41467-021-25257-4, 2021.

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J.,
Steltzer, H., and Wallenstein, M. D.: Predicted responses of arctic and alpine ecosystems
to altered seasonality under climate change, Global Change Biol., 20, 3256-3269,
https://doi.org/10.1111/gcb.12568, 2014.

Hikkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a coupled arctic ice-
ocean system, J. Geophys. Res.: Oceans, 97, 20285-20304,
https://doi.org/10.1029/92JC02037, 1992.

3. Recent papers suggest that KAN based architectures outperform classical ANN based
architectures. There should have been a comparison with KAN based LSTM, GRU and
other neural nets. The manuscript only compares RCPIKLA (which uses KAN) against
traditional ANN-based models (RNN, GRU, LSTM), not against KAN-enhanced

versions of these baseline architectures.

The comparison with no physics informed constraints and no residual has been
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compared. However, the current experimental design still creates an attribution problem.

Observed performance improvements could stem from:

e The KAN component specifically

The attention mechanism

e The physics-informed constraints

e The residual compensation structure
e Seasonal trigonometric encoding

e Some synergistic combination of these components

Without proper ablation comparing LSTM-attention/KAN-LSTM/KAN-GRU versus
RCPIKLA, the specific contribution of KAN remains unclear.

Reply: Implemented. We have added a new comparision model (KAN-enhanced
baselime model) and a new evaluation metric and discussions to evaluate the contribution

of KAN.
Also, we will analzye the inpretability of the KAN component.

The evaluation metrics of LSTM, KAN-LSTM (KAN transformation followed by LSTM
without attention, physics constraints, or residual compensation), and RCPIKLA are
compared and analyzed. We compoared the models with other baselines across multiple
forecasting horizons (1-12 months), and plotted the distribution of metrics across 10
independent training runs. The comparison between LSTM and KAN-LSTM shows that
KAN-based nonlinear feature transformation can produce consistent improvements
across all time steps. Averaged across all forecasting horizons, KAN-LSTM achieves
NSE of 0.77 (£0.025), RMSE of 9.4 mm (£0.68), and KGE' of 0.75 (+0.027), compared
to LSTM's NSE of 0.70 (£0.034), RMSE of 10.94 mm (+0.61), and KGE' of 0.67
(£0.023). This represents approximately 12% improvement in NSE attributable
specifically to KAN's learnable univariate functions. At the optimal 9-month time step,
KAN-LSTM achieves NSE of 0.78 compared to LSTM's 0.70, which demonstrates that

KAN provides substantial value for prediction.



Sam Houston State University
DEPARTMENT OF ENVIRONMENTAL AND GEOSCIENCES

4. The manuscript describes a physics-informed constraint that imposes an upper limit on
predicted snowmelt contribution but does not explain the asymmetric treatment of

constraint violations.
The asymmetric design requires clear physical justification:

e Upper bound rationale: Snowmelt contribution physically cannot exceed available
snow water equivalent - this is a hard constraint based on mass conservation

e Lower bound question: Are underpredictions physically plausible? Could
incomplete melting, refreezing, or sublimation make them valid? Or do they
indicate model failure to capture melt processes?

e Bias implications: Does the asymmetric penalty introduce systematic bias toward

underprediction?

Reply: Implemented. The asymmetric physics constraint used in the manuscript

represents a simplification of complex Arctic hydrological processes with available data.

The snowmelt contribution calculated is one of the major contributors to the discharge
rate in permafrost-dominated watersheds, such as the Kolyma River. While instantaneous
discharge can legitimately fall below melt rates due to transient storage in the active
layer, evapotranspiration losses, or refreezing during diurnal temperature fluctuations,
these effects become negligible at the monthly aggregation scale in large, permafrost-
dominated basins like the Kolyma River (Gusev et al., 2015). Continuous permafrost
covering >90% of the Kolyma basin severely restricts subsurface infiltration and
groundwater storage (Walvoord and Kurylyk, 2016; Woo et al., 2008). Unlike temperate
watersheds where snowmelt can recharge deep aquifers, the impermeable permafrost
layer forces meltwater to travel through the shallow active layer with limited storage
capacity. Consequently, snowmelt rapidly converts to surface and near-surface runoff
with minimal opportunity for long-term retention (Bring et al., 2016). Also, Arctic Rivers
such as the Kolyma River and the Lena River exhibit strong discharge seasonality
characteristic, with the majority of the annual discharge occurring during summer months

(Ye et al., 2003). During these months, snowmelt represents the dominant water source,
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and the monthly timestep aggregates over 30 days during which daily temperature
fluctuations and local-scale heterogeneity in melt timing average out across the entire
basin. While refreezing can occur during cold nights or sublimation during clear, windy
days, these losses are small relative to the total melt flux at monthly basin-scale
aggregation (Suzuki et al., 2015). Therefore, snowmelt represents a dominant and

appropriate lower bound on discharge at this spatiotemporal scale. (Yang et al., 2002).

The asymmetric physical constraint in this study is designed and implemented to reflect
both the availability of data and the scale-dependent hydrology of large permafrost-
dominated Arctic watersheds. It is worthwhile to note that implementing symmetric
upper bound constraints will further increase the physics-informed condition. Future
studies should collect comprehensive data and develop more sophisticated, symmetric
physics constraints that fully respect mass conservation while accounting for all water

balance components.

Regarding bias implications, when pooling all residuals across horizons and runs,
RCPIKLA obtains a low residual (0.08 mm, corresponding to +0.57% of the mean
observed discharge), whereas RCKLA exhibits a negative mean residual (—0.31 mm,
—2.23%). These results indicate that the physics-informed constraint does not introduce a
systematic bias. Instead, it reduces the slight underprediction tendency of the

unconstrained model and yields a more centered residual distribution overall.

References:

Gusev, E. M., Nasonova, O. N., and Dzhogan, L. Ya.: Physically based simulating long-
term dynamics of diurnal variations of river runoff and snow water equivalent in the
kolyma river basin, Water Resour., 42, 834-841,
https://doi.org/10.1134/S0097807815060056, 2015.

Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing permafrost—a
review, Vadose Zone J., 15, 1-20, https://doi.org/10.2136/vzj2016.01.0010, 2016.

Woo, M.-K., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost hydrology
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in the new millennium, Permafrost Periglacial Processes, 19, 237-254,

https://doi.org/10.1002/ppp.613, 2008.

Bring, A., Fedorova, 1., Dibike, Y., Hinzman, L., Mérd, J., Mernild, S. H., Prowse, T.,
Semenova, O., Stuefer, S. L., and Woo, M. -K.: Arctic terrestrial hydrology: a synthesis
of processes, regional effects, and research challenges, J. Geophys. Res.: Biogeosci., 121,

621-649, https://doi.org/10.1002/2015JG003131, 2016.

Ye, B., Yang, D., and Kane, D. L.: Changes in lena river streamflow hydrology: human
impacts versus natural variations, Water Resour. Res., 39, 2003WR001991,
https://doi.org/10.1029/2003WR001991, 2003.

Suzuki, K., Liston, G. E., and Matsuo, K.: Estimation of continental-basin-scale
sublimation in the lena river basin, siberia, Adv. Meteorol., 2015, 1-14,

https://doi.org/10.1155/2015/286206, 2015.

Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Ye, H.: Siberian lena
river hydrologic regime and recent change, J. Geophys. Res.: Atmos., 107,
https://doi.org/10.1029/2002JD002542, 2002.

5. Physics-informed neural networks fundamentally rely on balancing multiple loss terms
through weighting parameters. The manuscript mentions ¢ and B as weights for

MSE loss and physics loss but does not report their values.
The manuscript must provide:

e Final a and B wvalues used for all reported results
e Scenarios of hit and trials

e Search space explored

Reply: Impelemnted. o and B are weighting coefficients that control the relative
importance of the data-driven loss (MSE) and physics-informed constraint terms in the
combined loss function. The optimal physics constraint weight (f = 0.3) and the MSE
weight (a = 0.7) are adopted by conducting grid search over a €{0.1,0.3,0.5,0.7,0.9}.
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In addition, a new subsection is added to the Supplementary Material to introduce the

search process and justify the optimal choise.

6. The manuscript lacks visualization of epoch-wise loss decomposition, which is
important for assessment of convergence of all models. Without this analysis, it is
impossible to assess whether the physics constraint meaningfully guides training or

becomes negligible compared to the data-driven MSE loss.
Visualizing separate loss components reveals:

e Whether physics loss actually contributes to training or is overwhelmed by MSE
loss
e Training stability and convergence behavior

e Potential issues: loss spikes, plateaus, phase transitions

Reply: We thank the reviewer for this suggestion to analyze training dynamics and loss
component contributions. In the proposed model, a dual physics-guided approach with
two components is implemented: 1) a snowpack layer, 2) a physics-informed loss
constraint term. This manuscript included ablation analysis comparing models with and
without both physics constraints. In Figure 10, it provided empirical validation and
analzyed the results of RCPIKLA vs. RCKLA-no physics-informed components vs.
PIKLA-no residual structure). We believe this analysis can address the reviewer's

concern about the physics constraint's contribution.

7. Figure 6 (left): "y axis seems to be cut, the numbers are partly missing" - this affects
readability and interpretation. Also, please check for spelling and grammatical errors

throughout manuscript. Like a few spelling mistakes have been observed in abstract

Reply: Implemented. We thank the reviewer for pointing this out. We have carefully
reviewed the manuscript to correct the spelling mistakes. The plots with missing y axis

have been fixed and updated.
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8. The physics-informed mechanism involves snow storage (S _t) and melt (M _t) terms

that evolve over time. However, the manuscript does not specify:

e Initial values for S 0 and M_0 at the start of the simulation period

e How these initial conditions were integrated into the model?
Reply: We thank the reviewer for noting that the initial conditions were not explicitly
stated. In our implementation, the snow storage (S_t) and melt (M_t) are initialized as
zero at the beginning of each model input sequence for simplicity. Specifically, we set
So =0 and M, = 0, and then update S; and M, recursively within the window based on
precipitation and temperature. The computed term is integrated into the model by being
added to the network-predicted discharge and by included in the physics-informed
penalty term. In the future, a continuous state carryover across windows that maintains

snow storage between consecutive sequences could be considered for future work.

9. It is mentioned conducting 10 independent runs but provides unclear or incomplete
reporting of variability in results. Fig8 represents the rmse and nse RCPIKLA variants
with all predictions, what is the average RMSE over 10 runs, how much variation is

observed over independent runs?
Additionally:

e Figure 8 shows results (RMSE and NSE for RCPIKLA variants) but it's unclear
whether these represent single runs, mean values, or distributions

e No explicit reporting of mean =+ standard deviation for performance metrics

e No statistical significance testing comparing model variants

Reply: Implemented. We thank the reviewer for this important comment highlighting the
need for comprehensive statistical reporting. We have substantially revised the figure and
added statistical analysis to address the concerns. The figure has been recreated to be

more informative. The figure caption is updated to explicitly state that each box plot
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aggregates results across forecasting horizons (1-12 months) and independent training

runs, which produces 120 data points per model (12 time steps).

Each model variant is trained 10 times independently at each time step (1-12 months),
yielding 120 total evaluations per model. The performance metrics are aggregated and
visualized in the boxplot. In Fig 10, it reveals that the complete RCPIKLA model
achieves mean NSE of 0.827 + 0.030 (mean + standard deviation) across 120 evaluations,
which represents significant improvements over the PIKLA model without residual
compensation (0.790 £ 0.029, p < 0.001) and the RCKLA without physics (0.812 +
0.031, p<0.001). Similarly, RCPIKLA obtains lowest RMSE (8.12 £+ 0.75 mm)
compared to PIKLA (8.98 + 0.52 mm, p < 0.001) and RCKLA (8.47 = 0.76 mm, p <
0.001). T-tests confirm performance differences are statistically significant at p < 0.001
level, which demonstrates that observed improvements are robust rather than artifacts of

specific random initiations.

In summary, the ablation comparisons isolate individual component contributions: the
residual structure (RCPIKLA vs PIKLA) improves NSE by 0.038 (4.8% relative
improvement), while the physics-informed constraint (RCPIKLA vs RCKLA) contributes
0.015 NSE improvement (1.8% relative). Both components provide independent,
statistically significant (p < 0.001) performance gains, confirming their complementary
roles in the hybrid architecture. The synergistic integration of both components yields a
new structure that balances data-driven flexibility with physical consistency. This hybrid
approach is particularly advantageous in data-limited environments like Arctic Rivers,
where the physics-informed constraints and the residual compensation help overcome

model simplifications and data uncertainty.

10. Figure 5 currently shows model predictions at 12 time intervals (representing
different aggregation windows) but does not convey prediction uncertainty across the 10

independent runs. This limits the reader's ability to assess:

e Model reliability at different temporal scales
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e Whether certain aggregation intervals show higher prediction variance

Reply: Implemented. We thank the reviewer for this valuable suggestion to quantify
prediction uncertainty across forecasting horizons. To make run-to-run uncertainty
visible, we summarize and report model performance across 10 independent training runs
for each aggregation window so that the readers can better evaluate model performance

and relibatility at different temporal scales and prediction variances.

In the Supplementary Material, Tables S1-S3 report the mean, minimum, and maximum
values values across runs for NSE, RMSE, and KGE’ (2012) at each forecasting horizon.
This should allow the readers to better evaluate model performance and relibatility at

different temporal scales and prediction variances, without overcrowding the main figure

with multiple model curves.

Sincerely yours,

Rengie é/wa,
Renjie Zhou

Associate Professor

Department of Environmental and Geosciences
Sam Houston State University

Huntsville, TX 77340



