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Reviewer 2: 

Summary: The manuscript is recommended for publication if the above suggestions are 

addressed or answered. 

Reply: We sincerely thank the anonymous reviewers for the positive comments and 

constructive feedback. We have carefully revised the manuscript, added references and 

addressed comments in the manuscript. 

 

1. One of the primary advantages of Kolmogorov-Arnold Networks is their enhanced 

interpretability compared to traditional MLPs. KAN is usually used to improve the 

interpretability of the relations between inputs and output, but there is no mention of that. 

The manuscript fails to leverage or discuss this fundamental strength of KAN 

architecture. Specifically, there is no: 

• Visualization of the learned univariate functions 

• Symbolic regression analysis 

• Interpretation of what relationships the KAN component discovered between 

hydrometeorological inputs and Arctic discharge 

• Physical insights into the processes governing snowmelt-driven streamflow in 

permafrost regions 

Include a dedicated subsection on KAN interpretability analysis containing: 

• Visualization of learned activation functions for key input-output relationships 

• Symbolic approximations of these functions where feasible (using symbolic 

regression tools available in KAN libraries) 

• Physical interpretation of discovered patterns in the context of Arctic hydrology 

• Comparison with known physical relationships in snowmelt hydrology from the 
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literature 

Reply: Implemented. We thank the reviewer for this insightful comment regarding the 

interpretability advantages of Kolmogorov-Arnold Networks. We will add a new 

subsection to visualization of the learned univariate functions with symbolic regression 

analysis and discuss the interpretability of KAN.  

4.3. Interpretability analysis of Kolmogorov-Arnold Networks 

Kolmogorov-Arnold Networks can learn interpretable univariate functions that can be 

visualized and approximated symbolically (Liu et al., 2024). The learned activation 

functions from the KAN component for each input feature are derived and presented to 

examine how each hydroclimatic input is transformed prior to temporal aggregation by 

the LSTM-attention block. While the overall model remains a sequence model, the KAN 

component offers mechanistic insight into learned input transformations.  

The learned univariate KAN functions for the primary hydroclimatic predictors and the 

seasonal encodings are plotted against standardized inputs. The learned mappings show 

distinct behaviors across variables. Temperature exhibits threshold-dependent behavior 

and an increasing response for positive standardized values, which are consistent with 

degree-day snowmelt formulations (Hock, 2003). The minimal response at very low 

temperatures reflects periods when all precipitation accumulates as snow with no melt 

contribution to discharge. The strengthening positive trend at high temperatures captures 

accelerated snowmelt during warmer periods and melt-season activation. The PET 

function remains relatively constant across most of the range but drops at extremely high 

PET values. This negative response at high evapotranspiration demand is physically 

meaningful in permafrost watersheds where shallow active layers and restricted 

groundwater storage make baseflow highly sensitive to evaporative losses during warm, 

dry periods. The transition may represent a threshold where evaporative water losses 

begin to substantially reduce streamflow, consistent with observations of increased Arctic 

river sensitivity to evapotranspiration under warming (Nijssen et al., 2001). Precipitation 

shows minimal direct transformation with a nearly flat or slightly negative function. It 

can be caused by winter precipitation accumulating as snow and contributing to discharge 
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only after spring melt, which creates multi-month lags (Gelfan et al., 2017). The learned 

functions for the temporal encoding variables (Monthsin and Monthcos) shows how the 

KAN components represent seasonality. Monthsin exhibits a clear, smoothly varying 

nonlinear transformation, whereas Monthcos remains comparatively flat. The monotonic 

tendency in the Monthsin curve suggests an asymmetric seasonal influence. It shows that 

the model responds differently to the rising and falling portions of the annual cycle, 

which is consistent with the sharp melt-season transition and the comparatively gradual 

recession that often follows peak flow. Importantly, because trigonometric encoding 

provides a continuous cyclical representation of annual timing, the KAN transformation 

can capture seasonal structure without introducing an artificial discontinuity at the year 

boundary. 

It is worthwhile to note that, as a hybrid architecture, RCPIKLA is primarily interpretable 

at the KAN stage. As the KAN module represents input–feature mappings through 

learnable univariate functions, the learned curves and their symbolic approximations 

provide a transparent description of how each hydroclimatic predictor is transformed 

before being passed to the sequence model. However, this interpretability does not extend 

to a fully closed-form, end-to-end explanation of the final discharge prediction: the 

downstream LSTM block integrates information across multiple antecedent months and 

mixes transformed features through recurrent dynamics and temporal weighting. 

Consequently, the KAN-derived functions should be interpreted as input transformations, 

rather than as a complete mechanistic decomposition of the full temporal prediction 

process. 

Reference: 

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T. Y., and 

Tegmark, M.: KAN: kolmogorov-arnold networks, 

https://doi.org/10.48550/ARXIV.2404.19756, 2024. 

Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104–

115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. 
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Nijssen, B., O’Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic 

sensitivity of global rivers to climate change, Clim. Change, 50, 143–175, 

https://doi.org/10.1023/A:1010616428763, 2001. 

Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A., Krylenko, I., and 

Lavrenov, A.: Climate change impact on the water regime of two great arctic rivers: 

modeling and uncertainty issues, Clim. Change, 141, 499–515, 

https://doi.org/10.1007/s10584-016-1710-5, 2017. 

 

2. what are the hyperparameters (epochs, batch size, learning rate) and details of the 

architecture of the RNN, GRU and other neural nets used for comparison. 

The manuscript lacks essential details for all baseline models (RNN, GRU, LSTM): 

• No specification of hyperparameters (epochs, batch size, learning rate) 

• No architectural details (number of layers, hidden units, activation functions) 

• No information about initialization methods 

• No training procedure details (optimizer type, learning rate schedules, dropout 

rates) 

• No stopping criteria or early stopping procedures 

• No hardware specifications or training times 

Reply: Implemented. A subsection of model implementation and training (Section 3.7) 

has been added to introduce the model architectures, hyperparamters, stopping criteria 

and other details.  

3.7 Model implementation and training 

As shown in Fig. 4, prior to model training, the input variables, including monthly 

precipitation, temperature and evapotranspiration data, are preprocessed and standardized 

using the Z-score normalization technique: 𝑋!"# =
$%&
'

, where μ and σ are the mean and 

standard deviation computed from the training dataset; X and 𝑋!"# 	denote the input 

values before and after standardization, respectively. This standardization process ensures 
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that features with different scales contribute appropriately to the training process and 

improves model convergence (LeCun et al., 1998). 

In regions dominated by permafrost, snow accumulation and melt typically exhibit strong 

seasonal periodicity (Andersson et al., 2021; Ernakovich et al., 2014). Discharge patterns 

are strongly influenced by annual cycles of temperature, snow accumulation, and melt in 

Arctic hydrological systems (Häkkinen and Mellor, 1992). Accurately capturing such 

periodic behaviors can help develop robust long-term forecasting models. To include 

these cyclical patterns and facilitate smooth temporal transition, a trigonometric encoding 

(TE) of seasonal features is incorporated as input variables using sine and cosine 

transformations of the calendar month. Specifically, the timestamp is encoded to two 

features using the following trigonometric transformations: 

Month()* = sin +2𝜋 +
,-
.;	 Month./( = cos +2𝜋 +

,-
.,	     

where m refers to the calendar month m∈{1,2,…,12}. These encodings aim at capturing 

cyclical temporal patterns without introducing artificial discontinuities between 

December and January. The trigonometric features are concatenated with other input 

variables, including temperature, precipitation and evapotranspiration, and fed into the 

residual-compensated physics-informed KAN-LSTM model with attention. 

Table 1 summarizes the hyperparameters and configuration settings used in this study. 

The choice of hyperparameters balances model capacity with overfitting risk, given the 

limited training data available. The LSTM hidden dimension of 64 units and a dropout 

rate of 0.3 prevent overfitting while capturing essential temporal patterns. The batch size 

and epoch size are set to 32 and 150, respectively. The optimal physics constraint weight 

(β = 0.3) and the MSE weight (α = 0.7) are adopted by conducting grid search over α ∈

{0.1,0.3,0.5,0.7,0.9} (Figure S1 in Supplementary Material). With these hyperparameters, 

the newly proposed model trained in the training dataset of the Kolyma River, and then 

the fine-tuned models are applied to the unseen testing dataset for the assessment of the 

predictive performance. The prediction performance is compared with several popular 

temporal baseline models, including the simple RNN, LSTM, and GRU models. To 

assess model stability and minimize the effects of stochastic processes in the training 
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procedure, each model configuration is trained 10 times independently on Google Colab. 

This repeated training protocol allows assessment of performance variability arising from 

the inherent stochasticity in the optimization process, including random batch shuffling 

and numerical precision variations.  

Table 1 Model hyperparameters and configuration settings 

Parameters Values 
Training Epochs 150 
Batch size 32 
Learning rate 0.0005 
Optimizer Adam 
Early stopping patience 10 
MSE weight (𝛼) 0.7 
Physics constraint weight (𝛽) 0.3 
KAN grid size 5 
KAN number of layers 2 
LSTM hidden dim 64 
Baseline models hidden dim 64 
Dropout 0.3 
Attention activation Tanh 
Output activation ReLU 
Number of runs 10 

 

In summary, this newly proposed hybrid model leverages the KAN component as a 

feature transformation layer to extract and learn complex nonlinear patterns from 

hydrological and meteorological datasets. The LSTM component captures short- and 

long-term dependencies and effectively simulates sequential patterns and discharge 

variability. To further refine temporal learning, the attention mechanism is introduced 

and integrated, which allows the proposed model to selectively emphasize historically 

significant time steps, particularly those driving major and seasonal hydrological 

transitions. An important innovation is the residual compensation structure, which 

explicitly addresses the challenges of predicting extreme discharge events. By learning 

systematic error patterns, the residual structure can adjust simulations based on residual 

predictions and improve performance during high-variability scenarios. Unlike 

conventional data-driven models that completely ignore fundamental physical 

constraints, the newly developed model incorporates physics-informed loss functions. 
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Additionally, the model employs seasonality-aware encoding using trigonometric 

transformations to recognize the cyclic nature of hydrological processes. This 

architecture is designed to provide an accurate and robust framework for forecasting river 

discharge in Arctic and permafrost-dominated environments. 

 

References: 

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R.: Efficient BackProp, in: Neural 

networks: tricks of the trade, vol. 1524, edited by: Orr, G. B. and Müller, K.-R., Springer 

Berlin Heidelberg, Berlin, Heidelberg, 9–50, https://doi.org/10.1007/3-540-49430-8_2, 

1998. 

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, 

S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., 

Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal 

arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, 

https://doi.org/10.1038/s41467-021-25257-4, 2021. 

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., 

Steltzer, H., and Wallenstein, M. D.: Predicted responses of arctic and alpine ecosystems 

to altered seasonality under climate change, Global Change Biol., 20, 3256–3269, 

https://doi.org/10.1111/gcb.12568, 2014. 

Häkkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a coupled arctic ice‐

ocean system, J. Geophys. Res.: Oceans, 97, 20285–20304, 

https://doi.org/10.1029/92JC02037, 1992. 

 

3. Recent papers suggest that KAN based architectures outperform classical ANN based 

architectures. There should have been a comparison with KAN based LSTM, GRU and 

other neural nets. The manuscript only compares RCPIKLA (which uses KAN) against 

traditional ANN-based models (RNN, GRU, LSTM), not against KAN-enhanced 

versions of these baseline architectures. 

The comparison with no physics informed constraints and no residual has been 
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compared. However, the current experimental design still creates an attribution problem. 

Observed performance improvements could stem from: 

• The KAN component specifically 

• The attention mechanism 

• The physics-informed constraints 

• The residual compensation structure 

• Seasonal trigonometric encoding 

• Some synergistic combination of these components 

Without proper ablation comparing LSTM-attention/KAN-LSTM/KAN-GRU versus 

RCPIKLA, the specific contribution of KAN remains unclear. 

Reply: Implemented. We have added a new comparision model (KAN-enhanced 

baselime model) and a new evaluation metric and discussions to evaluate the contribution 

of KAN.  

Also, we will analzye the inpretability of the KAN component.  

The evaluation metrics of LSTM, KAN-LSTM (KAN transformation followed by LSTM 

without attention, physics constraints, or residual compensation), and RCPIKLA are 

compared and analyzed. We compoared the models with other baselines across multiple 

forecasting horizons (1-12 months), and plotted the distribution of metrics across 10 

independent training runs. The comparison between LSTM and KAN-LSTM shows that 

KAN-based nonlinear feature transformation can produce consistent improvements 

across all time steps. Averaged across all forecasting horizons, KAN-LSTM achieves 

NSE of 0.77 (±0.025), RMSE of 9.4 mm (±0.68), and KGE' of 0.75 (±0.027), compared 

to LSTM's NSE of 0.70 (±0.034), RMSE of 10.94 mm (±0.61), and KGE' of 0.67 

(±0.023). This represents approximately 12% improvement in NSE attributable 

specifically to KAN's learnable univariate functions. At the optimal 9-month time step, 

KAN-LSTM achieves NSE of 0.78 compared to LSTM's 0.70, which demonstrates that 

KAN provides substantial value for prediction. 

 



	 	

Sam Houston State University	

DEPARTMENT OF ENVIRONMENTAL AND GEOSCIENCES 
	 	 	
4. The manuscript describes a physics-informed constraint that imposes an upper limit on 

predicted snowmelt contribution but does not explain the asymmetric treatment of 

constraint violations. 

The asymmetric design requires clear physical justification: 

• Upper bound rationale: Snowmelt contribution physically cannot exceed available 

snow water equivalent - this is a hard constraint based on mass conservation 

• Lower bound question: Are underpredictions physically plausible? Could 

incomplete melting, refreezing, or sublimation make them valid? Or do they 

indicate model failure to capture melt processes? 

• Bias implications: Does the asymmetric penalty introduce systematic bias toward 

underprediction? 

Reply: Implemented. The asymmetric physics constraint used in the manuscript 

represents a simplification of complex Arctic hydrological processes with available data.  

The snowmelt contribution calculated is one of the major contributors to the discharge 

rate in permafrost-dominated watersheds, such as the Kolyma River. While instantaneous 

discharge can legitimately fall below melt rates due to transient storage in the active 

layer, evapotranspiration losses, or refreezing during diurnal temperature fluctuations, 

these effects become negligible at the monthly aggregation scale in large, permafrost-

dominated basins like the Kolyma River (Gusev et al., 2015). Continuous permafrost 

covering >90% of the Kolyma basin severely restricts subsurface infiltration and 

groundwater storage (Walvoord and Kurylyk, 2016; Woo et al., 2008). Unlike temperate 

watersheds where snowmelt can recharge deep aquifers, the impermeable permafrost 

layer forces meltwater to travel through the shallow active layer with limited storage 

capacity. Consequently, snowmelt rapidly converts to surface and near-surface runoff 

with minimal opportunity for long-term retention (Bring et al., 2016). Also, Arctic Rivers 

such as the Kolyma River and the Lena River exhibit strong discharge seasonality 

characteristic, with the majority of the annual discharge occurring during summer months 

(Ye et al., 2003). During these months, snowmelt represents the dominant water source, 
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and the monthly timestep aggregates over 30 days during which daily temperature 

fluctuations and local-scale heterogeneity in melt timing average out across the entire 

basin. While refreezing can occur during cold nights or sublimation during clear, windy 

days, these losses are small relative to the total melt flux at monthly basin-scale 

aggregation (Suzuki et al., 2015). Therefore, snowmelt represents a dominant and 

appropriate lower bound on discharge at this spatiotemporal scale. (Yang et al., 2002).  

The asymmetric physical constraint in this study is designed and implemented to reflect 

both the availability of data and the scale-dependent hydrology of large permafrost-

dominated Arctic watersheds. It is worthwhile to note that implementing symmetric 

upper bound constraints will further increase the physics-informed condition. Future 

studies should collect comprehensive data and develop more sophisticated, symmetric 

physics constraints that fully respect mass conservation while accounting for all water 

balance components. 

Regarding bias implications, when pooling all residuals across horizons and runs, 

RCPIKLA obtains a low residual (0.08 mm, corresponding to +0.57% of the mean 

observed discharge), whereas RCKLA exhibits a negative mean residual (−0.31 mm, 

−2.23%). These results indicate that the physics-informed constraint does not introduce a 

systematic bias. Instead, it reduces the slight underprediction tendency of the 

unconstrained model and yields a more centered residual distribution overall. 

 

References: 

Gusev, E. M., Nasonova, O. N., and Dzhogan, L. Ya.: Physically based simulating long-

term dynamics of diurnal variations of river runoff and snow water equivalent in the 

kolyma river basin, Water Resour., 42, 834–841, 

https://doi.org/10.1134/S0097807815060056, 2015. 

Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing permafrost—a 

review, Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016. 

Woo, M.-K., Kane, D. L., Carey, S. K., and Yang, D.: Progress in permafrost hydrology 
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in the new millennium, Permafrost Periglacial Processes, 19, 237–254, 

https://doi.org/10.1002/ppp.613, 2008. 

Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., Prowse, T., 

Semenova, O., Stuefer, S. L., and Woo, M. ‐K.: Arctic terrestrial hydrology: a synthesis 

of processes, regional effects, and research challenges, J. Geophys. Res.: Biogeosci., 121, 

621–649, https://doi.org/10.1002/2015JG003131, 2016. 

Ye, B., Yang, D., and Kane, D. L.: Changes in lena river streamflow hydrology: human 

impacts versus natural variations, Water Resour. Res., 39, 2003WR001991, 

https://doi.org/10.1029/2003WR001991, 2003. 

Suzuki, K., Liston, G. E., and Matsuo, K.: Estimation of continental-basin-scale 

sublimation in the lena river basin, siberia, Adv. Meteorol., 2015, 1–14, 

https://doi.org/10.1155/2015/286206, 2015. 

Yang, D., Kane, D. L., Hinzman, L. D., Zhang, X., Zhang, T., and Ye, H.: Siberian lena 

river hydrologic regime and recent change, J. Geophys. Res.: Atmos., 107, 

https://doi.org/10.1029/2002JD002542, 2002. 

 

5. Physics-informed neural networks fundamentally rely on balancing multiple loss terms 

through weighting parameters. The manuscript mentions α and β as weights for 

MSE loss and physics loss but does not report their values. 

The manuscript must provide: 

• Final α and β values used for all reported results 

• Scenarios of hit and trials 

• Search space explored 

Reply: Impelemnted. α and β are weighting coefficients that control the relative 

importance of the data-driven loss (MSE) and physics-informed constraint terms in the 

combined loss function. The optimal physics constraint weight (β = 0.3) and the MSE 

weight (α = 0.7) are adopted by conducting grid search over α ∈{0.1,0.3,0.5,0.7,0.9}. 
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In addition, a new subsection is added to the Supplementary Material to introduce the 

search process and justify the optimal choise.  

 

6. The manuscript lacks visualization of epoch-wise loss decomposition, which is 

important for assessment of convergence of all models. Without this analysis, it is 

impossible to assess whether the physics constraint meaningfully guides training or 

becomes negligible compared to the data-driven MSE loss. 

Visualizing separate loss components reveals: 

• Whether physics loss actually contributes to training or is overwhelmed by MSE 

loss 

• Training stability and convergence behavior 

• Potential issues: loss spikes, plateaus, phase transitions 

Reply: We thank the reviewer for this suggestion to analyze training dynamics and loss 

component contributions. In the proposed model, a dual physics-guided approach with 

two components is implemented: 1) a snowpack layer, 2) a physics-informed loss 

constraint term. This manuscript included ablation analysis comparing models with and 

without both physics constraints. In Figure 10, it provided empirical validation and 

analzyed the results of RCPIKLA vs. RCKLA-no physics-informed components vs. 

PIKLA-no residual structure).	We believe this analysis can address the reviewer's 

concern about the physics constraint's contribution. 

 

7. Figure 6 (left): "y axis seems to be cut, the numbers are partly missing" - this affects 

readability and interpretation. Also, please check for spelling and grammatical errors 

throughout manuscript. Like a few spelling mistakes have been observed in abstract 

Reply: Implemented. We thank the reviewer for pointing this out. We have carefully 

reviewed the manuscript to correct the spelling mistakes. The plots with missing y axis 

have been fixed and updated.  
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8. The physics-informed mechanism involves snow storage (S_t) and melt (M_t) terms 

that evolve over time. However, the manuscript does not specify: 

• Initial values for S_0 and M_0 at the start of the simulation period 

• How these initial conditions were integrated into the model? 

Reply: We thank the reviewer for noting that the initial conditions were not explicitly 

stated. In our implementation, the snow storage (S_t) and melt (M_t) are initialized as 

zero at the beginning of each model input sequence for simplicity. Specifically, we set 

𝑆0 = 0 and 𝑀0 = 0, and then update St and 𝑀" recursively within the window based on 

precipitation and temperature. The computed term is integrated into the model by being 

added to the network-predicted discharge and by included in the physics-informed 

penalty term. In the future, a continuous state carryover across windows that maintains 

snow storage between consecutive sequences could be considered for future work.  

 

9. It is mentioned conducting 10 independent runs but provides unclear or incomplete 

reporting of variability in results. Fig8 represents the rmse and nse RCPIKLA variants 

with all predictions, what is the average RMSE over 10 runs, how much variation is 

observed over independent runs? 

Additionally: 

• Figure 8 shows results (RMSE and NSE for RCPIKLA variants) but it's unclear 

whether these represent single runs, mean values, or distributions 

• No explicit reporting of mean ± standard deviation for performance metrics 

• No statistical significance testing comparing model variants 

Reply: Implemented. We thank the reviewer for this important comment highlighting the 

need for comprehensive statistical reporting. We have substantially revised the figure and 

added statistical analysis to address the concerns. The figure has been recreated to be 

more informative. The figure caption is updated to explicitly state that each box plot 
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aggregates results across forecasting horizons (1-12 months) and independent training 

runs, which produces 120 data points per model (12 time steps).  

Each model variant is trained 10 times independently at each time step (1-12 months), 

yielding 120 total evaluations per model. The performance metrics are aggregated and 

visualized in the boxplot. In Fig 10, it reveals that the complete RCPIKLA model 

achieves mean NSE of 0.827 ± 0.030 (mean ± standard deviation) across 120 evaluations, 

which represents significant improvements over the PIKLA model without residual 

compensation (0.790 ± 0.029, p < 0.001) and the RCKLA without physics (0.812 ± 

0.031, p < 0.001). Similarly, RCPIKLA obtains lowest RMSE (8.12 ± 0.75 mm) 

compared to PIKLA (8.98 ± 0.52 mm, p < 0.001) and RCKLA (8.47 ± 0.76 mm, p < 

0.001). T-tests confirm performance differences are statistically significant at p < 0.001 

level, which demonstrates that observed improvements are robust rather than artifacts of 

specific random initiations. 

In summary, the ablation comparisons isolate individual component contributions: the 

residual structure (RCPIKLA vs PIKLA) improves NSE by 0.038 (4.8% relative 

improvement), while the physics-informed constraint (RCPIKLA vs RCKLA) contributes 

0.015 NSE improvement (1.8% relative). Both components provide independent, 

statistically significant (p < 0.001) performance gains, confirming their complementary 

roles in the hybrid architecture. The synergistic integration of both components yields a 

new structure that balances data-driven flexibility with physical consistency. This hybrid 

approach is particularly advantageous in data-limited environments like Arctic Rivers, 

where the physics-informed constraints and the residual compensation help overcome 

model simplifications and data uncertainty. 

 

10. Figure 5 currently shows model predictions at 12 time intervals (representing 

different aggregation windows) but does not convey prediction uncertainty across the 10 

independent runs. This limits the reader's ability to assess: 

• Model reliability at different temporal scales 
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• Whether certain aggregation intervals show higher prediction variance 

Reply: Implemented. We thank the reviewer for this valuable suggestion to quantify 

prediction uncertainty across forecasting horizons. To make run-to-run uncertainty 

visible, we summarize and report model performance across 10 independent training runs 

for each aggregation window so that the readers can better evaluate model performance 

and relibatility at different temporal scales and prediction variances.  

In the Supplementary Material, Tables S1–S3 report the mean, minimum, and maximum 

values values across runs for NSE, RMSE, and KGE’ (2012) at each forecasting horizon. 

This should allow the readers to better evaluate model performance and relibatility at 

different temporal scales and prediction variances, without overcrowding the main figure 

with multiple model curves.  

 

 
 
Sincerely yours, 
 
Renjie Zhou 
Associate Professor 
Department of Environmental and Geosciences 
Sam Houston State University 
Huntsville, TX 77340 
 
 


