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Reviewer 1:

Zhou and Liu present a novel approach for a data-driven model for discharge modelling.
It is based on a Kolmogorov-Arnold network combined with a Long-Short Term Memory
(LSTM) model, an attention mechanism that includes a trigonometric depiction of
seasonal patterns, as well as a physics-based constrain. The newly developed model
aimed at improving the prediction of discharge within arctic areas with their special
characteristics like perma frost and accumulation and melting of snow over longer
periods. Therefore, the model was applied to the discharge data of the Kolyma River in
Siberia and the prediction evaluated against the predictions of several other simpler

models.

I have found the presented modelling approach to be a novel and valuable contribution to
the hydrological modelling community. I believe it to be fitting for the scope of the
Journal. However, the presented manuscript needs work regarding the methodology

section as well as the discussion.

Reply: We are grateful for the reviewer's positive feedback and constructive suggestions.
We have thoroughly revised the manuscript, corrected errors, added references, addressed

each comment, and provided the necessary clarifications as outlined below.

Major comments:

1. Line 30: I can't really support the statement that the presented framework is
(better) suited for predicting Arctic River discharge under changing climate
conditions. It is well likely that climate change impacts the respective catchments
in a way that the general behaviour changes - which also alters how discharge
forms. I then get to a model space where the model has to extrapolate - which

data-driven models are unsuited for.
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Reply: Implemented. We thank the reviewer for raising this point. We have
revised the statement in the manuscript and added a short paragraph about its
limitations. While the RCPIKLA model demonstrates robust performance for the
Kolyma River prediction under historical and current hydroclimatic conditions,
several limitations should be acknowledged. As a data-driven model trained on
historical observations, the model's performance may degrade if climate change
induces fundamental shifts in watershed behavior that extend beyond the range of
training conditions. Such regime changes may include but are not limited to
scenarios like transitions from continuous to discontinuous permafrost, and
significantly altered seasonal patterns. Under such scenarios, the model would
need to extrapolate beyond its training data range, which remains a challenge for
data-driven approaches. Future applications under changing climate conditions
should include regular model retraining and validation as new observations

become available.

2. Line 137, Figure 1: I personally don't think the figure to be well chosen, as the
important aspects are missing. I would rather use a fogure that shows the
catchment itself with its topography.

Reply: Implemented. We thank the reviewer for this advice. The figure has been
updated to show the catchment itself with its topography. Also, the input variables
over the entire time span will be plotted and provided along with the catchment

map.

3. Line 138-143: These lines are unnecessary here and probably can be deleted. All
those things have already been said within the introduction and are explained over
the methodology section anyways.

Reply: Implemented. These lines have been deleted and revised to increase the
flow. The sections of introduction, study area, and data acquisition, and

methodology are reorganized to improve the flow and reduce the overlap.
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4. Line 144-145: All steps, that are necessary for actual model runs should come
after the model description. Otherwise, the order is confusing.
Reply: Implemented. It is reorganized to improve readability and clarity. The
preprocessing step has been improved with the following introduction after the
model description.
Prior to model training, the input variables, including monthly precipitation,

temperature and evapotranspiration data, are preprocessed and standardized using
o : X-
the Z-score normalization technique: X4 = TH’ where x and ¢ are the mean and

standard deviation computed from the training dataset; X and X,;4 denote the
input values before and after standardization, respectively. This standardization
process ensures that features with different scales contribute appropriately to the

training process and improves model convergence.

5. Line 146-164: The description of the whole model structure should be done after
the individual parts are explained. Figure 2 also should be moved there.
Reply: Implemented. We have moved the whole model struction description after
introducing all individual components.
In summary, this newly proposed hybrid model leverages the KAN component as
a feature transformation layer to extract and learn complex nonlinear patterns
from hydrological and meteorological datasets. The LSTM component captures
short- and long-term dependencies and effectively simulates sequential patterns
and discharge variability. To further refine temporal learning, the attention
mechanism is introduced and integrated, which allows the proposed model to
selectively emphasize historically significant time steps, particularly those driving
major and seasonal hydrological transitions. An important innovation is the
residual compensation structure, which explicitly addresses the challenges of

predicting extreme discharge events. By learning systematic error patterns, the
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residual structure can adjust simulations based on residual predictions and
improve performance during high-variability scenarios. Unlike conventional data-
driven models that completely ignore fundamental physical constraints, the newly
developed model incorporates physics-informed loss functions. Additionally, the
model employs seasonality-aware encoding using trigonometric transformations
to recognize the cyclic nature of hydrological processes. This architecture is
designed to provide an accurate and robust framework for forecasting river

discharge in Arctic and permafrost-dominated environments.

6. Idorecommend the inclusion of an additional efficiency measure like KGE, that
is complementary to the other ones and also incorporates different aspects of the
discharge like bias for example. Please also cite and mention, which version of
the KGE you use then.

Reply: Implemented. We have added KGE’ (2012) as an additional evaluation
metrics.

The following introduction is added to the subsection of 3.6 Evaluation Metrics.
Also, pictures, references and discussion are revised and updated accordingly.

In addition to NSE and RMSE, the Kling-Gupta Efficiency (KGE) is employed to
provide a balanced assessment of model performance. The KGE metric was
developed to address certain limitations of NSE, particularly its sensitivity to
extreme values and the potential compensation of errors in mean, variance, and
correlation (Gupta et al., 2009). Unlike other metrics, KGE explicitly decomposes
model performance into three components: linear correlation, bias ratio, and
variability ratio. In this study, the modified KGE is employed, which addresses
issues with the original formulation's sensitivity to the magnitude of standard

deviations (Kling et al., 2012). The modified KGE (KGE”’) is calculated as:

, 2 2 2
KGE =1 [(ige = 10" + (Brge ~ 1" + (rge — 1)"
where rige refers to the linear correlation coefficient between observed and

simulated discharge; Byg. refers to the ratio of simulated mean to observed
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mean; Yyg. denotes the variability ratio. The KGE' ranges theoretically from -oo
to 1, with KGE' = 1 indicating perfect agreement between observations and
predictions in terms of correlation, bias, and variability. A KGE' value of -0.41
represents the performance of using the mean flow as a predictor, serving as a
natural benchmark below which model predictions are no better than simply using
the long-term average (Knoben et al., 2019). In hydrological modeling
applications, KGE' values above 0.75 are generally considered very good, values
between 0.5 and 0.75 indicate satisfactory performance, and values below 0.5
suggest unsatisfactory model performance (Towner et al., 2019). The use of
multiple complementary metrics (NSE, RMSE, and KGE') provides a
comprehensive evaluation framework. While NSE emphasizes matching variance
and is sensitive to peak flows, KGE' provides balanced assessment across
correlation, bias, and variability. RMSE quantifies absolute error magnitude in
original units, which is particularly important for operational applications.
Together, these metrics enable thorough assessment of model performance across
different aspects of discharge prediction, from overall pattern matching to peak
flow accuracy.

The KGE' metric provides additional insights into model performance by
decomposing errors into correlation, bias, and variability components. The
RCPIKLA model achieves KGE' values ranging from 0.74 to 0.82 across all time
steps. Similar to NSE, the RCPIKLA model reaches its peak KGE' performance
of approximately 0.82 at the 9-month time step. The baseline models demonstrate
modest KGE' performance, with values ranging from 0.64 to 0.73. A notable
degradation in KGE' performance is observed at the 12-month time step, where
the RCPIKLA value drops to approximately 0.74, falling below the 0.75
threshold. This decline likely reflects the challenges of maintaining balanced
performance across all three KGE' components (correlation, bias, and variability)
at very long forecasting horizons. At 12 months, accumulated prediction errors

and the increased difficulty in capturing seasonal phase transitions may cause the
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model's predictions to exhibit greater bias or variability mismatch compared to
observations, despite maintaining reasonable correlation.

Reference:

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: implications for improving
hydrological modelling, J. Hydrol., 377, 80-91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: inherent
benchmark or not? Comparing nash—sutcliffe and kling—gupta efficiency scores,
Hydrol. Earth Syst. Sci., 23, 4323-4331, https://doi.org/10.5194/hess-23-4323-
2019, 2019.

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan
De Perez, E., and Stephens, E. M.: Assessing the performance of global
hydrological models for capturing peak river flows in the Amazon basin, Hydrol.
Earth Syst. Sci., 23, 3057-3080, https://doi.org/10.5194/hess-23-3057-2019,
2019.

7. Why does the methodology end here? Important parts that come up later within
the results part are missing. The methodology should explain that the final model
is compared to certain baseline models and how they distinguish from the new
model presented here. Furthermore, the whole part is missing about how the
model is trained on the data, with how many runs, ending criterion, hyper
parameters and so on.

Reply: Implemented. We have restructured amd revised the manuscript and have
add a subsection (Section 3.7) of model implementation and training to introduce
the models and model differences, such as with how many runs, ending criterion,
hyperparameters and so on.

3.7 Model implementation and training

As shown in Fig. 4, prior to model training, the input variables, including monthly
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precipitation, temperature and evapotranspiration data, are preprocessed and
. . . . X-
standardized using the Z-score normalization technique: Xgq = TH’ where x and

o are the mean and standard deviation computed from the training dataset; X and
X¢q denote the input values before and after standardization, respectively. This
standardization process ensures that features with different scales contribute
appropriately to the training process and improves model convergence (LeCun et
al., 1998).

In regions dominated by permafrost, snow accumulation and melt typically
exhibit strong seasonal periodicity (Andersson et al., 2021; Ernakovich et al.,
2014). Discharge patterns are strongly influenced by annual cycles of
temperature, snow accumulation, and melt in Arctic hydrological systems
(Héakkinen and Mellor, 1992). Accurately capturing such periodic behaviors can
help develop robust long-term forecasting models. To include these cyclical
patterns and facilitate smooth temporal transition, a trigonometric encoding (TE)
of seasonal features is incorporated as input variables using sine and cosine
transformations of the calendar month. Specifically, the timestamp is encoded to
two features using the following trigonometric transformations:

Monthg;, = sin (Zn 1"—2), Month.,s = cos (27‘[ %),

where m refers to the calendar month m € {1,2,-++,12}. These encodings aim at
capturing cyclical temporal patterns without introducing artificial discontinuities
between December and January. The trigonometric features are concatenated with
other input variables, including temperature, precipitation and evapotranspiration,
and fed into the residual-compensated physics-informed KAN-LSTM model with
attention.

Table 1 summarizes the hyperparameters and configuration settings used in this
study. The choice of hyperparameters balances model capacity with overfitting
risk, given the limited training data available. The LSTM hidden dimension of 64
units and a dropout rate of 0.3 prevent overfitting while capturing essential

temporal patterns. The batch size and epoch size are set to 32 and 150,
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respectively. The optimal physics constraint weight (f = 0.3) and the MSE weight
(= 0.7) are adopted by conducting grid search over o € {0.1,0.3,0.5,0.7,0.9}
(Figure S1 in Supplementary Material). With these hyperparameters, the newly
proposed model trained in the training dataset of the Kolyma River, and then the
fine-tuned models are applied to the unseen testing dataset for the assessment of
the predictive performance. The prediction performance is compared with several
popular temporal baseline models, including the simple RNN, LSTM, and GRU

models. To assess model stability and minimize the effects of stochastic processes

in the training procedure, each model configuration is trained 10 times

independently on Google Colab. This repeated training protocol allows

assessment of performance variability arising from the inherent stochasticity in

the optimization process, including random batch shuffling and numerical

precision variations.

Table 1 Model hyperparameters and configuration settings

Parameters Values
Training Epochs 150
Batch size 32
Learning rate 0.0005
Optimizer Adam
Early stopping patience 10
MSE weight (@) 0.7
Physics constraint weight () 0.3
KAN grid size 5
KAN number of layers 2
LSTM hidden dim 64
Baseline models hidden dim 64
Dropout 0.3
Attention activation Tanh
Output activation ReLLU
Number of runs 10

References:

LeCun, Y., Bottou, L., Orr, G. B., and Miiller, K.-R.: Efficient BackProp, in:
Neural networks: tricks of the trade, vol. 1524, edited by: Orr, G. B. and Miiller,
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K.-R., Springer Berlin Heidelberg, Berlin, Heidelberg, 9-50,
https://doi.org/10.1007/3-540-49430-8 2, 1998.

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell,
C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S.,
Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and
Shuckburgh, E.: Seasonal arctic sea ice forecasting with probabilistic deep
learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4,
2021.

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis,
E. J., Steltzer, H., and Wallenstein, M. D.: Predicted responses of arctic and alpine
ecosystems to altered seasonality under climate change, Global Change Biol., 20,
32563269, https://doi.org/10.1111/gcb.12568, 2014.

Hikkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a coupled
arctic ice-ocean system, J. Geophys. Res.: Oceans, 97, 20285-20304,
https://doi.org/10.1029/92JC02037, 1992.

Line 323-327: This is methodology and should not be within the results part - as it
is missing within the methods section.
Reply: Implemented. This part has been removed from the results section to the

methodology section.

Line 328-329: As mentioned earlier, the baseline models cannot be newly
introduced within the results.
Reply: Impelemented. We have changed the order of introduction. The baseline

models are introduced in the methodology section before the resuls.

Line 343-344: You can't conduct boxplots. Do you mean you conducted the
model application 10 times?

Reply: Implemented. We have rephrased the manuscript to improve its clarity and
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readability here We trained and evaluated each model in 10 independent runs.
This repeated training quantifies performance variability due to the inherent
stochasticity of the optimization process. Results from the 10 runs are

summarized using boxplots.

11. Line 357: Figure 6 y axis seems to be cut, the numbers are partly missing
Reply: Implemented. We thank the reviewer for pointing this out. The figures

have been fixed.

12. Line 361: I dont see how this represents the "spectrum of hydrological
variability". From my understanding, it is more of a possibility to see, how the
model performs if the data is only available in lesser resolution. How does this
assess the depiction of the hydrological variability?

Reply: Implemented. We thank the reviewer for this important clarification. The
reviewer is correct that our analysis examines model performance under varying
flow conditions, from low to high discharge events. The corresponding

description is rephrased for clarification.

13. Line 405: Figure 8, are these for a aggregation period of 1 month?
Reply: We thank the reviewer for requesting this clarification. The boxplots in
Figure 8 show results aggregated across all forecasting time steps. Each model
variant is trained 10 times independently at each time step (1-12 months), yielding
120 total evaluations per model. The results of all 120 evaluations for each model

are summerized in the boxplots. The manuscript has been revised for clarification.
14. Line 407-415: This is all methodology and not results.
Reply: Implemented. We thank the reviewer for identifying this issue. The

contents have been reorganized and moved to methodology.

15. Line 437-448: 1 dont think this part is really necessary here. The conclusion is not
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16.

17.

a whole summary of the paper, but points out the key findings again.

Reply: Impelemened. This long paragraph has been removed.

Line 455-456: The river discharge has a long memory? The sentence does not
make sense. | feel like there is a more thorough discussion necessary of why the
model shows this behaviour regarding the model efficiency for different
aggregation periods - where the reason must be within model structure and how it
fits the discharge pattern over time.

Reply: Implemented. The sencence has been rephrased to avoid confusion. A
more thorough discussion will be added here.

The optimal performance at the 9-month input sequence length reflects important
temporal characteristics of this permafrost-dominated watershed and the model’s
capacity to capture structured temporal dependencies. In the Kolyma River basin,
current discharge is influenced by hydrometeorological conditions that could span
multiple seasons, such as snow accumulation, snowmelt dynamics, and
subsequent baseflow recession controlled by active layer storage and permafrost-
restricted groundwater flows. The 9-month optimal input window captures the
information of seasonal dynamics which provides the model with sufficient
temporal context. The attention mechanism further refines this by assigning
higher importance to specific antecedent months that strongly influence current
discharge. Shorter sequences may fail to capture full seasonal cycles and snow
accumulation processes, while longer sequences (10-12 months) likely introduce

temporal uncertainties.

I generally feel like the discussion part is lacking depth. While I personally
recommend to separate results and discussion, you can keep both together if it
makes sense overall. But in the current state, the results lack depth regarding the
explanation of observed model behaviour. For example, line 462-463: has this
been the same for the application of other models? Is this a common problem?

Like this, a few more citations and comparisons to other studies would help
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putting the paper within a broader context.

Reply: Implememted. We will improve the results and discussion.

This systematic underestimation of peak flows represents a common challenge in
data-driven hydrological modeling, particularly for Arctic river systems, where
extreme discharge events are relatively rare but carry significant implications for
water resource management and hazard mitigation. Kratzert et al. (2019) observed
similar patterns in LSTM-based rainfall-runoff modeling across diverse
catchments. For Arctic rivers specifically, Gelfan et al. (2017) and Chang et al.
(2025) reported that process-based models and machine learning approaches
struggle with extreme conditions due to the complex processes and events that are
poorly represented in limited observational records. In our study, extreme high
discharge events (>80 mm) constitute less than 5% of the training dataset,
creating a class imbalance problem common in hydrological time series (Nearing
et al., 2021). The squared error loss function (MSE) used in model training
inherently weights all samples equally, which can lead to optimization that favors
the more numerous moderate flow events at the expense of rare extremes. Future
work could address this limitation through specialized sampling techniques or
physics-informed constraints specifically designed to better captures high-

magnitude discharge events.

Reference:

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing,
G.: Towards learning universal, regional, and local hydrological behaviors via
machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23,
5089-5110, https://doi.org/10.5194/hess-23-5089-2019, 2019.

Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A., Krylenko,
I., and Lavrenov, A.: Climate change impact on the water regime of two great
arctic rivers: modeling and uncertainty issues, Clim. Change, 141, 499-515,
https://doi.org/10.1007/s10584-016-1710-5, 2017.

Chang, S. Y., Schwenk, J., and Solander, K. C.: Deep learning advances arctic
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river water temperature predictions, Water Resour. Res., 61, €2024WR039053,
https://doi.org/10.1029/2024WR039053, 2025.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J.
M., Prieto, C., and Gupta, H. V.: What role does hydrological science play in the
age of machine learning?, Water Resour. Res., 57, €2020WR028091,
https://doi.org/10.1029/2020WR028091, 2021.

18. Also, I am currently missing a graphical depiction of the gauging curve and the
simulated discharge. I believe a figure for that would help to give the reader an
idea of how the model behaves, where it might deviate from gauging data and
where it is strongly in congruence with it.

Reply: Implememted. A new graphic depiction of observed and simulated
discharge will be added to the manuscript to provide the readers with a better idea

of how different models behave.

Minor comments:

19. Line 22: structure

Reply: Implemented. We have corrected the spelling/grammar error.
20. Line 24: dominated by permafrost

Reply: Implemented. We have corrected the spelling/grammar error.
21. Line 27: ...that these components improve the predictive performance.

Reply: Implemented. We have corrected the spelling/grammar error.
22. Line 46: These temperature dependent transitions...?

Reply: Implemented. We have corrected the spelling/grammar error.
23. Line 128-129: Why is there no citation for the Dataset?

Reply: Implemented. The data source and citation have been added to the

manuscript.
24. Line 178: 1) Input expansion

Reply: Implemented. We have corrected the spelling/grammar error.
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25. Line 183-185: Kolmogorov-Arnold theorem while avoiding the computational
overhead
Reply: Implemented. We have corrected the spelling/grammar error.

26. Line 195: GELU
Reply: Implemented. We have corrected the spelling/grammar error.

27. Line 196: Figure 3 not referenced within the text.

Reply: Implemented. We have added Figure 3 in the text.

28. Line 200: ...mechanism and a hidden state, an LSTM can efficiently regulate...
Reply: Implemented. We have corrected the spelling/grammar error.

29. Line 209: The memory cell of an LSTM is primarily composed...

Reply: Implemented. We have corrected the spelling/grammar error.

30. Line 240: "Q refers the discharge prediction using the context vector calculated
from the context vector." It has to be "refers to" and what is "using the context
vector calculated from the context vector" supposed to mean?

Reply: Implemented. It has been rephrased to improve clarity. We have corrected
the spelling/grammar error.

31. Line 273: I recommend a semicolon after water.

Reply: Implemented. We have corrected the spelling/grammar error.

32. Line 279: caused by sources, such as model simplifications...

Reply: Implemented. We have corrected the spelling/grammar error.

33. Line 285-286: Maybe its better to reformulate the sentence and describe alpha and
beta as parameters that have to be fitted through model application?

Reply: Implemented. o and B are weighting coefficients that control the relative
importance of the data-driven loss (MSE) and physics-informed constraint terms
in the combined loss function. The optimal physics constraint weight (B = 0.3)
and the MSE weight (o = 0.7) are adopted by conducting grid search over o
€{0.1,0.3,0.5,0.7,0.9}.

34. Line 299: beneficial
Reply: Implemented. We have corrected the spelling/grammar error.

35. Line 303-304: What is cited here? The Nash-Sutcliffe efficiency measure should
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be properly cited.
Reply: Implemented. A reference has been added regarding the Nash-Sutcliffe
efficiency measure.

36. Line 330: I would recommend to implement the name RCPIKLA of the new
model earlier, instead of within the results.
Reply: Implemented. We have move it earlier.

37. Line 396: change "better captures"
Reply: Implemented. We have corrected the spelling/grammar error.

Sincerely yours,

Renjie %ﬂw
Renjie Zhou

Associate Professor

Department of Environmental and Geosciences
Sam Houston State University

Huntsville, TX 77340



