
	 	

Sam Houston State University	

DEPARTMENT OF ENVIRONMENTAL AND GEOSCIENCES 
	 	 	

Manuscript Number: egusphere-2025-3540 

Renjie Zhou and Shiqi Liu. “A hybrid Kolmogorov-Arnold networks-based model with 

attention for predicting Arctic River streamflow” 

Reviewer 1: 

Zhou and Liu present a novel approach for a data-driven model for discharge modelling. 

It is based on a Kolmogorov-Arnold network combined with a Long-Short Term Memory 

(LSTM) model, an attention mechanism that includes a trigonometric depiction of 

seasonal patterns, as well as a physics-based constrain. The newly developed model 

aimed at improving the prediction of discharge within arctic areas with their special 

characteristics like perma frost and accumulation and melting of snow over longer 

periods. Therefore, the model was applied to the discharge data of the Kolyma River in 

Siberia and the prediction evaluated against the predictions of several other simpler 

models. 

I have found the presented modelling approach to be a novel and valuable contribution to 

the hydrological modelling community. I believe it to be fitting for the scope of the 

Journal. However, the presented manuscript needs work regarding the methodology 

section as well as the discussion. 

Reply: We are grateful for the reviewer's positive feedback and constructive suggestions. 

We have thoroughly revised the manuscript, corrected errors, added references, addressed 

each comment, and provided the necessary clarifications as outlined below. 

 

Major comments: 

1. Line 30: I can't really support the statement that the presented framework is 

(better) suited for predicting Arctic River discharge under changing climate 

conditions. It is well likely that climate change impacts the respective catchments 

in a way that the general behaviour changes - which also alters how discharge 

forms. I then get to a model space where the model has to extrapolate - which 

data-driven models are unsuited for. 
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Reply: Implemented. We thank the reviewer for raising this point. We have 

revised the statement in the manuscript and added a short paragraph about its 

limitations. While the RCPIKLA model demonstrates robust performance for the 

Kolyma River prediction under historical and current hydroclimatic conditions, 

several limitations should be acknowledged. As a data-driven model trained on 

historical observations, the model's performance may degrade if climate change 

induces fundamental shifts in watershed behavior that extend beyond the range of 

training conditions. Such regime changes may include but are not limited to 

scenarios like transitions from continuous to discontinuous permafrost, and 

significantly altered seasonal patterns. Under such scenarios, the model would 

need to extrapolate beyond its training data range, which remains a challenge for 

data-driven approaches. Future applications under changing climate conditions 

should include regular model retraining and validation as new observations 

become available. 

 

2. Line 137, Figure 1: I personally don't think the figure to be well chosen, as the 

important aspects are missing. I would rather use a fogure that shows the 

catchment itself with its topography. 

Reply: Implemented. We thank the reviewer for this advice. The figure has been 

updated to show the catchment itself with its topography. Also, the input variables 

over the entire time span will be plotted and provided along with the catchment 

map.  

 

3. Line 138-143: These lines are unnecessary here and probably can be deleted. All 

those things have already been said within the introduction and are explained over 

the methodology section anyways. 

Reply: Implemented. These lines have been deleted and revised to increase the 

flow. The sections of introduction, study area, and data acquisition, and 

methodology are reorganized to improve the flow and reduce the overlap.  
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4. Line 144-145: All steps, that are necessary for actual model runs should come 

after the model description. Otherwise, the order is confusing. 

Reply: Implemented. It is reorganized to improve readability and clarity. The 

preprocessing step has been improved with the following introduction after the 

model description.  

Prior to model training, the input variables, including monthly precipitation, 

temperature and evapotranspiration data, are preprocessed and standardized using 

the Z-score normalization technique: 𝑋!"# =
$%&
'

, where μ and σ are the mean and 

standard deviation computed from the training dataset; X and 𝑋!"# 	denote the 

input values before and after standardization, respectively. This standardization 

process ensures that features with different scales contribute appropriately to the 

training process and improves model convergence. 

 

5. Line 146-164: The description of the whole model structure should be done after 

the individual parts are explained. Figure 2 also should be moved there. 

Reply: Implemented. We have moved the whole model struction description after 

introducing all individual components.  

In summary, this newly proposed hybrid model leverages the KAN component as 

a feature transformation layer to extract and learn complex nonlinear patterns 

from hydrological and meteorological datasets. The LSTM component captures 

short- and long-term dependencies and effectively simulates sequential patterns 

and discharge variability. To further refine temporal learning, the attention 

mechanism is introduced and integrated, which allows the proposed model to 

selectively emphasize historically significant time steps, particularly those driving 

major and seasonal hydrological transitions. An important innovation is the 

residual compensation structure, which explicitly addresses the challenges of 

predicting extreme discharge events. By learning systematic error patterns, the 
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residual structure can adjust simulations based on residual predictions and 

improve performance during high-variability scenarios. Unlike conventional data-

driven models that completely ignore fundamental physical constraints, the newly 

developed model incorporates physics-informed loss functions. Additionally, the 

model employs seasonality-aware encoding using trigonometric transformations 

to recognize the cyclic nature of hydrological processes. This architecture is 

designed to provide an accurate and robust framework for forecasting river 

discharge in Arctic and permafrost-dominated environments. 

 

6. I do recommend the inclusion of an additional efficiency measure like KGE, that 

is complementary to the other ones and also incorporates different aspects of the 

discharge like bias for example. Please also cite and mention, which version of 

the KGE you use then. 

Reply: Implemented. We have added KGE’ (2012) as an additional evaluation 

metrics.  

The following introduction is added to the subsection of 3.6 Evaluation Metrics. 

Also, pictures, references and discussion are revised and updated accordingly. 

In addition to NSE and RMSE, the Kling-Gupta Efficiency (KGE) is employed to 

provide a balanced assessment of model performance. The KGE metric was 

developed to address certain limitations of NSE, particularly its sensitivity to 

extreme values and the potential compensation of errors in mean, variance, and 

correlation (Gupta et al., 2009). Unlike other metrics, KGE explicitly decomposes 

model performance into three components: linear correlation, bias ratio, and 

variability ratio. In this study, the modified KGE is employed, which addresses 

issues with the original formulation's sensitivity to the magnitude of standard 

deviations (Kling et al., 2012). The modified KGE (KGE’) is calculated as: 

𝐾𝐺𝐸( = 1 − )*𝑟)*+ − 1,
, + *𝛽)*+ − 1,

, + *𝛾)*+ − 1,
,,     

where rkge refers to the linear correlation coefficient between observed and 

simulated discharge; 𝛽)*+ refers to the ratio of simulated mean to observed 
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mean; 𝛾)*+ denotes the variability ratio. The KGE' ranges theoretically from -∞ 

to 1, with KGE' = 1 indicating perfect agreement between observations and 

predictions in terms of correlation, bias, and variability. A KGE' value of -0.41 

represents the performance of using the mean flow as a predictor, serving as a 

natural benchmark below which model predictions are no better than simply using 

the long-term average (Knoben et al., 2019). In hydrological modeling 

applications, KGE' values above 0.75 are generally considered very good, values 

between 0.5 and 0.75 indicate satisfactory performance, and values below 0.5 

suggest unsatisfactory model performance (Towner et al., 2019). The use of 

multiple complementary metrics (NSE, RMSE, and KGE') provides a 

comprehensive evaluation framework. While NSE emphasizes matching variance 

and is sensitive to peak flows, KGE' provides balanced assessment across 

correlation, bias, and variability. RMSE quantifies absolute error magnitude in 

original units, which is particularly important for operational applications. 

Together, these metrics enable thorough assessment of model performance across 

different aspects of discharge prediction, from overall pattern matching to peak 

flow accuracy. 

The KGE' metric provides additional insights into model performance by 

decomposing errors into correlation, bias, and variability components. The 

RCPIKLA model achieves KGE' values ranging from 0.74 to 0.82 across all time 

steps. Similar to NSE, the RCPIKLA model reaches its peak KGE' performance 

of approximately 0.82 at the 9-month time step. The baseline models demonstrate 

modest KGE' performance, with values ranging from 0.64 to 0.73. A notable 

degradation in KGE' performance is observed at the 12-month time step, where 

the RCPIKLA value drops to approximately 0.74, falling below the 0.75 

threshold. This decline likely reflects the challenges of maintaining balanced 

performance across all three KGE' components (correlation, bias, and variability) 

at very long forecasting horizons. At 12 months, accumulated prediction errors 

and the increased difficulty in capturing seasonal phase transitions may cause the 
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model's predictions to exhibit greater bias or variability mismatch compared to 

observations, despite maintaining reasonable correlation. 

Reference: 

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of 

the mean squared error and NSE performance criteria: implications for improving 

hydrological modelling, J. Hydrol., 377, 80–91, 

https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. 

Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: inherent 

benchmark or not? Comparing nash–sutcliffe and kling–gupta efficiency scores, 

Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-

2019, 2019. 

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan 

De Perez, E., and Stephens, E. M.: Assessing the performance of global 

hydrological models for capturing peak river flows in the Amazon basin, Hydrol. 

Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 

2019. 

 

7. Why does the methodology end here? Important parts that come up later within 

the results part are missing. The methodology should explain that the final model 

is compared to certain baseline models and how they distinguish from the new 

model presented here. Furthermore, the whole part is missing about how the 

model is trained on the data, with how many runs, ending criterion, hyper 

parameters and so on. 

Reply: Implemented. We have restructured amd revised the manuscript and have 

add a subsection (Section 3.7) of model implementation and training to introduce 

the models and model differences, such as with how many runs, ending criterion, 

hyperparameters and so on.  

3.7 Model implementation and training 

As shown in Fig. 4, prior to model training, the input variables, including monthly 
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precipitation, temperature and evapotranspiration data, are preprocessed and 

standardized using the Z-score normalization technique: 𝑋!"# =
$%&
'

, where μ and 

σ are the mean and standard deviation computed from the training dataset; X and 

𝑋!"# 	denote the input values before and after standardization, respectively. This 

standardization process ensures that features with different scales contribute 

appropriately to the training process and improves model convergence (LeCun et 

al., 1998). 

In regions dominated by permafrost, snow accumulation and melt typically 

exhibit strong seasonal periodicity (Andersson et al., 2021; Ernakovich et al., 

2014). Discharge patterns are strongly influenced by annual cycles of 

temperature, snow accumulation, and melt in Arctic hydrological systems 

(Häkkinen and Mellor, 1992). Accurately capturing such periodic behaviors can 

help develop robust long-term forecasting models. To include these cyclical 

patterns and facilitate smooth temporal transition, a trigonometric encoding (TE) 

of seasonal features is incorporated as input variables using sine and cosine 

transformations of the calendar month. Specifically, the timestamp is encoded to 

two features using the following trigonometric transformations: 

Month-./ = sin 72𝜋 0
1,
:;	 Month23- = cos 72𝜋 0

1,
:,	     

where m refers to the calendar month m∈{1,2,…,12}. These encodings aim at 

capturing cyclical temporal patterns without introducing artificial discontinuities 

between December and January. The trigonometric features are concatenated with 

other input variables, including temperature, precipitation and evapotranspiration, 

and fed into the residual-compensated physics-informed KAN-LSTM model with 

attention. 

Table 1 summarizes the hyperparameters and configuration settings used in this 

study. The choice of hyperparameters balances model capacity with overfitting 

risk, given the limited training data available. The LSTM hidden dimension of 64 

units and a dropout rate of 0.3 prevent overfitting while capturing essential 

temporal patterns. The batch size and epoch size are set to 32 and 150, 
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respectively. The optimal physics constraint weight (β = 0.3) and the MSE weight 

(α = 0.7) are adopted by conducting grid search over α ∈{0.1,0.3,0.5,0.7,0.9} 

(Figure S1 in Supplementary Material). With these hyperparameters, the newly 

proposed model trained in the training dataset of the Kolyma River, and then the 

fine-tuned models are applied to the unseen testing dataset for the assessment of 

the predictive performance. The prediction performance is compared with several 

popular temporal baseline models, including the simple RNN, LSTM, and GRU 

models. To assess model stability and minimize the effects of stochastic processes 

in the training procedure, each model configuration is trained 10 times 

independently on Google Colab. This repeated training protocol allows 

assessment of performance variability arising from the inherent stochasticity in 

the optimization process, including random batch shuffling and numerical 

precision variations.  

Table 1 Model hyperparameters and configuration settings 

Parameters Values 
Training Epochs 150 
Batch size 32 
Learning rate 0.0005 
Optimizer Adam 
Early stopping patience 10 
MSE weight (𝛼) 0.7 
Physics constraint weight (𝛽) 0.3 
KAN grid size 5 
KAN number of layers 2 
LSTM hidden dim 64 
Baseline models hidden dim 64 
Dropout 0.3 
Attention activation Tanh 
Output activation ReLU 
Number of runs 10 

 

References: 

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R.: Efficient BackProp, in: 

Neural networks: tricks of the trade, vol. 1524, edited by: Orr, G. B. and Müller, 
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K.-R., Springer Berlin Heidelberg, Berlin, Heidelberg, 9–50, 

https://doi.org/10.1007/3-540-49430-8_2, 1998. 

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, 

C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., 

Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and 

Shuckburgh, E.: Seasonal arctic sea ice forecasting with probabilistic deep 

learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 

2021. 

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, 

E. J., Steltzer, H., and Wallenstein, M. D.: Predicted responses of arctic and alpine 

ecosystems to altered seasonality under climate change, Global Change Biol., 20, 

3256–3269, https://doi.org/10.1111/gcb.12568, 2014. 

Häkkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a coupled 

arctic ice‐ocean system, J. Geophys. Res.: Oceans, 97, 20285–20304, 

https://doi.org/10.1029/92JC02037, 1992. 

 

8. Line 323-327: This is methodology and should not be within the results part - as it 

is missing within the methods section. 

Reply: Implemented. This part has been removed from the results section to the 

methodology section.  

 

9. Line 328-329: As mentioned earlier, the baseline models cannot be newly 

introduced within the results. 

Reply: Impelemented. We have changed the order of introduction. The baseline 

models are introduced in the methodology section before the resuls. 

 

10. Line 343-344: You can't conduct boxplots. Do you mean you conducted the 

model application 10 times? 

Reply: Implemented. We have rephrased the manuscript to improve its clarity and 
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readability here	We trained and evaluated each model in 10 independent runs. 

This repeated training quantifies performance variability due to the inherent 

stochasticity of the optimization process. Results from the 10 runs are 

summarized using boxplots. 

 

11. Line 357: Figure 6 y axis seems to be cut, the numbers are partly missing 

Reply: Implemented. We thank the reviewer for pointing this out. The figures 

have been fixed.  

 

12. Line 361: I dont see how this represents the "spectrum of hydrological 

variability". From my understanding, it is more of a possibility to see, how the 

model performs if the data is only available in lesser resolution. How does this 

assess the depiction of the hydrological variability? 

Reply: Implemented. We thank the reviewer for this important clarification. The 

reviewer is correct that our analysis examines model performance under varying 

flow conditions, from low to high discharge events. The corresponding 

description is rephrased for clarification.  

 

13. Line 405: Figure 8, are these for a aggregation period of 1 month? 

Reply: We thank the reviewer for requesting this clarification. The boxplots in 

Figure 8 show results aggregated across all forecasting time steps. Each model 

variant is trained 10 times independently at each time step (1-12 months), yielding 

120 total evaluations per model. The results of all 120 evaluations for each model 

are summerized in the boxplots. The manuscript has been revised for clarification.  

 

14. Line 407-415: This is all methodology and not results. 

Reply: Implemented. We thank the reviewer for identifying this issue. The 

contents have been reorganized and moved to methodology.  

 

15. Line 437-448: I dont think this part is really necessary here. The conclusion is not 
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a whole summary of the paper, but points out the key findings again. 

Reply: Impelemened. This long paragraph has been removed.  

 

16. Line 455-456: The river discharge has a long memory? The sentence does not 

make sense. I feel like there is a more thorough discussion necessary of why the 

model shows this behaviour regarding the model efficiency for different 

aggregation periods - where the reason must be within model structure and how it 

fits the discharge pattern over time. 

Reply: Implemented. The sencence has been rephrased to avoid confusion. A 

more thorough discussion will be added here.  

The optimal performance at the 9-month input sequence length reflects important 

temporal characteristics of this permafrost-dominated watershed and the model’s 

capacity to capture structured temporal dependencies. In the Kolyma River basin, 

current discharge is influenced by hydrometeorological conditions that could span 

multiple seasons, such as snow accumulation, snowmelt dynamics, and 

subsequent baseflow recession controlled by active layer storage and permafrost-

restricted groundwater flows. The 9-month optimal input window captures the 

information of seasonal dynamics which provides the model with sufficient 

temporal context. The attention mechanism further refines this by assigning 

higher importance to specific antecedent months that strongly influence current 

discharge. Shorter sequences may fail to capture full seasonal cycles and snow 

accumulation processes, while longer sequences (10-12 months) likely introduce 

temporal uncertainties. 

 

17. I generally feel like the discussion part is lacking depth. While I personally 

recommend to separate results and discussion, you can keep both together if it 

makes sense overall. But in the current state, the results lack depth regarding the 

explanation of observed model behaviour. For example, line 462-463: has this 

been the same for the application of other models? Is this a common problem? 

Like this, a few more citations and comparisons to other studies would help 
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putting the paper within a broader context. 

Reply: Implememted. We will improve the results and discussion.  

This systematic underestimation of peak flows represents a common challenge in 

data-driven hydrological modeling, particularly for Arctic river systems, where 

extreme discharge events are relatively rare but carry significant implications for 

water resource management and hazard mitigation. Kratzert et al. (2019) observed 

similar patterns in LSTM-based rainfall-runoff modeling across diverse 

catchments. For Arctic rivers specifically, Gelfan et al. (2017) and Chang et al. 

(2025) reported that process-based models and machine learning approaches 

struggle with extreme conditions due to the complex processes and events that are 

poorly represented in limited observational records. In our study, extreme high 

discharge events (>80 mm) constitute less than 5% of the training dataset, 

creating a class imbalance problem common in hydrological time series (Nearing 

et al., 2021). The squared error loss function (MSE) used in model training 

inherently weights all samples equally, which can lead to optimization that favors 

the more numerous moderate flow events at the expense of rare extremes. Future 

work could address this limitation through specialized sampling techniques or 

physics-informed constraints specifically designed to better captures high-

magnitude discharge events. 

 

Reference: 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, 

G.: Towards learning universal, regional, and local hydrological behaviors via 

machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 

5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019. 

Gelfan, A., Gustafsson, D., Motovilov, Y., Arheimer, B., Kalugin, A., Krylenko, 

I., and Lavrenov, A.: Climate change impact on the water regime of two great 

arctic rivers: modeling and uncertainty issues, Clim. Change, 141, 499–515, 

https://doi.org/10.1007/s10584-016-1710-5, 2017. 

Chang, S. Y., Schwenk, J., and Solander, K. C.: Deep learning advances arctic 
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river water temperature predictions, Water Resour. Res., 61, e2024WR039053, 

https://doi.org/10.1029/2024WR039053, 2025. 

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. 

M., Prieto, C., and Gupta, H. V.: What role does hydrological science play in the 

age of machine learning?, Water Resour. Res., 57, e2020WR028091, 

https://doi.org/10.1029/2020WR028091, 2021. 

 

18. Also, I am currently missing a graphical depiction of the gauging curve and the 

simulated discharge. I believe a figure for that would help to give the reader an 

idea of how the model behaves, where it might deviate from gauging data and 

where it is strongly in congruence with it. 

Reply: Implememted. A new graphic depiction of observed and simulated 

discharge will be added to the manuscript to provide the readers with a better idea 

of how different models behave.  

 

Minor comments: 

19. Line 22: structure 

Reply: Implemented. We have corrected the spelling/grammar error. 

20. Line 24: dominated by permafrost 

Reply: Implemented. We have corrected the spelling/grammar error. 

21. Line 27: ...that these components improve the predictive performance. 

Reply: Implemented. We have corrected the spelling/grammar error. 

22. Line 46: These temperature dependent transitions...? 

Reply: Implemented. We have corrected the spelling/grammar error. 

23. Line 128-129: Why is there no citation for the Dataset? 

Reply: Implemented. The data source and citation have been added to the 

manuscript.  

24. Line 178: 1) Input expansion 

Reply: Implemented. We have corrected the spelling/grammar error. 
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25. Line 183-185: Kolmogorov-Arnold theorem while avoiding the computational 

overhead 

Reply: Implemented. We have corrected the spelling/grammar error. 

26. Line 195: GELU 

Reply: Implemented. We have corrected the spelling/grammar error. 

27. Line 196: Figure 3 not referenced within the text. 

Reply: Implemented. We have added Figure 3 in the text. 

28. Line 200: ...mechanism and a hidden state, an LSTM can efficiently regulate... 

Reply: Implemented. We have corrected the spelling/grammar error. 

29. Line 209: The memory cell of an LSTM is primarily composed... 

Reply: Implemented. We have corrected the spelling/grammar error. 

30. Line 240: "Q refers the discharge prediction using the context vector calculated 

from the context vector." It has to be "refers to" and what is "using the context 

vector calculated from the context vector" supposed to mean? 

Reply: Implemented. It has been rephrased to improve clarity. We have corrected 

the spelling/grammar error. 

31. Line 273: I recommend a semicolon after water. 

Reply: Implemented. We have corrected the spelling/grammar error. 

32. Line 279: caused by sources, such as model simplifications... 

Reply: Implemented. We have corrected the spelling/grammar error. 

33. Line 285-286: Maybe its better to reformulate the sentence and describe alpha and 

beta as parameters that have to be fitted through model application? 

Reply: Implemented. α and β are weighting coefficients that control the relative 

importance of the data-driven loss (MSE) and physics-informed constraint terms 

in the combined loss function.	The optimal physics constraint weight (β = 0.3) 

and the MSE weight (α = 0.7) are adopted by conducting grid search over α 

∈{0.1,0.3,0.5,0.7,0.9}.  

34. Line 299: beneficial 

Reply: Implemented. We have corrected the spelling/grammar error. 

35. Line 303-304: What is cited here? The Nash-Sutcliffe efficiency measure should 
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be properly cited. 

Reply: Implemented. A reference has been added regarding the Nash-Sutcliffe 

efficiency measure. 

36. Line 330: I would recommend to implement the name RCPIKLA of the new 

model earlier, instead of within the results. 

Reply: Implemented. We have move it earlier.  

37. Line 396: change "better captures" 

Reply: Implemented. We have corrected the spelling/grammar error. 

 
 
Sincerely yours, 
 
Renjie Zhou 
Associate Professor 
Department of Environmental and Geosciences 
Sam Houston State University 
Huntsville, TX 77340 
 
 


