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Abstract. Nitrogen oxides (NOx) are key pollutants involved in ozone and particulate matter formation, with strong spa-

tial variability near urban sources. Accurate monitoring of tropospheric nitrogen dioxide (NO2) is essential for air quality

management and relies on validated chemistry transport models and multi-scale observations. This study evaluates the WRF-

Chem model v4.5.1, run at 1 km resolution over Bucharest, Romania, using in situ meteorological data and surface chemical

measurements, as well as airborne NO2 columns from 17 SWING+ flights conducted between 2021 and 2022. The model suc-5

cessfully captures key atmospheric processes and NO2 variability across all but one observation period. Our results indicate

that anthropogenic NOx emissions from CAMS-REG v7.0 are underestimated, with satisfactory agreement with observations

achieved when the emissions are scaled by a factor of 1.5. We also assess TROPOMI tropospheric NO2 columns v2.4.0 us-

ing SWING+ as reference, with WRF-Chem used as an intercomparison platform to account for differences in sampling and

vertical sensitivity. TROPOMI biases range from +20% at low concentrations (1015 molec. cm−2) to –13% at higher levels10

(15× 1015 molec. cm−2). Additionally, we provide seasonal diagnostics, a detailed treatment of uncertainty estimates, and

contextualize our findings through a review of recent TROPOMI NO2 validation studies.

1 Introduction

Nitrogen oxides (NOx = NO +NO2) are important trace gases and pollutants in the troposphere. In industrialized areas, they

are primarily emitted as NO from fuel combustion associated with anthropogenic activities such as road transport, household15

heating, power generation, and industry. They also originate from biogenic sources, including bacterial activity in soils and

lightning. NO is rapidly converted into NO2 through photochemical reactions which also contribute to the formation of sec-

ondary pollutants including tropospheric ozone (Sillman et al., 1990), nitric acid and nitrate aerosols (Chan et al., 2010). NOx

and secondary pollutants all pose threats to human health and the environment (World Health Organization, 2021; European

Environment Agency, 2022). They impair respiratory function, particulate matter contributes to cardiovascular diseases, O320

damages crops and vegetation, and HNO3 enhances the eutrophication of water bodies, thereby collectively degrading air and

water quality. Moreover, NOx are reactive species that can exert positive and negative influences on the concentrations of

greenhouse gases such as O3 and CH4, and should therefore be incorporated into climate change assessments.
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Global coverage of the daily spatial distribution of NO2 is thus a crucial component of atmospheric monitoring. It enables

the identification of pollution sources, supports the analysis of spatial and temporal trends, and allows to derive top-down25

emissions (see, e.g., van der A et al., 2024; Lin et al., 2024). The current state-of-the-art instrument for this purpose is the

TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al. (2012)), a spectrometer-imager onboard the European

Space Agency (ESA) polar-orbiting Sentinel-5 Precursor (S-5P) satellite, launched in 2017. TROPOMI follows a series of

earlier satellite-borne instruments: the Global Ozone Monitoring Experiment (GOME; Burrows et al. (1999)) launched in

1995, the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY; Bovensmann et al.30

(1999)) launched in 2002, and the Ozone Monitoring Instrument (OMI; Levelt et al. (2006); Boersma et al. (2007)) launched

in 2004. Across this sequence of instruments, spatial resolution has progressively improved from 40× 320 km2 (GOME), to

30×60 km2 (SCIAMACHY), 13×24 km2 (OMI), 3.5×7 km2 for TROPOMI at its initial resolution, and 3.5×5.5 km2 since

August 2019.

Despite their high relevance, TROPOMI products are subject to limitations and uncertainties arising from the influence of35

clouds, aerosols, and surface reflection properties on the light path, as well as from uncertainties in the characterization of

the a priori vertical profiles of relevant chemical species. Consequently, TROPOMI measurements must be validated against

independent observations, preferably with higher spatial and temporal resolution. For instance, the latest Quarterly Validation

Report of the S-5P Operational Data Products (Lambert et al., 2025) presents direct comparisons with remote sensing MAX-

DOAS instruments globally, showing a positive bias over clean areas (9.5% for columns below 2× 1015 molec. cm−2) and40

a negative bias over highly polluted areas (−38% for columns above 15× 1015 molec. cm−2). The overall median bias is

−29.4%, but it can be reduced by about 20% by smoothing the MAX-DOAS vertical profiles using TROPOMI averaging

kernels.

The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is another type of remote sensing in-

strument developed at BIRA-IASB to measure tropospheric NO2 from an aircraft and map its distribution over urban areas45

with high spatial resolution (Merlaud et al., 2018). An upgraded version, SWING+, was developed and deployed during an air-

borne measurement campaign over Bucharest, the capital city of Romania, comprising 17 flights conducted in 2021 and 2022.

Bucharest concentrates significant anthropogenic activity and represents a relatively understudied environment compared to

other polluted cities in Europe. In situ measurements within the city consistently exceeded the World Health Organization

guideline annual mean limit of 10 µg m−3 for NO2 (World Health Organization, 2021), by up to a factor of 2 in urban areas50

and up to a factor of 4 near traffic sites in 2021 and 2022 (Ilie et al., 2023). At the same time, Bucharest is surrounded by

predominantly rural areas, resulting in sharp spatial gradients in NO2 concentrations due to its short atmospheric lifetime (a

few hours in urban settings). SWING+ measurements are acquired at a high spatial resolution of 0.35× 0.35 km2, making

them ideal datasets to resolve the plumes emanating from the city and to evaluate TROPOMI products over the Bucharest

area. Moreover, the 17 flights span different seasons, allowing for the analysis of seasonal effects, with higher concentrations55

expected during colder months and lower concentrations during warmer months. A caveat is that SWING+ and TROPOMI ac-

quire measurements with differing vertical sensitivities and at different acquisition times, potentially introducing representation

errors in their direct comparison.
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In parallel with the measurements, chemical transport models (CTM) provide complementary information on tropospheric

chemical levels. They generate three-dimensional chemical concentration fields at selected time steps based on state-of-the-60

art theoretical knowledge of atmospheric physics and chemistry, thereby filling the spatial or temporal gaps of observational

datasets. In this study, the regional Weather Research and Forecasting model coupled with Chemistry version 4.5.1 (WRF-

Chem, Grell et al., 2005; Skamarock et al., 2019) is employed to simulate the atmospheric composition around Bucharest with

two nested domains. We use resolutions of 1× 1 km2 over a domain of 100× 100 km2 centered on Bucharest, and 5× 5 km2

over a domain of 400× 600 km2 extending mostly over Romania and Bulgaria. We assess the model predictions through65

comparisons with in situ meteorological and chemical concentration measurements, as well as with airborne tropospheric

column measurements of NO2 from SWING+. Our simulations use the CAMS-REG version 7.0 anthropogenic emission

dataset (Kuenen et al., 2022), with an adjustment to NOx emissions over the city of Bucharest to improve consistency with

observations.

Additionally, the use of a CTM such as WRF-Chem enables a more precise comparison between SWING+ and TROPOMI70

products. By using the model as an intercomparison platform, we can bridge the time lag and account for the respective vertical

sensitivities of both instruments, using their averaging kernels. This method was applied by Zhu et al. (2016, 2020) for HCHO

over the Southern United States and California, Poraicu et al. (2023) for NO2 over the Antwerp region in Belgium, and is

revisited in the present study. Specifically, we exploit the large number of flight measurement days and introduce an explicit

treatment of error propagation within this method.75

The paper is organized as follows. In Sect. 2, we present the methodology. We begin by briefly describing the WRF-Chem

model, including its parameterizations and the selected datasets for boundary and initial conditions, as well as anthropogenic

emissions. We then review the measurement datasets used in this study: in situ data for meteorological variables and surface

chemical concentrations, and airborne and satellite-borne NO2 tropospheric columns. For the latter two, we detail how WRF-

Chem outputs are combined with the instruments averaging kernels to account for their vertical sensitivity. In Sect. 3, we80

present the results of our analysis. WRF-Chem surface outputs are first evaluated against in situ measurements, with the

analysis performed both by combining all available data and by season. Next, the modeled NO2 tropospheric columns are

evaluated against SWING+ measurements on a day-by-day basis and by season. TROPOMI columns are then validated against

the airborne SWING+ data, using WRF-Chem as an intercomparison platform, with comparisons made both by assembling

the full set of flight days and seasonally. In Sect. 4, we review previous validation studies of TROPOMI tropospheric NO285

products and compare them with our own results. Finally, we conclude and summarize our findings in Sect. 5.
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2 Methodology

2.1 The WRF-Chem model

2.1.1 Domain and model setup

We employ the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 4.5.1, along with the90

WRF Pre-processing System (WPS) version 4.5 (Grell et al., 2005; Skamarock et al., 2019). Our simulations use two nested

domains centered on Bucharest, Romania. The outer domain covers 400×600 km2 at a 5×5 km2 resolution, extending across

Romania and Bulgaria, and also covering parts of the Black Sea, Serbia, Moldova, and Ukraine. The inner domain spans

100× 100 km2 at a 1× 1 km2 resolution, with its southern and eastern borders intersecting the border between Romania and

Bulgaria (Fig. 1). The vertical grid of the model comprises 44 levels, reaching altitudes up to above 20 km.95

Figure 1. (a) WRF-Chem nested domains used for our simulations and (b) closeup of the inner domain showing the municipal borders and

the in situ measurement stations: ANM (blue dots), MARS (yellow) and RNMCA (red). Details are provided in the text.

For each of the 17 SWING+ flights, we ran a WRF-Chem simulation spanning 54 hours, starting at 18:00 UTC two days

before the flight day and ending at 00:00 UTC the day after. This setup allows for comparisons with in situ measurements over
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Table 1. Summary of the selected physics and chemistry schemes and options used in the WRF-Chem simulations.

Option Name Reference(s)

Physics

Cumulus parametrization Grell-Freitas (GF) Arakawa (2004); Grell and Freitas (2014)

Microphysics Morrison double-moment Morrison et al. (2009)

Longwave and shortwave radiation RRTMG Iacono et al. (2008)

Planetary boundary layer scheme Yonsei University (YSU) Hong et al. (2006)

Surface layer scheme Revised MM5 Fairall et al. (2003); Jiménez et al. (2012)

Land surface model 5-layer thermal diffusion (SLAB) Dudhia (1996)

Chemistry
Gas-phase chemistry MOZART-4 Emmons et al. (2010)

Aerosol chemistry GOCART Chin et al. (2000)

a two-day period (including the day preceding the flight and the flight day itself), with a spin-up time of at least 3 hours since

Bucharest operates in UTC+3 or UTC+2 depending on daylight saving time.

The physics and chemistry schemes and options selected for our simulations are summarized in Table 1. In addition to these100

choices, external data were used. More specifically, static geographical data were obtained at the highest resolution available

from the WRF users’ webpage (https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html, last access: 22

July 2025). Furthermore, we used the 0.25°×0.25° ERA5 reanalysis data from ECMWF (Hersbach et al., 2023a, b) to provide

the boundary and initial conditions for the physical parameters. These two datasets were regridded to match our nested domains

using the WPS. Boundary and initial conditions for the chemical species are obtained from the 0.95◦×1.25◦ WACCM6 dataset105

(Gettelman et al., 2019) and regridded using the mozbc preprocessor, available at the WRF-Chem Tools for the Community

webpage (https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community, last access: 22 July 2025).

2.1.2 Emissions

We use the CAMS-REG inventory version 7.0 for anthropogenic emissions across the entire domain, with a spatial resolution

of 0.05◦× 0.1◦ (Kuenen et al., 2022). This inventory provides emission maps for each chemical species and for each Gridded110

Nomenclature For Reporting (GNFR) sector, covering the years 2021 and 2022. It also includes additional temporal factors

(hourly, daily, and monthly) and vertical profiles specific to each sector. For emissions from the GNFR sector L, which pertains

to agriculture unrelated to livestock, the monthly factors vary by species. The spatial distribution of nitrogen oxides (NOx =

NO+NO2) emission rates, summed across all GNFR sectors and averaged over the years 2021 and 2022, is shown in Fig. 2 (a).

The distribution of NOx emissions among the GNFR sectors over Bucharest is presented in Fig. 3, along with a comprehensive115

list of the GNFR sectors. Here and thereafter, we approximate the Bucharest area using the bounding box shown in Fig. 2,

defined by 44.34◦−44.53◦ N and 25.96◦−26.24◦ E. Within this area, the yearly anthropogenic NOx emissions are estimated

at 32.6 mol km−2 h−1 in 2021 and 33.6 mol km−2 h−1 in 2022. These correspond to 4.03 and 4.16 kT y−1 of NO emissions,

respectively.
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Figure 2. Distribution of NOx emission rates over the WRF-Chem inner domain, summed across all GNFR sectors and averaged for 2021

and 2022. (a) From the CAMS-REG v7.0 inventory at its native resolution. (b) From the CAMS-REG v7.0 inventory, with the emission

factor increased by a factor of 1.5 over the Bucharest box, mapped to the WRF-Chem resolution.

Preliminary evaluation using in situ surface concentrations and airborne column measurements indicated that WRF-Chem120

NO2 levels are generally too low over Bucharest when using CAMS-REG emissions. Therefore, we applied a custom ad-

justment to the CAMS-REG inventory by multiplying the NOx emissions by a factor of 1.5 within the previously defined

Bucharest box. This brings the yearly fluxes to 48.9 mol km−2 h−1 in 2021 and 50.4 mol km−2 h−1 in 2022 over Bucharest.

This crude adjustment was estimated based on the model performance in simulations from the 17 flight dates. Its justification

will be made clear from the model comparisons with in situ and airborne measurements (Sect. 3.1.2 and 3.2). We handled the125

mapping of emissions to match WRF grid cells with a redistribution of the emission mass according to the surface fraction

of each WRF grid cell within the corresponding CAMS-REG pixels, preserving the total emitted mass. The resulting map of

NOx emission rates, incorporating the adjustment for Bucharest, as provided to WRF-Chem is presented in Fig. 2 (b). Table 2

provides the mapping of emissions from the CAMS-REG v7.0 inventory to MOZART-4 chemical species. The CAMS-REG
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Figure 3. Sectoral distribution of anthropogenic NOx emissions from CAMS-REG v7.0 over the Bucharest box by GNFR sector for the

years 2021 and 2022, including a comprehensive list of GNFR sector category codes and names.

volatile organic compounds VOC1, VOC19, and VOC23 are distributed following Chen et al. (2020) (with mass fractions130

adapted to molar fractions).

Biogenic emissions are computed online by WRF-Chem using the Model of Emissions of Gases and Aerosols from Nature

(MEGAN) version 2.04 (Guenther et al., 2006). WRF-Chem input files for the biogenic emissions were generated using

the bioemiss preprocessor, available on the WRF-Chem Tools for the Community webpage (https://www2.acom.ucar.edu/

wrf-chem/wrf-chem-tools-community, last access: 22 July 2025).135

Lightning-NOx emissions are computed online based on the parametrization of Price and Rind (1992), which distributes

flashes based on convective cloud top height.

2.2 Measurements

2.2.1 In situ meteorological measurements

The Măgurele center for Atmosphere and Radiation Studies (MARS), located within the WRF inner domain (yellow pin in140

Fig. 1 (b)), provides measurements of air pressure, temperature, relative humidity, and solar radiation at 2 meters every minute

(Carstea et al., 2025). More specifically, the first three aforementioned variables are available only for the first 15 SWING+

dates, while radiation is measured for all of them. When available, these data enable the model evaluation over two-day time

series for each SWING+ flight, starting at 00:00 LT on the day preceding the flight and ending at 00:00 LT on the day after.

The national meteorological administration, Administraţia Naţională de Meteorologie (ANM), also called MeteoRomania,145

provides hourly measurements of air pressure, temperature, relative humidity, solar radiation at 2 meters, and wind speed at

10 meters (https://www.meteoromania.ro/, data acquired upon request on March 13, 2024). The network operates 6 stations

located within our WRF inner domain (blue pins in Fig. 1 (b)), named after their respective localities: Afumat,i, Băneasa,

Filaret, Oltenit,a, Titu, and Urziceni. For each meteorological variable, we obtained 21 or 22 measurements per flight day and
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Table 2. Mapping of molar emissions from the CAMS-REG v7.0 inventory to the MOZART-4 mechanism, along with details on labels from

both datasets that differ from chemical formulas and standard acronyms or abbreviations.

MOZART-4 CAMS-REG v7.0 Labeled chemical species

CH4 ← CH4 BIGALK Alkanes with 4 or more C atoms

CO ← CO BIGENE Alkenes with 4 or more C atoms

NH3 ← NH3 TOLUENE Aromatics

NO ← 0.90 NOx VOC1 Alcohols

NO2 ← 0.10 NOx VOC2 Ethane

SO2 ← SOx VOC3 Propane

CH3OH ← 0.26 (VOC1 +VOC19) VOC4 Butanes

C2H5OH ← 0.74 (VOC1 +VOC19) VOC5 Pentanes

C2H6 ← VOC2 VOC6 Hexanes and higher alkanes

C3H8 ← VOC3 VOC7 Ethene

BIGALK ← VOC4 +VOC5 +VOC6 VOC8 Propene

C2H4 ← VOC7 VOC9 Ethyne

C3H6 ← VOC8 VOC10 Isoprene

C2H2 ← VOC9 VOC11 Monoterpenes

ISOP ← VOC10 VOC12 Other alk(adi)enes and alkynes

C10H16 ← VOC11 VOC13 Benzene

BIGENE ← VOC12 VOC14 Toluene

TOLUENE ← VOC13 +VOC14 +VOC15+ VOC16+ VOC17 VOC15 Xylene

CH2O ← VOC21 VOC16 Trimethylbenzenes

CH3CHO ← VOC22 VOC17 Other aromatics

MEK ← 0.35 VOC23 VOC19 Ethers

CH3COCH3 ← 0.65 VOC23 VOC21 Methanal

VOC22 Other alkanals

VOC23 Ketones

at each station, with the exception of solar radiation, which was not measured at Titu and was only available for the last 8150

SWING+ flight days elsewhere.

2.2.2 In situ surface chemical measurements

Surface concentrations of air pollutants are measured hourly by the national air quality monitoring network in Romania,

Ret,eaua Nat,ională de Monitorizare a Calităt,ii Aerului, or RNMCA for short (https://calitateaer.ro/, last access: 22 July 2025).

The network manages 30 monitoring stations in the Bucharest metropolitan area, most of which focus on particulate matter155
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Table 3. List of RNMCA stations in the Bucharest metropolitan area that provide surface concentrations of NO, NO2, and O3. For each

species, the number of SWING+ flight overpasses for which the RNMCA station provides in situ measurements is indicated, with 17 being

the maximum. The NOx/NO2 ratio is calculated as the average of the hourly ratios evaluated at night across all two-day measurement series

and serves as a criterion for assessing the model representativity at each station.

RNMCA station NO NO2 O3 Area type Nighttime [NOx]/[NO2]

B-1 17 17 17 urban 1.47

B-2 17 17 0 industrial 1.66

B-3 17 17 0 traffic 1.79

B-4 17 17 0 industrial 1.45

B-5 17 17 17 industrial 1.56

B-6 17 17 0 traffic 1.81

B-7 17 17 17 suburban 1.49

B-8 17 17 17 rural 1.33

B-9 7 7 7 urban 1.47

B-10 3 3 0 urban 1.64

B-11 3 3 0 traffic 1.81

measurements. Of these, 11 stations also monitor key chemical species relevant to our study, including NO, NO2, and O3

at some stations. The stations are displayed in Fig. 1 (b). RNMCA provides information about potential pollution sources in

the surroundings of each station, allowing the classification into five categories: urban, urban with traffic influence, urban in

an industrial area, suburban, and rural, cf. Table 3. For the model evaluation, we consider two-day series of measurements

for each SWING+ overpass. The first data point is recorded at 01:00 LT on the day preceding the flight day, and the last one160

47 hours later. This results in 48 data points per flight for each chemical species and each RNMCA station, provided that all

measurements are available.

The chemiluminescence measurement of NO2 is known to be affected by interference from compounds in the NOy reservoir

(Lamsal et al., 2008). The modeled mixing ratio of NO2 should therefore account for contributions from PAN, HNO3, and

the sum of alkyl nitrates. The latter includes the (reactive) organic nitrate species, ONIT and ONITR, which are present in165

the MOZART-4 mechanism. We compute the corrected modeled volume mixing ratio of NO2, referred to as NO∗2, from the

WRF-Chem model output as follows:

[NO∗2] = [NO2] + 0.95[PAN]+ 0.35[HNO3] + [ONIT] + [ONITR] . (1)

Hereafter, the measured surface NO2 will be referred to as NO∗2 as well.

Some RNMCA sites are closer to NOx pollution sources than others and are more likely to show higher NOx concentrations170

than the model prediction due to enhanced representation errors. Poraicu et al. (2025) suggested that the measured nighttime

NOx/NO2 ratio can be used to determine whether a station is well represented by the model. Indeed, away from emission
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sources, NOx species are expected to reach the pseudo-steady state (PSS) of their photochemical cycle, which constrains the

NOx/NO2 ratio:
(

[NOx]
[NO2]

)

PSS
= 1 +

J

k[O3] + . . .
, (2)175

where J is the photolysis rate of NO2, k = 1.95×10−14 molec.−1 cm3 s−1 (at 298 K) is the rate constant for the titration of O3

with NO (Burkholder et al., 2019), and the dots represent contributions from peroxy radicals. At night, J becomes negligible,

causing the ratio to decrease and approach 1. However, photochemical equilibrium is far from being achieved near NOx

pollution sources, which primarily emit NO and lead to observed ratios significantly higher than 1. Thus, we select RNMCA

stations with relatively low measured NOx/NO2 ratios during nighttime, in order to exclude the least representative stations.180

As shown in Table 3, stations influenced by traffic exhibit the largest deviations from the PSS prediction, with nighttime ratios

greater or equal to 1.79. As expected, the lowest ratio (1.33) is found for the only rural station. For the model evaluation in

Sect. 3.1.2, we will focus on the eight stations not directly exposed to traffic, characterized by a nighttime NOx/NO2 ratio

below 1.7 (B-1, B-2, B-4, B-5, B-7, B-8, B-9, and B-10). The enhancement of NO2 concentrations at traffic stations is not

specific to our selected dates but was also observed in yearly averages from 2020 to 2022, as reported by Ilie et al. (2023).185

Note that this distinction does not affect the analysis of O3 concentrations, as traffic stations do not measure it. Ozone is only

monitored at five distinct stations (Table 3).

2.2.3 Airborne SWING+ NO2 column measurements

SWING (Small Whiskbroom Imager for atmospheric compositioN monitorinG) instruments are compact whiskbroom imagers

developed at BIRA-IASB for air quality mapping. They use ultraviolet and visible-light spectrometers, covering a spectral190

range of 280− 550 nm with a resolution of 0.7 nm Full Width Half Maximum (FWHM), to retrieve NO2 column abundances

using the Differential Optical Absorption Spectroscopy (DOAS) technique (Platt and Stutz, 2008). Initially designed for op-

erations onboard an unmanned aerial vehicle (UAV) (Merlaud et al., 2018), SWING instruments have since been deployed on

crewed aircraft for validation flights alongside larger airborne imagers over Berlin (Tack et al., 2019) and Bucharest (Merlaud

et al., 2020).195

The SWING observations over Bucharest exploited in this study originate from two ESA-funded projects: RAMOS (Nemuc

et al., 2023) and QA4EO (Nemuc et al., 2024). Within RAMOS, a custom version of the instrument, named SWING+, was

developed at BIRA-IASB and permanently installed on the Britten-Norman 2 (BN-2) aircraft operated by INCAS (National

Institute for Aerospace Research). Compared to the original UAV version, SWING+ is enclosed in an aluminum casing, with

the scanner deported by 20 cm to exit the aircraft fuselage. The instrument is still relatively compact (45×19×15 cm3, 3.8 kg).200

In contrast to typical field campaigns that are typically deployed over a few weeks during summer, the flight strategy in

RAMOS and QA4EO consisted in flying on a regulatory basis across the year, limited to clear-sky conditions. The BN-

2 hovered the city from an altitude of 3 km, and the SWING+ swath was set to 48◦, incremented in steps of 6◦, with an

integration time of with 0.5 s. This configuration resulted in a ground resolution of 0.35×0.35 km2. Table 4 lists the 17 flights
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Table 4. Acquisition start and end times (local time) of the SWING+ and TROPOMI instruments for each flight date (dd/mm/yyyy) over

Bucharest.

Dates SWING+ start SWING+ end TROPOMI start TROPOMI end

01/07/2021 10:31:17 12:05:13 14:13:09 14:13:12

05/07/2021 13:28:27 15:11:13 14:38:20 14:38:24

10/07/2021 12:47:44 14:05:20 13:04:56 13:05:00

29/10/2021 12:59:26 14:13:12 13:24:05 13:24:09

04/11/2021 11:35:57 13:02:46 12:11:47 12:11:52

05/11/2021 12:21:00 14:02:01 13:32:45 13:32:48

11/11/2021 12:00:07 13:54:36 13:20:12 13:20:17

22/11/2021 12:04:26 14:01:39 13:14:00 13:14:05

23/12/2021 12:06:58 14:16:26 13:33:06 13:33:11

05/01/2022 11:38:25 13:41:06 12:49:21 12:49:25

24/03/2022 12:16:01 14:15:00 13:26:56 13:27:01

28/03/2022 12:26:05 14:03:22 13:12:15 13:12:18

05/04/2022 12:48:17 14:51:50 14:01:47 14:01:52

15/04/2022 13:16:21 15:11:11 14:14:13 14:14:18

30/06/2022 12:55:39 14:25:13 13:48:38 13:48:42

30/09/2022 12:57:40 14:39:19 13:24:07 13:24:13

02/11/2022 11:24:43 12:46:42 12:05:54 12:05:57

used in this study, operated between July 2021 and November 2022. All dates are weekdays, except for 10/07/2021, which was205

a Saturday. Flight times were chosen to coincide with TROPOMI overpasses, except for the first date which was the test flight.

In the DOAS analysis, each vertical column density (VCD, or ΩS when specifically referring to SWING+) of NO2 is obtained

by dividing the slant column density (SCD) by an air mass factor (AMF) specific to each measurement. The slant column itself

is the sum of a reference slant column density (SCDref), estimated only once per flight, and the differential slant column density

(DSCD):210

VCD =
SCD
AMF

=
SCDref + DSCD

AMF
. (3)

AMFs are computed using the uvspec/DISORT radiative transfer model (Mayer and Kylling, 2005), with a relative uncertainty

of 15.2% across the dataset. SCDref values are daily averages derived from 30 reference spectra over a clean area, with an

uncertainty of 0.5− 2.1× 1015 molec. cm−2, propagating as a 0.2− 1.0× 1015 molec. cm−2 error on the VCD. Averaged

per flight day, DSCD uncertainty ranges from 1.4− 2.5× 1015 molec. cm−2, reducing to 0.5− 1.6× 1015 molec. cm−2 when215

propagated into the VCD. Summed in quadrature, these errors yield a total VCD uncertainty of 0.9−1.9×1015 molec. cm−2.

Lower uncertainties correspond to lower VCDs observed in spring and summer, while higher uncertainties are associated with

elevated columns in fall and winter.
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For the evaluation of the WRF-Chem model, SWING+ vertical column densities and averaging kernels are regridded to the

model resolution. Measurements falling within the same WRF grid cell and separated in time by less than the model output220

interval (5 minutes) are averaged to produce a single regridded SWING+ column. After regridding, the daily average VCD

error due to DSCD uncertainty, which is primarily of random origin, decreases to 0.3− 0.7× 1015 molec. cm−2. Systematic

errors remain unaffected by the regridding. The same process is applied to the averaging kernels, denoted as AS, which are

then used to evaluate the modeled columns, accounting for the instrument vertical sensitivity. More precisely, WRF-Chem

NO2 tropospheric columns ΩW,S are derived from the modeled NO2 density field nW and the regridded kernels by integrating225

over the troposphere (Trop):

ΩW,S =
∫

Trop

AS(z)nW(z)dz . (4)

The regridding of SWING+ measurements for the purpose of TROPOMI validation is detailed in the next section.

2.2.4 Satellite-borne TROPOMI NO2 column measurements

The TROPOspheric Monitoring Instrument (TROPOMI) was launched aboard the Sentinel-5 Precursor (S5P) satellite of the230

European Space Agency in October 2017 to monitor atmospheric composition and air quality (Veefkind et al., 2012). S5P

is a near-polar and sun-synchronous satellite with a near-daily overpass. TROPOMI is a nadir-viewing pushbroom imaging

spectrometer that covers spectral bands in the ultraviolet, visible, near-infrared, and shortwave infrared regions, enabling the

retrieval of key atmospheric trace gases, including NO2. Its spatial resolution was initially 7× 3.5 km2, and improved to

5.5× 3.5 km2 after August 2019. Its overpass times over Bucharest are listed in Table 4.235

The TROPOMI tropospheric NO2 vertical column density ΩT is generated through a multi-step retrieval process. First,

differential optical absorption spectroscopy (DOAS) is applied to the Level-1b radiance and irradiance spectra to retrieve total

slant column densities in the 405− 465 nm range, using techniques developed for OMI (van Geffen et al., 2020). Second,

the separation of stratospheric and tropospheric contributions is performed using data assimilation in the TM5-MP chemistry

transport model (Williams et al., 2017). In the final step, the tropospheric slant column is converted to a vertical column using240

air mass factors (AMFs), which are computed with the Doubling-Adding KNMI radiative transfer model (de Haan et al., 1987;

Stammes, 2001) based on TM5-MP NO2 vertical profiles. Further details are provided in the TROPOMI NO2 Algorithm

Theoretical Basis Document (van Geffen et al., 2024).

In this study, we evaluate TROPOMI NO2 retrievals from version 2.4.0, using reprocessed data (RPRO) up to 17/07/2022 and

offline products (OFFL) thereafter (Eskes et al., 2024). This version incorporates an updated surface albedo climatology based245

on TROPOMI observations. Only measurements with a quality assurance value greater than 0.75 are retained, in accordance

with the recommendation. Additionally, only those TROPOMI measurements for which at least 50% of the pixel area is

covered by SWING+ observations are considered in the analysis. The average precision of these TROPOMI measurements is

1.3× 1015 molec. cm−2.

SWING+ measurements are used here to validate TROPOMI, with WRF-Chem serving as an intercomparison platform that250

accounts for the acquisition times and vertical sensitivities of both instruments. The validation is carried out in two steps:
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1. We assess the bias of WRF-Chem relative to SWING+ and determine the appropriate correction for its columns for

each flight. This is realized at the TROPOMI spatial resolution by averaging both SWING+ and the corresponding

WRF-Chem columns ΩW,S over TROPOMI pixels. At this resolution, the random uncertainty on the SWING+ column

stemming from the DSCD, presented in the previous section, falls below 1014 molec. cm−2.255

2. We evaluate another set of WRF-Chem columns, denoted as ΩW,T, using TROPOMI averaging kernels AT and the

modeled NO2 density profile nW averaged over TROPOMI pixels:

ΩW,T =
∫

Trop

AT(z)nW(z)dz , (5)

and correct these columns based on the insights gained from the first step. The bias-corrected version of ΩW,T columns,

denoted by Ωbc
W,T, then serve as a reference to evaluate the bias of TROPOMI, combining data from different flight days,260

either all together or by season.

In both steps, we assume that the biases of the model and the satellite can be captured through linear regression against reference

values. To ensure the quality of the results, a selection of flight days will be made based on the evaluation of the model against

SWING+ data. Note that this method generalizes the approach of Poraicu et al. (2023) by extending it to simultaneously

address multiple flight days. In their study, WRF-Chem biases relative to the airborne instrument APEX and to TROPOMI265

were subtracted to infer the bias of TROPOMI with respect to APEX, one flight date at a time.

3 Results

3.1 Model evaluation using in situ measurements

3.1.1 Meteorological observations

In this section, we present the results of the model evaluation for the surface values of physical parameters measured at the270

MARS and ANM stations. The analysis combines the observed and modeled physical parameters from all 17 flight dates, over

the corresponding two-day periods at MARS and the flight days for the ANM stations (see Fig. 4). Details about the synoptic

parameters specific to individual SWING+ flight days that could be critical for the evaluation of the NO2 column, such as the

modeled wind direction over the city during the flight time, will be discussed in Sect. 3.2. Throughout this study, we use the

statistical metrics and abbreviations defined in Table 5.275

The model MB for air pressure is 1.0 mbar at MARS, 0.4 mbar at the ANM stations, and overall negligible in terms of

relative biases. The corresponding RMSE are 1.2 mbar and 0.9 mbar, respectively. Both measurement datasets show a perfect

correlation coefficient of 1.00. The air temperature measurements indicate model biases of −0.4°C at MARS and 0.1°C at the

ANM stations. The daytime underestimation and nighttime overestimation of temperature were reported in a previous study

using the WRF model over Bucharest (Iriza et al., 2017). The model RMSE reach 2.3 and 2.4°C, respectively. The correlation280

remains excellent overall, with Pearson’s coefficients of 0.98 and 0.97. The MB of the model for relative humidity reach 2.1%
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Figure 4. Surface meteorological measurements from MARS and ANM and comparison with WRF-Chem. The horizontal axes represent

local time in hours. Each plot focuses on a specific meteorological parameter and includes all 17 one or two-day time series from the various

stations, when available, averaged into a single time series. Some points were excluded from the plots when the number of available station-

date pairs fell below 95% of the maximum, as this was considered unrepresentative visually, though the data is still included in the main text

analysis. Gray and green windows indicate the averaged nighttime and SWING+ flight hours from the measurement dates, respectively.

at MARS and 5.4% at the ANM stations. RMSEs are an order of magnitude higher, 11.5% and 14.2%, respectively. High

correlations, with values of 0.86 and 0.85, are calculated at the corresponding sites. Solar radiation is well reproduced by the

model according to MARS measurements: the MB of 9.2 W m−2 is negligible, the RMSE is 66.7 W m−2, and the correlation is

close to 1 (0.97). Generally, fewer fluctuations are observed on the second day, see Fig. 4 (d), as it was selected as the flight day285

due to favorable weather conditions. The good model performance is further confirmed with the ANM measurements, despite

an increase in bias and error: the MB is 36.5 W m−2, the RMSE is 69.8 Wm−2, and the correlation coefficient is equal to

0.99. The ANM measurements indicate an overestimation of the modeled wind speed by 1.0 m s−1, in line with former WRF

evaluations over urban areas (Kim et al., 2013; Feng et al., 2016; Poraicu et al., 2023). The wind direction is biased by 15.7°.

Evaluating both components of the modeled horizontal wind field, U and V , the RMSE is 1.5 m s−1 and we find a Pearson’s290

correlation coefficient of 0.64.
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Table 5. Statistical metrics used to evaluate the model. The formulas are written for N observed values Oi and the corresponding modeled

data Mi, with i = 1, . . . ,N .

Metric Formula

Mean observed value O =
1

N

N∑
i=1

Oi

Mean modeled value M =
1

N

N∑
i=1

Mi

Mean bias MB = M −O

Relative bias RB =
M −O

|O|
Root mean square error RMSE =

√
1
N

∑N
i=1(Mi−Oi)2

Pearson’s correlation coefficient r =

∑N
i=1(Oi−O)(Mi−M)√∑N

j=1(Oj −O)2
√∑N

k=1(Mk −M)2

3.1.2 Surface chemical concentrations

We compare surface concentration measurements from the RNMCA network with WRF-Chem for NO, NO∗2, and O3 at the

model lowest vertical level. Figure 5 displays the model performance for the different types of stations. Each plot includes

measurements from the 17 two-day time series, averaged into a single time series. Therefore, the discussion of seasonality is295

deferred to a later part of this section.

The model generally underestimates NO and NO∗2 levels while overestimating O3, in line with the strong titration effect of

NOx on ozone near pollution sources. The underestimation of NO∗2 is significantly reduced when moving from traffic stations

(−21 µg m−3) to suburban and rural stations (−5 µg m−3). This aligns with the discussion on station representativeness in

Sect. 2.2.2 and further supports the exclusion of traffic stations when selecting representative sites. We therefore present in300

Table 6 the statistical metrics used to evaluate the 17 two-day time series, focusing only on non-traffic stations.

The negative bias in daytime NO2 levels in WRF-Chem is similar to the reported underestimation by Poraicu et al. (2023).

However, WRF-Chem simulations over Europe have shown an important nighttime overestimation of NO2 (Poraicu et al.,

2023; Kuhn et al., 2024), which is not observed here. Our results also contrast with those from the Land-Use Regression

model (Talianu et al., 2024), which reported daytime positive biases of 8−30% during a period within 2022 and 2023, using a305

comparable set of measurements over Bucharest.

Several factors may explain this discrepancy. While an underestimation of emissions remains a possibility, comparisons

with NO2 column measurements in the following sections suggest that the factor of 1.5 applied to the CAMS-REG inventory

is well-justified. However, other factors could also contribute to the model underestimation:

– Poor representativeness of measurements: Even at non-traffic stations, nighttime NOx/NO2 ratios remain significantly310

higher than 1 (see Table 3).

15

https://doi.org/10.5194/egusphere-2025-3533
Preprint. Discussion started: 27 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Comparison of surface NO, NO∗2, and O3 measurements from the RNMCA network with WRF-Chem model outputs. Units of

the vertical and horizontal axes are µg m−3 and hours (local time). Each plot focuses on a specific set of RNMCA stations based on location

and includes all 17 two-day time series, when available, averaged into a single time series. For each series, we indicate the mean value in the

legend. Gray and green windows indicate the averaged nighttime and SWING+ flight hours from the measurement dates, respectively.

– Limited resolution of anthropogenic emissions: The CAMS-REG inventory is too coarse to accurately capture the spatial

heterogeneity of the city, leading to an underestimation of NOx pollution levels near hotspots.

– Overestimated surface wind: As seen in Sect. 3.1.1, the model overestimates horizontal wind speed, which enhances the

advection of clean air from surrounding rural areas, diluting NOx concentrations.315

– Excessive vertical mixing: Turbulence in the boundary layer could further contribute to the dilution of NOx species.

Unfortunately, the lack of ceilometer data prevents us from diagnosing potentially overestimated vertical mixing.

The model generally captures well the diurnal cycle of the measurements. The rush hour peak in the morning and the evening

peak in NOx are observed in both the measured and modeled concentrations. As pointed out by Poraicu et al. (2023), a rush

hour peak in the late afternoon is not always identifiable, which is expected due to the counterbalancing effects of chemical sink320

and boundary layer development. The daytime ozone buildup and plateau are well reproduced by the model. Slight delays in

these patterns may occur, but the overall correlation is satisfactory. During daytime, we report in Table 6 correlation coefficients

of 0.70, 0.71, and 0.81 for NO, NO∗2, and O3, respectively. Notably, if we restrict the time window to flight hours for NO∗2, in

anticipation of the SWING+ measurements analysis, the correlation increases to 0.80.

The two-day simulation periods may be grouped according to the meteorological seasons. Figure 6 compares the measured325

values at non-traffic RNCMA stations with the corresponding modeled outputs.
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Table 6. Statistical metrics calculated for each species and period of the day. Values are obtained from non-traffic RNMCA stations and flight

hours refer to the SWING+ acquisition times.

Species Time period MB (µg m−3) RB (%) RMSE (µg m−3) PCC r

NO

Two days −10 −70 28 0.48

Daytime −7 −61 16 0.70

Nighttime −14 −76 37 0.41

Flight hours −4 −60 7 0.67

NO∗2

Two days −7 −24 20 0.66

Daytime −8 −33 15 0.71

Nighttime −6 −17 24 0.58

Flight hours −9 −49 12 0.80

O3

Two days 11 27 24 0.76

Daytime 12 22 22 0.81

Nighttime 10 38 25 0.47

Flight hours 9 12 16 0.85

NO peaks are sharper during cold months. This is due to lower sun exposure in winter, which reduces the generation of

ozone and peroxy radicals, both of which are sinks for NO, thereby increasing its lifetime as well as the time needed to

reach photochemical steady state between NO and NO2. As in the previous analysis, we find that NO levels are generally

underestimated by the model across all seasons. In particular, the model does not simulate enough nighttime accumulation330

during the colder months. The second day of the winter runs shows the best agreement during the daytime, but since this

analysis is based on only two time series, it is difficult to draw definitive conclusions. Daytime correlation values remain

consistent across seasons, ranging from 0.60 in winter to 0.68 in fall. Note that in summer, measurements are close to the

detection limit.

Similarly to NO, surface levels of NO∗2 are generally underestimated. The best agreement is found in winter, where nighttime335

values appear to be particularly well reproduced. The diurnal evolution during this season is also well captured, though with

greater variation. The morning rush hour peak is visible in the modeled values for fall and spring but is too flat during summer.

Daytime correlation coefficients range from 0.59 in summer to 0.73 in winter.

Ozone is consistently overestimated across all seasons, both during day and night. As expected, months with higher sun

exposure exhibit a more significant O3 buildup, generated from the oxidation of carbon monoxide and volatile organic com-340

pounds in presence of NOx and ultraviolet radiation. This seasonal variability is present in both the measured and modeled

values (in value ranges comparable to those observed in the WRF-Chem simulations of Maco et al. (2019)). Notably, a good

agreement is found at the summer daytime maxima. Daytime correlation is lower in winter, with a coefficient of 0.49, while in

other seasons, it ranges from 0.75 to 0.79.

17

https://doi.org/10.5194/egusphere-2025-3533
Preprint. Discussion started: 27 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 6. Comparison of surface RNMCA measurements from non-traffic stations with WRF-Chem model outputs. Units of the vertical and

horizontal axes are µg m−3 and hours (local time). Each plot is the averaged curve of series of two-days on a specific meteorological season:

summer (4 series), fall (7 series), winter (2 series), and spring (5 series). For each two-day series, we indicate the mean value of the surface

concentration in the legend. Gray and green windows indicate the averaged nighttime and SWING+ flight hours from the measurement dates,

respectively.

3.2 Model evaluation against airborne column measurements345

For each flight, column comparisons are assessed using the statistical metrics of Table 5. The results vary significantly from

one date to the next. Therefore, we will first provide a detailed analysis only for the two flight days with the highest correlation

coefficient, 11/11/2021 and 30/06/2022, before presenting a summary encompassing all flight days.

3.2.1 Flight on November 11, 2021

The temporal series and maps in Fig. 7 illustrate the model capability to reproduce tropospheric NO2 columns on our best-350

performing date. The observed and modeled NO2 levels are very similar, and the synchronicity of the peaks and dips in the

time series leads to an excellent correlation coeffcient of 0.94. The maps clearly show a plume emanating from the city and

transporting NO2 in the North-West direction in both cases. This is a satisfactory result considering the coarse resolution of

the emission inventory.

The calculated RMSE is equal to 1.7× 1015 molec. cm−2, mainly due to an overestimation, both in the background values355

and at the plume peaks. The RB is relatively high (43%), partly due to the large number of small values, including negative

ones, in the SWING+ measurements. Note that negative values may result from a calibration offset combined with random
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Figure 7. Tropospheric NO2 columns on Thursday 11 November 2021, presented as a temporal series of SWING+ and WRF-Chem values

plotted against local time, with mean values in parentheses in (a), and corresponding maps in (b) and (c).

errors in the background values. For this flight, only 2.3% of the measurements are negative and within the bounds of the error

bar.

3.2.2 Flight on June 30, 2022360

Figure 8 presents the model evaluation on June 30, 2022. The first part of the airborne measurements shows abnormally high

background values away from the plume emanating from the city (cf. dotted area in the subfigures). Those high values are not

captured by the model and are likely due to a stabilization delay of the SWING+ instrument. Specifically, since the SWING+

instrument is not thermally stabilized, its spectral resolution changes as the temperature decreases during the flight ascent.

These variations affect the accuracy of the NO2 measurements. For this reason, we exclude the first measurements, up to365

13:24 LT, from our analysis.

The modeled columns correlate very well with the measurements, with a Pearson’s coefficient of 0.89. This time, however,

the model tends to underestimate the measurements, with a small RB of −18% and an error of 1.5× 1015 molec. cm−2. This

latter metrics is dominated by small columns associated with the background, where the model slightly overestimates the

measurements, similarly to what was found for November 11, 2021, though to a lesser extent.370
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Figure 8. Tropospheric NO2 columns on Thursday 30 June 2022, presented as a temporal series of SWING+ and WRF-Chem values plotted

against local time, with mean values in parentheses in (a), and corresponding maps in (b) and (c). Dotted values, acquired from 12:55 to

13:24 LT, are excluded from the analysis for reasons explained in the text.

3.2.3 Summary for all flights

Table 7 presents the evaluation of NO2 columns from WRF-Chem against SWING+ measurements using the statistical metrics

from Table 5, for each separate flight. In addition to 30/06/2022, another flight date required data truncation. Inspection of both

datasets, conducted independently of each other, indicated that selecting 13:24 LT as the start time was appropriate. It also

provides statistics per season and for the entire dataset. For two dates, reported in the table, we truncate data associated with375

the beginning of the flight for reasons explained in Sect. 3.2.2. Equivalents of Fig. 7 and Fig. 8 for the other flight dates are

presented in Supplement 1.

The specific case of 22/11/2021 stands out as an outlier due to its large RMSE (11.2× 1015 molec. cm−2) and a correlation

coefficient close to 0 (−0.05). A detailed inspection of the model meteorological performance for that day, in comparison

with ANM measurements, reveals that it fails to accurately reproduce a change in surface wind direction just before SWING+380

begins recording. The observations indicate a transition from westerly to easterly winds occurring between 05:00 and 09:00 LT.

In contrast, the model simulates this transition beginning around 08:00 and completing near 13:00, resulting in a delay of

approximately three to four hours. This issue justifies the omission of this flight from further analyses.

The comparable numbers of days with either positive (7) or negative (10) biases in Table 7 suggest a balanced model

behavior. Along with the small overall bias (MB of 0.5× 1015 molec. cm−2 and RB of 13%) across all selected dates, this385
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Table 7. Evaluation of tropospheric NO2 columns from WRF-Chem against SWING+ measurements, regridded to the resolution of the

model, for each flight day. For dates marked with a dagger (†), measurements have been truncated to start at the time of 13:24 LT. The last

rows assembles data by season or for all dates combined, excluding the worst-performing one, 22/11/2021, when marked with an asterisk

(∗).

Dates Sample size MB (1015 molec. cm−2) RB (%) RMSE (1015 molec. cm−2) PCC r

01/07/2021 1531 −0.3 −11 0.8 0.80

05/07/2021 1436 0.2 9 1.5 0.59

10/07/2021† 677 −0.1 −4 0.9 0.58

29/10/2021 1355 4.6 79 6.5 0.86

04/11/2021 1333 −0.3 −5 2.3 0.85

05/11/2021 1691 5.3 125 7.7 0.69

11/11/2021 1902 1.2 43 1.7 0.94

22/11/2021 1899 3.9 58 11.2 −0.05

23/12/2021 2020 4.6 113 5.1 0.72

05/01/2022 1937 0.2 7 1.1 0.79

24/03/2022 1985 −1.0 −24 2.2 0.59

28/03/2022 1617 −0.5 −15 2.1 0.56

05/04/2022 1936 −0.8 −34 1.3 0.75

15/04/2022 2038 −1.3 −31 2.4 0.76

30/06/2022† 1136 −0.7 −18 1.5 0.89

30/09/2022 1772 −1.6 −33 3.4 0.70

02/11/2022 1590 −1.6 −25 2.5 0.81

Summer dates 4780 −0.2 −7 1.2 0.77

Fall dates∗ 9643 1.2 24 4.6 0.65

Winter dates 3957 2.4 66 3.7 0.53

Spring dates 7576 −0.9 −26 2.0 0.69

All dates∗ 25956 0.5 13 3.4 0.65

provides retrospective justification for increasing the CAMS-REG anthropogenic NOx emissions by a factor of 1.5 for all

dates, as proposed in Sect. 2.1.2. While finer, day-specific adjustments based on column evaluations could be considered, they

would likely introduce abrupt and potentially unrealistic temporal variations in emissions, e.g., in November 2021, when the

mean model bias ranges from −5% to +125% across different days.

The RMSE exceeds 5×1015 molec. cm−2 on only three of the selected dates and remains at or below 2.5×1015 molec. cm−2390

for 12 dates. The NMB lies within ±50% for 13 dates, and within ±25% for 9 dates, making them comparable to the results
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obtained by Poraicu et al. (2023). Correlation coefficients range from 0.56 to 0.94, with 10 dates above 0.75 and a satisfactory

overall value of 0.65 for the compilation of all selected dates.

The seasonal statistics in Table 7 show an underestimation of NO2 columns during summer and spring, and an overesti-

mation during winter and fall. The model underestimation in summer and spring is consistent with the underestimation of the395

observed surface concentrations during daytime (Sect. 3.1.2). These discrepancies may result from emission errors, inaccu-

racies in vertical mixing and/or oxidant levels, and possibly issues related to other model species. The surface measurements

indicated a close agreement with the model during the first hours of daytime in fall and an overestimation in winter before

the underestimation sets in (see Fig. 6). This does not appear in the comparison with SWING+ data in Table 7. One possible

explanation is that the model lifts NO2 species too far from the surface, at altitudes where SWING+ is more sensitive.400

3.3 TROPOMI validation

3.3.1 Correcting WRF-Chem bias using SWING+

We first compare SWING+ measurements ΩS with WRF-Chem outputs ΩW,S, accounting for SWING+ averaging kernels and

acquisition times, but this time at TROPOMI spatial resolution. Specifically, we use a linear regression, denoted by LR1, to

predict the SWING+ column value from a given WRF-Chem column ΩW,S, as defined in Eq. (4):405

LR1(ΩW,S) = α0 + α1ΩW,S , (6)

where α0 and α1 are scalar values to be determined through separate linear regressions for each flight day. This is because

the comparisons of WRF-Chem with SWING+ data show significant variations across different flight dates. Additionally, we

exclude the flight of 22/11/2021 from the present analysis due to the lack of correlation between the model and the flight data

(cf. Sect. 3.2).410

We adopt the Theil-Sen estimator (Theil, 1950; Sen, 1968) for all selected dates (implemented via scipy.theilslopes along

with a custom code to bootstrap the associated uncertainties). This method offers greater robustness to outliers and improved

accuracy in error estimation compared to parametric methods such as ordinary and weighted least squares (Wilcox, 2010). A

comparison of these three methods applied to our datasets is provided in Supplement 2. The results of the Theil-Sen regression

for the selected flight dates are shown in Fig. 9. As expected from the results presented in Sect. 3.2, both intercepts and slopes415

vary significantly across the different flights, along with their associated uncertainties.

The WRF-Chem tropospheric columns used for comparison with TROPOMI, denoted ΩW,T, are constructed using TROPOMI

averaging kernels and calculated at the satellite acquisition times, as defined in Eq. (5). However, these are likely biased, just

like ΩW,S, so we define a bias-corrected version of the column, Ωbc
W,T, based on the model evaluation against SWING+ data, as

derived in the previous step:420

Ωbc
W,T = LR1(ΩW,T) = α0 + α1ΩW,T . (7)

These bias-corrected columns can then be directly compared to the TROPOMI measurements, ΩT, since they are evaluated at

the same time and account for TROPOMI vertical sensitivity through the term α1ΩW,T. Note that the constant term, α0, was
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Figure 9. Scatter plot of SWING+ and WRF-Chem column values for our selection of 16 flight days. For each date, Theil-Sen estimators

are used to determine the linear relationship LR1, along with associated uncertainties on the fitted coefficients.

evaluated while accounting for SWING+ vertical sensitivity. However, correcting this term is not feasible without additional

knowledge of the true atmospheric vertical profile. Nevertheless, its contribution to the overall expression is expected to be425

minor, as explained in Appendix A.

3.3.2 Evaluation of TROPOMI bias

By combining datasets from different flight days, either collectively or by season, we can assess the TROPOMI columns ΩT

against the bias-corrected WRF-Chem columns Ωbc
W,T, using a linear regression denoted by LR2:

LR2(Ωbc
W,T) = β0 + β1Ωbc

W,T , (8)430

where β0 and β1 are scalar parameters. Unlike in Sect. 3.3.1, this linear regression involves two datasets that both contain

random errors. TROPOMI measurements are affected by instrument precision, with an average uncertainty of σT = 1.3×
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1015 molec. cm−2 across all selected dates. The average uncertainty of the bias-corrected dataset is limited by the precision of

regression method used to produce it and is estimated at σLR1 = 0.5× 1015 molec. cm−2.

Because most of the uncertainty is due to the TROPOMI columns,1 the Theil-Sen estimator remains applicable in this435

context. We compare this approach to other parametric alternatives in Supplement 2. Among them, the orthogonal distance

regression with weights (implemented via scipy.ODRPACK, Boggs et al., 1992) accounts explicitly for errors on both axes,

together with possible heterogeneity (heteroscedasticity). As shown in Supplement 2, it produces similar regression results to

the Theil-Sen method and performs slightly better in terms of mean absolute deviation of the fit. We interpret this result as

evidence that outliers do not significantly influence the orthogonal regression. Therefore, we choose this parametric method440

based on its better fit performance, while noting that both approaches yield consistent results and thus reinforce each other.

The resulting scatter plot is shown in Fig. 10.

Figure 10. Scatter plot of 452 TROPOMI and bias-corrected WRF-Chem column values for all flight days (except 22/11/2021). Weighted

orthogonal distance regression estimators are used to determine the linear relationship LR2, along with associated uncertainties on the fitted

coefficients. For each date, the number of columns is displayed in parentheses.

For different values of the bias-corrected column Ωbc
T in the range (1− 15)× 1015 molec. cm−2, the regression line LR2

allows to estimate the bias in TROPOMI measurements:

ΩT −Ωbc
T = LR2(Ωbc

T )−Ωbc
T = β0 + (β1− 1)Ωbc

T ±σb . (9)445

Before substituting numerical values into this expression, we first summarize the sources of uncertainty that contribute to the

bias estimation, captured in σb.
1The factor β1σLR1/σT governs the relative contribution of the uncertainties. Our assumption is supported by the small value of σLR1/σT = 0.38 and a

posteriori by the estimated regression line yielding β1 = 0.85, as presented later in the text, such that β1σLR1/σT = 0.33.
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Table 8. TROPOMI mean biases, MB = ΩT−Ωbc
T (1015 molec. cm−2), and relative biases, RB = (ΩT−Ωbc

T )/Ωbc
T (%), for various column

values Ωbc
T (1015 molec. cm−2) within the range of applicability of our results, roughly (1− 15)× 1015 molec. cm−2.

Ωbc
T 1 2 4 6 8 10 12 15

MB 0.2± 0.5 0.0± 0.6 −0.3± 0.7 −0.6± 0.9 −0.9± 1.2 −1.2± 1.4 −1.5± 1.7 −1.9± 2.0

RB 20± 52 2± 28 −6± 18 −9± 16 −11± 15 −12± 14 −12± 14 −13± 13

The bias-corrected WRF-Chem columns Ωbc
W,T implicitly account for the random error associated with the SWING+ columns,

denoted σS,rand, through the regression LR1 of Sect. 3.3.1. This random error is therefore reflected in the uncertainties of LR2,

as displayed in the legend of Fig. 10. However, the systematic component of the SWING+ measurement error, denoted σS,syst,450

was not included. We incorporate it now into the evaluation of TROPOMI bias, in addition to the random uncertainty already

present from the evaluation of the regression LR2, denoted as σLR2 :

σb =
√

σ2
LR2

+ β2
1σ2

S,syst. . (10)

The uncertainty σLR2 is determined from the uncertainties in the regression parameters β0 and β1, whereas σS,syst arises from

uncertainties associated with the reference slant column and the air mass factors used in the computation of the SWING+455

vertical column density (Sect. 2.2.3). The error in the residual slant column is indeed purely systematic, and for simplicity, the

AMF uncertainty is likewise assumed to be systematic, without a random component. Finally, we express the main result of

this section as:

ΩT −Ωbc
T = 0.35− 0.15Ωbc

T ±
√

(0.51)2− 0.01Ωbc
T + (0.13Ωbc

T )2 , (11)

with Ωbc
T in units of 1015 molec. cm−2. Bias estimates for various column values Ωbc

T are presented in Table 8. Details on how460

to obtain the numerical expression for the error from Eq. (10) are provided in Appendix B.

We can further invert the linear relation LR2 to estimate a bias-corrected column Ωbc
T for a given TROPOMI measurement

ΩT, in 1015 molec. cm−2:

Ωbc
T =−0.42 +1.18ΩT ±

√
(0.61)2− 0.04ΩT + (0.19ΩT)2 . (12)

Similar to the previous expression, the uncertainty has been calculated to account for the systematic error in the SWING+465

product, in addition to the uncertainty arising from the precision of the linear regression method.

We reproduce the linear regression for the selected dates grouped by season in Fig. 11. Our first remark is that the results for

winter are of lower quality than in other seasons, due to the small size of the dataset, which covers only two dates (23/12/2021

and 05/01/2022) for a total of 62 columns. When focusing on the most reliable of the two dates, 05/01/2022, as identified in

Table 7, we find that the resulting fit matches well the general relationship of Fig. 10. Therefore, we consider this date alone470

to provide a more robust basis for the winter analysis presented in the next paragraph. Note that excluding 23/12/2021 from

the general analysis in Fig. 10 does not significantly affect the result. The resulting regression line becomes (0.21± 0.10) +

(0.87± 0.04)Ωbc
W,T, which remains consistent with the original fit within the estimated uncertainties.
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Remarkably, the summer scatter plot shows very little bias, with a value of−0.1×1015 molec.cm−2, and no apparent depen-

dence on the column value. Taking into account SWING+ systematic errors, at low column densities of 2×1015 molec. cm−2,475

we find relative biases of −6±25%, 50±38%, −15±44%, and −14±24% for summer, fall, winter, and spring, respectively.

For high column values of 1016 molec. cm−2 (even though this is slightly outside the range of applicability for summer, winter,

and spring), we estimate the relative biases to be −1± 17%, 0± 16%, −15± 29%, and −18± 14%, respectively.

Figure 11. Seasonal scatter plots of TROPOMI versus bias-corrected WRF-Chem column values for the selected flight days: (a) summer,

(b) fall, (c) winter, and (d) spring. Weighted orthogonal distance regression estimators are used to determine the seasonal linear relationships

(solid lines), as well as the day-specific regression for 05/01/2022 during winter (dotted line), including the associated uncertainties on the

fitted coefficients. For each time period, the number of columns is displayed in parentheses.
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Table 9. Compilation of past studies evaluating TROPOMI tropospheric NO2 against reference columns: ΩP (Pandora) and ΩMD (MAX-

DOAS), in units of 1015 molec. cm−2. The validation method used is either a direct comparison (a) or a comparison accounting

for recalculated air mass factors (b). From the regressions, percentage relative biases (RB) at low (4× 1015 molec. cm−2) and high

(15× 1015 molec. cm−2) column values are calculated.

Reference TROPOMI product Method Regression line RB, low col. RB, high col.

Pa
nd

or
a

Griffin et al. (2019) OFFL v1.1 a −0.39+ 0.69ΩP −41 −34

b −0.26+ 0.74ΩP −32 −28

Zhao et al. (2020) OFFL v1.1, 1.2(rural) a 1.10ΩP 10 10

b 1.15ΩP 15 15

OFFL v1.1, 1.2(urban) a 0.72ΩP −28 −28

b 0.88ΩP −12 −12

Judd et al. (2020) RPRO v1.2 a −0.70+ 0.80ΩP −38 −25

b −0.20+ 0.82ΩP −23 −19

M
A

X
-D

O
A

S

Dimitropoulou et al. (2020) OFFL v1.2(winter) a −0.27+ 0.81ΩMD −26 −21

b −5.09+ 1.67ΩMD −60 33

RPRO, OFFL v1.2(spring) a 1.86+ 0.47ΩMD −6 −41

b 0.40+ 1.19ΩMD 29 22

RPRO, OFFL v1.2(summer) a 1.28+ 0.58ΩMD −10 −33

b −0.38+ 1.21ΩMD 11 18

RPRO, OFFL v1.2(fall) a 1.31+ 0.61ΩMD −6 −30

b 0.71+ 0.97ΩMD 15 2

Cai et al. (2022) OFFL v1.2, 1.3 a −0.85+ 0.84ΩMD −37 −22

van Geffen et al. (2022) OFFL v1.2, 1.3 a 0.80+ 0.48ΩMD −32 −47

DDS v2.1, 2.2 a 1.00+ 0.53ΩMD −22 −40

Yombo Phaka et al. (2023) OFFL v2.1, 2.2, PAL v2.3 a −0.21+ 0.67ΩMD −38 −34

b 1.15+ 0.64ΩMD −7 −28

4 Review of TROPOMI tropospheric NO2 validation

Tables 9 and 10 summarize literature results on the validation of TROPOMI tropospheric NO2 products. The studies span from480

2019 to 2025 and focus primarily on populated regions in North America, Europe, and China, while also including less-studied

environments such as Kinshasa (Yombo Phaka et al., 2023). Table 9 compiles results from studies that employed Pandora col-

umn measurements from the Pandonia Global Network (Herman et al., 2009) and MAX-DOAS instruments (Hönninger et al.,

2004), while Table 10 presents comparisons with airborne measurements, including our own results using SWING+. Overall,

the reported relative biases are predominantly negative across both low and high column abundances. Most biases fall within485

the ±50% acceptance range set by TROPOMI requirements (van Geffen et al., 2024). Note that, compared to the previous
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Table 10. Same as for Table 9, except that airborne measurements are used for validation. The validation method used is either a direct

comparison (a), a comparison accounting for recalculated air mass factors (b), or denotes the use of WRF-Chem combined with TROPOMI

averaging kernels as detailed in Sect. 2 (c).

Reference TROPOMI version Method Regression line RB, low col. RB, high col.

A
ir

bo
rn

e

Griffin et al. (2019) OFFL v1.1 a −0.26+ 0.89ΩA −18 −13

b −0.44+ 1.04ΩA −7 1

Judd et al. (2020) RPRO v1.2 a 0.60+ 0.68ΩA −17 −28

b 0.70+ 0.77ΩA −5 −18

Tack et al. (2021) OFFL v1.3(summer) a 0.29+ 0.82ΩA −11 −16

b 0.46+ 0.92ΩA 3 −5

Lange et al. (2023) OFFL v1.3 a 2.54+ 0.38ΩA 2 −45

b 2.36+ 0.41ΩA 0 −43

PAL v2.3 a 1.71+ 0.83ΩA 26 −6

Poraicu et al. (2023) OFFL v1.3(summer) c 0.64+ 0.82ΩA −2 −14

PAL v2.3(summer) c 0.41+ 0.95ΩA 5 −2

Johnson et al. (2023) PAL v2.3 a 1.80+ 0.58ΩA 3 −30

This work RPRO v2.4(winter) c 0.00+ 0.85ΩA −15 −15

RPRO v2.4(spring) c 0.09+ 0.81ΩA −17 −18

RPRO v2.4(summer) c −0.12+ 1.00ΩA −3 −1

RPRO, OFFL v2.4(fall) c 1.22+ 0.88ΩA 19 −4

RPRO, OFFL v2.4 c 0.35+ 0.85ΩA −6 −13

section, we have reduced the column concentration range by raising the lower bound from 1015 to 4×1015 molec. cm−2. This

adjustment reflects the fact that most of the referenced studies were conducted in polluted urban environments, typically more

polluted than Bucharest and its surrounding rural regions, with NO2 columns generally much higher than 1015 molec. cm−2.

Results from Chan et al. (2020), Verhoelst et al. (2021), and Lambert et al. (2025), which do not fit our table format, are490

discussed separately below.

The reported studies span TROPOMI product versions from v1.1 to v2.8, with Lambert et al. (2025) using v2.4, the version

adopted in this work. We summarize the changes following van Geffen et al. (2024), which guides our treatment of the different

products. Versions v1.2 and v1.3 introduced only minor refinements with negligible impact on column values with respect to

v1.1; we group these together. A major update came with v1.4, which improved the cloud retrieval algorithm and led to higher495

NO2 columns, especially in polluted regions. Further updates from v2.2 to v2.4 included improvements to the surface albedo,

which enhanced radiative closure and reduced low biases in vegetated regions such as the Amazon basin. Versions v2.4 to v2.8

maintained a stable retrieval framework with only minor adjustments. Given the absence of v1.4 in our tables, and the overall

consistency of later versions in urban settings, we group versions v2.1 through v2.8 together for comparison.
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For v1.1 to v1.3, direct comparisons with Pandora, MAX-DOAS, and airborne measurements, indicate a median bias of500

−17.5% for low columns (4× 1015 molec. cm−2) and −28% for high columns (15× 1015 molec. cm−2). These results align

with those of Verhoelst et al. (2021), who reported biases ranging from −15% to −56% in direct comparisons with MAX-

DOAS across multiple sites worldwide.

Several studies recalculated the air mass factor (AMF) for versions v1.1 to v1.3 using alternative a priori profiles in place

of the a priori profiles of the TROPOMI data based on the TM5-MP model (Williams et al., 2017). For example, Griffin et al.505

(2019) and Zhao et al. (2020) used GEM-MACH profiles (Moran et al., 2010; Pendlebury et al., 2018); Judd et al. (2020) used

NAMCMAQ (Stajner et al., 2011); and Tack et al. (2021) and Lange et al. (2023) used CAMS profiles (Colette et al., 2024).

In addition, Chan et al. (2020) and Dimitropoulou et al. (2020) employed vertical profiles derived directly from MAX-DOAS

observations. These adjustments generally lead to less negative, or more positive biases. For low columns, the median bias

across these studies is −2.5%, and for high columns, −2%. Chan et al. (2020) also noted that improving the AMF reduced510

the bias by up to 17%. In most of the reported studies, recalculating the AMF reduces the bias, with reductions of 5 to 20%

observed in half of the cases.

The same aircraft campaign and TROPOMI product version (v1.3) were used by Tack et al. (2021) and Poraicu et al. (2023).

Tack et al. (2021) reported results based on direct comparisons and using CAMS-based AMFs, while Poraicu et al. (2023)

aligned with our approach, employing the WRF-Chem model as an intercomparison platform and incorporating TROPOMI515

averaging kernels. The improvement relative to direct comparison is more pronounced when CAMS-based AMFs are used.

Specifically, applying CAMS AMFs and the model-based method reduces the low-column bias from −11% to 3% and −2%,

respectively. For high columns, the bias improves from −16% to −5% and −14%.

We now turn to the evaluation of TROPOMI products v2.1 to v2.8. Median biases reported in Table 9 for direct comparisons

relative to MAX-DOAS are−30% for low columns and−37% for high columns. These values closely match those reported by520

Lambert et al. (2025): −29% for polluted stations (3 to 14× 1015 molec. cm−2) and −38% for extremely polluted stations (>

15×1015 molec. cm−2). Yombo Phaka et al. (2023) recalculated TROPOMI columns using vertical profiles derived from MAX-

DOAS measurements and found a bias reduction of 31% and 6 % of low and high columns, respectively. Similarly, Lambert

et al. (2025) noted that applying TROPOMI averaging kernels to MAX-DOAS vertical profiles leads to a bias reduction by up

to 20%.525

Direct comparisons with aircraft campaigns indicate that biases for high columns have decreased with newer TROPOMI

product versions. Using version v1.3, median biases are −14% for low columns and −22% for high columns. In contrast,

for more recent versions (v2.3), we find similar low-column biases (−14.5%), but improved performance for high columns,

with a median bias of −18%. This suggests that product upgrades have slightly improved performance in polluted conditions.

However, incorporating WRF-Chem and TROPOMI averaging kernels has a stronger impact, reducing the biases in version530

v2.3 to 5% and −2% for low and high column values, respectively, as shown by Poraicu et al. (2023). Our summertime results

using v2.4 are similar, with very small biases for low and high columns (Table 10). However, our low-column biases range

from −17% to 19% across seasons, and high-column biases may reach up to −18%. Considering all seasons, overall biases

are −6% for low columns and −13% for high columns in our work.
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5 Conclusions535

This study presents an evaluation of tropospheric NO2 over Bucharest, combining high-resolution WRF-Chem simulations

with multiple observational datasets. We assess WRF-Chem performance against in situ meteorological and surface concen-

tration measurements, as well as airborne column observations from SWING+, while independently validating TROPOMI

tropospheric NO2 products using a model-based intercomparison framework. This joint analysis provides insight into both the

modeling capabilities and satellite product validity over a complex and understudied urban environment.540

Comparison against surface meteorological variables shows that WRF-Chem reproduces key features of regional meteo-

rology. Across 17 two-day periods, surface pressure, temperature, relative humidity, and solar radiation are well represented,

with mean biases within 1 mbar, 0.5◦C, 6%, and 37 W m−2, respectively. Temporal correlation coefficients are higher than

0.95 for pressure, temperature, and radiation, and higher than 0.85 for relative humidity. Wind speed exhibits a positive bias

of 1.0 m s−1, consistent with previous WRF-Chem studies (Kim et al., 2013; Feng et al., 2016; Poraicu et al., 2023), while545

wind direction shows a mean bias below 16◦. The temporal correlation for the horizontal wind vector is generally weaker

(r = 0.64). On 22/11/2021, a mismatch in wind direction appeared to negatively impact the modeled NO2 column evaluation.

Aside from this case, the model successfully captures the meteorological conditions required to support atmospheric chemistry

assessments, using a common configuration and set of parameterizations.

Modeled surface concentrations of NO and NO2 exhibit consistent daytime underestimations, concomitant with an overesti-550

mation of O3. When restricting the comparison to non-traffic sites, the mean bias remains within −8 µg m−3 for both NO and

NO2, accounting for potential interference from NOy reservoir species. Temporal correlations exceed 0.70 for NO and NO2,

and reach 0.81 for O3, successfully capturing the diurnal and seasonal cycles of all three species. This agreement is improved

for NO and NO2 during colder months, and for O3 during warmer periods.

WRF-Chem performs generally well against airborne SWING+ measurements of the tropospheric NO2 column. Across 16555

selected flight days, it exhibits a mean bias of 0.5× 1015 molec. cm−2 (13%), with correlation coefficients exceeding 0.75 in

9 cases. Seasonal patterns emerge: summer and spring flights show model underestimation of −7% and −26%, respectively,

while fall and winter show positive biases of 24% and 66%. These results support an empirical upscaling of CAMS-REG v7.0

anthropogenic NOx emissions by a factor of 1.5 over Bucharest, which improves agreement with both surface and column

measurements. The spring and summer underestimations of NO2 columns are reminiscent of the surface underestimations560

observed during flight hours. However, a discrepancy arises in fall and winter, as the surface and SWING+ instruments exhibit

opposite biases. Finally, we point to model improvements that could help reconcile surface and column levels, beyond correct-

ing the emission inventory, and should be evaluated using more observational data. In particular, vertical mixing (especially

in fall and winter) and processes affecting oxidant levels (e.g., volatile organic compounds and their photochemical oxidation)

will require further attention.565

TROPOMI tropospheric NO2 columns v2.4.0 (RPRO+OFFL) are validated using bias-corrected model columns, with

SWING+ serving as the reference and TROPOMI averaging kernels applied to the model profiles. The linear relationship ex-

pressing the original TROPOMI column, ΩT, in terms of its bias-corrected counterpart, Ωbc
T , is given by ΩT = 0.35+0.85Ωbc

T ,
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in units of 1015 molec. cm−2. Relative biases vary with column magnitude, ranging from 20% at 1015 molec. cm−2 to −13%

at 15× 1015 molec. cm−2. A careful treatment of uncertainties from SWING+ observations and the regression method shows570

that relative bias errors are large at low column values (approximately 50%), but decrease to within 20% for columns above

4× 1015 molec. cm−2 and within 15% for columns exceeding 8× 1015 molec. cm−2. Seasonal analysis reveals greater vari-

ability in biases at low column values, ranging from −17% in spring to 19% in fall. In contrast, higher column values exhibit

more consistent negative biases, ranging from −18% in spring to −1% in summer. Overall, our results are in agreement with

findings from validation studies in the literature, particularly when considering the associated uncertainties and the method-575

ology employed. Our literature review, focusing on studies over polluted areas, indicates that reported TROPOMI biases are

predominantly negative. Recalculating air mass factors or applying TROPOMI averaging kernels often reduces these biases by

approximately 5 to 20%, regardless of the version of the TROPOMI products used.

Appendix A: Reference columns and vertical profiles

In Sect. 3.3.1, we introduced the vertical profile nW modeled with WRF-Chem, where z is the vertical coordinate. We can write580

a general equation to relate it to the true atmospheric profile, denoted by n:

n(z) = δn(z) +αnW(z) , (A1)

where α is an unknown scalar parameter, and δn represents the deviation from linearity. Unlike n and nW, the function δn may

take negative values. At this stage, Eq. (A1) remains too general to be directly informative.

Formally, integrating the profiles n and nW over the troposphere (Trop), using the airborne instrument averaging kernels AS,585

defines the bias-exempt and modeled tropospheric columns, ΩS and ΩW,S, respectively:

ΩS =
∫

Trop

AS(z)n(z)dz , ΩW,S =
∫

Trop

AS(z)nW(z)dz . (A2)

When a linear regression is performed on the datasets ΩS and ΩW,S, we estimate the parameters α0 and α1 that define the

regression line for the estimated values, LR1:

LR1(ΩW,S) = α0 + α1ΩW,S . (A3)590

These parameters can now be used to constrain Eq. (A1) through the following relations:
∫

Trop

AS(z)δn(z)dz = α0 , α = α1 . (A4)

Together with our detailed knowledge of the modeled profile nW, this allows us to construct reference, or bias-corrected,

columns for comparison with another instrument for which a bias must be estimated.

For the satellite instrument, these new modeled columns are denoted Ωbc
W,T in the main text and are defined using the satellite595

averaging kernels AT:

Ωbc
W,T =

∫

Trop

AT(z)n(z)dz =
∫

Trop

AT(z)δn(z)dz + α1

∫

Trop

AT(z)nW(z)dz . (A5)
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The first term in the expression above can be expanded around α0, while the second corresponds to the definition of ΩW,T, as

introduced in the main text:

Ωbc
W,T = α0 +

∫

Trop

[AT(z)−AS(z)]δn(z)dz + α1ΩW,T = LR1(ΩW,T) +
∫

Trop

[AT(z)−AS(z)]δn(z)dz . (A6)600

Unfortunately, the last integral cannot be evaluated without more precise knowledge of n, and thus δn. In general, if the model

performs well, δn remains small in absolute value, and the extra integral can be neglected. In this specific case, we are further

helped by the structure of the integrand: the kernel difference AT −AS places greater weight on altitudes above the aircraft,

where the true and modeled NO2 concentrations, and therefore δn, are relatively low compared to those in the boundary layer

over polluted urban areas. As a result, the contribution of the extra integral to the overall expression is further suppressed. We605

therefore expect this term to be minor, and make the following approximation in the main text:

Ωbc
W,T = LR1(ΩW,T) . (A7)

As a side remark, if δn is small in absolute value from the ground to the troposphere, then α0 should also be small. However,

this assumption is stronger than what is required in the main text.

Appendix B: Errors in TROPOMI bias estimation610

In Sect. 3.3.1, we estimate the bias of TROPOMI and its associated uncertainty, denoted by σb. We explain that this uncertainty

is the quadrature sum of the random component from the linear regression, σLR2 , and the propagated systematic error from the

SWING+ measurements, σS,syst multiplied by the slope β1. For clarity, we repeat its expression here:

σb =
√

σ2
LR2

+ β2
1σ2

S,syst . (B1)

The linear regression LR2 presented in Fig. 10 led to the estimation of the intercept and slope parameters, β0 = 0.35×615

1015 molec. cm−2 and β1 = 0.85, with respective uncertainties σβ0 = 0.11×1015 molec. cm−2 and σβ1 = 0.04. Additionally,

the covariance between these two estimated parameters must be taken into account: σβ0β1 =−0.004×1015 molec. cm−2. The

regression line was used to predict the TROPOMI column based on a given bias-corrected column Ωbc
T , which we denote in

this section as Ω for clarity (in 1015 molec. cm−2). The uncertainty of the predicted value is given by:

σLR2(Ω) =
√

σ2
β0

+ 2σβ0β1Ω +σ2
β1

Ω2 =
√

(0.11)2− 0.01Ω + (0.04Ω)2 . (B2)620

For predictor columns Ω equal to 1015 and 1016 molec. cm−2, the resulting errors are 0.03×1015 and 0.42×1015 molec. cm−2,

respectively.

As explained in Sect. 3.3.1, we assume that the systematic error of SWING+ arises from the total errors on the reference

slant column densities and air mass factors, propagated to the vertical column density Ω. These components were presented in

Sect. 2.2.3. The first, denoted here as σS,ref, averages to 0.58× 1015 molec. cm−2 when considering all dates included in the625
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TROPOMI validation analysis, weighted by the number of columns per date. The second component, σS,AMF, is a relative error

of 15.2% on the column Ω, consistently applied across all dates.

σS,syst(Ω) =
√

σ2
S,ref + σS,AMF(Ω)2 =

√
(0.58)2 + (0.15Ω)2 (B3)

This leads to systematic errors of 0.60× 1015 and 1.61× 1015 molec. cm−2 for predictor columns Ω equal to 1015 and

1016 molec. cm−2, respectively. Multiplying by β1, we find the corresponding errors propagated to the predicted values:630

0.51× 1015 and 1.37× 1015 molec. cm−2, respectively.

Combining the previous expressions, we obtain the following equation, as presented in the main text:

σb(Ω) =
√

(0.51)2− 0.01Ω + (0.13Ω)2 . (B4)

The errors on the predicted values are 0.52× 1015 and 1.44× 1015 molec. cm−2 for Ω equal to 1015 and 1016 molec. cm−2,

respectively. Note that most of the error originates from the propagated systematic uncertainty associated with the SWING+635

measurements.

Code and data availability. The WRF-Chem model and WPS codes are distributed by NCAR (https://www.mmm.ucar.edu/models/wrf, last

access: 22 July 2025; Skamarock et al., 2019). WRF-Chem processing tools are provided separately (https://www2.acom.ucar.edu/wrf-chem/

wrf-chem-tools-community, last access: 22 July 2025). Python scripts used for regridding, column calculation, and statistical analysis

are available upon request. Static geographical data used in WRF-Chem are provided by NCAR (https://www2.mmm.ucar.edu/wrf/users/640

download/get_sources_wps_geog.html, last access: 22 July 2025). ERA5 reanalysis data are distributed via the Climate Data Store from

ECMWF (https://cds.climate.copernicus.eu/datasets, last access: 22 July 2025; Hersbach et al., 2023a, b). The CAMS-REG anthropogenic

emission inventory is available through the ECCAD catalogue (https://eccad.aeris-data.fr/, last access: 22 July 2025; Kuenen et al., 2022).

Meteorological measurements from the MARS station are accessible via the PANGAEA portal (https://dataportals.pangaea.de/bsrn/stations,

last access: 22 July 2025; Carstea et al., 2025). ANM measurements are available upon request through the MeteoRomania website645

(https://www.meteoromania.ro/, last access: 22 July 2025). RNMCA in situ measurements can be downloaded from the CalitateAer web-

site (https://calitateaer.ro/, last access: 22 July 2025). SWING+ measurements are avaible upon request. TROPOMI NO2 column data are

available from the Copernicus Data Space (https://dataspace.copernicus.eu/, last access: 22 July 2025).
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