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Abstract. Peatland drying is an important process affecting greenhouse gas (GHG) emissions. Ditching for forest drainage 

has been standard forest management practice in the Nordic countries in the past centuries, and drying increasingly occurs 

also from climate change induced drought. Previously published meta-analyses from literature suggest that typically, 20 

drainage increases CO2 emissions by enhancing oxic decomposition in aerated upper layers while suppressing CH4 

emissions. However, the data do not elucidate short term variations of GHG fluxes during drainage and usually only regress 

GHG emissions as a function of the annual mean water table. Here we developed a new parameterization of drainage in a 

land surface model that represents peat processes and fluxes of CO2 and CH4, by adding a machine-learning module to 

predict the daily water table depths from simulated soil moisture in the upper soil layers and a ditch which receives drainage 25 

water. Because peatland pre-drainage GHG emissions differ between sites and influence subsequent changes from drainage, 

the simulations are performed for virtual drainage applied to a collection of 10 pristine sites at which the model parameters 

are calibrated against observed GHG fluxes. Different drainage intensities are simulated by prescribing lower water table 

depths from the ditch depth, from 5 to 50 cm below the initial water surface. The resulting GHG flux changes across sites are 

compared with meta-analysis data from northern sites and show realistic results with a reduced CO2 sink and reduced CH4 30 

emissions. Additional comparison with continuous flux data collected in the UK for different sites associated with increasing 

drainage levels also shows good model performances. Overall, using GWP100 to compare the effect of CH4 vs. CO2 flux 

changes, our simulation results suggest only very small net GHG emission changes when CH4 is expressed in CO2-

equivalents units using GWP100, when peatland is drained for 50 years, yet with differences between sites. Over time during 

50 years of drainage, the emission factors of CO2 flux decrease because of exhaustion of labile soil organic substrate for 35 
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decomposition and the reduction of CH4 emissions is amplified, also because of less material for anoxic decomposition. The 

sensitivities of CO2 flux changes to increased water table depth changes are primarily controlled by initial CO2 and CH4 

fluxes, initial soil carbon content, peat vegetation community, air temperature and initial water table depth. The influence of 

peat vegetation on the GHG flux sensitivities in the model occurs via differing lability of soil organic carbon pools, with 

moss-dominated sites having a lower sensitivity due to their longer peat turnover time. Our calibrated process-oriented 40 

model simulations of the sensitivities of GHG flux changes to water table depth can be emulated by linear regression models, 

which are simple and could be used in decision support tools and GHG regional budgets accounting. 

1 Introduction 

In peatlands, organic mater does not fully decompose due primarilly to the lack of oxygen in the soil caused by waterlogged 

conditions. Peatlands have therefore accumulated a large amount of carbon over time, ~450Gt (Joosten, 2009; Page et al., 45 

2011), though they also emit a significant amount of methane (CH4) during anaerobic decomposition (commonly 5–80 mg 

m-2 day-1 in northern peatlands according to Blodau (2002). However, since the last few centuries, drainage of peatlands has 

become widespread for various purposes, such as commercial forestry (Arnold et al., 2005), farming (Kiew et al., 2020; Qiu 

et al., 2021), livestock grazing (Conchedda and Tubiello, 2020; Nieveen et al., 2005), and peat extraction for fuel (Schilstra 

and Gerding, 2004; Sirin et al., 2010). When peatlands are drained, increased oxygen levels in the soil promote aerobic 50 

decomposition of organic matter, leading to higher CO2 emissions into the atmosphere and reducing CH4 emissions (Holden, 

2005; Rydin and Jeglum, 2013; Evans et al., 2021).  

 

Field studies have been conducted to assess the impact of recent drainage on peatlands’ contemporary greenhouse gas 

(GHG) emissions. Monitoring of recently drained sites using chambers (e.g., Furukawa et al., 2005; Laine et al., 2009; 55 

Martikainen et al., 1995; Munir et al., 2015; Strack and Waddington, 2007; Swails et al., 2022)  and eddy covariance flux 

towers (Tikkasalo et al., 2024; Tong et al., 2024) have been performed to measure GHG fluxes, but the amount of data are 

still scarce, limited to few sites and short term duration (mostly < 10 years). When a site is being monitored which has been 

drained for a century, contemporary monitoring data observe the effect of drainage in the present, but as a consequence of 

biophysical and biochemical changes in the past. Apart from such contemporary diachronic observations of GHG fluxes at 60 

sites that have been drained in the past, only few studies based on peat coring have actually been able to assess the impact of 

historic drainage.  

 

In addition to the primary literature, meta-analyses gathering data from various sites and methods (Couwenberg et al., 2010; 

Maljanen et al., 2010; Prananto et al., 2020) have been combined with empirical upscaling models of drainage-induced GHG 65 

fluxes (Evans et al., 2021; Huang et al., 2021b) across diverse geographic regions, peatland types and conditions. Some 

meta-analyses suggest that post-drainage peat decomposition causes long-term legacy CO2 emissions, decades after drainage 
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(Couwenberg et al., 2010; Huang et al., 2021b; Zou et al., 2022). Concurrently, meta-analyses show that CH4 emissions are 

reduced and N2O emissions can be increased during drainage (Zou et al., 2022; Tikkasalo et al., 2024), the later of which 

applies to N-rich sites. 70 

 

Previous studies also showed that water table level (WTL) under drained conditions controls the response of emissions, but 

there may be distinct WTL thresholds for each gas and for each peatland. For instance, Zou et al. (2022) found that CO2 and 

N2O emissions only increase significantly when WTL is deepened by more than 30 cm below the soil surface. On the other 

hand CH4 emissions are suppressed when WTL is deepened to 5 cm below the soil surface, and then remain low for deeper 75 

WTL. Overall, using 100-year Global Warming Potential (GWP100) across multiple sites to compare CH4 and N2O with 

CO2, Zou et al. (2022) showed that net CO2-equivalent emissions are reduced by drainage when the WTL depth drops from 

being above the surface to 5 cm below the soil surface because of the predominant role of CH4 reductions. When the WTL 

depth is below this typical threshold, net CO2-equivalent emissions can increase with drainage from the increase of CO2 

emissions offsetting the reduction of CH4 emissions. However, those meta-analysis studies do not separate well site-specific 80 

responses, do not describe systematic effects of different initial conditions and initial water table depth during drainage. Due 

to the dominance of short-term drained experiments, data from meta-analysis do not offer a complete assessment of net 

climate effects caused by distinct decadal changes of CO2, CH4 and N2O fluxes. 

 

Another approach involves the use of process-based models, which can simulate the processes co-controlling CH4 and CO2 85 

emissions by coupling water, thermal, and greenhouse gas biochemistry processes and drainage (Huang et al., 2021a; Kwon 

et al., 2022). Models are versatile, capable of simulating at various time scales and can be tailored to specific site conditions, 

though their reliance on generic parameterizations means they cannot always be precisely calibrated for individual sites (Liu 

et al., submitted). In addition, process-based models tend to be complex, and interpreting their results can therefore be 

challenging. Although process-based models have been increasingly applied to studying peatland dynamics over the past 90 

decade (Mozafari et al., 2023), the majority of existing models were not specifically designed for peatlands (Mozafari et al., 

2023), and their use in simulating peatland drainage remains relatively limited. Although few peat-enabled land surface 

models have been applied at sites and over large regions using gridded simulations (Qiu et al., 2021) to study GHG fluxes of 

northern peatlands in response to climate changes and rising atmospheric CO2, the impact of drainage on GHG emissions has 

not been fully explored with these models. For instance, Qiu et al. (2021) used the ORCHIDEE-PEAT model to simulate 95 

peatland CO2 flux changes for the historical conversion of northern peatlands to croplands and found a large cumulative loss 

of 70 PgC, but they prescribed to their model direct changes from peatland to cropland instead of using a transient drainage 

period when the WTL is lowered and the peatland becomes altered for instance with soil compaction, followed by crop or 

pasture cultivation. Further, they did not study the effect of CH4 emissions reduction after conversion to agriculture. Kwon et 

al., (2022) used a version of the same model that include the CH4 cycle (Salmon et al., 2022) for simulating the effect of drier 100 

conditions at six Arctic peatland sites and found that lowering the water level by 10 cm reduced the CO2 sink by 13 ± 15 g C 
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m-2 year-1 and decreased CH4 emissions by 4 ± 4 g CH4 m-2 year-1 leading to reduced accumulation of carbon over the next 

hundred years. For temperate peat sites, Evans et al. (2021) further showed that long term water table drawdowns at most 

sites led to net carbon loss. 

 105 

To our knowledge, there has not been any systematic modeling of the effect on GHG emissions of anthropogenic drainage of 

peatlands using land surface models that can simulate both CO2 and CH4 fluxes. One difficulty is that climate and pre-

drainage fluxes and water levels are generally not measured continuously at sites subject to drainage, which prevents the 

calibration of models before the perturbation.  In this study, we use the ORCHIDEE-PEAT, a land surface model developed 

to include peat processes for CO2 and CH4 fluxes to address this research gap. Our strategy is to model virtual drainage 110 

conditions at 10 real pristine peatland sites in temperate and boreal regions (one in the US, one in Canada, one in Japan, 

others in Europe) which are not currently subjected to intentional drainage using artificial ditches. All the sites have 

continuous CO2 observations from eddy covariance and 8 sites also have CH4 flux observations from flux chambers. All the 

sites have continuous local hourly climate data used as model input and local water table depth measurements are also 

available at most sites. This set of well-observed sites allows us to calibrate the model before drainage. The changes of CO2 115 

and CH4 emissions for different drainage intensities will be simulated by prescribing increasingly deeper water table depths. 

These drainage simulations will then be evaluated against meta analysis results from northern temperate and boreal peatland 

sites (Huang et al., 2021b; Zou et al., 2022) and against a detailed set of flux measurements conducted across the UK by 

Evans et al. (2021) for different water table depths. 

 120 

We performed site simulations with virtual drainage under current climate conditions, with different prescribed water table 

depths, to address the following questions: (1) what are the changes of CO2 and CH4 fluxes in response to drainage if we 

would drain even more peatlands and how do they compare with observations, (2) how do fluxes change as a function of 

drainage duration, (3) what is the modeled sensitivity of flux changes to water table depth, (4) what factors affect the 

sensitivity at each site in the model, (5) what is the net climate effect of CO2 and CH4 flux changes induced by drainage 125 

using the GWP100 metrics to compare CH4 and with CO2. There are other metrics such as GWP* (Lynch et al., 2020) and 

SGWP (Neubauer and Megonigal, 2015), but we use here the GWP100 as it is used by the UNFCCC and national 

inventories for comparing the two gases. In the following, we present the model and its modifications for simulating 

drainage (Section 2), the model performances for simulating CO2 and CH4 fluxes and water table depth before drainage, and 

the results of changes in fluxes during the drainage phase (Section 3). First, we compare the modeled flux changes to meta-130 

analysis results and field measurements to evaluate the model results, to ensure that they fall within plausible ranges. Then, 

we simulate emission factors defined by the increase of CO2 emissions and the decrease of CH4 emissions over time for 

various durations of drainage. Finally, we analyze the sensitivities of CO2 and CH4 flux changes per unit of water table 

deepening in comparison with independent observations and analyze the factors that explain why the model has different 
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sensitivities between sites. A discussion of our results and perspectives for future large scale simulations is given in Section 135 

4.    

2. Methods 

2.1 Peatland enabled land surface model  

ORCHIDEE-PEAT is a land surface model (https://orchidee.ipsl.fr/) with a module specifically developed for peatland. In 

general, the model comprises two main components: (1) Energy and water balance, and (2) Vegetation and soil carbon cycle. 140 

In each model grid cell defining  the spatial unit of simulation, the water balance is simulated individually for each soil tile 

containing a different type of vegetation, while the energy balance is simulated for the whole grid cell (Xi et al., 2024). The 

soil hydrology is simulated using 11 vertical layers, considering incoming rainfall or snowfall, soil water evaporation, water 

infiltration in the soil profile every half-hour, surface runoff and drainage (also called subsurface runoff in similar models). 

One soil tile is specifically designated for peat with distinct soil hydrological parameters. To ensure that this peat soil tile 145 

keeps a high water content, bottom drainage is excluded and surface runoff from non-peat soil tiles is given to peat soil tile at 

each time step, with a slab water layer that can be created above the peat soil surface of maximum thickness 10 cm. The 

vegetation and soil carbon cycle component calculates biogeochemical and biophysic variables for each plant function type 

(called PFT). A peatland tile can contain one or more specific PFTs that grow on it, with the possibility to prescribe a 

fraction of moss, graminoids (= grasses + sedges) and shrubs. 150 

 

The peatland percentage at a site is defined by the total fraction of peatland PFTs in the grid cell where the site is locate d. A 

more detailed description about the model can be found in Qiu et al. (2018) and Qiu et al. (2019). In addition, an improved 

routine for methane simulation for peatland was integrated into the model by Salmon et al. (2022). This enables this study to 

be concerned with CO2 fluxes and CH4 emission. The CO2 flux is represented by Net Ecosystem Exchange (NEE) which is 155 

calculated as the algebraic sum of gross primary productivity (GPP, negative sign), autotrophic respiration (AR, positive 

sign), and heterotrophic respiration (HR, positive sign). Methane produced in the soil layers is  transported to the soil surface 

via plant-mediated transport, ebullition, and diffusion (positive sign). 

 

Meteorological forcings used as input for the model (including precipitation, air temperature, air humidity, pressure, solar 160 

radiation, and winspeed) are extracted from the collection of CRU JRA forcing datasets (Friedlingstein et al., 2022). The 6-

hour time resolution of CRU JRA data is automatically interpolated to 30 minutes (default time step) by the ORCHIDEE  

model.  
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2.2 Site description and simulation protocol 

The drainage simulations will be implemented for 10 peatland sites in temperate and boreal regions briefly described in 165 

Table A1 (Appendix A). The vegetation composition (graminoids, shrubs, and mosses) is taken from the literature when 

available; otherwise, it is estimated visually from satellite images.  

 

The ORCHIDEE-PEAT model was first run for 100 years to reach the equilibrium state of soil thermal and hydrological 

conditions, followed by 10,000 years of spin-up to accumulate soil carbon with a fast module that computes only soil carbon 170 

changes from daily litter input and soil climate archived from the first simulation (Qiu et al., 2018), using repeated forcing 

data and a pre-industrial atmospheric CO2 concentration of 285 ppm. An additional 100-year simulation was then conducted 

before flux observations (Table A1) to simulate biogeochemical processes under observed atmospheric CO2 concentrations. 

The model was then calibrated for each site under present-day conditions following (Liu et al., submitted), here calibrating 

the parameters controlling CH4 fluxes in addition to CO2 fluxes for sites that have CH4 flux observation. For CO2 fluxes, 175 

parameters governing photosynthesis rates, stomatal conductance, autotrophic respiration, soil organic carbon oxic 

decomposition rate and its sensitivity to temperature (Table B1 in Appendix B) were calibrated. For CH4, we calibrated 

parameters driving the methane production, oxidation, and transport (Table B1). The calibration was performed using the 

ORCHIDEE data assimilation system (ORCHIDAS, Peylin et al., 2016), a Bayesian statistical framework, employing a 

genetic algorithm to minimize a cost function between observation and simulated outcomes (Tarantola, 2005), i.e. here 180 

between observed and simulated daily NEE, and daily CH4 emission simultaneously. For sites without CH4 flux 

observations, only CO2 parameters can be calibrated, while parameters related to CH4 processes were assigned using the 

average calibrated values from all sites with available CH4 flux observations. 

 

Pre-drainage simulations were run for each site over a period of 100 years. We then simulate five virtual drainage scenarios 185 

for each site over a subsequent 50-year period in which the water table remains at its initial/baseline level and varies each 

day (no drainage), or is prescribed at 5, 10, 20, and 50 cm below the initial/baseline water level. For the 150 years of 

simulations, 6-hourly climate forcings of the flux-observed years are used by randomly selecting years. The same years are 

used for the undisturbed and drained simulations to ensure that the resulting differences in fluxes are not caused by 

differences in climate. 190 

2.2 Reconstruction of baseline water table 

Performing drainage simulations requires a good representation of the baseline water table (WTD) before drainage. This is 

not straightforward in a model like ORCHIDEE where the numerical discretization of the soil into layers is coarser with 

increasing depth, e.g. a layer has thickness of 25 cm at 50 cm below the surface, which does not allow to position the water 

table in this layer accurately. Therefore, we developed a machine learning module, separate from the ORCHIDEE model, to 195 
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simulate the accurate position of the water table as a function of simulated soil moisture in the soil layers. The module is 

trained to gap-fill the daily baseline water table observed at 8 sites and it is used to reproduce the missing water table 

measurements at 2 sites (CZ-Wet, DE-Akm; Table A1). Because the water table is closely related to soil moisture, our 

strategy is to extract the simulated soil moisture of all the layers to train a model defined by 𝑊𝑇𝐷 = 𝑓(𝑆𝑀). Simulated soil 

moisture and observed water table time series are sampled by 7-day blocks to make up the training dataset for the model, 200 

with soil moistures as inputs and water table as output. Firstly, for a site where observed water table data is available but 

with missing values, its own training dataset is divided into an 80/20 ratio for training and testing, then the missing data are 

filled. This process is referred to as self-reconstruction. Secondly, a multi-site training dataset is created using all the sites 

that have water table observation with a training/testing ratio of 50/50 for four sites in Sweden and 80/20 for the remaining. 

The contribution of each Swedish site to the total training subset is reduced due to their proximity to each other, which 205 

potentially results in the reproduction of their relationships between water table and soil moisture . Once this multi-site model 

has been trained, it will take the simulated soil moisture (from ORCHIDEE-PEAT) of water-table-unknown sites as input to 

derive the baseline water table for these sites as output. In this study, we used a Support Vector Regression (SVR) model 

(Smola and Schölkopf, 2004) to simulate the relationship between soil moisture and water table, because of its advantages 

such as robustness to outliers and effectiveness in high-dimensional space (Mohammed Rashid et al., 2022). 210 

2.3 Peatland drainage by ditching 

In order to simulate the effect of drainage on CO2 and CH4 fluxes, we assume that the water table is lowered by draining into 

ditches. We introduce into the model a new module with a ditch of which depth is the same as the desired lowered maximum 

water table depth. In addition, runoff from other soil tiles to peat is assumed to be excluded during drainage implementation, 

reducing water supply to peat. Note that the simulated water table fluctuates continuously throughout the year from variable 215 

incoming rainfall, and so does the ditch water level. The difference in the hydrology simulations with and without drainage 

is shown in Figure 1 and described below.  
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Figure 1. Illustration of drainage by ditch simulation in the ORCHIDEE-PEAT model: (a) Soil column without a ditch, showing 220 
vertical water fluxes and horizontal delivery from the runoff of adjacent soil tiles without peat. (b) Soil column with a ditch, 

incorporating lateral water loss to the ditch (orange) and suppression of runoff from other tiles. (c) Water budget  of a soil layer, 

with lateral output fluxes due to drainage into the ditch highlighted in orange. The dimension of the volume of soil is defined by 

𝜟𝒙, 𝜟𝒚 and 𝜟𝒛. Qin and Qout are inward and outward water fluxes and Kh is the horizontal hydraulic conductivity and 𝒊 is the 

hydraulic gradient. 225 

In the ORCHIDEE model, each soil column is separated into layers. We set soil layers below the water table to be saturated 

(𝜃=𝜃s). Above the water table, in a volume of soil with horizontal dimension 𝛥𝑥, 𝛥𝑦 and thickness 𝛥𝑧, without drainage, 

water flows through the soil in the vertical dimension from the infiltration of rainfall events and runoff given by other soi l 

tiles in the same grid (Fig. 1(a), blue arrows), a flux Qin entering and a flux Qout leaving the layer across the cross-section 

area 𝛥𝑥𝛥𝑦 (Fig. 1(c)). These vertical fluxes are functions of hydraulic conductivity and diffusivity (Kv [m s-1] and Dv [m2 s-1], 230 

respectively, with v for vertical) which are functions of soil moisture (𝜃𝑡+𝛥𝑡). With drainage, a new horizontal flux across 

the cross-section area 𝛥𝑦𝛥𝑧 is added for representing water running out of the soil to the ditch  (Fig. 1(c), orange arrow). 

Assuming that ditches are placed perpendicularly to the flow of groundwater, this additional drainage flux is a function of 

horizontal hydraulic conductivity (Kh) and hydraulic gradient (𝑖). The change of moisture in a time step ∆t  is given by: 

 235 

∆𝜃

𝛥𝑡
𝛥𝑥𝛥𝑦𝛥𝑧 =  (𝑄𝑖𝑛  −  𝑄𝑜𝑢𝑡) 𝛥𝑥 𝛥𝑦 − (𝐾ℎ  𝑖) 𝛥𝑦 𝛥𝑧  (1) 

Removing 𝛥𝑥𝛥𝑦 in both sides, Eq. (1) becomes: 

∆𝜃

𝛥𝑡
𝛥𝑧 =  (𝑄𝑖𝑛  − 𝑄𝑜𝑢𝑡) − (𝐾ℎ  𝑖)

𝛥𝑧

𝛥𝑥
    (2) 

with 𝛥𝑥 now playing a role as ditch spacing. Using a numerical method with boundary conditions at top layer where (𝑄𝑖𝑛 = 

(precipitation - soil evaporation) and at bottom layer where 𝑄𝑜𝑢𝑡 = free drainage = zero, a tridiagonal matrix system is 240 

constructed to solve 𝜃𝑡+𝛥𝑡 (Ducharne et al., 2018).  

3 Results 

3.1 Simulation before drainage 

The results of the model calibration under present condition are shown in Fig. 2, with CO2 fluxes (Net Ecosystem Exchange, 

NEE) and CH4 emissions calibration for sites that have observations of both fluxes (a-h), and CO2-only calibration for other 245 

sites (i-j). The CH4 fluxes of all eight sites were well simulated, with RMSE ranging from 0.016 to 0.024 g CH4 m-2 day-1. 

The calibrations of NEE also showed good performance, with RMSE smallest at Sweden sites (from 0.574 to 0.8 g CO2 m-2 

day-1).  
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 250 

Figure 2: Comparison of model simulations after calibration with observed net ecosystem exchange CO 2 fluxes (NEE) and CH4 

emissions. Sites in panels a-h measured both fluxes and in i-j only NEE. 

 

Figure 3 presents the reconstruction of water table depth from soil moisture with the SVR model trained for individual sites 

(Fig. 3 a-h, left column). The RMSE of modelled and observed water table depth ranged from 2.76 cm (FI-Sii) to 6.11 cm 255 

(US-Los) and the model captured in general the seasonal variations very well, but less so the short-term variations. At the 

Swedish sites, the peat is frozen between mid-October to early May, during which time the WTD is not fluctuating in reality. 

However, due to the lack of WTD measurements during these frozen periods, the self-reconstructed WTD from the SVR 

model for these times were accepted as the best available approximation. 

 260 

With the SVR model trained using all the sites together, SVR was less effective because it must compromise the patterns 

between all the sites: RMSE increased up to 6.76cm but still captures the main seasonal variations. The water table depth 

reconstructed using SVR trained from all other sites and applied at the two sites where direct WTD observations were 

missing including CZ-Wet, DE-Akm (Fig. 3 i-j, right column) was used in this study as the baseline water table depth. 

 265 
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Figure 3. Water table depth reconstruction with a machine learning model trained on observations and using modelled soil 

moisture in all soil layers within the top 2 meters below surface (red) compared with observed values (black). 

3.2 Drainage simulation: changes of CO2, CH4 fluxes, soil water and oxygen after few years  270 

Drainage reduced the water content in the soil and increased oxygen concentration (Fig. 4). With more oxygen in the soil and 

less moisture, heterotrophic respiration was increased. On the contrary, methane production was suppressed in aerated soil, 
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leading to less methane emission when water table gets lower. Figure 4 presents the monthly average of soil water content, 

oxygen, NEE and CH4 emissions during the first three years after drainage, for different WTD levels. It shows that the 

inclusion of a ditch in the model could lower soil moisture effectively and that flux simulation responded as expe cted with 275 

decreased NEE uptake or NEE switching to a net CO2 source, and decreased CH4 emissions. Note that there could be a slight 

inconsistency between the pre- and during-drainage simulations. In the pre-drained simulation, soil moisture was calculated 

by the model, whereas in the drainage simulation, all the soil column below the ditch depth was forced to be saturated, which 

introduces a different water content of the deep layers. For instance, a deep layer that was  near-saturated in the pre-drainage 

simulation was set to become saturated in the drainage simulation. The impact of this inconsistency on gas fluxes, however, 280 

was small because deep layers did not contribute much changes in CH4 and CO2 fluxes (they contain less labile organic 

carbon) and they were already near-saturation or at full saturation before drainage. The 50-year time series of NEE and CH4 

emission are shown in Figure C0 (Appendix C). 

 

 285 
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Figure 4. Simulated changes at three sites of (a) soil water content in the whole profile  (2m), (b) soil oxygen content, (c) Net 

Ecosystem Exchange of CO2 and (d) methane emissions. Different colors indicate different water table depths below the original 

water level of each site. 

3.3 Long-term changes of CO2 and CH4 fluxes, diagnosed by emission factors after up to 50 years  

Figure 5 shows the average emission factor (EF) across all peatland sites for 50 years since starting drainage. The EF is 290 

defined by the average GHG flux per unit of area over a given period of time under drainage minus the flux at the same site 

under undisturbed conditions. Qiu et al. (2021) implemented similar calculations using the ORCHIDEE-PEAT model for 

estimating carbon emission factors after peatland cultivation. Their emission factors calculated over two decades following 

conversion of peatland to cropland was 16 g CO2 m-2 day-1 as a median, ranging from 5 to more than 50 g CO2 m-2 day-1. Our 

estimates are lower than their values, with a median of 1.88 g CO2 m-2 day-1 (95%CI: 0.21 to 8.65), and a few drained sites 295 

show a negative EF (0.08% of all sites-months in the first two decades when drained 50cm), i.e., a slightly stronger CO2 sink 

when drained because deep soil layers remain saturated and continue to accumulate carbon (Fig. 5). Our lower median EF 

values than Qiu et al. (2021) are because deep soil layers remain saturated in our simulations, preserving their carbon from 

decomposition, while Qiu et al. (2021) assumed that the entire soil profile became drained and under-saturated when 

converting to cropland.  300 

 

Regarding the temporal variation of emission factors, we found a decrease in CO2 EF between the first and the fifth decade 

(Fig. 5) from 3.14 g CO2 m-2 day-1 (0.23 to 10.97) down to 1.18 g CO2 m-2 day-1 (0.15 to 3.19) for 50 cm drainage, a similar 

trend than the findings of Qiu et al. (2021). As GPP and autotrophic respiration (AR) was found to be little affected during 

the drainage period (Fig. C1-f,g), the change in emission factor over time was primarily driven by the increase of 305 

heterotrophic respiration (HR) under drainage compared to undrained conditions (Fig. C1-e). HR includes one part from 

litter and one from soil. In the early decade, the decomposition of litter accelerated in case of drainage, leading to the quick 

decrease in litter amount (Fig. C1-a). Later, the reduced availability of litter for decomposition caused the heterotrophic 

respiration from litter in drained peatlands to approach the same levels than in undrained peatlands (Fig. C1-b) where litter 

accumulated gradually, or decomposed at a much slower rate, and maintained a stable and low heterotrophic respiration rate. 310 

On the other hand, while SOC in undrained peatlands accumulated gradually, SOC in drained peatlands increased rapidly in 

the early decades due to a large input of carbon from litter but then slowed down as litter carbon input declined (Fig. C1-c). 

Consequently, the difference in soil heterotrophic respiration (HR) between drained and undrained peatlands narrowed over 

time (Fig. C1-d). These declining trends of both soil and litter HR in drained peatlands explains why the simulated EF 

decreased by time. A small decreasing trend in EF over time following drainage was determined experimentally by 315 

Truskavetskii (2014) based on soil measurements from chronosequence data. Rojstaczer and Deverel (1993) reported a trend 

in the subsidence of organic soil over time using periodic leveling surveys, suggesting decreased EF as well, although our 

model did not explicitly include subsidence and compaction effects. For CH4 emissions, on the contrary, the decrease of EF 

amplifies with time, going from -0.06 g CH4 m-2 day-1 in the first decade down to -0.09 g CH4 m-2 day-1 in the last decade in 
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case of 50 cm drainage as shown in Fig. 5 (negative EF in this Figure indicating less CH4 emissions in the drained than in the 320 

undrained).  

 

 

Figure 5: Evolution of modelled emission factors (a) for CO2 fluxes and (b) for CH4 emissions for five decades after drainage, 

displayed for two drainage depths  325 

3.4 Comparison of simulated greenhouse gas flux changes with observations 

To evaluate our drainage simulation results for GHG fluxes, we used observed changes of CO2 and CH4 fluxes collected 

from multiple sources through two meta-analyses of drained wetlands experiments (Huang et al., 2021b; Zou et al., 2022), 

the network of field flux measurements collected in Europe by Evans et al. (2021), and measurement collected in the dataset 

of Ecosystem Services publicly provided by the WET HORIZONS project 330 

(https://www.wethorizons.eu/resources/#database). Water table depths were provided along with the fluxes in both meta-

analysis studies, while in Evans et al. (2021), an 'effective' water table depth was used, defined as the smaller value between 

the measured water table depth and the measured peat depth. The data collected by Huang et al., (2021b) provided 

measurements of undisturbed fluxes at control sites, as well as 77 measurements of fluxes after < 1 year, 42 after 1 -10 years, 

and 78 after > 10 years of drainage. Since the impact of drainage on NEE was shown to be larger in the first decade after the 335 

start of drainage (Fig. 5), we compared 10-years average values of our simulation with these data. Figure 6a,b shows the 

distribution of simulated and observed NEE and CH4 fluxes for different water table levels, regardless of the site and 

drainage level. Overall, our simulation results lie within the large range of the observed data, although our modeled CH4 

emissions are in the upper range of the observed distribution. In Evans et al. (2021), a linear relationship was obtained 

between effective water table depth and net ecosystem production (NEP, the sum of NEE and biomass removal). Retaining 340 

only sites within boreal and temperate zones from their study (the yellow points in Fig 6a,b), we confirm such a strong linear 

correlation between effective WTD and NEE (R2=0.66, p<0.001). Our results (the red points in Fig 6a,b) were in good 

agreement with Evans et al. (2021), yet a weaker correlation between WTD and NEE was obtained in the model (R2=0.59, 

p<0.001). Meta-analysis data mixing different sites, experiment duration and conditions showed a weak correlation (R2 = 
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0.18 in Huang et al. (2021b), and R2 = 0.04 in Zou et al. (2022), suggesting that the Evans et al. (2021) field measurements 345 

with continuous flux and WTD records at the same site may be a better benchmark of the model results.  

 

The distributions of the changes of fluxes compared to no drainage are presented in Figure 6c,d for different drainage levels 

(ΔWTD). For this comparison, we kept only samples for 5, 10, 20, 50 cm (± 10%) drainage levels in the reference data. The 

numbers of measurements for each drainage level differs and different drainage levels can include different peatland sites 350 

and types. The results indicate that the modeled distribution of ΔNEE falls within the observed distributions from Huang et 

al. (2021b) and Zou et al. (2022), although all of our simulations show positive ΔNEE values ranging from 0 to 5.63 g CO2 

m-2 day-1, i.e., more CO2 is emitted or less CO2 absorbed after peatlands are drained, whereas the meta-analysis data exhibit 

either increases or decreases of NEE (-7.33 to 17.80 g CO2 m-2 day-1 in Huang et al. (2021b), and  -11.75 to 10.39 g CO2 m-2 

day-1 in Zou et al. (2022). For methane, all ΔCH4 values are negative in our model, ranging from -0.1 to 0 g CH4 m-2 day-1, 355 

i.e. less CH4 is emitted when peat is drained, while the meta-analysis data shows a negative median value of the distribution, 

yet with negative or positive changes of ΔCH4  (-0.16 to 0.22 g CH4 m-2 day-1 in Huang et al. (2021b); -1.03 to 0.40 g CH4 m-

2 day-1 in Zou et al. (2022). These discrepancies mainly come from the fact that the meta-analysis studies took into account 

emission variations for different WTDs which can come from natural climate, microtopographic conditions and laboratory 

experiments, while our study focuses on ditch drainage conditions. For example, Huang et al. (2021b) included a comparison 360 

between a lawn with near-surface WTD and an adjacent hollow filled with water, which gave a negative ΔNEE because the 

hollows leached dissolved or particulate organic carbon, facilitating oxidation, thus releasing more CO2 than the lawn (Villa 

et al., 2019). A decrease in NEE may also result from anomalously cold weather, which can reduce respiration more 

significantly at the drained site than at the undrained site (Renou-Wilson et al., 2016), given that dry soil is more susceptible 

to air temperature fluctuations, and low temperatures inhibit soil decomposition. Additionally, inconsistencies in the data 365 

may contribute to their large range of ∆NEE, as they include different drainage levels and varying durations. Potential errors 

in the meta-analysis studies, such as inconsistencies in data collection, may also play a role in estimating negative ΔNEE or 

positive ΔCH4; for instance, our inspection of meta-analysis data found cases where emission data reported for different 

depths were from different locations.  

 370 
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Figure 6. Simulated fluxes of (a) Net ecosystem exchange of CO2 and (b) CH4 emissions for different water table levels below the 

original water surface (red points) compared with meta-analysis observations from Huang et al. (2021b) (cyan) and Zou et al. 

(2022) (brown). The darkest color shading is one standard deviation of the observations, and the lightest shading is the min-max 375 
range. (c) Modeled (red dots) and observed distributions of NEE changes (∆NEE) for different water table depths of drainage, 

compared with meta-analysis results, and (d) same for CH4 emissions changes (∆CH4). 

3.5 Sensitivity of GHG emissions changes to lowered water table depth 

In this section, we analyzed the sensitivity of GHG fluxes defined by the change of NEE or CH4 emission per cm of lowered 

WTD computed from our simulations, for different starting WTD levels at the same site, after 10 years of drainage. For the 380 

observations, we calculated the sensitivities from changes in GHG emissions reported by Huang et al. (2021b) and Zou et al. 

(2022) and changes of WTD between 5 and 50 cm. The distributions of the resulting sensitivities are shown in Fig. C2. 

Averaged across all sites, the modeled mean NEE sensitivity (0.09 g CO2 m-2 day-1 cm-1; 95%CI: 0.02 to 0.30) is close to the 

observation-based values derived from the data of Huang et al. (2021b); 0.12 g CO2 m-2 day-1 cm-1; -0.23 to 0.67), but higher 

than the data of Zou et al. (2022), although  within their 95% confidence interval (0.01 g CO2 m-2 day-1 cm-1; -0.37 to 0.48). 385 

The simulated methane emission sensitivity (-1.58 mg CH4 m-2 day-1 cm-1; -4.5 to 0.03) is also comparable to the empirical 
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values (-1.93 mg CH4 m-2 day-1 cm-1; -15.96 to 0.21 of Huang et al. (2021b) and -1.70 mg CH4 m-2 day-1 cm-1; -19.82 to 5.10 

of Zou et al. (2022). Kwon et al. (2022) used ORCHIDEE for 100-years drainage simulations at six arctic peatland sites with 

WTD lowered by 5 to 50 cm and reported average sensitivities of 0.01 +- 0.02 g CO2 m-2 day-1 cm-1 for NEE, and of -1.10 +- 

1.10 mg CH4 m-2 day-1 cm-1 for CH4 emissions. Our modeled NEE sensitivity is more positive and our modeled CH4 emission 390 

sensitivity is slightly more negative than Kwon et al. (2022), despite using almost the same model. This may be attributed to 

the fact that we did simulation across a larger range of climate while Kwon et al. (2022) only simulated drainage of arctic 

wet peatlands where winter respiration is absent and high rainfall and snowmelt inputs maintain relatively more stable 

hydrological conditions, thus their NEE and CH4 emissions being less sensitive to lowered WTD. 

 395 

 

Figure 7. Sensitivities of NEE and CH4 emissions to water table depth as a  function of starting water table depth. The starting 

water table depth is the upper value in ∆WTD used to calculate sensitivities by dividing ∆flux by ∆WTD for all possible negat ive 

values of ∆WTD. 

 400 

Instead of fitting a linear regression between all the flux changes and all the WTD changes in the simulations (for Fig. 6c,d), 

we calculated the sensitivity as the change of flux divided by the change of WTD (
∆𝑓𝑙𝑢𝑥

∆𝑊𝑇𝐷
) for each possible pair of flux and 

negative water tables changes, i.e. when WTD becomes deeper, like in Huang et al. (2021b). The ‘starting’ water table depth 

in the x-axis of Fig. 7 is the shallower WTD in ∆WTD used to calculate sensitivities. This starting water table level can be 

taken from a drained simulation, and thus differs from the ‘initial’ water table which corresponds to undisturbed conditions. 405 

The results shown in Fig. 7 indicate that the more shallow is the starting WTD, the higher are the sensitivities of NEE and 

CH4 emissions fluxes when the WTD is further lowered. This is because when drainage is applied to a site with a shallow 

starting water table, it affects upper soil layers that were previously saturated and causes large emissions changes. 

Conversely, if drainage is applied to a site with a deep starting water table, upper layers that were already exposed to oxygen 

experience minimal change and deeper layers dry out but the SOC that they contain decomposes more slowly (they contain 410 

more slow and passive carbon with slower turnover time in the model), resulting in a smaller sensitivity of fluxes. The 
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sensitivities of NEE is a linear function of starting WTD (linear AIC = -532 < non-linear AIC = -530, with AIC definition in 

Appendix C), while CH4 emissions depends on a non-linear manner of the starting WTD (non-linear AIC = -1351 < linear 

AIC = -1349 for CH4 emission) and tends to saturate when drainage starts from a deep water table. The sensitivity of CH4 

emissions increases from negative values to almost zero when the starting WTD is deeper than ≈ 40 cm.  415 

3.6 Factors controlling the sensitivity of GHG emissions to water table depth across sites  

Figure 8 shows the simulated sensitivities (∆flux/∆WTD) of the 10 sites after 10-years of drainage, together with other 

model variables that could plausibly explain their values. For clarity, the sensitivities are shown in rank from the highest to 

the lowest for NEE (Fig. 8a). The regression between sensitivities and each of the selected model variables (Fig. 8 c-h) are 

shown in Fig. 9. 420 

 

Firstly, we analyzed whether the sensitivities depend on the magnitude of the initial fluxes, based on the hypothesis that a 

site with a higher baseline flux before drainage would experience more drastic changes during drainage. Among all sites, 

DE-Akm and CZ-Wet had the highest sensitivities of NEE (0.16 and 0.15 g CO2 m-2 day-1 cm-1, respectively, Fig. 8a). These 

two sites, along with JP-BB, also exhibited the greatest CH4 emissions sensitivities (-2.24, -2.71, and -3.06 mg CH4 m-2 day-1 425 

cm-1, Fig. 8b). These sites were all characterized by the largest initial CO2 sinks and CH4 emissions before drainage. 

Conversely, the site with the smallest pre-drainage CH4 emissions, CA-SCB, had the smallest CH4 sensitivities. SE-Stj has  

the smallest NEE sensitivities with the smallest initial NEE. Overall, we found that the CH4 sensitivities show a very strong 

linear relationship with initial CH4 emissions (R2 = 0.99, p<0.001) across sites. Similarly, the NEE sensitivities are correlated 

with the initial NEE, but the relationship is much weaker (R2 = 0.60, p = 0.008) (Fig. 9, top row). 430 
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Figure 8. (a) Sensitivity of NEE to lowering WTD at each site, define d by the change of each flux per cm of deeper WTD (positive 

values indicate less CO2 uptake or net emissions with deeper WTD), (b) same for CH4 emissions changes (negative values indicate 
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less emissions with a deeper WTD),  (c) Initial NEE, (d) initial CH4 emissions prior to drainage. Other modeled variables analyzed 435 
in the text for their roles in explaining sensitivities: (e) initial water table depth prior to drainage (negative = below surface), (f) 

annual mean air temperature, (g) modeled soil organic carbon density (SOC) equal to the sum of active, slow, and passive pools 

over the whole soil column in the model, (h) peatland vegetation composition including peatland graminoid, shrub, moss.  

 

Secondly, we examined if the vegetation composition of each site affects the sensitivities when the site is drained.  To 440 

quantify this response, we calculated a moss index (MI) defined by the ratio 
𝑚𝑜𝑠𝑠 − 𝑔𝑟𝑎𝑠𝑠 − 𝑠ℎ𝑟𝑢𝑏

𝑚𝑜𝑠𝑠 + 𝑔𝑟𝑎𝑠𝑠 + 𝑠ℎ𝑟𝑢𝑏
 so that it is equal to -1 in 

absence of moss and to 1 with full moss cover, and found a negative correlation between MI and NEE sensitivity (R2 = 0.66, 

p<0.001), and a positive correlation between MI and CH4 emission sensitivity (R2 = 0.34, p= 0.02) (Fig. 9a,b, last items). We 

identified two mechanisms in the model which explain this response of sensitivities to the moss fraction. The first 

mechanism is that a higher moss fraction is associated with less decomposable organic carbon. Among the three types of 445 

peatland vegetation, soil organic carbon decomposes the slowest for mosses and the fastest for shrubs, with residence times 

of 2 years for moss, 1 year for grass/sedges, and 200 days only for shrubs at >30 ℃, for the active soil organic carbon pool 

of the model. Accordingly, we found that the sites with higher fractions of shrubs and lower fractions of mosses display  

higher sensitivities of NEE to drainage (Fig. 8). The methane emission sensitivities depend on vegetation cover in a different 

way. Peatland sites with mosses have shallower effective root depths (1-5 cm) reducing plant-mediated methane transport in 450 

the model, and the opposite is true for grasses/sedges and shrubs (root depth ≈ 30 - 50cm). Most of the sites in this study 

have an initial mean WTD already below 5 cm, i.e. deeper than the depth at which mosses typically facilitate methane 

transport. When the WTD gets deeper, plant-mediated transport of methane by moss is thus not strongly affected in our 

model. Sites with more mosses (e.g. CA-SCB) therefore show smaller methane emission sensitivities. The second 

mechanism is that the moss fraction regulates the initial amount of SOC, which partly explains the differences in sensitivities 455 

shown in Fig. 8. Note as well that moss dominated sites have a higher potential for oxidation of CH4 due to a symbiosis 

between mosses and methanotrophic bacteria (Larmola et al., 2010), but our methanotrophy module does not  simulate this 

effect. Sites dominated by shrubs and grasses/sedges (DE-Akm, CZ-Wet) accumulate more SOC before drainage. When 

drainage exposes the upper peat soil layers to oxygen, accelerating soil respiration and limiting methane production, these 

sites with larger initial SOC pools show larger increase in CO2 emissions and larger decrease of CH4 emissions compared to 460 

moss dominated sites (CA-SCB, FI-Sii). 

 

Thirdly, we analyzed how the sensitivities depend on the initial WTD across all the sites. We found that the higher 

(shallower) the initial water table, the higher the sensitivities of NEE and CH4 emissions. This result is qualitatively 

consistent with the data shown in Fig. 7 where all sites are displayed together, but it additionally indicates that the site to site 465 

differences of sensitivities are partly explained by the variability of initial water table values (R2 = 0.60, p<0.001 for NEE; 

R2 = 0.49, p=0.03 for CH4 emissions) (Figure 9a,b, middle left items). The initial WTD controls which soil layers are 
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affected by drainage, which is in turn related to the amount and lability (active, slow, passive) of SOC exposed to oxygen, 

thereby influencing the sensitivities.  

 470 

Finally, air temperature was also found to have a correlation with sensitivities. Sites in warmer climates tend to have more 

sensitive NEE (R2=0.76, p=0.001) and CH4 emission (R2=0.78, p<0.001) responses (Figure 9a,b, middle right items). 

However, it remains uncertain whether these correlations are causal or reflect co-variations between temperature and other 

factors, given the small number of points in the regressions shown in Fig. 9. 

 475 

 

 

Figure 9: Regressions between the se nsitivities of (a) Net Ecosystem Exchange and (b) CH4 emissions and different model variables 

including initial NEE, initial CH4 emissions, initial WTD, air temperature, soil carbon content (SOC) and the moss index 

(MI=
𝒎𝒐𝒔𝒔 − 𝒈𝒓𝒂𝒔𝒔 − 𝒔𝒉𝒓𝒖𝒃

𝒎𝒐𝒔𝒔 + 𝒈𝒓𝒂𝒔𝒔 + 𝒔𝒉𝒓𝒖𝒃
). 480 
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3.7 Building an emulator of sensitivities for use in GHG accounting and decision support tools. 

It is impractical to run a complex, process-calibrated model like ORCHIDEE-PEAT for calculating the sensitivities of GHG 

fluxes to drainage over a whole region, for instance to derive spatially variables emission factors that could be used in GHG 

accounting studies (IPCC Guidelines Tier 3, Eggleston, (2006)) and decision support tools or meta-models like (e.g. FAO, 485 

2021). Therefore, following the analysis of the driving factors of the sensitivities in the previous section (Fig. 9), we 

developed an emulator of the model sensitivities based on multilinear regressions. To do so, we first fitted all possible 

regressions of the simulated sensitivities (SNEE and SCH4) against the six variables as shown in Fig 9, including initial NEE 

(𝑁𝐸𝐸𝑖𝑛𝑖𝑡), initial CH4 emission (𝐶𝐻4𝑖𝑛𝑖𝑡), initial water table (𝑊𝑇𝐷𝑖𝑛𝑖𝑡 in cm), soil organic carbon content (SOC in kgC/m2), 

air temperature (𝑇 in K), and moss index (𝑀𝐼). Then, the best regression model was selected based on the minimum 490 

corrected Akaike information criterion (AICc, Appendix C), constrained by the cutoff of variance inflation factor (VIF) > 5 

to avoid multicollinearity among predictors (Fig. C3): 

 

𝑆𝑁𝐸𝐸 =  0.045 + 0.406 × 𝐶𝐻4𝑖𝑛𝑖𝑡 −  0.020 × 𝑀𝐼  

                          495 

(R2 = 0.91, p <= 0.001)    (3) 

 

𝑆𝐶𝐻4 = −13.914 − 28.8991 × 𝐶𝐻4𝑖𝑛𝑖𝑡  + 0.051 × 𝑇 

(R2 = 0.98, p <= 0.001)     (4) 

 500 

To evaluate the robustness of the selected model, a leave-one-out cross-validation was performed. The model was re-fitted 

multiple times, each time excluding one site from the data, and the performance metrics (R2 and p-value) were recorded for 

the withheld site (Table C1). The small variation in R2 (+std of R2) and p-value (+std of p-value) among all re-fitted models 

confirms the robustness of the selected best model. 

 505 

Furthermore, we calculated the product of the regression coefficients for each variable in Equations (3) and (4) by their 

standard deviations between sites to quantify the ‘effect’ of each variable on the sensitivity (Jung et al., 2017). For the 

sensitivity of NEE, the effect of 𝐶𝐻4𝑖𝑛𝑖𝑡 is 0.015, higher than that of 𝑀𝐼, at -0.009. For the sensitivity of CH4 emissions, the 

effect of 𝐶𝐻4𝑖𝑛𝑖𝑡 is outstanding (-1.098), four times more important than the 𝑇 (0.173). 

3.8 Combined effect of CO2 and CH4 changes 510 
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Figure 10. Change in fluxes (relative to undrained) expressed as CO2-equivalents by drainage level (x-axis), averaged over 20 and 

50 years following the start of drainage. CH4 emissions were converted to CO2-equivalents using GWP20 for 20-year average 

(orange lines) and GWP100 for the 50-year average (green line). In the plot with all sites, the error bars show standard deviations 515 
across all sites. 

 

To assess the combined climate forcing of CO2 and CH4 flux changes due to drainage, we used the Global Warming 

Potential (GWP) metric to convert methane emissions into CO2-equivalents (IPCC AR6). Figure 10 shows the resulting CO2-

equivalent flux changes averaged across the 10 sites for 20- and 50-year periods of drainage as a function of the WTD 520 

drawdown. We used GWP100 = 27 for the 50-year period and GWP20 = 79.7 (IPCC, 2023) shown in different colors in 

Figure 10.  

 

Averaging our model results for all the 10 sites at 50-cm drainage leads to a slight cooling of -0.11 g CO2-eq m-2 day-1 using 

GWP100 after 50 years of drainage, and to a cooling of -2.02 g CO2-eq m-2 day-1  using GWP20 after 20 years. In comparison, 525 

from the data collected by meta-analysis studies (Huang et al., 2021b; Zou et al., 2022), retaining only sites where both 

ΔNEE and CH4 flux are available, we calculated for all sites a mean cooling effect of -5.46 g CO2-eq m-2 day-1 with a huge 
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spread (95%CI: -73.06 to 17.64) using GWP20, and a mean cooling of -0.06 g CO2-eq m-2 day-1 (-25.60 to 11.82) using 

GWP100, with the occurrence of cooling and warming effects being almost equal among all the sites (Fig. C4). This result is 

rather consistent with our model simulations. In contrast, pooling all sites and WTD levels together, thus combining ∆CO 2 530 

and ∆CH4 from different locations in an inconsistent manner, from the data of Zou et al. (2022) excluding their reported N2O 

emissions changes, a net cooling effect of -0.30 g CO2-eq m-2 day-1 using GWP100 was estimated. Similarly, using a GWP100 

value of 25, Huang et al. (2021b) estimated across their sites a net warming effect of 0.033 g CO2-eq/m2/h (0.009 to 0.057). 

This suggests that the averaging of sites from meta-analysis data can lead to assessing either a cooling or a warming, 

depending on whether only sites with both measured ∆CO2 and ∆CH4  are used, or all sites are used. 535 

 

Our model simulations also show that different drainage periods and the choice of a different GWP time horizon lead to 

distinct warming or cooling effects (Fig. 10). For 9 sites out of 10, however, we simulated a larger cooling on a 20-year 

horizon compared to a 100-year horizon, due to the stronger radiative forcing impact of reduced CH4 emissions in the short 

term. In addition, most of the sites show a larger radiative forcing change when the WTD is deeper, specifically a higher 540 

cooling from reduced CH4 emissions on a 20-year horizon. Secondly, the magnitude and the sign of changes, whether 

warming or cooling, varies significantly between sites. CA-SCB is the only site having warming effects (from 0.4 to 1.5 g 

CO2-eq m-2 day-1) regardless of time scales and drainage levels. On the other hand, DE-Akm, JP-BBY, SE-Hfm, and US-Los 

almost always have cooling effects (down to -6 g CO2-eq m-2 day-1) because their CH4 emissions are reduced more than their 

CO2 emissions are increased. Other sites have both warming and cooling effects depending on time scale considered and 545 

drainage level. Neutral effects on climate were observed in some cases, primarily when considering 50 years of drainage 

(green line), such as FI-Sii with a 10 cm drainage and SE-Deg at a 50 cm drainage level. 

4 Discussion 

Uncertainty in our simulations involves several factors, typically coming from model calibration, our WTD reconstruction, 

and the omission of vegetation change during drainage and possible changes of soil structure including compaction.  550 

 

Firstly, three sites could not be calibrated with CH4 emission but only with NEE, due to a lack of CH4 measurements. A good 

simulation of methane processes is expected to improve CO2 emissions because the oxidation of methane in soil produces 

CO2 which contributes to the total NEE (CO2 from methanotrophy constitutes 8.21% (95%CI: 0.57% - 29.81%) of 

heterotrophic respiration). For sites without CH4 calibration, CH4 parameters were currently taken from the average of 555 

calibrated parameters of other sites. Another solution that could be tried is to do multi -site calibration of CH4 and NEE for 

the sites with both observations where they are available , i.e. optimize a single set of parameters that best compromises 

between all sites, then take the resulting CH4 parameters for the sites that are not CH4-calibrated. Anyway, uncertainties still 

remain, as climate and environmental conditions vary between sites. (Liu et al., submitted) showed that even multi-site 
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calibration sometimes cannot significantly improve the performance of the model due to the inability of the model to 560 

consider all trait-climate correlations, with constant parameters used for traits instead.  

 

Secondly, although we believe that our method to reconstruct WTD from soil moisture using a machine learning (ML) 

module is an interesting and viable solution for now, the training of a ML model to derive a function from few sites which is  

then applied to other sites where WTD is missing could be problematic if extrapolation is required out of training range. We 565 

assumed that all peatland sites in this study share the same relationship between soil moisture and water table. However, 

peatlands in different locations can have different peat soil characteristics, along with varying environmental, terrain, and 

water supply conditions, so the assumption can inevitably be wrong in some places. One thing we can expect in the future is 

that when we have more water table data everywhere, this indirect reconstruction of WTD can work better.  

 570 

Thirdly, changes in vegetation cover on peat soil caused by drainage has not been considered in this study due to the 

complexity of processes and lack of long term data. With water table drawdown and subsequent physical and chemical 

alterations, peat soils can become more favorable for certain plants (e.g., vascular plants) and less favorable for others (e .g., 

some Sphagnum mosses), potentially resulting in a shift in vegetation composition (Antala et al., 2022; Kokkonen et al., 

2022). Peatland specialist species adapted to waterlogged conditions may even disappear after water table drawdown (Jassey 575 

et al., 2018), while woody species can invade newly available growing spaces (Kokkonen et al., 2019). Additionally, species 

turnover also depends on the type of peatland (e.g. bog/fen), particularly on hydrological and nutrient conditions prior to 

drainage (Kokkonen et al., 2022). Changes in plant composition should be incorporated into drainage simulations, as each 

PFT has unique photosynthetic capacity, respiration rates, and contributes litter of varying quality for decomposition, all of 

which would impact the carbon balance. While it’s straightforward to introduce in a model a new vegetation composition, 580 

simulating the dynamic changes in vegetation - such as determining the factors controlling moss disappearance and adjusting 

PFT fractions accordingly - remains challenging. Similarly, the model parameters, which were calibrated based on 

undisturbed fluxes, remained unchanged during the simulation of drainage scenarios, even though soil hydrological 

parameters such as water holding capacity and water conductivity are known to be affected by compaction during drainage. 

 585 

In the ditch drainage simulation, we assumed an ideal condition in which the drained peatland is effectively isolated from 

adjoining land and suppressed the runoff from other soil tiles to the peat soil tile. This is not always what happens in real ity, 

there can still be runoff entering the peatland from adjoining land. However, this suppression helps to make the peat soil 

effectively dried in the model. With the limitation in the current drainage model’s complexity, the ditch drains water from 

the peat soil tile only, and not yet from other soil tiles. The runoff from other soil tiles to the peat soil tile that is suppressed 590 

in the model can be interpreted as accounting for the water from these tiles that should have also been drained by the ditch.  

We assumed also a uniform water table drawdown across the whole peatland and over the course of 50 years. However, in 

reality, the water table near the ditch can differ significantly, or to some extent, from the water table farther away from it. 
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This depends on the hydraulic conductivity of peat materials, which varies with the degree of peat decomposition (Boelter, 

1972). Also, a peatland over time will often recover back to the same water table depth after drainage, as subsidence and 595 

oxidation will bring the surface down close to the previous water table level (Hilbert et al., 2000; Waddington et al., 2015). 

Considering such distance and subsidence effects would help move towards a more realistic simulation. 

 

In the analysis of emission factors (EF), we explained their variation by a few processes related to litter and SOC. There are 

also other factors that can affect the change of EF by time (whether increasing or decreasing) but were not simulated or 600 

considered in analysis. For example, peat bulk density and porosity can alter due to drainage. Investigating their behaviors 

could provide better insights into EF variations. However, in the current ORCHIDEE model, certain soil characteristics (e.g. 

peat bulk density and porosity) are treated as constant. Simulating these characteristics as dynamic variables would require 

further model development. 

 605 

We also need in future studies to take into account the emission of CH4 that is dissolved in water drained out, produced in-

situ in the ditch, and diffused at the vertical cross-section surface of the ditch. According to Roulet and Moore (1995), a 

drainage ditch is a source of methane because (1) evacuated water transports CH4 from the surrounding peat into the ditch, 

and (2) CH4 production is favorable in the ditch where sediment is constantly saturated and warmed by direct solar radiation. 

Recent studies based on meta-analysis report an offset of drainage ditch to the methane reduction due to drainage, which is 610 

18% by Peacock et al. (2021)), 12 (10-14) % by Gan et al. (2024)). Roulet and Moore (1995) suggested that flow rate, depth, 

and morphology of the ditch can have an impact on its CH4 emission, and ditch spacing also plays a role in net CH4 emission 

of the landscape. 

 

Finally, in our simulation protocol, the present climate conditions are recirculated over the whole time of simulation, but i t is 615 

interesting for future studies to use climate conditions predicted for the future using climate change scenarios , for instance, 

with the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) database (Lange and Büchner, 2021). Using future 

climate forcing is simple, but then we will also need a corresponding forecast of climate induced future WTD changes for 

the baseline scenario, and here again our machine-learning model to compute undisturbed WTD from modeled soil moisture 

may not work for unseen future soil moisture conditions. 620 

5 Conclusions 

In this study, we addressed the difficult problem of estimating changes of CO2 and CH4 fluxes when peatlands are drained in 

future. Insofar, most of the knowledge comes from empirical results that showed a general increase of CO2 emissions and a 

decrease of CH4 emissions during drainage. Yet, meta-analysis data group fluxes from different experiments, where CO2 and 

CH4 fluxes are not always measured simultaneously, and include different control conditions, thus showing a large spread of 625 
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their results. We used a process model calibrated to match fluxes under pristine conditions before drainage from 10 sites 

individually and parameterized virtual drainage at each site with a new ditch module. The model was integrated forward for 

virtual drainage simulations at each site under present climate with different prescribed water table depths. A summary of the 

answers to the research questions posed in the introduction is given below.  

(1) What are the changes of CO2 and CH4 fluxes in response to drainage and how do they compare with observations? We 630 

found an increase of CO2 emissions or a decrease of CO2 sinks and a decrease of CH4 emissions from drainage, with a 

magnitude very similar to the observations in flux data collected by Evans et al. (2021) and within the range of meta-analysis 

results, although meta-analysis results have a huge variability. On average, we predict for the first decade of 50 cm drainage 

a reduction of the CO2 sink of 3.14 g CO2 m-2 day-1 (0.23 to 10.97) and a decrease of CH4 emissions of -0.06 g CH4 m-2 day-1 

(-0.21 to 0.001).   635 

(2) How do fluxes change as a function of drainage duration? We found that a longer drainage period leads to a 

diminishment of the CO2 emissions increase compared to undisturbed conditions, and to a strengthening of the CH4 emission 

reduction over time. The first result for CO2 is consistent with previous emission factors simulated for peat drained to 

croplands agriculture (Qiu et al., 2021). Such a model as presented here, if validated against real-world observations, can 

help provide time-dependent emission factors that may be useful for inventory calculations in the absence of long-term CH4 640 

emission factor changes from  measurements.  

(3) What is the modeled sensitivity of flux changes to water table depth? We found that the shallower the starting water 

table, the more positive the sensitivity of CO2 flux changes to WTD (more warming) and the greater is the sensitivity of CH4 

reductions (more cooling from suppressed CH4 emissions).  

(4) What factors affect the sensitivity at each site in the model ? We found that, in the model world, the initial fluxes, initial 645 

water table depth, soil organic carbon, moss fraction and temperature are the key influential factors controlling the 

sensitivities across sites. These variables have strong covariations in the model, so their effect  cannot be isolated 

individually. This finding allowed us to propose an emulator of the modeled sensitivities that could be used to predict flux 

changes at other sites or over a region. Yet, this is only a model result and testing it against observations would be important 

in the future to use such an emulator approach for GHG accounting.  650 

(5) What is the net climate effect of CO2 and CH4 flux changes induced by drainage using the GWP metrics to compare CH4 

with CO2. Here we found that averaged over all WTD depths, drainage during 20 years with radiative forcing calculated with 

GWP20 induces a net cooling because the reduction of CH4 emissions dominates over changes of CO2 fluxes. Drainage 

during 50 years with GWP100 induces almost a net neutral effect. There is a large variability between sites even for the sign 

of the climate effect of drainage. This gives a more nuanced view than the current paradigm that drainage always warms the 655 

climate. This result seems at first glance opposite to meta-analysis results, even though our model simulations for flux 

changes were found to be consistent with these data. The data do not have very long drainage experiments which may 

explain the differences with our predictions. However, when taking only sites from meta-analysis studies where both CO2 

and CH4 fluxes changes were measured, a net cooling is found, similar to our predictions.  
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Future work should consider additional CH4 emissions from ditch water and shifts of vegetation composition during 660 

drainage. This model framework can be applied for regional historical simulations to improve on previous studies where 

drainage was not explicitly modeled but represented as an abrupt land cover change from peat to cropland, and where CH4 

effects were ignored. It can also be applied to future rewetting scenarios of degraded peat to assess the net climate effect of 

this nature based solution. 
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Appendix A 

 880 

Table A1: The 12 peatland sites used in this study for virtual drainage simulations. Their locations were mapped in Fig. A1. A star 

(*) beside a site ID indicates flux and WTD observations sourced from the FLUXNET-CH4 database; otherwise, these 

observations are from the Wet Horizons project. The vegetation composition (graminoids, shrubs, and mosses) is taken from the 

literature when available; otherwise, it is estimated visually from satellite images. 

Site ID Lat, lon Type Peat-

graminoids/shru

b/moss fraction 

CO2 flux 

observation 

CH4 flux 

observati

on 

WTD 

observatio

n 

References 
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CA-SCB* 61.31, 

-121.30 

Bog, pristine 0.2 / 0.2 / 0.6 2014-2017 Yes (Oehri et al., 2022) 

CZ-Wet 49.02, 

14.77  

Fen, pristine 0.8 / 0.2 / 0 2021-2022 None No (Mejdová et al., 2021) 

DE-Akm 53.87, 

13.68  

Fen, near-

natural 

0.5 / 0.5 / 0 2009-2014 None No (Bernhofer et al., 

2009) 

FI-Sii 61.83, 

24.19 

Fen, pristine  0.26 / 0.1 / 0.64 2018-2021 Yes (Aurela et al., 2007) 

JP-BBY* 43.32, 

141.81 

Bog, pristine 0.2 / 0.2 / 0.6 2015-2018 Yes (Ueyama et al., 2020) 

SE-Deg 64.18, 

19.56  

Fen, pristine 0.44 / 0.11 / 

0.45 

2020-2022 Yes (Noumonvi et al., 

2023) 

SE-Hfm 64.16, 

19.55  

Fen, pristine 0.5 / 0.07 / 0.43 2020-2022 Yes (Noumonvi et al., 

2023) 

SE-Hlm 64.16, 

19.57 

Fen, pristine 0.36 / 0.21 / 

0.43 

2020-2022 Yes (Noumonvi et al., 

2023) 

SE-Stj 64.17, 

19.56   

Fen, pristine 0.37 / 0.15 / 

0.48 

2020-2022 

 

Yes (Noumonvi et al., 

2023) 

US-Los* 46.08, 

-89.98 

Fen, pristine 0.5 / 0.1 / 0.4 2014-2018 

 

Yes (Desai and Thom, 

2020) 
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Figure A1. Location of peatland sites. Figure contains public sector information licensed under the Open Government Licence 890 
v3.0. 
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Appendix B 

Table B1. Parameters for model calibration. The PFT column uses G, S, and M to denote graminoids, shrubs, and mosses, 

respectively, and "-" for parameters that are independent of PFTs. For further details, refer to (Liu et al., submitted) for 895 
parameters related to photosynthesis, autotrophic respiration, and SOC decomposition, and to (Salmon et al., 2022) for methane-

related processes. 

Parameter Description PFT 

Photosynthesis 

VCmax Maximum rate of carboxylation G, S, M 

LAImax Maximum leaf area index G, S, M 

SLA Specific leaf area G, S, M 

g0 Stomatal conductance of mosses when no irradiance M 

a1 Empirical constants M 

b1 Empirical constants M 

 Autotrophic respiration  

C0,leaf Maintenance respiration coefficient at 0 °C for leaves G, S, M 

GRfrac Fraction of biomass allocated to growth respiration G, S, M 

SOC decomposition 

Tpeat Carbon decomposition rate parameter for peat 

vegetation 

G, S, M 

Q10 Temperature sensitivity coefficient of the 

decomposition rate 

- 

Methane-related processes 

qMG Ratio of soil oxic and anoxic 

decomposition 

- 

kMT Methanotrophy rate - 

Mrox Root methane oxidation G, S, M 

Zroot Root depth G, S, M 

Tveg The efficiency of methane plant mediated transport G, S, M 

https://doi.org/10.5194/egusphere-2025-352
Preprint. Discussion started: 3 February 2025
c© Author(s) 2025. CC BY 4.0 License.



37 
 

Parameter Description PFT 

wsize Connectivity of soil moisture - 

mxrCH4 Methane mixing ratio in bubbles - 

O2m Oxygen concentration below which anoxic condition 

is reached for methane production 

- 
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Appendix C 900 

Text C1. Akaike information criterion (AIC). 

The AIC (Akaike, 1974) is a statistical metric used to evaluate the relative quality of different models for a given dataset by 

estimating the trade-off between the goodness of fit and model complexity, with lower AIC values indicating a better trade-

off. For each model, AIC is calculated by: 

𝐴𝐼𝐶 =  2𝐾 –  2𝑙𝑛(𝐿)                                                                                                                                                             (C1) 905 

where 𝐾 is the number of estimated parameters in the model and 𝐿 is the maximum value of the likelihood function for the 

model, reflecting how well the model fits the data. 

The corrected Akaike information criterion (AICc) adjusts the standard AIC to account for small sample sizes (e.g. 10 

samples in Sect. 3.7 of this study), ensuring better reliability of model comparisons when the sample size (𝑛) is relatively 

low compared to the number of model parameters (𝐾). The formula for AICc is: 910 

𝐴𝐼𝐶𝑐 =  𝐴𝐼𝐶 +  
2𝐾 (𝐾+1)

𝑛−𝐾−1
                                                                           (C2) 

 

 

Figure C0. 50-year time series of (a) Net Ecosystem Exchange of CO2 and (b) methane emissions at three sites as in Figure 4. 

Different colors indicate different water table depths below the original water level of each site.  915 
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Figure C1. Litter and soil organic carbon (a,c) and corresponding heterotrophic respiration (b,d) during the 50-year period of 

drainage. Total heterotrophic respiration (e) is the sum of that from litter and soil (= b+d). 

 920 
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Figure C2: Distribution of NEE and CH4 emission sensitivity to drainage of peatland sites in this study compared to reference 

data. 

 925 

 

 

Figure C3. Selection of controlling variables for flux sensitivities. The red star indicates the subset that was chosen for the 

emulator (Eq3, 4). 

 930 
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Table C1: Coefficient of determination (R²) and p-values from leave-one-out fitting of Equation (3) and (4), with the site removed 

indicated in the first column. 

 Fitting Eq (3) Fitting Eq (4) 

Site removed R2 p-value R2 p-value 

CA-SCB 0.860 0.0010 0.988 10-6 

CZ-Wet 0.895 0.0004 0.980 10-5 

DE-Akm 0.889 0.0005 0.974 10-5 

FI-Sii 0.879 0.0006 0.980 10-5 

JP-BBY 0.877 0.0006 0.972 10-5 

SE-Deg 0.897 0.0004 0.980  10-5 

SE-Hfm 0.885 0.0005 0.979  10-5 

SE-Hlm 0.906 0.0003 0.981  10-6 

SE-Stj 0.880 0.0006 0.978  10-5 

US-Los 0.888 0.0002 0.984  10-6 

Mean ± STD 0.888 ± 0.013 0.0005 ± 0.0002 0.980 ± 0.004 10-5 ± 10-6 
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Figure C4. Distribution of flux change in CO2-eq from meta-analysis data. 
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