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Abstract. Soil moisture (SM) is a key regulator of ecosystem biogeophysics, influencing plant water relations and land-

atmosphere energy exchanges. This study evaluates the representation of SM in Earth System Models (ESMs) using the 

International Land Model Benchmarking (ILAMB) framework, focusing on both surface (0–5 cm, 0–10 cm) and rootzone 20 
(0–100 cm) depths. We benchmark Coupled Model Intercomparison Project Phase 6 (CMIP6) models against multiple 

observational and assimilated datasets to evaluate their performance in simulating SM, as well as their relationships with 

ecohydrological processes and vegetation traits such as gross primary productivity (GPP), leaf area index (LAI), and 

evapotranspiration (ET). Results show that while surface SM is generally well represented (r > 0.87), rootzone SM 

variability is overestimated (normalized standard deviation > 1). Simulated ET agrees strongly with observations (r > 0.9; 25 
normalized standard deviation 0.8-1.2), whereas GPP and LAI exhibit greater discrepancies (r > 0.7; normalized standard 

deviation mostly > 1). The strength of SM–ecohydrology relationships varies with model structure and observational dataset, 

with better consistency observed when assimilated SM products are used. Regional analyses using Köppen classifications 

reveal distinct model behaviors, with stronger performance in tropical zones and reduced skill in high-latitude regions, likely 

due to challenges in simulating freeze–thaw and permafrost dynamics. These findings offer quantitative benchmarks of 30 
model performance, highlighting specific areas for improving SM representation and its coupling with vegetation and 

hydrological processes in future ESM development. 
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1 Introduction  

1 Introduction 

Soil moisture (SM) plays a central role in regulating Earth system processes by controlling the storage and exchange of 35 
water, carbon, and energy between the land surface and atmosphere (Clark et al., 2015; Trugman et al., 2018; Green et al., 
2019; Massoud et al., 2020). Accurately representing SM in Earth System Models (ESMs) is essential for improving 
predictions of the Earth system (Seneviratne et al., 2010; Hauser et al., 2016; Humphrey et al., 2021). ESMs simulate these 
processes through coupled biogeochemical and hydrological cycles, both of which are strongly influenced by SM. However, 
accurately modeling SM at ESM grid scales remains challenging due to heterogeneity in soil properties, scale mismatches 40 
between physical processes and model resolution, and limited knowledge of subsurface boundary conditions (e.g., 
groundwater depth). As a result, ESMs adopt a range of approaches to simulate SM, most commonly relying on "bucket-
type" models that route water through discrete soil layers using threshold-based parameters (e.g., field capacity) and rate-
dependent functions (e.g., hydraulic conductivity). This work seeks to evaluate the representation of SM in ESMs by 
incorporating the International Land Model Benchmarking (ILAMB) framework (Collier et al., 2018), a tool extensively 45 
used to assess the performance of land models. Although ILAMB has been applied to various ecohydrologic processes and 
properties such as gross primary production (GPP) (Caen et al., 2022), evapotranspiration (ET) (Wu et al., 2020), and leaf 
area index (LAI) (Yang et al., 2023), SM has remained mostly underrepresented in ILAMB-based model evaluations until 
now.  
 50 
Despite advances in ESMs, the accurate simulation of SM in Coupled Model Intercomparison Project Phase 6 (CMIP6) 
remains a persistent challenge due to structural biases and uncertainties in land surface processes. Several studies have 
highlighted both improvements and limitations in how CMIP6 models represent SM. For example, Yuan et al. (2021) 
showed that CMIP6 models better capture historical surface SM trends over the contiguous United States (CONUS) 
compared to CMIP5, particularly in regions like the Northwest and Midwest. However, considerable inter-model variability 55 
remains, suggesting a need for further refinement in future model generations.  Similarly, Wang et al. (2022) conducted a 
comprehensive evaluation of CMIP6 SM simulations over China and found that while the multi-model mean (MME) 
generally captured observed spatial patterns and seasonal cycles of both near-surface and rootzone SM, substantial inter-
model spread persisted, particularly in trends and interannual variability. Their findings also emphasized the dominant role 
of land surface schemes in driving model behavior, as models developed by the same institution often exhibited similar 60 
performance. Moreover, Purdy et al. (2018) illustrated the potential for significant improvement in model performance 
through better SM representation, showing that integrating SM information from satellite data into model simulations 
reduced global ET errors by up to 23% in dry regions. These studies point to the critical need to identify and correct 
structural biases that limit current model skill in simulating SM.  
 65 
At the same time, the importance of accurately simulating SM extends beyond model performance metrics. Zuo et al. (2024) 
highlighted that maintaining current global SM levels could reduce nearly a third of projected land warming under low-
emission scenarios. Their results, based on outputs from historical CMIP6 experiments and other model intercomparison 
projects, highlight the central role SM plays in climate feedbacks and the reliance on models like CMIP6 to inform future 
projections. Given both the challenges and stakes involved, this study benchmarks SM and its coupling with ecohydrologic 70 
processes such as GPP, LAI, and ET, with the goal of identifying model limitations and guiding improvements as we look 
toward CMIP7 and beyond. 
 
The evaluation of SM in global models has a long history, with early efforts dating back to Robock et al., (1998) as part of 
the Atmospheric Model Intercomparison Project (AMIP). In their analysis, they found significant discrepancies in how SM 75 
was represented and simulated across different models, an issue that was prominent 25 years ago and remains a challenge 
today. More recently, Qiao et al., (2022) conducted a detailed evaluation of SM using a suite of CMIP6 models, examining 
both surface and deeper SM (up to 2 meters) across various subregions around the globe. They found that the multimodel 
ensemble mean generally produces reasonable representations for overall climatology. However, their study relied on 
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reanalysis products and data assimilation systems as the reference for benchmarking (Qiao et al., 2022), which, while widely 80 
used, are not true SM observational products but rather model-based estimates. Furthermore, Qiao et al. (2022) assumed that 
the model outputs mrsos (surface SM) and mrsol (layered SM) represent the same variable, despite their structural 
differences (Massoud et al., 2025, in review). In reality, mrsol provides moisture values at multiple soil layers, from which 
mrsos, representing moisture in the top 10 cm of soil, is derived. Other studies used a combination of observation and model-
based benchmarks, but are limited to regional domains and similarly do not distinguish the different nature of mrsos and 85 
mrsol (Yuan et al. 2021; Wang et al. 2022). In this current study, we distinguish between these two variables and apply 
depth-specific derivations to more accurately evaluate SM representation across different layers in the models. Here, we not 
only benchmark SM at various depths, but also evaluate key ecohydrologic variables such as GPP, LAI, and ET, both 
individually and in relation to SM, to provide a more comprehensive assessment of land surface processes in CMIP6 models. 
 90 
One of the persistent challenges in benchmarking SM is the limited availability of high-quality datasets. To address this, we 
utilize two key datasets for global-scale benchmarking in this study. The first is the Wang et al. (2021) product, which is a 
weighted average of multiple sources, including offline land surface model simulations, remote sensing data, and reanalysis 
products, that was found to outperform the original sources in that study. This dataset provides estimates for both surface SM 
(top 10 cm) and rootzone SM (up to 1 m), offering a view of SM at different depths. The second dataset is the European 95 
Space Agency Climate Change Initiative SM (ESA-CCI SM) product (Dorigo et al., 2017; Gruber et al., 2019; 
Preimesberger et al., 2021), which is derived from a blend of passive and active satellite sensors. ESA-CCI SM represents 
surface SM down to 5 cm, and its combination of different satellite platforms helps mitigate the limitations of individual 
sensors, providing an observational estimate for surface SM that is robust. Together, these datasets allow for a more 
thorough evaluation of SM in CMIP6 models. 100 
 
While benchmarking SM alone can offer insights into model performance, understanding how SM interacts with other 
ecosystem processes such as GPP, ET, and LAI can yield additional clues into the strengths and weaknesses of these models 
(Guswa et al., 2002; Wang et al., 2019). By examining how models’ skills are related to certain model processes, we aim to 
uncover patterns that point to specific model limitations, whether they stem from structural design, input data, or 105 
parameterizations. Ultimately, this work seeks to guide improvements in model development and reduce uncertainties in 
global SM simulations. The goals of this study are threefold. First, we benchmark CMIP6 models in their simulation of SM 
at multiple depths, specifically at 5 cm, 10 cm, and 100 cm, using various datasets. Second, we assess model performance in 
simulating key ecohydrologic variables, including GPP, LAI, ET, as well as the relationships between SM and each of these 
variables. Third, we aim to identify specific areas for improvement, whether in individual models or as systematic issues 110 
across the CMIP6 ensemble. To support these objectives, we also implement a Köppen climate region analysis (Geiger 
1954) within the ILAMB framework to evaluate model performance across distinct climate zones. 

2 Materials and Methods  

2.1 Models and Variables in CMIP6 Simulations 

The model data used in this study come from CMIP6 (Eyring et al., 2016), an international effort to standardize ESM 115 
simulations, enabling direct comparison across models. We use a suite of CMIP6 models (detailed in Table 1) that differ in 
their spatial resolutions and land surface model components. Table 1 lists each model’s horizontal grid spacing and the land 
surface scheme used to simulate SM, GPP, LAI, and ET. 
 
The SM variables analyzed are mrsol and mrsos, which represent layered and surface soil moisture, respectively. Both 120 
variables are provided in units of mass per unit area [kg m-2]. Other simulated variables include gpp (units g m2 d-1), lai 
(unitless), and evspsbl (units mm d-1) corresponding to GPP, LAI, and ET. All variables are analyzed at monthly temporal 
resolution. 
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To derive SM at specific depths (e.g., 0–5 cm, 0–10 cm, or 0–100 cm), we calculate depth-integrated soil moisture estimates 125 
from the mrsol variable, which provides total SM contained in each discrete model soil layer. Since the vertical layering 
varies across models, we apply a depth-weighted integration approach that also converts units from mass to volumetric SM 
(i.e., from [kg m-2] to [m3/m3]). This conversion and integration is expressed as: 

𝑆𝑀!"#$%&'#$( =
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In this equation, 𝑚𝑟𝑠𝑜𝑙(𝑖) represents the mass of SM in the 𝑖-th model-defined soil layer, reported in units of [kg m-2]. The 130 
variable r6is the density of liquid water, assumed to be a constant value of 1000 kg/m³. The quantity 𝑑𝑧(𝑖) refers to the 
thickness of the 𝑖-th soil layer in meters [m], which is used to compute the volumetric contribution of each layer. The term 
𝑧&$)'!"!"% represents the portion in [m] of the final layer that partially overlaps with the target integration depth (e.g., if the 
target is 10 cm and the final layer spans from 8–15 cm, then 𝑧&$)'!"!"%=2 cm=0.02 m. The total integration depth, 𝑧#+#',, is 
the sum of all full-layer thicknesses plus 𝑧&$)'!"!"%, defining the vertical extent over which SM is integrated.  135 
 
This formula first converts each layer’s SM from mass per unit area [kg m-2] to volumetric SM [m3/m3] by dividing by the 
product of water density and layer thickness. Then, it multiplies by the layer thickness to compute the volume per unit area. 
Summing over all layers and dividing by the total soil depth yields the average volumetric SM over the target depth. This 
method standardizes SM across models with differing vertical discretizations and unit conventions, enabling accurate and 140 
consistent comparisons with benchmarking datasets, which report SM as a volume fraction. For surface SM (mrsos), which 
represents a shallow fixed-depth layer (i.e., 0.1 m), we apply the same conversion logic by assuming that fixed depth during 
volumetric transformation. This approach is consistent with prior studies (e.g., Qiao et al., 2022; Wang et al., 2022; Massoud 
et al., 2025). 
 145 

CMIP6 Model 
Name 

Spatial 
Resolution 
( ~lon° x lat° ) Land Model Total Soil Depth (m) 

# of Soil 
Layers 

ACCESS-ESM1-5 1.875 × 1.25 CABLE 2.87 6 

AWI-ESM-1-1-LR 1.875 × 1.875 JSBACH 6.98 5 

BCC-ESM1 2.8 × 2.8 BCC-AVIM2 2.86 10 

CanESM5-1 2.8 × 2.8 CLASS 4.10 3 

CESM2 1.25 × 0.94 CLM5 8.03 20 

CMCC-ESM2 1.25 × 0.94 CLM4.5 35.18 15 

CNRM-ESM2-1 1.41 × 1.41 ISBA 
≤12 m for soil temp; rooting 
≤8 m 14 

EC-EARTH3-CC 0.70 × 0.70 
HTESSEL and LPJ-
GUESSv4 1.945 4 
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GFDL-ESM4 1.0 × 1.0 LM4.1-PPA 8.75 20 

GISS-E3-G 2.5 × 2.0 GISS LSM 3.50  6 

MPI-ESM1-2-LR 1.875 × 1.875 JSBACH 6.98 5 

MRI-ESM2-0 1.125 × 1.125 AGCM 10.0 14 

NorESM2-LM 2.5 × 1.875 CLM5 8.03 20 

SAM0-UNICON 1.25 × 0.94 CLM4.0 8.03 20 

TaiESM1 1.25 × 0.94 CLM4.0 8.03 20 

UKESM1-0-LL 1.875 × 1.25 JULES-ES-1.0 3.0  4 

Table 1: CMIP6 models used in this study, along with their latitude and longitude grid sizes and the land models with 
their soil depths and number of soil layers used in each model. 

2.2 Soil Moisture Datasets Used for Benchmarking 

In this study, we evaluate the SM performance of CMIP6 models using two primary benchmark datasets. The first is the 
ESA-CCI SM product (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021), which provides a global, long-150 
term record of surface SM (~2-5 cm) spanning over 40 years (1978-2023) at a daily temporal resolution that is aggregate to 
reflect monthly values and spatial resolution of approximately 25 km (Figure 1A). The ESA-CCI SM product is updated 
annually through an algorithmic process that incorporates data from both passive and active satellite sensors, producing a 
blended dataset that integrates multiple sensor sources while extending the time series with each update. This dataset has 
been extensively used in hydrological and climatological research (e.g., An et al., 2016; McNally et al., 2016; Ciabatta et al., 155 
2018; Massoud et al., 2023; Li et al., 2025a), including the Bulletin of the American Meteorological Society’s annual "State 
of the Climate" reports. Its long-term, global coverage makes it a valuable resource for evaluating surface SM in ESMs. To 
facilitate direct comparison with the ESA-CCI SM product that typically represents SM at a depth of 5 cm, the mrsol 
variable in each CMIP6 model is integrated to the 5 cm layer using Eq. 1. Given that some models have first layers that are 
deeper than 5 cm, this integration may introduce additional uncertainty in the estimated SM.  160 
 
The second SM dataset used in this study is the Wang et al. (2021) product, which provides a global, gap-free, long-term 
record of SM across four depths (0–10, 10–30, 30–50, and 50–100 cm) from 1970 to 2016, with a monthly temporal 
resolution and spatial resolution of 0.5 degrees. This dataset synthesizes SM information from diverse sources, including in 
situ observations, satellite data, reanalysis products, and offline land surface model simulations. It employs three statistical 165 
approaches, unweighted averaging, optimal linear combination (OLC), and emergent constraint (EC), to produce a merged 
product that outperforms individual source datasets in terms of bias, root mean square error (RMSE), and correlation when 
compared to in situ observations. For this study, we utilize the OLC version of the Wang et al. (2021) product, which we 
hereafter refer to as Wang2021OLC, because it is constrained by in situ observational values and performs among the best of 
the paper’s reported method-data source combinations. This hybrid dataset offers harmonized spatial, temporal, and vertical 170 
coverage, making it highly suitable for large-scale ESM benchmarking of both surface (Figure 1B) and rootzone (Figure 1C) 
SM. Since this dataset provides SM estimates at both 10 cm and 100 cm depths, we integrate the mrsol variable from each 
CMIP6 model to these depths using Eq. 1 to enable direct comparison. In addition, because the mrsos variable in CMIP6 
models also represents surface SM at approximately 10 cm, it is separately benchmarked against the 10 cm layer from the 
Wang2021OLC product. This dual use of mrsol and mrsos allows us to assess the internal consistency and depth 175 
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representation of SM across different model variables and observational references.  
 
While these datasets are widely used and provide valuable long-term, global-scale estimates, each has inherent limitations, 
including retrieval uncertainties, differences in spatial and temporal resolution, and dependence on model-based or 
algorithmic assumptions. Because no single dataset can fully capture the complexity of SM dynamics, the use of multiple, 180 
complementary observational and assimilated products helps quantify uncertainty in the benchmark results presented here. 
  

 

Figure 1: Long-term mean soil moisture (SM) from observational datasets. (A) ESA-CCI Surface SM [m³ m⁻³] (top 5 
cm) (1978-2023), providing global estimates based on satellite data. (B) Wang et al. (2021) OLC Surface SM [m³ m⁻³] 185 
(top 10 cm) (1970-2016), derived from a merged dataset of satellite and in-situ observations. (C) Wang et al. (2021) 
OLC Rootzone SM [m³ m⁻³] (top 100 cm), representing long-term mean soil moisture across the rootzone. Each 
subplot shows the global distribution of soil moisture at the depths represented in each product. 

2.3 Other Benchmark Datasets  

For the ecohydrologic relationship variables, we incorporate observational datasets specific to each variable that exist in the 190 
ILAMB data library. GPP observations are derived from the Water, Energy, and Carbon with Artificial Neural Networks 
(WECANN) dataset, which provides globally gridded estimates based on advanced machine learning approaches that 
integrate remote sensing and meteorological inputs (Alemohammad et al., 2017) from 2007 to 2016. LAI data is sourced 
from the NOAA Climate Data Record (CDR) of AVHRR Leaf Area Index (AVH15C1) from 1981 to 2019 (Claverie et al., 
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2016). ET data comes from the Global Land Evaporation Amsterdam Model (GLEAM) v3.3a, which provides daily 195 
estimates (aggregated here to reflect monthly values) from 1980 to 2018 (Miralles et al., 2011; Martens et al., 2017). The 
spatial resolution of the WECANN GPP product (Figure 2A) is 0.5°, that of the AVH15C1 LAI data (Figure 2B) is 0.05°, 
and that of the GLEAMv3.3a ET data (Figure 2C) is 0.25°.  
 

 200 

Figure 2: Long-term mean ecohydrological variables from observational datasets. (A) WECANN GPP [g m⁻² d⁻¹] 
(2007–2016), providing global estimates of gross primary productivity derived from machine learning techniques. (B) 
AVH15C1 LAI [unitless] (1981–2019), representing global leaf area index values from the NOAA Climate Data 
Record. (C) GLEAMv3.3a ET [mm d⁻¹] (1980–2018), showing global evapotranspiration estimates derived from 
satellite observations and meteorological data. Each subplot displays the global distribution of these ecohydrological 205 
variables.  

While ILAMB supports multiple observational datasets for each variable, we utilize a single benchmark dataset per variable 
in this study to maintain consistency and simplicity in our analysis. It is worth noting that although these products are widely 
used as observational references, they are themselves derived from models or statistical algorithms informed by 
observational inputs. As such, they should be interpreted as observationally informed estimates rather than direct 210 
measurements. Nonetheless, these datasets provide reliable and widely accepted benchmarks for evaluating modeled GPP, 
LAI, and ET (represented by the gpp, lai, and evspsbl variables), supporting a comprehensive evaluation of ecohydrologic 
processes and their relationships with SM.  
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2.4 ILAMB Framework  

The ILAMB framework is an open-source software package used to assess the performance of ESMs by comparing model 215 
outputs to a suite of observational datasets. ILAMB’s scoring system integrates several key performance metrics: bias, 
RMSE, seasonal cycle representation, and spatial distribution (Figure A1). These metrics are synthesized into an overall 
score using the method detailed in Collier et al. (2018), offering a quantitative view of model fidelity. Bias measures the 
average deviation from observational data, RMSE quantifies error magnitude, and the seasonal cycle and spatial metrics 
assess the temporal and geographic accuracy of model outputs. By combining these metrics, ILAMB generates diagnostic 220 
graphics and scores to help identify strengths and weaknesses in model simulations. The ILAMB framework has been widely 
adopted for model evaluation and intercomparison, aiding in the continuous development of more accurate land model 
components (Collier et al., 2018, 2023). 
 
In this study, we extend the ILAMB analysis by incorporating Köppen climate classifications, which allows for a more 225 
detailed evaluation of model performance across diverse climate zones. These regions, which include tropical, desert and 
semi-arid, temperate, and continental climates, reflect varying environmental conditions that significantly influence SM and 
vegetation dynamics. By examining model skill within these distinct climate zones, we gain deeper insights into region-
specific strengths and weaknesses, allowing for targeted improvements in land models across climate types. 
 230 
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Figure 3: Benchmarking results from the ILAMB global run. Each model is compared against observational datasets: 
ESA-CCI Surface SM [m³ m⁻³] (top 5 cm), Wang2021OLC Surface SM [m³ m⁻³] (top 10 cm), Wang2021OLC 
Rootzone SM [m³ m⁻³] (top 100 cm), WECANN GPP [g m⁻² d⁻¹], AVH15C1 LAI [unitless], and GLEAMv3.3a ET 
[mm d⁻¹]. Additionally, the relationships between soil moisture and ecohydrological variables (GPP, LAI, and ET) are 235 
also benchmarked. Purple represents better relative skill, while orange indicates relatively worse performance.  

3 Results from ILAMB  

3.1 Overall benchmark scores in ILAMB 

In this section, we present the evaluation of CMIP6 model performance using the ILAMB framework, focusing on key land 
surface variables. Specifically, we benchmark model outputs against observational datasets for surface and rootzone SM, as 240 
well as ecohydrological variables. Surface SM is evaluated using the ESA-CCI product (top 5 cm, Figure 1A) and the 
Wang2021OLC dataset (top 10 cm, Figure 1B), while rootzone SM (up to 100 cm) is assessed using the Wang2021OLC 
product (Figure 1C). For ecohydrological benchmarking, we use GPP from WECANN (Figure 2A), LAI from AVH15C1 
(Figure 2B), and ET from GLEAMv3.3a (Figure 2C). 
 245 
Overall model performance across these variables is summarized in the ILAMB portrait plot (Figure 3), where models are 
color-coded from orange (lower performance) to purple (higher performance). These benchmarks are derived from 
quantitative ILAMB evaluation metrics, including the Bias Score, RMSE Score, Seasonal Cycle Score, and Spatial 
Distribution Score. These scores contribute to the final benchmark, represented as the Overall Score, and are the results that 
are presented in Figure 3. Figure A1 shows these metrics based on global SM simulations using the mrsol variable integrated 250 
to 10 cm, compared against the Wang2021OLC dataset at the same depth. Figure A2 presents the quantitative overall 
ILAMB scores used to generate the colored portrait plot in Figure 3. Figure A3 shows global maps of model bias (m³ m⁻³), 
calculated as the difference between simulated and observed surface SM (mrsol to 10 cm vs. Wang2021OLC top 10 cm), 
providing spatial insight into model performance. While the results in Figure 3 and Figures A1-A3 show the overall 
quantitative benchmarking scores generated with ILAMB, the following subsections provide a more detailed analysis of 255 
model performance across SM, ecohydrological variables, and their interrelationships. 

3.2 Surface and Rootzone Soil Moisture 

The evaluation of surface SM using both ESA-CCI (top 5 cm) and Wang2021OLC (top 10 cm) datasets shows broad 
agreement in overall model rankings (Figure 3), indicating consistent model performance across shallow soil depths. This 
consistency extends to rootzone SM (0–100 cm) when assessed using the Wang2021OLC dataset, suggesting that several 260 
models are generally stable in their representation of SM across soil layers. However, notable discrepancies emerge 
depending on the benchmark dataset used. Some models perform well relative to ESA-CCI but show significantly lower skill 
against Wang2021OLC, particularly for rootzone SM. Conversely, other models show improved performance when 
benchmarked against Wang2021OLC compared to ESA-CCI. This variation underscores the sensitivity of model evaluation 
to the choice of reference dataset and highlights the need for multi-dataset benchmarking. 265 
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Figure 4: Taylor diagrams evaluating the performance of CMIP6 model SM simulations compared to different 
observational datasets: A) Surface SM from ESA-CCI (top 5 cm), B) Wang2021OLC Surface SM using mrsos from 
the models (top 10 cm), C) Wang2021OLC Surface SM using mrsol from the models (top 10 cm), and D) 270 
Wang2021OLC Rootzone SM (top 100 cm). 

Figure 4 presents Taylor diagrams comparing model performance against the four SM benchmark datasets used in this study. 
These diagrams show that models generally capture the correlation and spatial patterns of surface SM well, though with 
varying degrees of bias and spread. The results show that models exhibit greater skill in capturing correlations than standard 
deviations, suggesting they better represent relative wetness and dryness patterns than absolute soil moisture levels. 275 
Furthermore, the evaluation of the mrsos and mrsol to 10 cm SM exhibits similar but non-identical model performance, 
verifying the difference between the two variables (Figure 4BC). In contrast to surface SM, rootzone SM exhibits systematic 
overestimation of variability across all models. This tendency suggests that ESMs simulate larger fluctuations in deeper SM 
than are observed, pointing to a key area for improvement in land surface hydrology representations. However, the scarcity 
of observations for deeper SM likely contributes to the smaller observed variability at this depth, suggesting that part of the 280 
model–data discrepancy may stem from limited observational coverage. 

3.3 Ecohydrological Variables  

The evaluation of ecohydrological variables (GPP, LAI, and ET) reveals limited consistency in model performance across 
these variables (Figure 3). That is, models that perform well in simulating one variable often perform poorly in others. This 
results in a wide spread of rankings, with few models consistently performing well across all three benchmarks. For instance, 285 
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while some models demonstrate relatively strong performance across GPP, LAI, and ET, others excel in only one variable or 
underperform across all variables, highlighting the challenge of achieving balanced ecohydrological realism in ESMs. 
 

 

Figure 5: Taylor diagrams evaluating the performance of CMIP6 models in simulating ecohydrologic variables: A) 290 
Gross Primary Productivity (GPP) from WECANN, B) Leaf Area Index (LAI) from AVH15C1, and C) 
Evapotranspiration (ET) from GLEAMv3.3a. 

Taylor diagrams in Figure 5 provide a more detailed comparison of model performance against the ecohydrological 
observational datasets. Across most models, a systematic high bias in variability is evident for both GPP and LAI, suggesting 
that models tend to overestimate fluctuations in vegetation productivity and canopy structure. In contrast, model simulations 295 
of ET show stronger agreement with observations, both in terms of variability and spatial correlation. This comparatively 
better performance in ET may reflect stronger observational constraints and more developed parameterizations in hydrologic 
and surface energy fluxes. However, it may also indicate compensating errors within model processes or parameters that 
mask deficiencies in SM representation. By comparison, vegetation-related processes such as carbon uptake and phenology 
likely carry greater structural uncertainty (Massoud et al., 2019; Li et al., 2025b), contributing to more pronounced biases in 300 
GPP and LAI. 

3.4 Relationship of Soil Moisture to Ecohydrological Variables 

Figures 6 and 7 illustrate the relationships between SM and key ecohydrological variables (GPP, LAI, and ET) for the 
ACCESS-ESM1-5 model, comparing model outputs to two different observational SM products. Figure 6 uses the ESA-CCI 
surface SM product (0–5 cm) alongside model SM integrated to the same depth (mrsol to 5 cm). The dot-and-whisker plots 305 
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reveal notable discrepancies between model (blue) and observations (black), indicating areas where the model may 
misrepresent vegetation sensitivity to near-surface SM. 

 

Figure 6: Relationship of SM (y-axis) versus ecohydrological variables (x-axis) shown through dot-and-whisker plots 
for the ACCESS-ESM1-5 model (blue) and observations (black). The ESA-CCI SM product (typically to 5 cm) is 310 
used here for SM, compared to the ACCESS-ESM1-5 model’s SM integrated to the same depth (mrsol to 5 cm). The 
relationship of these SM estimates are shown for (a) WECANN GPP, (b) AVH15C1 LAI, and (c) GLEAMv3.3a ET at 
the global scale. Whiskers indicate interquartile ranges across land grid cells. These plots reveal a significant 
discrepancy between the model and observations when using ESA-CCI as the SM benchmark. 

Figure 7 presents an analogous analysis using the Wang2021OLC SM product (top 10 cm) and model SM integrated to the 315 
same depth (mrsol to 10 cm). Here, models show improved agreement with observations across all ecohydrological 
variables, suggesting that part of the mismatch seen with ESA-CCI may stem from differences in observational datasets or 
soil depth representation. However, it is important to note that the ILAMB spatial climatology used in Figures 6 and 7 may 
be affected by ESA-CCI’s inconsistent spatiotemporal coverage (c.f., Preimesberger et al., 2025), potentially biasing its 
evaluation. Conversely, Wang2021OLC relies heavily on reanalysis data, which incorporates model structures and may thus 320 
reduce apparent model biases by design. Despite this improvement, persistent biases highlight ongoing challenges in 
accurately simulating SM–vegetation coupling within ESMs. 
 
Extending this comparison across all models, Figure 8 shows SM–GPP relationships for the full CMIP6 ensemble using 
mrsol to 10 cm and the Wang2021OLC and WECANN datasets. Consistent with ACCESS-ESM1-5 results, models 325 
generally exhibit better agreement when benchmarked against Wang2021OLC compared to ESA-CCI (as in Figure 6), 
further validating the utility of Wang2021OLC for evaluating SM–vegetation coupling. These findings highlight both the 
strengths and limitations of current Earth System Models in representing key ecohydrological interactions, while 
demonstrating the value of ILAMB for detailed inter-model diagnostics. 
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 330 

Figure 7: Similar to Figure 6, but using the Wang2021OLC SM product (integrated to 10 cm) and the corresponding 
ACCESS-ESM1-5 model SM at the same depth (mrsol to 10 cm). Dot-and-whisker plots show the relationship of soil 
moisture (y-axis) versus (a) WECANN GPP, (b) AVH15C1 LAI, and (c) GLEAMv3.3a ET for both model (blue) and 
observations (black) at the global scale. Whiskers represent interquartile ranges. Compared to Figure 6, these plots 
demonstrate a marked reduction in discrepancies between modeled and observed relationships.  335 

3.5 Other ILAMB capabilities: Köppen Classification  

While the preceding analyses focus on global-scale benchmarking (which is the default in ILAMB) one of ILAMB’s key 
strengths is its ability to evaluate model performance across specific biogeographic zones. Using Köppen classifications, 
ILAMB enables targeted regional analysis across zones such as Tropical, Desert and Semi-arid, Temperate, and Continental 
climates. Figure A4 illustrates these regions and shows regional mean values of surface SM from the ESA-CCI product to 340 
provide geographic context. 
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Figure 8: Similar to the bias plots shown in Figure 7A, but for all models. These plots highlight the observed 
relationships (black curves) between the surface SM (from the Wang2021OLC top 10 cm SM product) and GPP 345 
(from WECANN), as well as the relationship shown in each model (colored curves) using the simulated mrsol to 10 
cm and gpp variables.  

To demonstrate the utility of regional benchmarking, Figure A5 presents ILAMB portrait-style evaluations (using the same 
methodology as Figure 3) and Figure A6 shows the evaluated relationships for the Tropical region (using the same 
methodology as Figures 6-7). The ILAMB portrait-style evaluations for the remaining Köppen regions are shown in Figure 350 
A7 (Desert and semi-arid), A8 (Temperate), and A9 (Continental), again using the same methodology as Figure 3.  
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These localized portraits highlight how model performance can vary significantly by region. For example, some models like 
CESM2 and NorESM2-LM exhibit a high bias in high northern latitudes when evaluated globally (as depicted in Figure A2), 
yet perform relatively well in the Tropical region (Figure A5). Conversely, their performance declines in the Continental 355 
zone (Figure A8). EC-Earth3-CC scores highly in the Tropical region when evaluated against ESA-CCI but ranks among the 
lowest when evaluated against the Wang2021OLC dataset for the same region, highlighting uncertainty in the benchmarking 
datasets in the region. In contrast, it shows more consistent agreement across both observational products in Continental 
areas. 
 360 
ILAMB’s regional diagnostics also extend to ecohydrological relationships. Figure A6 mirrors the SM–ecohydrology 
analysis shown in Figure 7 but focuses specifically on the Tropical region and surface SM. In this example, the ACCESS-
ESM1-5 model shows reasonably good agreement with observed relationships in the Tropical region when evaluated against 
the Wang2021OLC dataset. This supports earlier findings that surface SM comparisons with Wang2021OLC tend to yield 
consistent model–observation alignment. These regional results further emphasize the value of localized analyses for 365 
identifying where models are performing well and where region-specific improvements are needed.  

4 Discussion  

4.1  Potential Drivers for Divergences in Model Simulations  

The substantial spread in SM estimates among CMIP6 models reflects differences in how land surface models (LSMs) 
represent key processes and input data. Although precipitation is a major driver of SM, it does not explain much of the mean 370 
inter-model variability in this study. Most CMIP6 models simulate similar global mean precipitation rates of approximately 
2.5 mm/day (Tapiador et al., 2018), suggesting that differences in total precipitation alone are insufficient to account for the 
spread in simulated SM (see Figure A1, column ‘Model Period Mean’). However, the timing and intensity of precipitation 
events, rather than total amounts, may contribute significantly to model divergence, especially in regions with highly 
seasonal precipitation regimes where the timing of precipitation governs the length of dry-down periods. This effect is 375 
particularly pronounced in seasonally snowmelt-dominated systems (Harpold et al., 2015), where variations in precipitation 
and snowmelt seasonality strongly influence the partitioning between infiltration, runoff, and ET. Differences in how models 
represent storm frequency, sub-daily rainfall variability, and snowmelt dynamics can further impact SM through their 
interactions with soil hydrology and vegetation water uptake. Future work should investigate the role of precipitation and 
snowmelt timing, along with event-scale dynamics, in driving model spread. 380 
 
Similarly, the treatment of soil ice is unlikely to contribute significantly to SM variability, as the CMIP6 definition of SM 
includes both liquid water and ice, which should be handled consistently across models and only present in cold areas with 
minimum snow cover. This implies that other factors, such as soil properties, hydrologic parameterizations, and land-
atmosphere feedbacks, are likely more important contributors. 385 
 
One important driver is the treatment of soil properties, particularly in high-latitude regions. Models that include 
representations of organic soils, such as CESM2 and NorESM2-LM, tend to simulate higher SM levels, likely due to the 
greater water-holding capacity of organic matter. Both models use the CLM5 land surface scheme, which explicitly accounts 
for organic soil processes in northern latitudes (Lu et al., 2020). This feature may explain the higher SM values observed in 390 
these models’ bias maps (e.g., Figure A3). However, the inclusion of organic soils in CESM2 and NorESM2-LM models 
may have led to better SM representation in the tropics (Figure A5), where organic soil is prevalent in the tropical forests. It 
remains unclear whether all CMIP6 models have updated their treatment of organic soils, which could contribute to 
persistent inter-model differences. 
 395 
Soil porosity is another critical input affecting SM simulations. Previous work (Dai et al., 2019) has shown that many 
CMIP5 models used outdated soil maps (e.g., FAO-UNESCO, 1981), and some CMIP6 models may still rely on these 
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legacy datasets. More modern and accurate global soil datasets, such as the Harmonized World Soil Database v2.0 
(Nachtergaele et al., 2023), the Global Soil Dataset for Earth System Modeling (Shangguan et al., 2014), and SoilGrids 
(Hengl et al., 2014), offer improved estimates of soil properties, including porosity. Comparing SM outputs against these 400 
updated datasets could help reveal systematic biases tied to inaccurate soil input data. 
 
Model-specific representation of hydrologic processes can also influence SM estimates. For example, the EC-Earth3-CC 
model consistently simulates high SM values, potentially due to its inclusion of groundwater–soil interactions not present in 
other models. With a few exceptions (Oleson et al., 2013; Lawrence et al., 2019), ESMs generally use ‘bucket type’ soil 405 
moisture representations that drain water between different soil layers based on predefined thresholds (e.g., field capacity) 
and rates (e.g., hydraulic conductivity) rather than the pressure-driven movement represented by more physically-based 
models like the Richard’s Equation. Although ESMs differ, several key processes and parameters are common and should be 
considered in model performance differences: number and spacing of soil layers, rooting profile and ET process 
representation, infiltration process representation, soil properties (i.e. porosity, wilting point and field capacity water content 410 
at each layer, and hydraulic conductivity), and soil depth and the bottom boundary condition (e.g., groundwater versus freely 
draining). Such process-level differences highlight the role of internal model design in shaping SM outputs that remain 
challenging to disentangle. 
 
Finally, land-atmosphere feedbacks may also contribute to the inter-model spread. CMIP models have been shown to 415 
overestimate the strength of feedbacks between SM and atmospheric variables, including temperature, ET, and surface fluxes 
(Levine et al., 2016). These exaggerated feedbacks may amplify SM variability and introduce additional divergence across 
models. For instance, models that strongly couple soil moisture to surface heat fluxes may simulate more aggressive drying 
or wetting cycles, depending on local conditions (Schumacher et al., 2022). The degree of inter-model variability in feedback 
strength is probably quite high, but more studies will be needed to understand how this affects inter-model spread in SM 420 
(Vogel et al., 2016; Talib et al., 2023). Further research is needed to examine how different models simulate the sensitivity 
of ET and energy partitioning to meteorological conditions such as vapor pressure deficit, solar radiation, or wind speed, 
factors that could also shape SM variability via land-atmosphere interactions. 
 
In summary, the observed variability in SM simulations across CMIP6 models likely stems from a combination of factors, 425 
including differences in soil properties, legacy input datasets, precipitation event timing, hydrologic parameterizations and 
process representations, and feedback mechanisms. Future research should aim to disentangle the relative contributions of 
these drivers to better constrain SM representation in ESMs. 

4.2 Shared characteristics of models with similar performance  

Models that exhibit similar performance across multiple variables often share underlying structural and process-based 430 
characteristics. For example, CESM2 and NorESM2-LM, while performing relatively poorly in simulating SM (e.g., Figure 
3), show stronger agreement with observations for ecohydrological variables such as GPP, LAI, ET. A shared feature of 
these models is their use of the CLM5, which likely contributes to their consistent performance in simulating vegetation 
dynamics and surface fluxes. However, despite these strengths, both models apparently exhibit a persistent high-latitude bias 
in SM (Figure A3), likely related to CLM5’s representation of soil properties and its inclusion of organic matter in northern 435 
soils (Lu et al., 2020). However, considering the bias of satellite observations under snow- and ice-covered conditions 
(Dorigo et al., 2015) and the relatively high influence of reanalysis and land surface models on the Wang2021OLC product 
(Wang et al. 2021), this bias in high-latitudes warrants further investigation with more observational datasets.  
 
In addition to similarities in their overall performance scores, CESM2 and NorESM2-LM also exhibit relatively consistent 440 
relationships between SM and ecohydrological variables. These relationships, such as SM-GPP and SM-ET coupling, reflect 
each model’s ability to capture key land-atmosphere feedbacks, including how soil water availability influences stomatal 
conductance, photosynthetic rates, and vegetation phenology. Notably, this suggests that even when absolute SM values are 
biased, some models may still effectively represent the underlying functional dynamics between water and vegetation. In 
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contrast, models with weaker SM performance tend to display greater mismatches in these coupling relationships, indicating 445 
broader limitations in their ability to simulate ecohydrological processes. 
 
Taken together, these patterns highlight that model performance is influenced not only by how individual processes are 
parameterized, but also by how different components of the land system interact. Structural choices, such as vegetation and 
soil representations, hydrologic schemes, and coupling strategies, shape a model’s capacity to simulate both state variables 450 
and their interrelationships. As such, evaluating models across multiple variables and focusing on cross-variable coherence 
can provide deeper diagnostic insight than isolated benchmark scores. These shared behaviors among models with similar 
architectures may point to areas where coordinated model development and targeted improvements, such as refining soil 
parameterizations or vegetation-hydrology interactions, could yield broad performance gains. 

4.3 Consideration of uncertainty in the benchmark results 455 

Evaluating model performance inherently involves uncertainty, both from observational datasets and model representations. 
To better characterize this uncertainty, we employed multiple observational products for surface and rootzone SM, including 
ESA-CCI and Wang2021OLC surface SM, as well as Wang2021OLC rootzone SM. By comparing models against more 
than one observational reference, we aimed to capture a broader envelope of observational variability, rather than relying on 
any single product that may contain its own structural or systematic biases. Similarly, we assessed different model 460 
representations of SM, including the mrsos and mrsol variables integrated to 5 cm, 10 cm, and 100 cm depths, to examine 
how model configuration affects evaluation outcomes. 
 
Soil moisture presents unique challenges in benchmarking due to the diversity and limitations of observational data sources. 
Satellite-derived products, for example, offer broad spatial coverage but are limited to shallow depths and may have coarser 465 
resolution for passive microwave technology, whereas active microwave technology can achieve higher resolution but is 
subject to greater uncertainty from surface roughness and vegetation structure variations (Zeng et al., 2023). In contrast, in-
situ observations provide deeper and more accurate point measurements but are geographically sparse and face the scaling-
up problem when compared against ESMs. While our study did not include in-situ datasets, their inclusion could strengthen 
future benchmarks by adding another layer of observational comparison, particularly for deeper soil layers. The variation in 470 
spatial resolution, vertical depth coverage, and methodological differences between observational datasets contributes to 
uncertainty in benchmarking, and any conclusions drawn from SM comparisons should be interpreted within this context. 
 
To address these complexities, we adopted a multi-product comparison approach. However, additional strategies exist and 
may further enhance benchmarking efforts. In atmospheric science, for example, it is common to evaluate models not only 475 
against individual datasets but also against an ensemble of observations (Yamaguchi et al., 2015), which helps define a 
consensus observational baseline. While this strategy is less frequently used in the SM modeling community, it may offer a 
valuable pathway forward, particularly when observational datasets diverge or when no single product can be considered 
definitively superior. 
 480 
Beyond observational uncertainty, ensemble modeling (using a collection of model runs or parameter sets) can also help 
characterize structural and parametric uncertainty within the models themselves. While not implemented in this study, future 
benchmarking efforts could benefit from integrating probabilistic or ensemble-based approaches to better understand model 
sensitivity (c.f., Massoud et al., 2019) and confidence in simulated soil moisture.  

5 Conclusion  485 

This study evaluated the performance of 16 CMIP6 models in simulating key land surface and ecohydrological variables, 
including surface and rootzone SM, GPP, LAI, and ET, using the ILAMB framework. The main findings are summarized as 
follows: 
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(i) Our analysis showed substantial variability in model performance in simulating SM, particularly when compared against 490 
more than one observational dataset. For instance, models such as EC-Earth3-CC performed well against ESA-CCI surface 
SM observations but underperformed when benchmarked against the Wang2021OLC dataset. This stresses the importance of 
using multiple observational products to better capture uncertainty and avoid drawing conclusions based on a single 
reference dataset. 
 495 
(ii) Models often showed differing levels of skill across variables. For example, CESM2 and NorESM2-LM exhibited strong 
performance in ecohydrological variables like GPP, LAI, and ET, but showed consistent SM biases in high-latitude regions. 
These shared behaviors likely reflect common model structures, as both rely on the CLM5 land surface model. This 
highlights how model architecture and parameterizations influence simulation outcomes. 
 500 
(iii) Beyond individual variables, we examined the relationships between soil moisture and ecohydrological processes. This 
analysis revealed that models tended to capture these relationships more effectively when compared to the Wang2021OLC 
dataset than to ESA-CCI, indicating that deeper or better-integrated soil moisture estimates may provide a more consistent 
benchmark for evaluating vegetation-water coupling. 
 505 
(iv) The regional analysis using Köppen climate zones demonstrated ILAMB’s capacity to localize model evaluations. 
Results showed that model skill can vary significantly by region. For instance, CESM2 and NorESM2-LM performed 
relatively well in tropical zones but struggled in continental regions. This highlights the need to move beyond global 
averages to uncover spatially varying model behavior. Regional benchmarking enables more precise identification of where 
and why individual ESMs succeed or fall short. 510 
 
Overall, our findings showcase the strengths and limitations of current CMIP6 models in simulating land surface and 
ecohydrological processes. While some models excel in specific areas, no single model performs best across all metrics or 
regions. The ILAMB framework provides a powerful, systematic approach for benchmarking not only model outputs but 
also functional relationships among variables. This study also reinforces the value of considering multiple observational 515 
products and model configurations to account for uncertainty in benchmarking efforts. 
 
Future work should continue to expand benchmarking approaches by incorporating in-situ observations, applying ensemble-
based and probabilistic methods for both models and observational datasets, and further refining regional analyses. Ensemble 
approaches, in particular, can help quantify structural uncertainty and improve robustness in performance assessments by 520 
leveraging the diversity across models and observational products. Such efforts will be critical for improving our 
understanding of SM and land-atmosphere interactions and enhancing the development of next-generation ESMs. 
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Appendix  

 525 
Figure A1: Evaluation of global simulations of SM using the mrsol variable to 10 cm, compared to the Wang et al. 
(2021) dataset at the same depth. The various metrics shown are the different benchmark scores used in the ILAMB 
evaluation, including Bias Score, RMSE Score, Seasonal Cycle Score, and Spatial Distribution Score. These scores 
contribute to the final benchmark, represented here as the Overall Score, and are the results that are presented in 
Figure 3 (and Figures S5 and S7-9).  530 
 

https://doi.org/10.5194/egusphere-2025-3517
Preprint. Discussion started: 10 September 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

 
Figure A2: Overall scores that provide the ILAMB results in Figure 3 are depicted numerically here.  
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 535 
Figure A3: Bias plots (in m³ m⁻³) comparing Wang2021OLC top 10 cm SM product to the mrsol variable up to 10 cm 
for all models. The bias is calculated as the difference between model simulations and observations in each grid cell, 
providing insight into simulated SM performance in various regions around the globe.  
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 540 
Figure A4: Köppen climate regions evaluated in this study through ILAMB. The default region is "global," while 
other regions include A) Tropical, B) Desert and Semi-arid, C) Temperate, and D) Continental. Regional mean values 
of surface SM derived from the ESA-CCI product are shown. The ESA-CCI dataset includes some data gaps, 
particularly in densely forested regions (e.g., the Amazon and Congo), ice-covered areas, and urban zones, due to 
limitations in microwave satellite observations. These gaps are more prevalent in earlier years and become less 545 
frequent over time. However, the primary purpose of this figure is to broadly illustrate the Köppen climate regions 
rather than serve as a detailed analysis of SM. 
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Figure A5: ILAMB results similar to Figure 3, but for the “Tropical” Köppen region. 550 
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Figure A6: Relationships between surface SM and ecohydrologic variables, similar to Figure 7, but for the “Tropical” 
Köppen region. The model results shown here are for the ACCESS-ESM1-5 model. Panels A, D, and G show the heat 
maps of the observed relationships, panels B, E, and H show the heat maps of simulated relationships in the 555 
ACCESS-ESM1-5 model, and panels C, F, and I portray both the observed and simulated relationships in the form of 
dot and whisker plots for easy comparison. 
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Figure A7: ILAMB results similar to Figure 3 and Figure A5, but for the “Desert and semi-arid” Köppen region. 560 
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Figure A8: ILAMB results similar to Figure 3 and Figure A5, but for the “Temperate” Köppen region. 
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 565 
Figure A9: ILAMB results similar to Figure 3 and Figure A5, but for the “Continental” Köppen region. 
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