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Abstract.  10 

Below ground soil organic carbon (OC) decomposition is governed by several biophysical drivers, causing 

difficulties to accurately capture the spatial patterns of soil OC stock and of CO2 flux in Earth System models (ESMs). These 

biophysical drivers influence soil OC decomposition due to the respiration of heterotrophic organisms. Formulation in global 

scale process-based models of these processes consist of functions that modify the soil OC decay rate and therefore the soil 

heterotrophic respiration (HR) which modify global soil OC stock estimated by models. Current soil HR modifiers employed 15 

in models are a single relationship between soil moisture and the rate of decomposition that are employed for all the 

ecosystem types. Observational database meta-analysis relationships of SOIL MOISTURE and soil HR has been established 

considering observed soil physical properties. These relationships serve to define an empirical model that consists of a 

collection of different relationships based on soil organic carbon content, clay fraction and bulk density in order to uniquely 

substitute SOIL MOISTURE control on soil HR with a function modifier that reflects soil HR spatial heterogeneity.  20 

In the present study, this empirical model has been embedded in the land surface model Organising Carbon and 

Hydrology In Dynamic Ecosystems (ORCHIDEE).  The effect of the multivariate approach on simulation results has been 

assessed on soil OC stock and soil HR estimations at global scale. Results show that global soil OC stocks are nearly 

doubled in the modified model version, which is closer to observations-based products compared with the initial version, 

while CO2 emissions, due to soil HR, are unchanged. The latitudinal soil OC distribution is maintained, displaying as much 25 

soil OC stock in tropical regions as under higher latitudes. This study demonstrates the significance of secondary drivers in 

the relationship between SOIL MOISTURE and the soil HR response to enable accounting for soil OC stock and CO2 fluxes 

heterogeneous spatial pattern. 

 

 30 
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1 Introduction 

The soil organic carbon stock changes are the result of the equilibrium between the organic carbon (OC) 

incorporated in ecosystems that is conveyed to the ground, lateral transport of soil OC through for instance, erosion and 

mineralization of soil OC into carbon dioxide which by returning to the atmosphere influences climate conditions. While the 

input of OC is yielded by way of photosynthesis and fluctuates depending on land-use and climate, soil carbon decay is 35 

predominantly issued from the respiration of heterotrophic organisms subjected to soil biophysical conditions. Among the 

environmental drivers influencing microbial activities, soil temperature and moisture prevails leading to the use of control 

functions on the rate of soil heterotrophic respiration (HR) in global scale process-based models. These models serve to 

simulate global soil OC stocks consistently with empirical data for the historical period and as a result project future soil 

carbon storage and emissions in order to improve our understanding of global soil OC stocks with above ground OC 40 

(biomass and litter) and climate (Todd-Brown et al., 2013; Varney et al., 2022). 

Hence, the diversity of HR modifiers is reflected in the range of global soil OC stocks and HR fluxes estimated by 

ESMs (Ito et al., 2020; Varney et al., 2022, Guenet et al., 2024) which variability has been shown to be more than 43% of 

the average simulated global soil OC stock and 21% of the average simulated global HR across 15 ESMs. Ito et al. (2020) 

pinpoints that this inconsistency between models is issued from carbon decomposition rates divergence among ESMs which 45 

is the expression of processes and parameters implemented in the schemes of decomposition and in particular on HR 

modifiers in response to the influence of soil temperature and moisture.  

Guenet et al., (2024) showed that precipitation is a key driver of the HR ESMs’ residues suggesting that a better 

representation of the soil moisture effect on decomposition may be a good lead to improve HR representation in ESMs. 

Furthermore, the uncertainty of HR data-driven estimates is also widely dependent on the soil moisture product employed to 50 

constrain the database. Yao et al. (2020) found that the main drivers of interannual variability of HR are soil moisture and 

precipitation. 

While the temperature-respiration relationships employed in ESMs are generally based on Q10 approach (Varney et 

al., 2022), a larger diversity of soil moisture-respiration relationships are applied. Varney et al., (2022) investigate variability 

in soil OC stocks estimate from ESMs involved in the Coupled Model Intercomparison Project (CMIP), CMIP5 and CMIP6, 55 

and distinguished two types of temperature and moisture schemes: (1) an increase relationship using Arrhenius law for 

temperature and a monotonically increase function with increasing soil moisture and (2) a hill-shape relationship such as 

Q10 formulation for the temperature dependence and hill function that increase to an optimum moisture level then decrease. 

They demonstrate that the soil OC stock to HR ratio sensitivity to temperature is more consistent among models than the 

sensitivity to soil moisture. Moreover, Falloon et al. (2011) appraised soil carbon changes responsiveness to control 60 

moisture- respiration functions embedding twelve representative climate models’ functions in the RothC model. These 

functions have various shapes but provide the lowest of rate modifier values at the lowest soil moisture content and, for half 

of the functions, a rate modifier that is maximum at saturation. For the other half, a maximum rate near or higher than 0.5 is 
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given at the saturation fraction.  They aimed at defining the responsive range of soil moisture on soil carbon changes and 

showed that soil carbon changes in a range of -2 to 3% between 1860 and 2100.  65 

Falloon et al. (2011) also demonstrate that, in models, soil carbon changes are more responsive to climate forcing 

but are independent of the initial global soil carbon stock. This is consistent with the work of Ito et al. (2020) that established 

a linear relationship for all the ESMs of the study between changes in cumulative carbon input by litterfall and the carbon 

output issued from the HR. Conversely, the latest regional data-driven HR estimate by Ciais et al. (2020) suggests otherwise. 

Indeed, the HR to net primary productivity (NPP) ratios of 9 large regions are lower than 1 and the average ratios of each 70 

region range between 0.37 and 0.85 suggesting a non-linear relationship between the C input supply by litterfall and CO2 

emissions resulting from HR, driven by carbon lateral transfer to aquatic ecosystems. 

Other conditions such as soil pore space, bulk density and texture are neglected in process-based models regardless 

of their influence on metabolic activities of aerobic organisms (Moyano et al. 2013). Moyano et al. (2012) provide an 

analysis of the soil moisture response on HR of a wide range of mineral soil types and organic-richer soils. From this 75 

database, they provided a multivariable model dependent on soil moisture and soil characteristics namely soil organic carbon 

content, clay fraction and bulk density.  Thus, this empirical model is not an average representation of the relationship 

between soil moisture and the HR but an ensemble of these relationships for various types of soils enabling to considered 

spatial heterogeneity. Regardless of its meaningful quality, this empirically-based model has never been employed in a 

process-based model.  80 

In the present study, we examined the influence of soil characteristics on the soil carbon-storage and HR spatial 

pattern. To achieve that, Moyano et al. (2012) empirical model is employed for accounting for soil decomposition spatial 

heterogeneity including primary and secondary control drivers in the land ecosystem model ORCHIDEE (Krinner et al., 

2005; Boucher et al., 2020; Tafasca et al., 2020). To prevent model complexity from hindering simulation results 

interpretation, we employed the bucket C model scheme version of ORCHIDEE which accounts for bulk litter and soil OC 85 

contents and does not account for higher latitude OC rich soils physical processes. 

 

2 Methods 

2.1 Model description 

Moyano et al.  (2012) established empirical models accounting for the dependence of the Proportional Response of 90 

Soil Respiration (PRSR) with soil characteristics.  We embedded in the land surface model ORCHIDEE v2.2 revision 8416, 

named hereafter ORCHIDEE, the simplified version for mineral soil of these empirical models that rely on soil carbon 

content, clay content and bulk density and the version for organic-richer soils. ORCHIDEE is a land surface model in which 

CO2, water, and heat exchanged between the surface and the atmosphere are computed at a half-hourly time-step, and the 

carbon pools fluxes are computed at a daily time-step (Krinner et al., 2005). Total soil OC stocks are considered as a bulk 95 
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amount, not vertically discretized, preventing permafrost OC dynamics representation and does not presuppose a SOC 

maximum depth; instead, directly compute the SOC content per unit of surface area (m2). The soil carbon module originates 

from the scheme in CENTURY (Parton et al., 1987) that is composed of three pools named active, slow and passive to 

apprise on their respective residence times. The litter and soil OC dynamics for each pool (p) is defined by : 
![#]!
!%

= 𝐼& − 𝑘&	. [𝐶]&	.		𝑓(𝜃)	. 𝑓(𝜏)	. 𝑓(𝛾)    (1) 100 

where [C]p is the carbon content (g C / m2) in the litter or in the soil pools, p specifies the pool nature among aboveground 

metabolic litter, belowground metabolic litter, aboveground structural litter, belowground structural litter, active, slow and 

passive soil carbon pools, I is the input of C (g C / m2) and k is the decomposition rate. Modifying the OC decomposition, 

f(θ), f(τ), and f(γ) are the moisture function, the temperature function, and the texture function respectively, accounting for 

environmental constraints independently from the other modules.  105 

On one hand, in the reference version of ORCHIDEE employed in the present study, the moisture function θ is defined by 

eq. 2 

𝑓(𝜃) = 	𝑚𝑎𝑥(0.25,𝑚𝑖𝑛(1,−1.1 ×	𝜃' + 	2.4 × 𝜃 − 	0.29))                      (2) 

with θ being the soil moisture in m3/m3 and ranges between 0.25 and 1. 

On the other hand, in a modified model version named hereafter ORCHIDEE-M, the moisture function f(θ) has been 110 

replaced by the PRSR empirical models from Moyano et al., (2012) to modify the litter and soil organic carbon dynamics 

described in Equations 1 and 2. The PRSR empirical models are constructed for soil moisture in fraction of saturation (θs) 

intervals of 0.01 ranging between 0 and 1 using the relationships in Eq3 for mineral soil and in Eq4 for organic-richer soil: 

𝑃𝑅()(𝜃*) = 𝛽+𝜃* + 𝛽'𝜃*' + 𝛽,𝜃*, + 𝛽-	𝑐𝑙𝑎𝑦 + 𝛽.	𝑐𝑙𝑎𝑦	𝜃* + 𝛽/	[𝐶]0(1# + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡     (3) 

𝑃𝑅()(𝜃*) = 𝛽+𝜃* + 𝛽'𝜃*' + 𝛽,𝜃*, + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡     (4) 115 

where β are the empirical model parameters defined as in Table 1, clay is the clay fraction values, [C]TSOC is the total soil 

organic carbon content in g C / g of soil and the intercept of the empirical model for a null PRSR. The soil OC content is 

estimated in g C / m2 of soil in ORCHIDEE and is converted to g C / g of soil to be used in the PRSR empirical model using 

soil bulk density (g / m3) and assuming a soil height of 0.2 meter. The clay fraction is defined using Zobler (1986), soil bulk 

density values are gridded dependent, established from the Harmonized World Soil Database (HWSD) soil map (Fischer et 120 

al., 2008).  

In order to maintain integrity of the empirical model, environmental constraints, i.e. clay fraction, soil OC and the 

bulk density, are retained within ranges defined by Moyano et al. (2012) based on the soil samples used to fit linear 

regression models. Thus, the Moyano et al., (2012) function is forced by clay fraction ranging between 0.03 and 0.58, bulk 

density between 0.8 and 1.5 g/cm3, and soil OC between 0.01 and 0.35 g C / g soil. For a soil OC lower than 0.06 g C / g 125 

soil, the mineral soil model, i.e. Eq. 3, is employed; otherwise, for higher soil OC content, the organic-richer soil model, i.e. 

Eq. 4, is applied. 
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Table 1: Model parameters values of Moyano et al. (2012)‘s simplified version for mineral soil and organic-richer soil (SOC: Soil 
Organic Content). 

Parameters β1 β2 β3 β4 β5 β6 intercept 

mineral soil model 

for 0.01>SOC>0.06g/g 

-0.26 0.32 -0.15 0.08 -0.09 0.57 1.059 

organic soil model 

for SOC >0.06g/g 

-0.67 1.08 -0.57 -- -- -- 1.134 

 130 

The moisture function is then defined by: 

𝑀𝑃𝑅()(𝜃*)2 =	𝑆𝑅323 	
4)"#(6$)%×94)"#(6$)%&'

94)"#(6$)()*
  (5) 

where SRini is the initial respiration value and is assumed to be 1.0, n is the soil moisture content interval number employed 

to estimate the PRSR using equation 2. For the first interval number (n=1), the value of 𝑀𝑃𝑅()(𝜃*)2:+;< is 1. The soil 

moisture control function (MPRSR) is scaled to range between 0 and 1 by subtracting all values with the smallest value then 135 

normalizing with the highest one. At each timestep, the MPRSR values employed to constrain soil OC decomposition by HR 

is determined by the soil moisture content estimated by the model (Fig. 1). 

 
Figure 1: Representation of the control moisture function in ORCHIDEE (dash-dotted line, Krinner et al., 2005) and of the 
ensemble of control moisture function embedded in the modified ORCHIDEE-M version for the mineral soil (light grey solid lines) 140 
using clay fractions ranging between 0.27 and 0.34, soil OC ranging between 0.01 and 0.06 g C / g soil and for organic-richer soil 
(dark grey solid line) with soil OC higher than  0.06 g C / g soil. 
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2.2 Simulation protocol 

The standard and modified ORCHIDEE versions, named respectively hereafter ORCHIDEE and ORCHIDEE-M, 145 

were run at global scale with a 0.5 x 0.5 degree resolution employing historical and present climate and atmospheric CO2 

forcing. The historical climate data are a 6-hourly forcing product based on the second Japanese global atmospheric 

reanalysis, named the Japanese 55-year Reanalysis (JRA; Kobayashi et al., 2015) corrected by the Climate Research Unit 

(CRU; Mitchell et al., 2004; Harris et al., 2014). First, the ecosystem equilibrium was reached for both model versions by 

repeating in a loop the first decade of the historical climate forcing (1901–1910), and employing atmospheric CO2 pre-150 

industrial values corresponding to year 1850. Second, both models run during 49 years prescribing climate data from random 

years between 1901 and 1910 but with 1851-1900 times series for land-use change and CO2 data. Then, models were run for 

the period 1901-2010 by historical climate, land use maps of the LUHv2h dataset (Chini et al., 2021; used in the “Trends and 

drivers of the regional scale terrestrial sources and sinks of carbon dioxide” (TRENDYv11 – Sitch et al. 2024) project for the 

Global Carbon Budget, Friedlingstein et al., 2022) and CO2 forcing data. 155 

 

2.3 Observation dataset 

To evaluate the model, a global-scale benchmarking of simulated carbon stock was performed using three soil 

datasets estimating soil OC stock from 0 to 1m namely the Global Soil Dataset for use in Earth System Models (GSDE- 

Shangguan et al., 2014), Harmonized World Soil Database version 2.0 (HWSD v2.0 - FAO & IIASA, 2023) and the global 160 

gridded soil system SoilGrids (Hengl et al., 2017). Global HR is benchmarked against four HR estimations which are the 

upscaling of in situ measurements of Hashimito et al. (2015), the higher resolution in situ based-estimate of Warner et al. 

(2019), the top-down global estimate of Koning et al. (2019) and the machine learning data-driven estimate of Yao et al. 

(2021). 

3 Results 165 

The control moisture- respiration function of ORCHIDEE has been replaced by the ensemble of empirical 

multivariate soil moisture response on HR (Moyano et al., 2012). Indeed, ORCHIDEE control moisture function (CMF) is a 

function (Fig. 1) reaching saturation for water saturated soil (soil moisture =1, CMF=1) which is inconsistent with field 

observations and laboratory experiments (Moyano et al. 2013; Tang and Riley, 2019). These studies showed that microbial 

respiration maximizes at average volumetric soil moisture values ranging between 0.5 to 0.8. At higher volumetric soil 170 

moisture, microbial respiration is significantly reduced owing to a limitation in interstitial oxygen content.  

The bucket C model scheme version of ORCHIDEE is employed here to ease the interpretation of the results. In 

this scheme, the soil OC content is not vertically discretized and is not accounted for in the energy module meaning that 

organic-rich soils insulation is not simulated (Gaillard et al., 2025). However, this setup enables distinguishing the influence 
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of both control moisture functions based solely on the OC decomposition scheme. At each time step and for each model grid 175 

cell and soil tile, the model is constrained with the soil clay fraction and the bulk density from observation databases 

described in section 2.1 model description. The bulk density serves to convert soil OC content between kg C / m2 soil and g 

C / g soil. The soil OC content and the volumetric soil moisture is estimated by the model which enables to define a unique 

value of the control moisture - respiration functions for the litter and for the soil. The following results analysis is performed 

using yearly average simulation results between years 1990 and 2000. 180 

3.1 Control moisture function (CMF) analysis 

Differences in the CMF determined in both model versions, ORCHIDEE and ORCHIDEE-M for the litter (on the 

left side) and the soil (on the right side) are displayed in Fig. 2. The bar plots (A to D) show the dispersal of grid cells 

number for various CMF ranges of values. Values of the litter and soil moisture function are lower in the ORCHIDEE-M 

version. In the standard model version, for the litter and the soil, 37% and 54% of the grid cells respectively have CMF 185 

values higher than 0.9 meaning that litter and soil moisture content has no significant influence on the HR. Values of the 

CMF ranging between 0.5 and 0.9 are used in 47% and 43% of the grid cells for the litter and the soil respectively, 

implicating little control on HR. In the ORCHIDEE-M version, the largest number of grid cells corresponding to nearly 70% 

of the grid cells, have CMF values ranging between 0.2-0.6 for the litter and 0.3-0.7 for the soil. Fewer grid cells have soil 

CMF values higher than 0.8 for the ORCHIDEE-M version than ORCHIDEE version, i.e., 10% and 72% of grid cells for the 190 

ORCHIDEE-M and ORCHIDEE versions respectively, promoting, in the standard model version, soil oxic decomposition 

rather than soil OC accumulation. 

In Fig. 2E and 2F maps, negative values indicate that CMF values are higher in the standard version, enabling a faster soil 

OC decomposition. In deserts and dryer soils CMF values in the ORCHIDEE-M version ranges between 0.2 and 0.45 

establishing a stronger control than in other regions. In tropical wetland areas such as the Indonesia, the Amazon and the 195 

Congo basins, both versions prescribe high CMF values, higher than 0.9 whereas elsewhere between 20°N and 20°S latitude 

CMF values are mixed with in the most tropical humid regions like central of south America and south east Asia, values 

higher than 0.6 and in the driest tropical areas, value ranging between 0.2 and 0.6 for the ORCHIDEE-M version.  Northern 

than 40°N, the CMF values are mainly higher than 0.4, serving to accumulate a higher soil OC content using the 

ORCHIDEE-M than using the ORCHIDEE version.  200 

Of the total number of continental surface grid cells, 46% have CMF values that only slightly change which display 

anomalies equal to zero down to -0.1. Most of the other grid cells, i.e. 16% have CMF anomaly values ranging between -0.1 

and -0.5 and remaining 1.2% are between -0.5 and -0.9. By regional band, first in the tropical areas between 30°S and 30°N, 

20185 grid cells, i.e. 24% of the tropical band cells, have CMF anomaly values between -0.1 and -0.5. Others, i.e. 76% of the 

tropical band cells, have anomaly values ranging between 0 and -0.1 for which CMF values are similar in both model 205 

versions. In the temperate latitudinal bands, between 30°N and 60°N, 3316 grid cells, i.e. 8% of continental surface cells in 

the northern temperate band, have CMF anomaly values lower than -0.5 and are mostly located in boreal areas. Near zero 
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anomaly ranging between 0 and -0.1 revealing a mild diminution in soil OC decomposition rate is obtained for 48% of 

continental surface cells in the northern temperate band. Remaining 44% of continental surface cells in the northern 

temperate band have CMF anomaly values ranging between -0.1 and -0.5. In the southern temperate band (30°S and 60°S), 210 

95% of the grid cells are higher than -0.1 and the remaining 5% of continental surface cells display CMF anomaly values 

ranging between -0.1 and -0.7. In the arctic regions north of 60°N, 60% of continental surface cells of the northern high 

latitude band, have CMF anomaly values higher than -0.1, 23% range between -0.1 and -0.5 and 17% that are lower than -

0.5. 
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 215 
Figure 2: At the top, bar charts of the number of grid cells per control moisture function value ranges for the litter (A) and the soil 
(C) in the ORCHIDEE version, for the litter (B) and the soil (D) in the ORCHIDEE-M version. The bottom rows are maps of 
values difference between the control moisture function in the ORCHIDEE and ORCHIDEE-M versions for litter (E) and for soil 
(F).  

To underline secondary drivers' influence on OC decomposition, Fig. 3 displays the relationship between the OC 220 

content and the moisture content whereas the coloured bars show the repartition depending on grid cell latitudes, CMF 

values and clay fraction. The OC and the moisture content relationship exhibit a higher OC content for moisture content 
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lower than 0.4 for the litter and lower than 0.6 for the soil in the modified ORCHIDEE-M version. This is because, in the 

ORCHIDEE standard version, the CMF is defined independently from the soil clay and OC content whereas in the 

ORCHIDEE-M version these soil characteristics are accounted for. Colors, in the Fig. 3 first row, indicate latitudinal 225 

location of the grid cells depending on their OC and moisture content. Grid cells with the highest OC content are located in 

the southern hemisphere (brown and yellow coloured data points in the upper line of Fig. 3) for both model versions. Grid 

cells located in the northern hemisphere in blue and green coloured data points have higher OC content in drier soil in 

ORCHIDEE-M than ORCHIDEE. Figures in the second row of Fig. 3, reveal the CMF values used in each grid cell. 

Similarly than in Fig. 2, the litter and soil CMF values in the ORCHIDEE version have mainly a value of 1 and few of the 230 

grid cells have CMF values around 0.4 for dryer litter and soil moisture content, lower than 0.25. In the modified 

ORCHIDEE-M version, the CMF values have an increasing value from lower values for lower litter and soil moisture 

content and higher value up to 1 for more saturated litter and soil moisture content.  The clay fraction does not display an 

obvious pattern, still most of the grid cells with higher clay fraction also have higher OC content and higher moisture content 

whereas grid cells with a clay fraction lower than one, have the lowest moisture content around 0.1. 235 

 
Figure 3: Influence of latitude location (first row, A to D), CMF value (second row, E to H) and clay fraction (third row, I and J) 
on the relationship of litter and soil OC and moisture content for the standard ORCHIDEE model version (left columns) and the 
modified ORCHIDEE-M model version (right columns). 
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3.2 Litter and Soil OC stock assessment 240 

In both model versions, the OC stock rate depends on the OC decomposition rate, for the litter, on the material 

originating from the net primary productivity and for the soil OC stock, on the input of the litter OC content. The litter and 

soil OC stock accumulated globally in both model versions have been evaluated against three soil OC databases. Because the 

litter and soil OC contents are simulated as bulk amounts per unit of surface area (kg C / m2), the vertical dimension is not 

defined in the models, preventing simulated OC stock to be directly compared against observation databases. Therefore, we 245 

assumed in the present study that the total litter and soil OC content accumulated up to 1 m soil depth and evaluated the 

simulation results against the following observation databases: GSDE, HWSD v2.0 and SoilGrids at 1m.  

The first one is the GSDE estimation that is based on soil attribute data and soil maps from the Soil Map of the World and 

various regional and national soil databases (Shangguan et al., 2014). The second one is the HWSD v2.0 estimation which is 

an improvement of the previous version 1.2 built from soil attribute data and soil profiles (FAO & IIASA, 2023). The third 250 

one, SoilGrids, is the result of a spatial prediction of global organic carbon stored in the first 1 meter of soil, using a 

compilation of soil organic carbon profiles and samples. Thus, SoilGrids global soil OC stock estimation of the top 1 meter 

of soil provides the slightly highest soil OC stock estimate at 2331 PgC, whereas GSDE and HWSD v2.0 correspond to 1720 

and 2049 PgC, respectively.  

Considering in the ORCHIDEE-M formulation, emergent environmental soil characteristics and empirical 255 

relationship of soil moisture with heterotrophic respiration, enable a total litter OC content increase of 89 PgC in the litter 

pools and by 424 PgC in the soil pools (Fig. 4A). Simulated total ORCHIDEE-M OC estimate of 1265 PgC is closer to OC 

estimated by GSDE than HWSD v2.0 or Soilgrids, corresponding to 54 %, 62% and 74 % of SoilGrids, HWDS and GSDE 

estimates, respectively. The latitudinal profiles displayed in Fig. 4B, shows for the 40-80°N latitudinal band that the OC 

density of both models, i.e. for ORCHIDEE-M and ORCHIDEE of respectively, 391 and 207 kgC / m2, are at least half of 260 

the estimations by the databases, i.e. for Soilgrids, HWSD and GSDE of respectively, 729, 996 and 850 kgC / m2. Under 

these latitudes, SoilGrids, HWDS and GSDE OC density estimates are larger because they account for organic rich soil such 

as those formed under peatland ecosystems and soils that belong to the Yedoma formation. In the model version employed in 

the present study, interactions between soil OC content, soil temperature and the hydrology in the permafrost areas are not 

accounted for involving colder soil temperature in the highest latitudes. These specific ecosystems are not represented in 265 

both model versions which explain the soil OC discrepancy between ORCHIDEE, ORCHIDEE-M and the three databases.  

In the northern 20°-40° latitudinal band, estimates for the ORCHIDEE-M, ORCHIDEE, are in the same order of magnitude 

with a higher value for the ORCHIDEE-M soil OC density of 89 kgC / m2 than for the ORCHIDEE version of 54 kgC / m2 

and a significantly higher estimate for SoilGrids, HWD and GSDE of respectively, 170, 142 and 120 kgC / m2. In the 

tropical area between 20°N and 20°S and in the southern hemisphere, the ORCHIDEE-M soil OC density of 230 kgC / m2 is 270 

similar than the estimates by Soilgrids, HWD and GSDE of respectively, 227, 237 and 188 kgC / m2. In the same region, the 

ORCHIDEE soil OC estimate of 148 kgC / m2 is underestimated compared to the databases and of the OC density estimate 

https://doi.org/10.5194/egusphere-2025-3511
Preprint. Discussion started: 25 July 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

from the ORCHIDEE-M version. Both versions of the model have been unable to capture the sharper peak of soil OC 

density in the equatorial band likely originating from tropical wetland ecosystems. In the absence of ecosystems capable of 

forming organic rich soil, there is a compensation bias from other ecosystems for the tropical and southern hemisphere 275 

latitudinal regions. 

 
Figure 4 : Total litter and soil OC stocks, on the left panel (A) and latitudinal distribution (B) of the litter and soil OC stocks, on 
the right panel of the standard model version (ORCHIDEE) and the modified model version (ORCHIDEE-M) and for two 
observation databases in orange. 280 

The mean annual soil OC density maps for the period 1990 to 2000 and for both model versions are shown in Fig. 

5. The increase in the ORCHIDE-M version of the soil OC density values is located in areas having the highest soil OC 

density, around 10 (5-15) kg/m2 in the ORCHIDEE version. The other maps in Fig. 5- C to -H display the difference of 

annual mean soil OC density simulated by both model versions with the three databases. The standard ORCHIDEE model 

largely underestimates the soil OC density compared to the three databases. Comparisons of GSDE and HWSD with the 285 

ORCHIDEE estimate display a larger discrepancy in areas colored in dark blue and located northern than 50°N, in the 
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western Siberia, the Ob basin, Scandinavia, Hudson Bay and in Alaska. These areas correspond to the northern sphagnum 

dominated peatlands that are known to store nearly a third of the total soil OC stock. The modified ORCHIDEE-M version 

overestimates the soil OC density of around 20 kg/m2 in the tropical areas between 35°N and 35°S (brown coloured areas) in 

the comparison with the three databases. It also underestimates the other areas more particularly the organic-rich soil 290 

accounted for in the GSDDE and HWSD data in the high latitudes northern than 50°N as the standard version. 

 

 
Figure 5: Annual mean soil OC density map for the period 1990-2000 of the model ORCHIDEE and ORCHIDEE-M (A-B) and 
differences (C to H) of simulated annual mean soil OC density and of the three databases Soilgrids, HWSD and GSDE in kgC /m2 295 
(in the three-bottom row). 

 

An evaluation of the ecosystem contribution (Table 2) considered in the models using plant functional types (PFTs) 

provides insight on implications involved by the formulation changes between both model versions. Both litter and soil OC 

accumulated per PFTs increase for all PFT types and the percent increase of litter and soil OC content per PFT follow 300 

similar trends. The highest soil OC stock increase that occurs northern than 40°N (Fig. 4B), originates from boreal forest 
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(BNLE, BBLS and BNLS) and grassland (BC3G) PFTs and has a OC increase, in litter and soil, of more than 84%C of OC 

differences.  In temperate areas, litter and soil OC stock increased under the forest (TeNLE, TeBLE and TeBLS) between 55 

and 78% of OC and by more than 72% under grasslands (TeC3G) and crops (C3Agri and C4Agri). In tropical regions, litter 

and soil OC stock has intensively increased by more than 71% under tropical broad-leaved raingreen forest (TrBLR) and 305 

grassland dominated by C4 plants (C4 Grass). 

 

Table 2: Simulated litter and soil organic carbon content from both model versions ORCHIDEE (ORC) and ORCHIDEE-M 
(ORC-M) and for the ecosystems considered in the model. The organic carbon content differences of ORCHIDEE minus 
ORCHIDEE-M version is provided in petagram and in percent of the ORCHIDEE OC content estimated for each plant functional 310 
type (PFT) which are TrBLE for Tropical Broad-leaved Evergreen, TrBLR for Tropical Broad-leaved Raingreen, TeNLE for 
Temperate Needle-leaf Evergreen, TeBLE for Temperate Broad-leaved Evergreen, TeBLS for Temperate Broad-leaved 
Summegreen, BNLE for Boreal Needle-leaf Evergreen, BBLS for Boreal Broad-leaf Summegreen, BNLS for Boreal Needle-leaf 
Summergreen, TeC3G for Temperate C3 Grass, C4G for C4 dominated grassland, C3Agri for C3 Agricultural plants, C4Agri for 
C4 Agricultural plants, TrC3G for Tropical C3 dominated Grassland and BC3G for Boreal C3 dominated Grassland. Fractions of 315 
PFTs indicate the percentage of total area of each PFT of the total land surface. 

  Litter Soil 

Plant 

Functional 

Types 

Fraction ORC ORC-M Differences ORC ORC-M Differences 

 % Pg Pg Pg %C Pg Pg Pg %C 

TrBLE 9.4% 10.6 13.8 3.3 31% 59.8 75.3 15.5 26% 

TrBLR 6.0% 5.2 9.1 3.9 75% 27.5 47.0 19.5 71% 

TrC3G 3.3% 0.9 1.4 0.5 57% 5.0 7.8 2.8 57% 

C4 Grass 3.2% 16.1 31.3 15.2 94% 75.5 138.3 62.8 83% 

TeNLE 3.5% 1.6 2.6 1.0 61% 9.1 14.2 5.1 55% 

TeBLE 4.8% 4.0 7.0 3.0 75% 23.0 38.0 15.1 66% 
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TeBLS 3.8% 3.6 6.4 2.8 78% 20.4 33.7 13.3 65% 

TeC3G 2.7% 4.6 8.2 3.6 78% 25.3 43.4 18.1 72% 

C3Agri 6.8% 8.1 14.3 6.2 77% 35.9 62.6 26.6 74% 

C4Agri 9.0% 3.6 6.5 2.9 80% 12.1 20.9 8.8 73% 

BNLE 9.1% 3.8 7.2 3.4 88% 19.1 35.1 16.0 84% 

BBLS 2.2% 3.5 6.7 3.2 89% 19.1 35.3 16.1 84% 

BNLS 4.1% 1.4 2.8 1.5 108% 8.6 18.5 9.9 115% 

BC3G 11.4% 6.0 11.3 5.3 89% 32.1 60.6 28.5 89% 

 

3.3 Evaluation of CO2 fluxes from heterotrophic respiration (HR) 

Three estimations of CO2 emissions originating from HR serve to evaluate the CO2 simulation results. Simulated 

CO2 emissions by both model versions are higher i.e. 52.7 and 52.3 Pg C / yr for ORCHIDEE and ORCHIDEE-M versions 320 

respectively, than the CO2 fluxes estimated using in-situ data i.e. 51.5 and 50.0 Pg C / yr by Hashimoto et al. (2015) and 

Warner et al., (2019), and using top-down inversions model i.e. 43.4 Pg C by Konings et al., (2019). Thus, global HR flux 

estimated by the ORCHIDEE-M version has only slightly changed in comparison to the estimation obtained using the 

standard version ORCHIDEE. Although, the latitudinal distribution of the CO2 flux (Fig. 6B) shows that in tropical and 

subtropical regions, between 40°N and 40°S, both model versions overestimate HR by about 45% of the observation mean. 325 

Northern than 40° north, simulated HR fluxes are lower by 14 and 15%, respectively for ORCHIDEE and ORCHIDEE-M 

than the mean estimations of the observation databases.  Similarity of CO2 fluxes latitudinal profiles for both model versions 

in the tropical and subtropical regions are consistent with the CMF values that only slightly changed between the two model 

versions. Indeed, these regions have dry desert areas, depleted in soil OC content soil moisture content hence limiting CO2 

fluxes and other areas for which soil moisture content is higher than 0.5 leading in both cases to CMF values higher than 0.6. 330 

The higher the CMF value is the least it influences soil organic decomposition rate (equation 1). 
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Figure 6: A- Global HR CO2 fluxes estimations (on the left panel) obtained using the ORCHIDEE and ORCHIDEE-M models in 
blue and from observation databases in orange. B-Distribution of the simulated (red and blue lines) and observations (green solid, 
dashed and dot dashed lines) HR CO2 fluxes along the latitudinal profile (on the right panel). 335 

Maps of the mean annual HR for the period 1990 to 2000 and for both model versions are merely identical as shown 

in Fig. 7A and B. The largest HR CO2 fluxes are simulated in the tropical and subtropical latitudinal bands located between 

30°N and 30°S. Comparison with the three databases from Hashimoto et al. (2015), Warner et al., (2019), and Konings et al., 

(2019) in Fig. 7C to H, reveal that these simulated HR CO2 fluxes in the 30°N-30°S band are overestimated by more than 1 

kg / m2 / y. Other drier areas such as central Australia, Sahara, the Arabian Peninsula and the south western of the United 340 

States of America have slightly underestimated simulated HR CO2 fluxes compared to the Hashimoto et al. (2015), Warner 

et al., (2019) estimates. 
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Figure 7: Annual mean HR CO2 fluxes map for the period 1990-2000 of the model ORCHIDEE and ORCHIDEE-M (A-B) and 
differences (C to H) of simulated annual mean HR CO2 fluxes and of the three databases of Hashimoto et al. (2015), Warner et al., 345 
(2019), and Konings et al., (2019) in kilograms per square meter per year (in the three-bottom row) 

Repartitions of simulated HR CO2 fluxes depending on vegetation land cover are displayed in Table 3. HR 

estimation differences correspond to differences for each PFT between the modified version, ORCHIDEE-M, and the 

standard model version, ORCHIDEE. Differences are minor and negative values for all land cover types. Three biomes can 

be distinguished in Table 3, the tropical (TrBLE, TrBLR, TrC3G, C4 Grass), temperate (TeNLE, TeBLE, TeBLS, TeC3G, 350 

C3Agri, C4Agri) and boreal (BNLE, BBLS, BNLS, BC3G) biomes that account, respectively, for 28, 28, an 23% of the total 

A B

C D

E F

G H
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land surface area and for which the HR CO2 fluxes differences are respectively of -2, -6 and -4% of the ORCHIDEE 

estimates. Hence the largest dissimilarities between both simulated HR CO2 fluxes of around -1.3% coincide with temperate 

and boreal biomes, more specifically with TeBLS, TeC3G, BNLE forest and BC3G grassland. 

Table 3: Simulated heterotrophic respiration CO2 fluxes from both model versions ORCHIDEE and ORCHIDEE-M. The CO2 355 
flux differences of ORCHIDEE minus ORCHIDEE-M version is provided in teragram (Tg) and in percent of the ORCHIDEE 
CO2 fluxes estimated for each plant functional type (PFT) which are TrBLE for Tropical Broad-leaved Evergreen, TrBLR for 
Tropical Broad-leaved Raingreen, TeNLE for Temperate Needle-leaf Evergreen, TeBLE for Temperate Broad-leaved Evergreen, 
TeBLS for Temperate Broad-leaved Summegreen, BNLE for Boreal Needle-leaf Evergreen, BBLS for Boreal Broad-leaf 
Summegreen, BNLS for Boreal Needle-leaf Summergreen, TeC3G for Temperate C3 Grass, C4G for C4 dominated grassland, 360 
C3Agri for C3 Agricultural plants, C4Agri for C4 Agricultural plants, TrC3G for Tropical C3 dominated Grassland and BC3G 
for Boreal C3 dominated Grassland. 

Plant 

Functional 

Types 

ORCHIDEE ORCHIDEE-M Differences 

 Tg / yr Tg / yr Tg / yr %C 

TrBLE 20.14 20.11 -0.028 -0.14% 

TrBLR 8.64 8.60 -0.033 -0.39% 

TrC3G 1.51 1.51 0.000 0.01% 

C4 Grass 21.05 20.82 -0.230 -1.09% 

TeNLE 1.87 1.86 -0.014 -0.72% 

TeBLE 3.45 3.44 -0.013 -0.38% 

TeBLS 4.13 4.08 -0.051 -1.22% 

TeC3G 4.81 4.75 -0.058 -1.21% 

C3Agri 8.28 8.20 -0.083 -1.00% 
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C4Agri 4.06 4.01 -0.045 -1.12% 

BNLE 2.34 2.31 -0.030 -1.28% 

BBLS 2.34 2.31 -0.026 -1.12% 

BNLS 0.67 0.67 -0.001 -0.14% 

BC3G 3.19 3.15 -0.038 -1.19% 

 

4 Discussion 

In land surface models (LSMs), CMFs are employed to limit the soil OC decomposition rate and govern soil OC 365 

stock and HR flux estimates (Varney et al., 2022). Multiple CMF shapes have been assessed in soil OC models (Falloon et 

al., 2011) and ESMs (Ito et al. 2020, Varney et al., 2022). For instance, in the study by Varney et al., (2022), they classified 

the CMFs employed in ESMs involved in CMIP5 and CMIP6 in two groups, the hill shape and the monotonically increasing 

functions. It will be expected from the hill shape functions to be more consistent with observations since they enable to 

simulate a microbial optimum at the mid-range of soil moisture.  At higher soil moisture content (𝜃s > 0.5), unlike the 370 

monotonically increased function for which the CMFs have limited or no effect on the HR response, is able to provide some 

constraints resulting in a better efficiency in soil OC accumulation. Nevertheless, Varney et al. (2022) found no consistent 

correlations between the CMF shapes and the soil OC stocks or HR CO2 flux estimations in the ESMs involved in CMIP5 

and CMIP6.  

In addition to be composed of hill shape functions, the multivariate empirical model (Moyano et al., 2012) 375 

employed in the present study, accounts for spatial heterogeneities of soil characteristics, by way of an ensemble of 

relationships relying on the soil OC content, the soil bulk density and the clay fraction. This model results from a data-driven 

analysis of 310 estimations of the soil oxic decomposition response to soil moisture based on 90 soil samples from 42 sites 

which pledge for a better consistency of the model results with observations. 

Results show that the total global carbon stock has doubled whereas the HR CO2 flux is not significantly changed 380 

between the standard and the modified ORCHIDEE version employed in the present study. The soil OC stock rise varies 

between 3 and 63 Pg C for the different vegetation cover types and infers a positive bias at low latitudes whereas the HR 

CO2 fluxes are merely unchanged. The soil OC stock bias is independent of the vegetation cover and maintains the 
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overestimation of HR CO2 flux at the same low latitudes suggesting the need to calibrate the models for the tropical band. 

Our objective here was to build a new version of the ORCHIDEE model able to better represent the soil moisture effect on 385 

SOC decomposition but it is important to note that in such models, the SOC content is also largely controlled by NPP and it 

is also key to improve NPP representation in order to improve SOC dynamic in the model. NPP can be improved by 

changing some key parameters but another way to adjust NPP will be to employ a model version including carbon-nitrogen 

interactions as suggested by Varney et al. (2022) which improved simulated NPP estimates in the latest generation of models 

involved in CMIP6. Even with the improved soil OC stock at medium and high latitudes, soil OC content is not reaching the 390 

soil OC content estimated by the databases, Soilgrids, GSDE and HWSD. It should be pointed out that wetland ecosystems 

such as northern and tropical peatlands, floodplains and mangroves are not explicitly represented in these versions of the 

model. Indeed, vegetation cover types are latitudinal dependent and account for northern (BC3G) and tropical (TrBLE, 

TrBLR) peatlands and mangrove phenology, however soil physico-chemical processes and characteristics of wetlands are 

missing. Notwithstanding the lack of explicit wetland soil processes, the simulated soil OC stocks by the modified 395 

ORCHIDEE version reach 170 Pg at higher latitudinal bands 40°N-80°N and 300 Pg in tropical regions at 40°N-40°S. These 

amounts are to be compared to Jackson et al. (2017) estimates that assessed northern and tropical peatlands soil OC stock at 

0-2m depth and for the same latitudinal bands to 269 and 104 Pg C, respectively. Thus, the empirical model enables not only 

to increase soil OC stock but also to improve the spatial distribution of soil OC stocks. Varney et al. (2022) also disclosed 

that considering a vertical discretization of the soil OC budget enabled the ESMs involved in CMIP6 (Lawrence et al., 2019) 400 

to simulate the large northern high latitude soil OC stock. Certainly, the vertical C discretization schemes used in LSMs that 

are composed of an explicit representation of northern peatlands (Qiu et al., 2022) provide a vertical distribution of the soil 

OC which enables to account for the deeper soil OC storage. Some ongoing efforts to include N and soil vertical distribution 

in the main ORCHIDEE version are ongoing (Vuichard et al. 2018, Gaillard et al. 2025) but in this study we decided to work 

on a more simplified scheme of soil OC decomposition to reduce the potential feedbacks and non-linearities to better 405 

understand the direct effect of changing CMF. Inclusion of the new CMF presented here would likely affect SOC and also N 

release, leading to indirect impact on NPP leading to a more complex response. 

The relationship of simulated soil OC stock and the input and output fluxes from the soil known as NPP and HR 

CO2 emissions furnish a temporal effective global evaluation of the model results. Since the HR CO2 emissions have not 

changed, the median HR/NPP ratios of 0.8 are unchanged between both model versions and are consistent with the median 410 

estimation of 0.78 by Ciais et al. (2020). Regionally, HR to NPP ratios are in good agreement with Ciais et al. (2020) 

estimates for regions located in temperate and northern latitudes and overestimated in regions located in the low latitudes. 

However, the soil OC to HR ratio, sometimes define as a surrogate for turnover, of 13 years in the ORCHIDEE standard 

version, increased to 22 years in the ORCHIDEE-M modified version that is accordant with the recent mean estimate of 27 

years (ranging to 54 - 16 years) defined from observation data by Varney et al. (2022) to assess CMIP models. 415 
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5 Conclusion 

In the past 10 years, ESMs faculties to estimate soil OC and HR fluxes have been evaluated in several studies 

(Todd-Brown et al., 2013; Ito et al., 2020; Varney et al., 2022, Guenet et al., 2024) which showed (1) significant variability 

of soil OC and HR CO2 fluxes estimates across models (2) that the observed spatial pattern of soil OC stocks have not been 

significantly improved and (3) a strong correlation between soil OC and NPP in models inconsistent with observations. 420 

These studies raised the concern on the reliability of ESMs to estimate future global carbon budget and provide guidance in 

assessing remedial solutions against climate warming. In the present study to enhance the representation of below ground 

soil processes in ESMs, we replace the CMF that controls the soil OC decomposition in the ORCHIDEE model by the 

multivariate empirical model established from a data-driven analysis of soil samples by Moyano et al. (2012). This empirical 

model is an ensemble of HR responses to soil moisture relationships that further accounts for the soil OC content, the soil 425 

bulk density and the clay fraction. The modified version of ORCHIDEE embedded with this multivariate empirical model 

enables doubling the global soil OC stock and improved simulated HR CO2 fluxes in latitudes northern than 40°N. Indeed, 

variations of CO2 fluxes that occur at short time scale and high frequency, have little influence on litter and soil OC stock on 

a daily basis. However, after tens of years to centuries any slight change in CO2 flux is significantly driving OC stock 

variability and therefore the carbon sink potential in models. 430 

To be able to assess the influence of the multivariate empirical model on the carbon cycle scheme in ORCHIDEE, it 

was more convenient in the present study to employ the bucket C model scheme. It will still be valuable to include the 

multivariate empirical model in the last generation of ESMs that are structured with C-N cycle interactions and a vertical 

carbon discretization. Indeed, this combination will benefit in the topsoil of the data-driven approach; meanwhile the N cycle 

will serve to constrain the NPP and vertical C discretization will favour deeper carbon storage as suggested by Varney et al. 435 

(2022).  

Accordingly, the present study demonstrates the effectiveness of combining multivariate empirical approach and 

process-based models to enhance the next generation of ESMs. Recent enrichment of upscaling observation database 

approaches and of remote sensing products with increasing higher time and space resolutions are strong gestures to carry on 

this way. Simulating the effect on soil OC storage capacity of repeated short term and high frequency weather events such as 440 

extreme drought and precipitation can be challenging for global scale models which could be undertaken by combining 

process based model and empirical approaches. 

 

Code availability 

The source codes is available online via https://forge.ipsl.jussieu.fr/orchidee/wiki/ 445 
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the model should follow the guidelines at http://orchidee.ipsl.fr/index.php/you-orchidee (last access: 17 September 2024).  
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