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Abstract. Most data-driven methods, among them Dynamic Mode Decomposition (DMD), focus on analysing and recon-

structing the average behavior of a system. However, the primary interest often lies in the anomalous behaviour, known as

extreme events. This is especially the case in climate research, where extreme events have significant economic and societal

costs. Therefore, we extend a DMD method to account for extreme events by adding a penalisation term. This extension allows

us to not only better reconstruct the extreme events, but also extract the spatio-temporal structures related to those extreme5

events. DMD was originally developed by Schmid and Sesterhenn (Schmid and Sesterhenn, 2008) to enable the fluid dynamics

community to identify spatio-temporal coherent structures (called modes) from high-dimensional data. In its essence DMD

uses most relevant modes to filter the noise and reconstruct the original signal. We ask "Is the noise really noise"? Or can

we attribute some of these dynamic modes, that result from the DMD, to extreme events? We applied this new method to the

climate system, well known for its high-dimensionality. We examined two heatwaves that occurred in Europe (HW 2003 and10

HW 2010). In both cases we were able to improve the accuracy of the reconstruction. This novel variation of the DMD, can

also be applied to other dynamical systems across many disciplines, in which extreme events are of interest.

1 Introduction

Dynamic Mode Decomposition (DMD) is a relatively recent algorithm introduced by Schmid and Sesterhenn (Schmid and

Sesterhenn, 2008). Originally developed for modeling fluids, DMD quickly developed as a powerful tool for analyzing the15

dynamics of nonlinear systems (H. Tu et al., 2014). It has also found its applications across many different disciplines (Brunton

et al., 2021), e.g. neuroscience (Brunton et al., 2016), epidemiology (Proctor and Eckhoff, 2015), fluids mechanics (Schmid,

2010; Rowley et al., 2009b), video analysis (Erichson et al., 2016), climate dynamics (Froyland et al., 2021; Chowdary et al.,

2023).

The foundational concept of DMD is rooted in the well-established tradition of signal decomposition. DMD is a dimension-20

ality reduction technique that transforms data from a high-dimensional space to a low-dimensional one while preserving the

essential features of the original data. The resulting reconstruction typically captures the system’s average behavior effectively

but often falls short in representing anomalous or extreme events (Lucarini et al., 2016).

DMD was initially proposed as a dimensionality reduction technique that extracts dominant spatio-temporal coherent struc-

tures from high-dimensional time-series data. Motivated by the Occam’s razor principle - The simplest explanation is usually25
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the best one - our approach tries to extract a single most significant modes that could enlighten the spatial pattern of extreme

events. The trade-off between model complexity and accuracy is already explored in (Jovanović et al., 2014). However, the fo-

cus there is solely on the sparsity of the model and does not address the reconstruction of extreme values. DMD has significant

potential to improve our understanding of the way in which coherent structures in the atmospheric flows evolve and interact

(Duke et al., 2012). We frame the problem as an optimization task that places greater emphasis on the extreme events.30

DMD is a practical implementation of the Koopman theory in the context of data-driven analysis. Koopman theory focuses

on the Koopman operator, an infinite-dimensional linear operator that evolves observables over time. It provides a way to anal-

yse the behaviour of nonlinear systems using linear methods - a powerful tool for understanding complex dynamics (Koopman,

1931; Gaspard, 1998).

35

Figure 1. Sketch of the Koopman Operator Theory. Adapted from Shi et al. (2024)

Definition 1. The Koopman operator is a linear operator that describes the evolution of observables in a dynamical system.

Let xt+1 = f(xt) define a discrete-time dynamical system, where xt ∈ Rn represents the state at time t and f is the state

transition map.

An observable is a function g : Rn → R that measures some property of the system state. The Koopman operator, K, acts on

the observable g to describe its evolution:40

(Kg)(x) = g(f(x)),

or equivalently, in terms of time:

g(xt+1) = (Kg)(xt).
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Figure 2. Figure adapted from Wang et al. (2023), demonstrating uplifting.

In other words, the Koopman operator is a linear operator that governs the evolution of scalar functions (often referred to as

observables) along trajectories of a given nonlinear dynamical system. Each of the individual measurements may be expanded45

in terms of the eigenfunction φj(x), which provide a basis for a Hilbert space

g(xt) =
∞∑

j=1

vijφj(x) (1)

where vj = (v1j , . . . ,vlj , . . .)⊤ is the jth Koopman mode associated with the eigenfunction φj . These Koopman modes are

coherent spatial modes that behave linearly with the same temporal dynamics and are known as dynamic modes in DMD. Now,50

it is possible to represent the dynamics of the measurements g as follows:

g(xt) =Kt
∆tg(x0) =Kt

∆t

∞∑

j=1

vijφj(x0) =
∞∑

j=1

Kt
∆tvijφj(x0) =

∞∑

j=1

λt
jvijφj(x0) (2)

where Kt
∆t is Koopman operator applied t times. The triple (λj ,φj ,vj)∞j=0 is known as Koopman mode decomposition

(Mezić, 2005).

The connection between Koopman mode decomposition and Dynamic Mode Decomposition (DMD) was established in55

(Rowley et al., 2009b). DMD is an algorithm for approximating the Koopman operator (Mezić, 2013; Rowley et al., 2009a),

yielding a triple: (i) DMD eigenvalues approximate Koopman eigenvalues λj , (ii) DMD modes approximate Koopman modes

vj (denoted ϕj in DMD), and (iii) DMD mode amplitudes approximate Koopman eigenfunctions evaluated at the initial

condition, φj(x0) (denoted bj in DMD).

The main research question is: Can we find the spatial modes that are responsible for an extreme event?60

When modeling dynamical systems, dimensionality reduction algorithms, as their name indicates, reduce the dimensionality,

i.e. the complexity of the system replacing it with simpler models. The common challenge when reconstructing (1), is the
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question how many modes are needed. This is the balancing act between the simplicity and correctness of the model. By

adding less modes we get the signal that is a smoothed reconstruction compared to the original signal. By smooth we mean

averaging the signal over time, omitting the extremes. Adding more modes improves the reconstruction (e.g., reducing the mean65

squared error), but it also makes the reconstruction less smooth and causes the extreme values to become more pronounced. In

other words, adding more modes we approximate extremes better.

The questions arise - Can we identify those modes that are responsible for better reconstruction of the extremes? If yes, can

we physically interpret these coherent spatial patterns called modes? In spectral analysis, the modes with the highest energy

are typically considered. But do the modes with lower energy play a role in extreme events, or are they rightfully dismissed as70

mere noise?

Probably the most famous and widely used in the dimensionality reduction of physical systems is the Proper Orthogonal

Decomposition (POD), also known by other names such as Principal Components Analysis (PCA), the Karhunen-Loeve (KL)

decomposition, or empirical orthogonal functions (EOF)(Lorenz, 1956). In climate science EOFs are essentially the result of

applying PCA to meteorological data. Consequently, EOF analysis is mathematically equivalent to PCA, and by extension,75

to POD and Singular Value Decomposition (SVD) (H. Tu et al., 2014). In many nonlinear dynamical systems, snapshot data

(measurements) often reveal low-dimensional characteristics, where most of the variance or energy is concentrated in a few

modes obtained through SVD. The modes are spatial fields that often identify coherent structures in the flow. However, to the

best of our knowledge, all these methods focus on the average behaviour of the nonlinear dynamical system at hand.

Whether we are talking about the numerical method of PCA in statistics (Hotelling, 1933) or POD in fluid mechanics80

(Berkooz et al., 1993), they both rely on SVD, where the decomposition results are orthogonal vectors that are used for

the reconstruction of the original signal. However, the assumption of orthogonality is omitted in the DMD, but the rules of

reconstruction stay the same. By omitting the orthogonality, the DMD modes can also be more physically meaningful.

Originally, DMD has been derived from POD (Holmes, 2012; Schmid, 2010; Schmid et al., 2012). However, as already

mentioned, POD modes are orthogonal, DMD are not. Additionally, DMD modes are dynamically invariant, POD are not.85

While POD is based entirely on spatial correlation and energy, DMD adds the temporal information as well. DMD performs

a modal decomposition where each mode consists of spatially correlated structures that can be related to certain oscillatory

evolution in time. This is a result of the fact that POD solves the eigenvalue problem for the covariance matrix of the data,

while DMD employs a time-shifted cross-correlation matrix capturing the linear dependence of the snapshots at the next time

step on the snapshots at the current time step (Rowley et al., 2009b; Zhang et al., 2014; Smith et al., 2005).90

One of the primary assumptions is that only a few key terms in equation (1) govern the dynamics of a system, resulting

in sparse equations within the extensive space of potential functions. Therefore we apply the sparse regression to identify the

minimal and most effective terms that accurately capture the underlying dynamics of observables. The resulting model is then

parsimonious, striking a balance between complexity and descriptive power, while avoiding overfitting. A similar approach is

taken in (Jovanović et al., 2014) where the extension of DMD is developed also with a focus on sparsity of the modes. However,95

unlike in our extension, the focus there is not on the extremes, but rather on the average signal behaviour.
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Our method holds particular promise for addressing extreme events in the climate system, offering substantial potential

for applications across engineering, the physical sciences, and the biological sciences. In climate science, DMD can appear

under the name of Linear Inverse Modelling (LIM). Although the algorithms differ, they become equivalent under these three

conditions - i) the LIM is performed in the space of EOF coefficients (rather than in physical space), ii) the EOFs are computed100

from snapshots alone (no external forcing) (H. Tu et al., 2014) and iii) LIM assumes no stochastic noise.

2 Methodology

For better understanding we provide the following illustration of the DMD decomposition (Fig. 3). The input to the method

consists of snapshots, with each snapshot representing the atmospheric state at a specific time step in our experiments. The

resulting triplet of the DMD mentioned before (modes, amplitudes, evolution) is well depicted here.105

Figure 3. Illustration of the DMD decomposition adapted from Erichson et al., J. Real-Time Image Process., 2016.

In this work we will focus on the amplitudes matrix and its role in explaining extreme events. The modes represent distinct

spatial patterns that grow or decay with different frequency over time. The information about growth and decay is captured with

the matrix evolution. Modes are ordered by their frequencies, with the first modes representing the dominant behaviors (Smith

et al., 2005; Rowley et al., 2009b; Zhang et al., 2014). Each mode has a corresponding amplitude, that holds the information110

about the energy, i.e. the overall importance for the reconstruction.
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2.1 Discretisation

In theory, we are interested in the dynamical system and its evolution:

dx
dt

= f(x, t;µ) (3)

with a high-dimensional state x(t) ∈ Rm. The dynamics f(x, t;µ) is unknown, only the observations of the system state can115

be used to approximate the dynamics and predict the future state. In practice, we are analysing its discrete-time flow map

xk+1 = F (xk) (4)

We search for the operator A that linearises the dynamics in form of:

dx
dt

= Ax (5)

that has a closed-form solution:120

x(t0 + t) = eAtx(t0) (6)

The solution to this system may be expressed simply in terms of eigenvalues λk and eigenvectors ϕk of this discrete map A.

xk+1 =
K∑

j=1

ϕjλ
k+1
j bj (7)

where bj ∈ C , also called amplitude, contains the weights of the modes, the eigenvalues λj ∈ C represent the temporal be-

haviour of the system and the eigenvectors ϕjCn are the spatial modes. Equation (7) is a mathematical formulation of Fig.125

3.

Depending on the dynamics, we might be able to perform such a decomposition exactly using finitely many modes; in real

and realistic flows, this is highly unlikely. Instead, we aim to achieve the decomposition only approximately, by retaining a

relatively small number of modes K.

2.2 Regression130

The DMD method produces a low-rank decomposition of the matrix A by optimising the fit to the trajectory xk

∥xk+1−Axk∥2 (8)

where xk and xk+1 represent measurements taken at two consecutive timestamps, separated by time interval ∆t.

This linearisation holds only locally as we are finding optimal local linear approximations of snapshots, where napshots are

states of the system sampled in time.135

Since we want to minimise the error across all snapshots, we reshape all m snaphots into a high-dimensional column vectors

and arrange them in two large matrices:
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X =




| | | |
x1 x2 ... xm−1

| | | |


 (9)

X′ =




| | | |
x2 x3 ... xm

| | | |


 (10)

and approximate the linear operator A that models the trajectory x(t) by formulating140

X′ ≈AX (11)

Putting it all together we have the following definition.

Definition 2 (DMD). Suppose we have a dynamical system as in (3) and two sets of data (snapshots) X and X′ as in (9) and

(10) so that x′k = F (xk) is the map in (4) corresponding to the map (3) for time ∆t. DMD computes the leading eigendecom-

position of the best-fit linear operator A relating the data X′ ≈AX (H. Tu et al., 2014).145

Mathematically, the best-fit operator A is then defined as

A = argmin
A
∥X′−AX∥= X′X† (12)

where † denotes the Moore-Penrose pseudo-inverse of a matrix.

The validity of the approximation in (12) is supported by the following theorem, which relies on the concept of linear

consistency. Let us first introduce the definition of the linear consistency.150

Definition 3. Two matrices X ∈ Cn×m and X′ ∈ Cn×m are said to be linearly consistent if for every vector c ∈ Cm, the

condition Xc = 0 implies X′c = 0.

Theorem 1 (Tu et al., 2014, (H. Tu et al., 2014)). If we define A = X′X†. Then X′ = AX if and only if X′ and X are linearly

consistent.

We conclude that by inverting the usual focus of the method—from modeling the system’s average behavior to emphasizing155

its exceptional dynamics—and by carefully refining the algorithm accordingly, extreme events can be modeled more accu-

rately across several common metrics. Moreover, this approach enables the extraction of spatial patterns that contribute to the

reconstruction of extremes, along with insights into their temporal evolution.

Even though in this work we focus on the diagnostic application, the method could be easily used for future state predic-

tion. This extension is planned for the future work. Diagnosing the evolution in time of extreme situations, one could detect160

reoccurring patterns and therefore predict the upcoming extremes.
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2.3 DMD Algorithm

As mentioned before, the DMD algorithm produces the best-fit linear operator that relates the two snapshot matrices in time

1. Compute the singular value decomposition of X (defined in (9)), performing a low-rank truncation at the same time

X≈ ŨΣṼ ∗ (13)165

where * denotes the conjugate transpose, Ũ ∈ Cn×r,Σ̃ ∈ Cr×r, and Ṽ ∈ Cm×r, and r ≤m denotes either the exact or

the approximate rank of the data matrix X

2. Project the full matrix A onto Ũ and calculate Ã

Ã = Ũ∗AŨ = Ũ∗X ′Ṽ Σ̃−1 (14)

3. Compute the eigenvalues λi (diagonal of matrix Λ) and eigenvectors wi (columns of W ) of Ã. These eigenvalues and170

eigenvectors also correspond to the ones of the full matrix A.

ÃW = WΛ (15)

4. The high-dimensional DMD modes Φ are reconstructed using the eigenvectors W and the time-shifted snapshot matrix

X ′. These DMD modes are eigenvectors of the high-dimensional matrix A corresponding to the eigenvalues in Λ.

AΦ = ΦΛ, Φ = X ′V Σ−1W (16)175

5. Reconstruct the original signal

Xdmd = ΦeΩtb, b = Φ†x0 (17)

The angular frequency ωk associated with each eigenvalue λk is calculated ωk = ln(λk)
∆t b, though alternative approaches

exist. In our experiments, we will further explore these alternatives using optimization techniques.

2.4 Optimisation180

Our idea is closely related to the sparse DMD (Rudy et al., 2016), where the aim is to reconstruct the original signal using

as few modes as possible. In other words, to find the solution that exhibits the best balance of accuracy and sparsity. This is

implemented by adding a regularisation term γ in the regression step (8), i.e. the L1 penalty.

minbJ(b) + γ

r∑

i=1

|bi| (18)

8

https://doi.org/10.5194/egusphere-2025-3505
Preprint. Discussion started: 14 August 2025
c© Author(s) 2025. CC BY 4.0 License.



where the objective function J(b) is defined by185

J(b) := ∥X −ΦDbVµ∥2F =

√√√√
m∑

i=1

n∑

j=1

(
Xij −ΦijDbij Vµij

)2
(19)

Φ denotes the matrix of DMD modes, as defined in Step 4 of the algorithm above, Db = diag{b} has the amplitudes on the

diagonal and Vµ is the Vandermonde matrix holding information about the angular frequency.

The goal is to control the amplitudes of the the vector b = Φ†xo.Vector b is needed to reconstruct a matrix corresponding

to the time evolution of the system. It is a "starting point" for the dynamical system analysed. The central question of the190

sparse DMD is: What are the best modes for a system, and how can they be identified? This is a complex, non-trivial problem.

The proposed method aims to automate this process by reconstructing the data using as few DMD modes as possible. But

the challenge remains— Which modes should be chosen? With our DMD variation, we refine the previous question: What

are the best modes for reconstructing the extremes of a system, and how can they be identified? To answer this question, we

modify the objective function (19) by adding an additional regularisation term that accounts for extreme events. We will call it195

a penalisation term, since it penalises the reconstructions in which the extremes are poorly represented.

J(b) = ∥X −ΦDbVµ∥=
√∑

i

∑

j

(
Xij −ΦijDbij

Vµij

)2 +
∑

i∈M

∑

j∈Mi

∥xij −ϕijDbij
Vµij

∥
︸ ︷︷ ︸

penalisation term

. (20)

where M represents a set of temporal indices of extreme events and Mi is a set of spatial indices for a certain extreme event i.

Here, the penalisation term suppresses deviations from those extreme events. In this way, the objective function is optimized

for the vector b, favoring the amplification of extraordinary modes— those responsible for detecting outliers— rather than the200

average ones that approximate average behaviour.

3 Experiments

In our experiments, we utilize reanalysis data, as it represents the most accurate approximation to observations currently

available. Although reanalyses are model-based reconstructions, they are constrained by observational data. Variables that are

directly assimilated into the reanalysis forecast model tend to align more closely with real-world measurements.205

For this study, we use the ERA5 reanalysis dataset (Hersbach and Dee, 2016), downloaded on a regular 0.25◦× 0.25◦ grid.

Our spatial domain is restricted to Europe, spanning 70°N to 36°N and 9°W to 32°E, yielding a resolution of 17892× 31224

grid points. The temporal coverage extends every day over 82 years, from 1940 to 2022. In the following experiments we focus

on temperature anomaly in Europe. Although the method can be applied to any atmospheric variable.

The assumption is that the measurements are taken from the unknown dynamics and the research question is: Are there any210

coherent patterns of extremes from the hidden dynamics that can be discovered using DMD algorithm? To answer this question

we implement the new variation of a Sparse Dynamic Mode Decomposition (SPDMD), called extreme DMD (defined in (20)).
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3.1 Analysis

In our experiments we compare two DMD variations, the normal and the extreme one, that includes an additional penalisation

term. Having both reconstructions, we will analyze which of both performs better and which modes are significant in each of215

the reconstructions.

As previously mentioned, the significance information is encoded in the amplitude vector b. By comparing the two amplitude

vectors, bnormal and bextremes, we can determine which modes carry greater significance and which are less relevant when

dealing with extreme events. Once these key modes are identified, the next step is to explore whether a physical interpretation

exists. We extract the most important mode in this manner:220

most important mode index = argmax{bextreme−bnormal} (21)

First let us define how we extract the persistent extreme events.

3.2 Persistent Extreme Event Detection and Validation

Heatwaves are prolonged periods of unusually hot weather, though their exact definitions vary across the literature (Xu et al.,

2016). Typically, heatwaves are defined based on a combination of duration and high-temperature thresholds (Xu et al., 2016;225

Yin et al., 2022; Casati et al., 2013), often involving percentile-based approaches or specific indices, such as the ETCCDI

indices (Vogel et al., 2020). Studies have shown that the choice of threshold influences projected changes in heatwave char-

acteristics (Vogel et al., 2020), and this choice differs based on the regional climate (Perkins-Kirkpatrick and Gibson, 2017).

Therefore, climate extremes such as heatwaves, are not only defined by peak values, they must also persist over a specific time

period within a region. In our experiments, we define this persistence as a duration of at least three consecutive timesteps.230

3.3 Local Maximum Detection

To identify extreme persistent events, we first detect a local maximum in a snapshot. We then compare this maximum to the

following two snapshots to check if the maximum persists. The condition is that the maximum stays within the neighborhood

(e.g. 5x5 pixels).

Let D(t,x,y) represent the data value at time t and spatial location (x,y). N represent the neighborhood size for initial235

detection.

For each time step t∗, identify (x∗,y∗) as the location of a local maximum :

D(t∗,x∗,y∗) = max
(i,j)∈N

D(t∗,x∗+ i,y∗+ j)

3.4 Persistence Check Over Previous Time Step

For a local maximum (x∗,y∗) at time t, check persistence over the previous two time steps, t− 1 and t− 2:

D(t− 1,x∗,y∗) = max
(i,j)∈N

D(t− 1,x∗+ i,y∗+ j)
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D(t− 2,x∗,y∗) = max
(i,j)∈N

D(t− 2,x∗+ i,y∗+ j)

If Local Maximum Detection and Persistence Check over Previous Time Steps are satisfied, only then (t∗,x∗,y∗) is con-240

sidered a persistent maximum. The procedure to find minima works analogously. Importantly, the detection of extreme events

is performed in the transformed modal space, rather than in the original data domain. This approach allows us to identify and

isolate the specific dynamic modes that contribute most significantly to rare or extreme behavior. As a result, it provides a more

robust and interpretable basis for identifying outliers, compared to simply searching for large values in the raw data. Moreover,

because the modal representation operates in a reduced-dimensional subspace, this approach is also computationally more245

efficient, making it well-suited for high-dimensional systems.

3.5 Extreme Dynamic Mode Decomposition

We modify the original DMD by adding the penalisation term, which is then solved by a convex optimization problem that

balances the reconstruction error, extreme value penalisation, and regularization term. We are minimising the objective function

defined in (20). We test the method across various ranks, but represent in the following section the results for rank 50.250

3.6 Metrics

We use 4 different metrics to measure the fitness of the results. They are:

– Mean square error (MSE) measures the average squared difference between predicted values ŷ and the actual (true)

values y

MSE =
1
n

n∑

i=1

(ŷi− yi)
2

– L-infinity norm (L∞) (also called the maximum norm or supremum norm) of a vector measures the largest absolute

value among its components. In other words, it captures the maximum magnitude of any single element in the vector.

∥x∥∞ = max
1≤i≤n

|xi|255

– The 10-norm is a specific case of the Lp-norm where p = 10. It measures the "length" of a vector by taking the 10th

root of the sum of the absolute values of the vector components raised to the 10th power. Higher-order norms (like the

10-norm) raise the absolute values to a high power before summing, which amplifies the effect of large components (i.e.,

outliers).

∥x∥10 =

(
n∑

i=1

|xi|10
) 1

10

260

– Structural Similarity Index Measure (SSIM) is a perceptual metric usually used to measure the similarity between two

images (or signals) by comparing their luminance, contrast, and structural information. Unlike traditional error metrics
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(like MSE), SSIM aims to model the human visual system’s sensitivity to changes in structural information, making it

better suited for assessing perceived image quality.

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
265

where:

– µx and µy are the mean intensities of image patches x and y, respectively:

µx =
1
N

N∑

i=1

xi, µy =
1
N

N∑

i=1

yi

– σ2
x and σ2

y are the variances of x and y, representing contrast:

σ2
x =

1
N − 1

N∑

i=1

(xi−µx)2, σ2
y =

1
N − 1

N∑

i=1

(yi−µy)2270

– σxy is the covariance between x and y, capturing structural similarity:

σxy =
1

N − 1

N∑

i=1

(xi−µx)(yi−µy)

– C1 and C2 are small constants to stabilize the division, defined as:

C1 = (K1L)2, C2 = (K2L)2

where L is the dynamic range of pixel values (e.g., 255 for 8-bit images), and K1,K2 ≪ 1.275
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3.7 Results

3.7.1 Heatwave 2003

We now examine in detail the well-known

heatwave that struck France in August

2003, one of the most extreme and widely

studied heat events in recent history

(García-Herrera et al., 2010). This heatwave

was characterized by persistently high

temperatures, leading to severe impacts on

human health, agriculture, and

infrastructure. The spatial extent of the

heatwave during its peak in early to

mid-August 2003 is illustrated in Fig. 4,

highlighting the affected regions and the

intensity of the temperature anomalies.

Figure 4. Heatwave of 2003: Red shading indicates increased

temperature anomaly on August 03, 2003.

To clarify the methodology used in our experiments, in Fig. 5 we present a schematic analogue to Fig. 3, but constructed using

our dataset corresponding to the 2003 heatwave. This illustration serves to provide a clearer understanding of the experimental

setup and the specific data processing steps applied in our analysis.280

Extreme DMD

Normal DMD

Figure 5. Dynamic Mode Decomposition (DMD) applied to summer 2003 data, following the same procedure as in Fig. 3. The figure

compares two DMD variants in parallel: Normal DMD and Extreme DMD. The primary difference lies in the amplitudes, which lead to

slightly different reconstructions of the original data.
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Which reconstruction is better?

To show that the extreme DMD results indeed with better reconstruction, we show the following resulting reconstructions.

Figure 6. Reconstruction comparison of Heatwave 2003. All three plots have x-axis as a time dimension and y-axis as space dimension.

They are corresponding to the flattened snapshots illustrated in the Fig. 3. The plotted markers (red and green) represent the occurrence of

the extreme event. The left plot represents the reconstruction using the normal DMD. The middle plot represents the reconstruction using

the extreme DMD, where green color indicates the extremes that are better reconstructed (having the smaller MSE) compared to the normal

DMD, i.e. left plot. Whereas the right plot serves as a reference plot, representing the original values of the anomalies. Red frame indicates

snapshots of only August when most of the extreme events occurred. Both plots are results of the scheme shown in Fig. 5.

In Fig. 6, the left panel illustrates the reconstruction obtained using the standard Dynamic Mode Decomposition (DMD) without

a penalization term, while the middle panel presents the results of the modified extreme DMD approach, which incorporates a

penalization term. The rightmost panel displays the original data for reference. The dots in the plots denote extreme anomalies,285

with those in the middle panel highlighted in green when the reconstructed values closer match the original extreme events, as

indicated by a lower mean squared error (MSE) and other metrics (see Fig. 7. and Fig. 8). We focus on August (indicated with

the red rectangular in Fig 6.), the peak of the heatwave period.
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Figure 7. The left panel shows the average temperature anomaly in August based on the original ERA5 data (reference), while the right

panel shows the corresponding reconstruction using the normal DMD method. The middle panel presents various metrics that evaluate the

quality of the reconstruction.

Figure 8. The left panel shows the average temperature anomaly in August based on the original ERA5 data (reference), while the right panel

shows the corresponding reconstruction using the novel extreme DMD method. The middle panel presents various metrics that evaluate the

quality of the reconstruction.

By analyzing and comparing various metrics presented in Fig. 7. and Fig. 8., we observe that the differences are subtle but

systematic and aligned with our goal of capturing extremes. The proposed method - extreme DMD (results in Fig. 8) - offers a290

more accurate representation of extreme values.

Which modes have more significance and which less in each of the reconstructions?

After running two different optimisation problems: without penalising the extreme events (minimising (19)) and once with

penalising the extreme events (minimising (20)), we compare the resulting optimal solutions - the amplitudes b’s - and we

search for the biggest absolute difference.295

15

https://doi.org/10.5194/egusphere-2025-3505
Preprint. Discussion started: 14 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 9. Amplitude differences between modes. The largest absolute difference is highlighted with a red frame, the second largest with an

orange frame, and the third with a purple frame. Red circles indicate modes that deviate from the general trend, exhibiting higher amplitude

values in the Extreme DMD compared to the Normal DMD.

In this experiment (with rank 50), the most important mode related to extreme events—defined by the highest amplitude

difference—is mode 35. We extract this mode along with its temporal dynamics and present them in Fig. 10.

Figure 10. Spatial pattern and the dynamics of the 1st most important mode.

Based on Fig. 10 illustrates that the pronounced anomaly contrast between Europe and northern Africa is more influential in

shaping the average behavior of temperature anomalies than the extreme events. The temporal evolution of this mode reaches

its maximum influence in late June, as evident on the right side of the panel.300
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Figure 11. Spatial pattern and dynamics of the mode exhibiting the greatest increase in Optimized b (bextreme) value relative to the Normal

b (bnormal) value (red circles in the Fig. 9).

A spatial pattern exhibiting higher amplitude values in the extreme DMD reconstruction (unlike the others) shown in Fig. 11

suggests that the pronounced contrast in anomalies between Eastern and Western Europe played one of the key role in driving

the 2003 heatwave in France.
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3.7.2 Heatwave 2010305

In Northern Germany, the heatwave in 2010 led to

unusually high temperatures, with several regions

experiencing prolonged periods above 35°C

(Barriopedro et al., 2011). The extreme heat

contributed to drought conditions, affecting

agriculture and low water levels in rivers such as

the Elbe and Weser. Additionally, urban areas like

Hamburg and Bremen recorded significantly

above-average temperatures, causing discomfort

and increasing energy demand for cooling. While

the heatwave in Germany was not as intense as in

Russia, it still had noticeable impacts on public

health and infrastructure. Here, we present the

temperature anomalies that affected Northern

Europe in mid-July.

Figure 12. Heatwave of 2010: Red shading indicates the temperature anomaly

on July 10, 2010.

Which reconstruction is better?

To evaluate the results, we conduct the reconstruction comparison using the same approach as in the previous experiment for

the 2003 heatwave. The plotted dots denote extreme anomalies, with green highlighting regions where the reconstruction aligns

more closely with the original extreme values.

The results clearly demonstrate that the extreme DMD approach leads to a more accurate representation of extreme tem-310

perature anomalies. This improvement is quantified by a lower mean squared error (MSE), both for the overall reconstruction

and specifically for the extreme anomalies. Notably, all major extreme values observed during the 2010 heatwave are better

captured using the modified DMD approach, further reinforcing the effectiveness of incorporating penalization in detecting

and reconstructing extreme climate events. This behavior is further quantified by other metrics shown in Fig. 14. and Fig. 15..
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Figure 13. Reconstruction comparison Heatwave 2010. All three plots have x-axis as a time dimension and y-axis as space dimension. They

are corresponding to the flattened snapshots illustrated in the Fig. 3. The plotted markers (red and green) represent the occurrence of the

extreme event. The left plot represents the reconstruction using the normal DMD. The middle plot represents the reconstruction using the

extreme DMD, where green color indicates the extremes that are better reconstructed (having the smaller MSE) compared to the normal

DMD, i.e. left plot. Whereas the right plot serves as a reference plot, representing the original values of the anomalies. The red frame marks

the July snapshots, corresponding to the period when extreme events had the greatest impact.

Figure 14. The left panel shows the average temperature anomaly in July based on the original ERA5 data (reference), while the right panel

shows the corresponding reconstruction using the normal DMD method. The middle panel presents various metrics that evaluate the quality

of the reconstruction.
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Figure 15. The left panel shows the average temperature anomaly in July based on the original ERA5 data (reference), while the right panel

shows the corresponding reconstruction using the novel extreme DMD method. The middle panel presents various metrics that evaluate the

quality of the reconstruction.

Consistent with earlier findings, the differences in performance metrics presented in Fig. 14. and Fig. 15. are subtle yet315

systematic, and once again align with our objective of enhancing the representation of extreme events. The proposed method -

Extreme DMD (results shown in Fig. 15) - demonstrates improved accuracy in capturing extreme values.

Which modes have more significance and which less in each of the reconstructions?

Again we compare the amplitude vectors b’s which are optimisation results with the penalisation term (minimising (20)) and

without (minimising (19)).320
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Figure 16. Amplitude differences between modes. The largest absolute difference is highlighted with a red frame, the second largest with an

orange frame, and the third with a purple frame. Red circle indicate mode that deviates from the general trend, exhibiting higher amplitude

values in the Extreme DMD compared to the Normal DMD.

The most important mode (spatial pattern) and its corresponding temporal dynamics are presented. This mode is identified

based on the largest amplitude difference, as shown in Fig. 16.

Figure 17. Spatial pattern and the dynamics of the 1st most important mode.

The spatial pattern of this particular 1st most important mode reveals the spatial pattern that strongly influences the average

summer in Europe, but was less pronounced during the 2010 heatwave. It suggests a particularly strong and long-lasting

blocking pattern developed over Russia. This blocking event was particularly intense from early July to mid-August 2010325
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(Schaller et al., 2018), which is also confirmed by the dynamics showed on the right panel. The dynamics exhibited a marked

increase at the beginning of summer (during June), followed by a relatively stable period with minimal oscillations throughout

the remaining summer months.

Figure 18. Spatial pattern and dynamics of the mode exhibiting the greatest increase in Optimized b (bextreme) value relative to the Normal

b (bnormal) value (red circle in the Fig. 16).

Fig. 18 shows the spatial pattern and temporal dynamics of the mode exhibiting the largest increase in Optimized b

(bextreme) compared to the Normal b (bnormal). This mode captures a pronounced anomaly contrast between Eastern Eu-330

rope (extending into Western Asia) and the rest of the continent, suggesting a strong contribution to the 2010 heatwave. The

associated dynamics reveal that this spatial pattern was most prominent at the beginning of the summer and gradually weakened

as the season progressed.

4 Discussion

Until now, reduced-order techniques have primarily focused on capturing the average behavior of a system by filtering out noise335

and retaining only the dominant, “typical” modes. In contrast, we challenge this perspective by asking whether the method can

be reversed to reveal the exceptional modes that characterize extreme events. Hence, we introduce a theoretical framework

aimed at identifying outliers together with their associated spatiotemporal modes. This allows for a deeper understanding of

the underlying dynamics and helps to uncover the drivers of extreme events within the climate system. The results presented

here demonstrate that the proposed framework more effectively identifies outliers compared to the standard DMD method.340

The main contribution of this work is a theoretical framework specifically designed to better detect outliers and approximate

extreme - rather than average - behavior.

Our experiments clearly show that the original signal contains significantly more noise than the reconstructed fields, par-

ticularly as we move further forward in time. This is consistent with strong performance of the Koopman operator on a local
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scale. However, the primary objective of these experiments was to assess the effectiveness of the proposed DMD variation in345

accurately capturing extreme anomalies.

One of the central concern of every reduced order technique is the decision of the number of modes needed to represent the

original signal. It is always a trade off between the accuracy and the complexity. Naturally, the higher the number of modes

used in the reconstruction, the better the reconstruction will be (in terms of lower mean square error). However, increasing the

complexity - represented by the rank parameter in our DMD algorithm - risks introducing noise into the reconstruction while350

also significantly raising computational cost. Our method was tested across various ranks, with all experiments consistently

showing improvements when the penalization term was added. So, we can safely claim that the method is robust with respect

to the selection of the size of the rank. Unlike most of the other statistical approaches, we use rank as the only parameter,

which allows for better interpretation of the model and more effective extraction of spatiotemporal patterns related to climate

extremes.355

Given the current excitement surrounding large language models (LLMs), it is worth to mention that LLM architecture is

equivalent to the Koopman operator-based architecture. However Koopman Operator Theory offers a robust framework for

unsupervised learning using small amount of data, facilitating self-supervised learning of generative models that aligns more

closely with human learning theories compared to some machine learning approaches (Mezić, 2023). Furthermore, by looking

at significant modes (as in Fig. 10,Fig. 11, etc.) a physical understanding of driving patterns can be derived from DMD.360

The proposed framework is designed to be applicable to a broad range of climate extremes. While the current experiments

have focused on temperature anomalies, specifically heatwave events, the approach can be readily extended to other types of

extremes such as cold spells, heavy precipitation.

5 Conclusion

This work introduces a novel Dynamic Mode Decomposition (DMD) variation designed to improve the reconstruction of365

extreme events while providing a method to extract spatiotemporal patterns (modes) specifically relevant to such extremes.

Using data-driven Koopman analysis, we demonstrate clear patterns of extremes and identify coherent behaviors in complex

systems through spectral analysis of the Koopman operator. Assuming the system is well-behaved, with a diagonalizable

Koopman operator and sufficient basis functions for reconstruction, we obtain a one-to-one correspondence between system

dynamics and observable evolution. This approach enables us to extract interpretable coherent spatiotemporal patterns. By370

relying solely on time-delayed observations, this data-driven method offers insights into the system’s key dynamics, serving as

both a diagnostic tool and a potential prognostic model for understanding and predicting system behavior.

We conclude that by inverting the usual focus of the method—from modeling the system’s average behavior to emphasizing

its exceptional dynamics—and by carefully refining the algorithm accordingly, extreme events can be modeled more accu-

rately across several common metrics. Moreover, this approach enables the extraction of spatial patterns that contribute to the375

reconstruction of extremes, along with insights into their temporal evolution.
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Even though in this work we focus on the diagnostic application, the method could be easily used for future state predic-

tion. This extension is planned for the future work. Diagnosing the evolution in time of extreme situations, one could detect

reoccurring patterns and therefore predict upcoming extremes.

Code availability. The codes for generating the results are made by means of scripting Python software. All codes used in this study can be380

obtained from the corresponding author upon reasonable request.

Data availability. The ERA5 reanalysis data used in this study are publicly available from the Copernicus Climate Data Store at

https://cds.climate.copernicus.eu/datasets.

Author contributions. MA conducted the research, performed the analyses, and wrote the initial draft of the manuscript. JB provided close

supervision throughout the project, contributed to the conceptual development, and substantially revised the manuscript. JS provided addi-385

tional guidance and contributed to the manuscript revision.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. Authors acknowledge funding and support from the University of Hamburg. MA is grateful to the NumGeo and the

Climate Extremes research group for valuable input and discussions throughout the development of this work. Additional thanks go to Dallas

Murphy for his insightful advice on scientific writing, and to the SICCS Graduate School for their support and guidance. The authors also390

thank the Copernicus Climate Change Service for providing the ERA5 reanalysis data. Some language editing and writing suggestions were

assisted by ChatGPT (OpenAI).

24

https://doi.org/10.5194/egusphere-2025-3505
Preprint. Discussion started: 14 August 2025
c© Author(s) 2025. CC BY 4.0 License.



References

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., and García-Herrera, R.: The Hot Summer of 2010: Redrawing the Temperature

Record Map of Europe, Science, 332, 220–224, https://doi.org/10.1126/science.1201224, 2011.395

Berkooz, G., Holmes, P., and Lumley, J. L.: The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Review of

Fluid Mechanics, 25, 539–575, https://doi.org/10.1146/annurev.fl.25.010193.002543, 1993.

Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Discovering governing equations from data by sparse identification of nonlinear dynamical

systems, Proceedings of the National Academy of Sciences, 113, 3932–3937, https://doi.org/10.1073/pnas.1517384113, 2016.
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