

1 **The role of Antarctic sea ice in the Earth system: Perspectives 2 informed by 130,000 years of sea ice records**

3 Zanna Chase¹, Karen E. Kohfeld², Amy Leventer³, David Lund⁴, Xavier Crosta⁵, Laurie
4 Menzel⁶, Helen C. Bostock⁷, Matthew Chadwick⁸, Samuel L. Jaccard⁹, Jacob Jones^{2,10}, Alice
5 Marzocchi¹¹, Katrin J. Meissner¹², Elisabeth Sikes¹³, Louise C. Sime¹⁴, Luke Skinner¹⁵

6 *Correspondence to:* Zanna Chase (zanna.chase@utas.edu.au)

7

- 8 1. Institute of Marine and Antarctic Studies and Australian Centre for Excellence in
9 Antarctic Science, University of Tasmania, Hobart, Australia
- 10 2. School of Resource and Environmental Management and School of Environmental
11 Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5V 1S6,
12 Canada, kohfeld@sfu.ca
- 13 3. Department of Earth and Environmental Geosciences, Colgate University, Hamilton,
14 NY, USA, aleventer@colgate.edu
- 15 4. Department of Marine Sciences, University of Connecticut, Groton, CT, USA,
16 david.lund@uconn.edu
- 17 5. University of Bordeaux, CNRS, Bourdeaux INP, UMR 5805 EPOC, 33615 Pessac
18 Cedex, France, xavier.crosta@u-bordeaux.fr
- 19 6. Climate Change Research Centre and Australian Centre for Excellence in Antarctic
20 Science, University of New South Wales, Sydney, Australia, l.menzel@unsw.edu.au
- 21 7. School of the Environment, The University of Queensland, Brisbane, Australia,
22 h.bostock@uq.edu.au
- 23 8. British Antarctic Survey, Cambridge, United Kingdom, m.chadwick@cornwall-insight.com
- 24 9. Institute of Earth Sciences, University of Lausanne, Switzerland,
25 samuel.jaccard@unil.ch
- 26 10. Department of Geography, University of California – Los Angeles, California, USA;
27 bjjones@g.ucla.edu
- 28 11. National Oceanography Centre, Southampton UK, alice.marzocchi@noc.ac.uk
- 29 12. Climate Change Research Centre and ARC Centre of Excellence for Climate
30 Extremes, University of New South Wales, Sydney, Australia,
31 k.meissner@unsw.edu.au
- 32 13. Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA,
33 sikes@marine.rutgers.edu
- 34 14. Ice Dynamics and Paleoclimate, British Antarctic Survey, Cambridge, United
35 Kingdom, lsim@bas.ac.uk
- 36 15. Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge,
37 CB2 3EQ, United Kingdom, lcs32@cam.ac.uk.

39

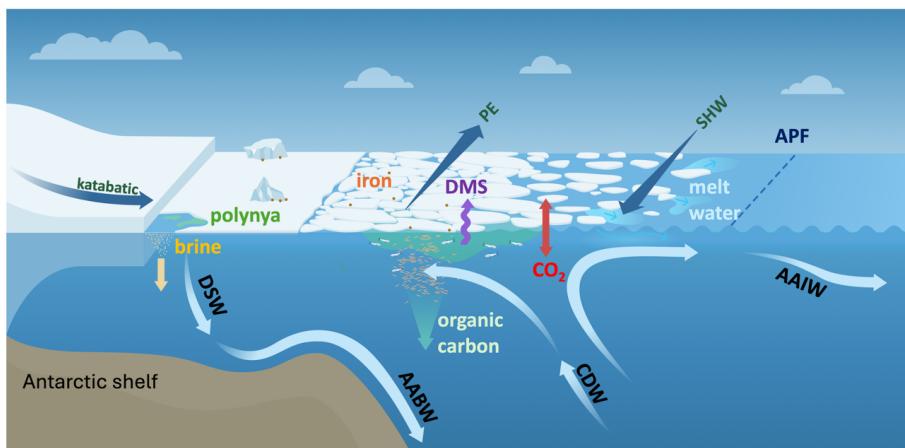
40

41

42 **Abstract.** Antarctic sea-ice cover reached historically low levels in 2023, consistent with the
43 simulated decrease in sea-ice extent in response to anthropogenic warming. Antarctic sea ice
44 is closely linked to multiple components of the Earth system, thus its demise could precipitate
45 widespread, cascading changes across the cryosphere, atmosphere, and ocean. However, the
46 nature and strength of these interconnections are poorly understood, and they are often
47 inadequately represented in models. In this review paper we use modern observations,
48 models and paleoclimate archives covering the last glacial cycle to gain insights into how
49 reductions in sea ice may affect other components of the Earth system. We review how
50 Antarctic sea ice interacts with ocean and atmosphere circulation, ice sheets and ice shelves,
51 marine productivity, and the carbon cycle over the last glacial cycle, for which we have the
52 most robust sea-ice reconstructions. The review finds strong evidence from theory and
53 models for impacts of Antarctic sea ice on the Earth system. Paleo-proxy reconstructions
54 provide examples where changes in sea ice co-occur with changes in the carbon cycle, marine
55 productivity, and ocean circulation. However, challenges remain in isolating the impact of
56 sea ice in a highly interconnected system.

57 **Short Summary (500 characters)**

58 The impact of recent dramatic declines in Antarctic sea ice on the Earth system are uncertain.
59 We reviewed how sea ice affects ocean circulation, ice sheets, winds, and the carbon cycle by
60 considering theory and modern observations alongside paleo-proxy reconstructions. We
61 found evidence for connections between sea ice and these systems but also conflicting
62 results, which point to missing knowledge. Our work highlights the complex role of sea ice in
63 the Earth system.


64 **1 Introduction**

65 The year 2016 marked the beginning of a low Antarctic sea-ice state after a multi-decadal
66 period of increasing sea-ice extent that peaked in 2014 (Purich and Doddridge, 2023).
67 The emergence of the low sea-ice state, reaching a record low in 2023 for both summer
68 minima and winter maxima (Gilbert and Holmes, 2024), may indicate that a regime shift
69 recently occurred (Hobbs et al., 2024). The recent observed changes are consistent with the

70 decline in sea ice that is projected to occur under anthropogenic warming (e.g., Diamond et
71 al., 2024; Eayrs et al., 2021; Fox-Kemper, et al., 2021).

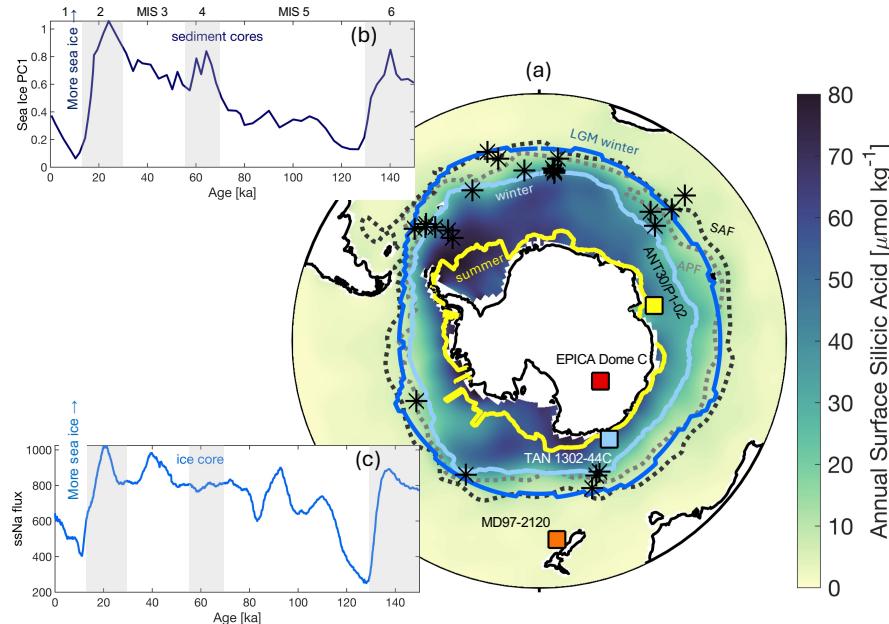
72 The impacts of the current (Josey et al., 2024) and projected changes in Antarctic sea ice are
73 likely to be widespread and to extend across many parts of the Earth system. This is because
74 sea ice is coupled to the ocean, continental ice, the atmosphere, and the biosphere, (Fig. 1),
75 through large fluxes of heat, salt, and carbon. For example, the magnitude of the freshwater
76 fluxes associated with the annual freeze and melt cycle of Antarctic sea ice is greater than the
77 combined freshwater fluxes associated with precipitation minus evaporation and glacial ice
78 melt in the Southern Ocean (Abernathay et al., 2016).

79

80 **Figure 1: Schematic overview of the role of Antarctic sea ice in the Earth system.** Shown
81 are major water masses discussed in the text, including dense shelf water (DSW) which forms
82 Antarctic Bottom Water (AABW), produced through brine rejection during sea-ice
83 production, Circumpolar Deep Water (CDW), upwelling due to surface wind stress, and
84 Antarctic Intermediate Water (AAIW), freshened by sea-ice melt. Biogeochemical processes
85 include ice-associated blooms and carbon export stimulated by continental iron delivered by
86 glacial ice and sea ice, the release of dimethyl sulphide (DMS) and air-sea exchange of
87 carbon dioxide (CO₂). The major Antarctic wind systems, the Katabatic winds, the Polar

88 Easterlies (PE) and Southern Hemisphere Westerlies (SHW) are indicated, as well as the
89 oceanic Antarctic Polar Front (APF).

90 Changes in Antarctic sea ice have been linked with a suite of physical and biogeochemical
91 ocean processes (Fig. 1). Sea-ice presence along the Antarctic coast buttresses ice shelves,
92 stabilising the ice shelf and associated glaciers (Christie et al., 2022). Sea ice also provides a
93 buffer against wave energy, thus limiting physical breakage of ice shelves (Massom et al.,
94 2018; Teder et al., 2022, 2025). Through its impact on ocean circulation, changes in sea-ice
95 formation and brine rejection can impact delivery of heat to ice shelf cavities (e.g., Bintanja
96 et al., 2013; Christie et al., 2022; Lauber et al., 2023; Sun et al., 2023). Changes in sea-ice
97 extent and production rate influence the buoyancy fluxes that are essential in driving changes
98 in the production of dense shelf water (DSW) which forms Antarctic Bottom Water (AABW)
99 south of the Antarctic Polar Front (APF) and Antarctic Intermediate Water (AAIW) north of
100 the APF (Abernathay et al., 2016; Pelichero et al., 2018). Sea-ice extent can also affect
101 atmospheric circulation through its influence on albedo and heat exchange between the ocean
102 and the atmosphere, and thus the position and intensity of westerly winds (e.g., Raphael et al.,
103 2011).


104 The influence of sea ice extends to the biosphere. Sea-ice extent and seasonal melting
105 influencing the intensity and timing of ice-edge phytoplankton blooms (Giddy et al., 2023),
106 and the cycling of nutrients, both locally (e.g., iron - Lannuzel et al. 2016) and remotely
107 through its influence on intermediate and deep-water circulation (Sarmiento et al., 2004). Sea
108 ice also provides a capping effect, acting as a lid that reduces oceanic outgassing of carbon
109 dioxide (CO₂) (Stephens and Keeling, 2000; Morales-Maqueda, et al., 2003). Through these
110 physical and biogeochemical processes, sea ice has a significant influence on ocean carbon
111 uptake and the global carbon cycle (e.g., Gupta et al., 2020; Kurahashi-Nakamura et al.,
112 2007; Shadwick et al., 2021).

113 Antarctic sea-ice extent is known to have changed dramatically on glacial-interglacial
114 timescales (Chadwick et al., 2022a; Crosta et al., 2022), and these changes have been
115 implicated as drivers of substantial Earth system changes. Specifically, winter sea-ice cover
116 around Antarctica expanded to approximately twice its current extent during the Last Glacial
117 Maximum (LGM) from 19,000-23,000 years ago (19-23 ka) (Fig. 2; Gersonde et al., 2005;
118 Lhardy et al., 2021). Summertime sea-ice cover likely increased less, leading to enhanced
119 seasonality in areal coverage (Green et al., 2022; Lhardy et al., 2021). In contrast, Antarctic

120 sea-ice extent is thought to have been substantially reduced during past warm periods such as
121 the last interglacial (LIG) period (130-116 ka), also known as Marine Isotope Stage 5e (MIS
122 5e). Note that the Marine Isotope Stage naming system refers to alternating glacial and
123 interglacial periods; cooler periods with larger ice sheets are labelled by even numbers, and
124 warmer periods with smaller ice sheets by odd numbers (Fig. 2b,c). For example, cooler
125 glacial periods of Earth's history such as MIS 2 and 6 were characterized by larger ice sheets,
126 lower sea levels and lower atmospheric CO₂. Warmer interglacial periods such as MIS 1 and
127 5e had smaller ice sheets, higher sea levels and higher CO₂. Within the colder, glacial periods
128 there is also evidence for rapid millennial scale fluctuations in the ice sheets/sea levels.

129 Sea salt sodium (ssNa) measurements in ice cores (Fig. 2c; Wolff et al. 2010) suggest there
130 was a substantial reduction in Antarctic sea ice during the peak of the LIG. Simulations
131 suggest a 40-60% reduction in the wintertime sea-ice extent between ~129 and 127 ka,
132 relative to the pre-industrial, is required to explain water isotope measurements from ice
133 cores (Holloway et al., 2016, 2017). Detailed Antarctic sea-ice reconstructions based on
134 marine sediment cores (Chadwick et al., 2020, 2022a, c, 2023) and sea surface temperature
135 compilations (Capron et al., 2017; Chadwick et al., 2022b; Chandler and Langebroek, 2021;
136 Gao et al., 2025; Hoffman et al., 2017) are also consistent with substantial Southern Ocean
137 warming and sea-ice loss during the peak of the LIG. South of 40°S, annual-mean
138 reconstructed sea surface temperatures were 2.2 to 2.7°C warmer than pre-industrial
139 temperatures, while summer sea-surface temperatures ranged from 1.2 to 2.2°C higher than
140 the preindustrial period. Earth System Models show September (winter) sea-ice area was
141 reduced by 40-60% relative to pre-industrial model simulations (Gao et al., 2025; Sime et al.,
142 2025).

143

144 **Figure 2: Key Southern Ocean features and proxy records discussed in this paper. a)**
145 location map showing in yellow, ANT30/P1-02 (Wu et al., 2018), in orange, MD97-2120
146 (Pahnke and Zahn, 2005; Ronge et al., 2015) in blue, TAN 1302-44 (Pesjak et al., 2023), in
147 red, EPICA Dome C (Wolff et al., 2010). The cores used in the sea-ice compilation of
148 Chadwick et al. (2022a) are indicated by asterisks. The modern locations of the Subantarctic
149 Front (SAF) and Antarctic Polar Front (APF) (Orsi et al., 1995) are indicated by the dashed
150 dark and light grey lines, respectively. The modern August (winter) and February (summer)
151 sea-ice edges are shown in light blue and yellow, respectively, derived from the
152 biogeochemical Southern Ocean State Estimate as used in Weis et al. (2024). The estimated
153 August sea-ice edge during the LGM, from Paul et al. (2021), is shown in dark blue. The
154 background colour is the annual average surface silicic acid concentration [$\mu\text{mol kg}^{-1}$] from
155 WOA23 (Reagan et al., 2024), showing how this nutrient is 'trapped' in the Southern Ocean
156 sea ice zone. Insets show b) principal component 1 (PC1) of the sea-ice records from
157 Chadwick et al. (2022a) indicating the dominant temporal trend and c) the ice core sea-ice

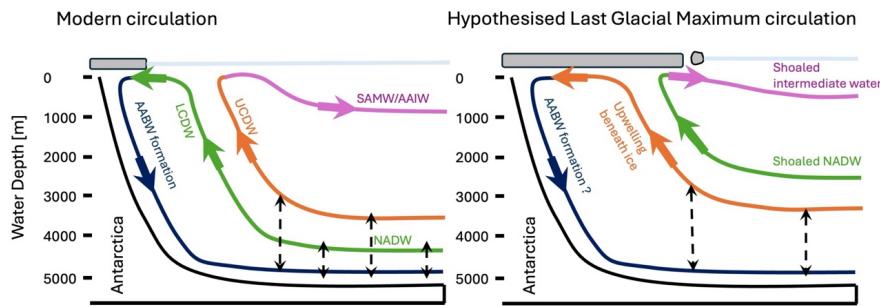
158 proxy, sea salt sodium (ssNa) flux, in units of $\mu\text{g m}^{-2} \text{y}^{-1}$ from EPICA Dome C from Wolff et
159 al. (2010).

160 The magnitude and timing of sea-ice changes through the last glacial cycle varied by zone
161 and sector of the Southern Ocean. In particular, the pattern of sea-ice advance during glacial
162 stages varied between sectors. As described in Chadwick et al. (2022a), in the Indian and
163 Pacific sectors, sea-ice extent remained low until 80 -70 ka and then gradually increased to a
164 maximum at 25-20 ka during MIS 2. In the East Atlantic sector, sea ice increased rapidly
165 during MIS 4, decreased during MIS 3, and then gradually increased, reaching a maximum
166 during MIS 2. In the Scotia Sea and central Atlantic sectors, sea-ice extent increased earlier
167 in the glacial cycle, around 100 ka, and remained relatively high until deglaciation. The ice
168 core sea ice proxy, nssNa flux, also responded early in the glacial cycle, increasing 4-fold
169 between 130 and 110 ka. While these proxy records provide important constraints on the
170 behaviour of sea ice in the past, it's important to recognise their limits. In particular, very few
171 sea-ice records cover the whole of the last glacial cycle, and none is located south of the
172 current summer sea-ice limit (Chadwick et al., 2022a).

173

174 Changes in sea ice over the last glacial cycle are thought to have impacted ocean and
175 atmospheric circulation, ice shelves, marine productivity, nutrient cycling, and the carbon
176 cycle. This paper represents the second of two review papers presented by the Cycles of Sea
177 Ice Dynamics in the Earth system (C-SIDE) PAGES Working Group, examining changes in
178 Antarctic sea ice over the last full glacial-interglacial cycle. The first paper (Crosta et al.,
179 2022) described the marine and ice core proxies used to reconstruct sea-ice changes over the
180 last glacial cycle. The goal of this review is to describe how changes in Antarctic sea-ice are
181 linked to physical and biogeochemical processes in the ocean, atmosphere and cryosphere
182 over the last glacial cycle. We review how sea ice in the Southern Ocean coordinates
183 climate/carbon-cycle feedbacks via direct and indirect impacts on grounded ice, biology, the
184 atmosphere, and the ocean. More specifically, we identify five key aspects of this
185 coordinating role: ocean circulation, ice shelves, winds, marine biological productivity, and
186 the integrated effects of these impacts for marine carbon storage. We present marine
187 sediment and ice core proxy evidence (Fig. 2) to provide examples of how these interactions
188 played out across the last glacial cycle.

189



190 **2 Sea ice and ocean circulation**

191 Sea-ice formation and melting exert a substantial influence on water mass formation in the
192 Southern Ocean. The dominant water mass in the Southern Ocean is Circumpolar Deep
193 Water (CDW), which is a mixture of deep waters entering the Southern Ocean from the
194 different ocean basins – including North Atlantic Deep Water (NADW), Indian Deep Water
195 (IDW) and Pacific Deep Water (PDW), which are entrained and mixed in the Antarctic
196 Circumpolar Current (Talley, 2013). Ekman divergence due to the Southern Hemisphere
197 westerlies causes CDW to upwell to the surface where it splits into southern and northern
198 branches (Fig. 3; Pelichero et al., 2018; Rintoul et al., 2001). Both branches are transformed
199 by sea-ice processes into new water masses. The northern branch is transported equatorward
200 and gains buoyancy from surface warming, sea-ice melt, and precipitation, resulting in water
201 masses of intermediate densities that are subducted below the surface waters to the north to
202 form Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW)
203 (Abernathy et al., 2016; Orsi et al., 1995; Pelichero et al., 2018; Saenko et al., 2002).
204 SAMW and AAIW are part of the upper cell of the global Meridional Overturning
205 Circulation (MOC) (Marshall and Speer, 2012). The southern branch, in contrast, flows
206 poleward, where it experiences surface buoyancy loss through surface cooling and brine
207 rejection during sea-ice formation, contributing to the formation of dense shelf water that
208 forms AABW (Naveira Garabato et al., 2002; Talley, 2013; Vernet et al., 2019; Whitworth
209 and Nowlin, 1987) which is part of the lower cell of the MOC (Marshall and Speer, 2012).
210 The LGM is a good test bed to understand the relationship between sea ice and the oceanic
211 circulation due to northward expansion of LGM sea-ice cover (Chadwick et al., 2022a;
212 Gersonde et al., 2005; Green et al., 2022) and the extensive proxy and modelling studies of
213 the LGM oceanic circulation.

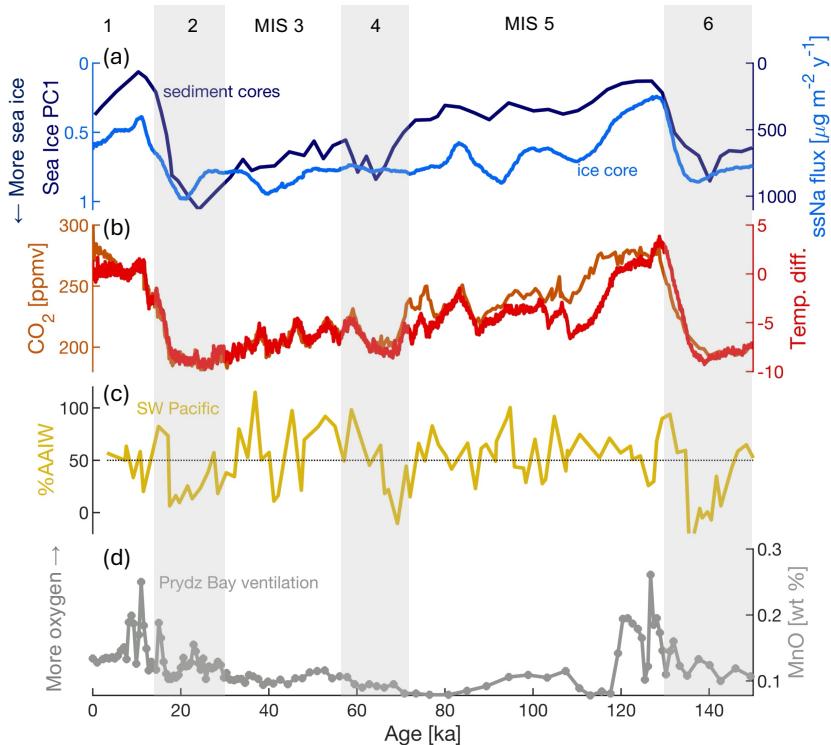
214

215

216 **Figure 3: Simplified schematic illustrating the modern Southern Ocean overturning**
217 **circulation (left) and hypothesised Last Glacial Maximum (LGM) circulation (right).**
218 Greater sea-ice cover during the LGM is hypothesised to have produced denser bottom
219 waters through more intense brine rejection. Under present-day conditions there is mixing
220 between the lower branch of the North Atlantic Deep Water (NADW) and the Antarctic
221 Bottom Water (AABW). Under conditions of expanded sea-ice extent NADW shoals and the
222 abyssal cell closes on itself, where CDW upwells mostly under sea-ice and is transformed
223 into AABW with little air-sea gas exchange (Ferrari et al., 2014). Other water masses
224 pictured are Lower and Upper Circumpolar Deep Water (LCDW and UCDW), Indian and
225 Pacific Deep Water (IDW and PDW) and Subantarctic Mode Water (SAMW) and Antarctic
226 Intermediate Water (AAIW). Figure after Talley (2013), Sikes et al., (2017), Shub et al.
227 (2024), Nadeau et al. (2019) and Ronge et al. (2015).

228 **2.1 Sea ice and the upper cell of the global MOC**

229 The upper cell of the MOC forms far from the Antarctic continent but is strongly influenced
230 by sea-ice melt. The water mass transformation analysis of Abernathay et al. (2016) suggests
231 that increased formation and northward transport of sea ice may increase the rate at which
232 CDW is transformed into more buoyant, low-salinity water masses of the upper cell (i.e.,
233 AAIW and SAMW). Modelling studies also highlight the importance of wind-driven sea-ice
234 transport and melt to AAIW formation (Saenko and Weaver, 2001), predicting a shoaling of
235 AAIW and a northward shift of the latitude of AAIW subduction during periods of sea-ice
236 expansion (e.g., Fig. 3; Li et al., 2021; Ronge et al., 2015). Interestingly, Li et al (2021) find



237 that AAIW also shoals under a global warming scenario, due to the increase in temperature
238 and reduction in density of AAIW, despite a southward shift in the latitude of subduction.

239 The depth of AAIW in the past can be inferred by using a suite of sediment cores collected
240 across a range of water depths, thus creating a ‘paleo CTD cast.’ The characteristics of sub-
241 surface water can then be inferred using the $\delta^{13}\text{C}$ of DIC reconstructed from benthic
242 foraminifera and the bottom water seawater Nd isotopic composition (εNd) reconstructed
243 using ferro-manganese coatings on foraminifera, fish debris, or bulk sediment. Evidence from
244 $\delta^{13}\text{C}$ and εNd suggests that the AAIW was shallower in the southwest Pacific Ocean during
245 glacial periods (Fig. 4c; Hu et al., 2016; Pahnke and Zahn, 2005; Ronge et al., 2015), which
246 is consistent with greater sea-ice melt during austral summer and a reduction in the density of
247 Antarctic surface waters that are subducted to form AAIW (Green et al., 2022). Jones et al.
248 (2022) demonstrated a link between periods of sea-ice expansion and AAIW shoaling in the
249 southwest Pacific Ocean, specifically during the middle (MIS 4) and peak (MIS 2) portions
250 of the last glacial cycle. The response of AAIW in the southeast Pacific Ocean during glacial
251 periods is less clear. Evidence from $\delta^{13}\text{C}$ and redox elements implies increased oxygen
252 content and deepening/thickening of the AAIW during the LGM (Martínez-Méndez et al.,
253 2013; Muratli et al., 2010). In contrast, more recent work based on foraminiferal
254 assemblages, $\delta^{13}\text{C}$, and $\delta^{18}\text{O}$ instead suggests AAIW in the southeast Pacific shoaled and that
255 its subduction region moved northward (Haddam et al., 2020), consistent with the modelled

256 pattern due to sea-ice expansion (Li et al., 2021) and the pattern observed in the southwest
257 Pacific Ocean.

258

259 **Figure 4: Sea ice and related changes in the Southern Ocean and Antarctica over the**
260 **past 150 ka.** (a) Sea Ice Index as Principal Component 1 of the sea-ice records from
261 Chadwick et al. (2022a) and the ice core sea-ice proxy, ssNa, from EPICA Dome C from
262 Wolff et al. (2010). (b) The Antarctic composite CO₂ (Bereiter et al., 2015) and the Antarctic
263 temperature stack as an anomaly from the pre-industrial reference (Parrenin et al., 2013).
264 Note these records are also shown in Fig. 3 insets in the opposite orientation. (c) The
265 estimated fraction of Antarctic Intermediate Water in the Southwest Pacific at the location of
266 core MD97-2120 (Ronge et al. 2015; Pahnke and Zahn, 2005), and (d), the weight percent of
267 manganese oxide from core ANT30/P1-02 off Prydz Bay (Wu et al. 2019), an indicator of
268 bottom water ventilation and proxy for AABW formation. Locations of records are shown in
269 Fig. 2. Marine Isotope Stage (MIS) numbers, as indicated by the oxygen isotopic records of

270 marine carbonates (Lisiecki and Raymo, 2005), are listed along the upper x-axis. Glacial
271 stages are highlighted by grey vertical bars.

272 **2.2 Sea ice and the lower cell**

273 Sea-ice extent also affects the lower cell of the MOC through its impact on surface buoyancy
274 loss around Antarctica. Dense Shelf Water (DSW), which is the precursor to AABW, is
275 formed by brine rejection during sea-ice formation on the Antarctic continental shelf.
276 Changes in sea-ice formation might thus impact DSW formation and therefore AABW.

277

278 Porewater chlorinity tells us the Southern Ocean was filled with very salty water during the
279 LGM, consistent with an intensified sea-ice cycle and more brine production (Adkins et al.,
280 2002). With the expansion of ice sheet across the Antarctic continental shelf around much of
281 the continent during the glacials (Bentley et al., 2014), one puzzle is whether this more
282 intense brine rejection was an open ocean process or whether AABW continued to form in
283 small ice sheet free pockets on the shelf as occurs today. Caburlotto et al. (2010) argue, based
284 on sedimentological and microfossil evidence, that dense water continued forming in Adelie
285 Land during the LGM, potentially associated with a smaller and more northward located
286 polynya. Additionally, Smith et al. (2010) interpret the existence of benthic and planktonic
287 foraminiferal deposits in the northwest Weddell Sea as evidence for the continued presence
288 of a polynya during the LGM, and suggest polynyas were widespread around Antarctica
289 during the LGM, including in the Ross Sea, SE Weddell, and Dronning Maud Land. The
290 continued existence of polynyas at the edge of the continental shelf may have also allowed
291 brine production and deep-water formation to occur over the continental slope.

292

293 A range of proxy data implies that southern-sourced waters probably filled a larger volume of
294 the Atlantic basin during the LGM. Benthic $\delta^{13}\text{C}$, $\delta^{18}\text{O}$, Cd/Ca, and radiocarbon records from
295 the Atlantic Ocean suggest a well-ventilated, nutrient-poor water mass in the upper (<2 km),
296 while the lower Atlantic (>2 km) was occupied by ^{13}C -depleted, high Cd, poorly ventilated,
297 nutrient-rich water mass (Curry and Oppo, 2005; Duplessy et al., 1988; Hoffman and Lund,
298 2012; Lynch-Stieglitz et al., 2007; Marchitto and Broecker, 2006; Oppo et al., 2018;
299 Ullermann et al., 2016). Model-data comparisons and inversion studies suggest the LGM
300 Atlantic water mass geometry was due to shoaling of NADW during the LGM (Fig. 3; Hesse
301 et al., 2011; Menziel et al., 2017; Oppo et al., 2018; Pöppelmeier et al., 2023; Tagliabue et

302 al., 2009), and most likely a weakening of NADW as well (Meissner et al., 2003; Menzel et
303 al., 2017; Pöppelmeier et al., 2023).

304

305 Mechanistically, Ferrari et al. (2014) proposed that the northward migration of the summer
306 sea-ice edge at the LGM could have contributed to the shoaling of the water mass boundary
307 between NADW and AABW. They suggest this occurred by shifting northward the latitude
308 separating the upper and lower cells of the overturning circulation- that is, the latitude
309 separating the region of buoyancy loss, to the south, and buoyancy gain, to the north. If
310 AABW volume is directly related to this latitude, which corresponds roughly to the
311 summertime Antarctic sea-ice extent, then the volume of AABW should expand during
312 glacial intervals and contract during interglacial intervals, as suggested by the proxy record.

313 In idealised modelling, the observed LGM water mass geometry can be produced by
314 increasing either the extent or the production rate of Antarctic sea ice (Jansen and Nadeau,
315 2016; Nadeau et al., 2019). However, LGM simulations as part of PMIP3 and PMIP4 show
316 no direct relationship between the summer sea-ice extent, and thus perennial sea-ice cover,
317 and the water mass boundary between NADW and AABW (Green et al., 2022). In addition,
318 model simulations by Hines et al. (2019) suggest the depth of the water mass boundary
319 between NADW and AABW is set by the density of NADW, which is set by the meltwater
320 input in the North Atlantic, rather than by sea-ice extent in the Southern Ocean.

321

322 The proxy record also raises questions about the link between sea ice and water mass
323 geometry. First, the sea-ice proxy evidence suggests there was only limited expansion of the
324 summer sea-ice edge during the LGM (Crosta et al., 2022; Gersonde and Zielinski, 2000;
325 Green et al., 2022). The idealised modelling introduced above (Ferrari et al. 2014; Jansen and
326 Nadeau 2016) has generally not considered the seasonal cycle in sea-ice coverage. It is
327 therefore unclear how an enhanced seasonal sea-ice cycle would impact the location of the
328 transition from negative to positive buoyancy forcing given the summer sea-ice edge may not
329 have changed significantly. Furthermore, while ample evidence suggests that the boundary
330 between NADW and AABW deepened during glacial Termination I (i.e., the MIS 2/1
331 transition) as the summer ice edge retreated, benthic $\delta^{18}\text{O}$ results from the South Atlantic
332 Ocean suggest the NADW-AABW boundary *shoaled* during Termination II (i.e., the MIS
333 6/5e transition) (Shub et al., 2024). If anything, we would expect the boundary to deepen
334 given a more limited sea-ice extent in the Southern Ocean during MIS 5e, particularly in the
335 Atlantic sector (Crosta et al., 2022; Holloway et al., 2017). This unexpected behaviour raises

336 questions about the direct link between sea ice production and extent and AABW volume and
337 suggests the relationship may be more complex.

338

339 Regardless of whether it can be attributed to expanded sea ice, the proxy evidence
340 summarised above indicates a greater volume of glacial AABW (sometimes called southern
341 component water), relative to NADW, existed during the LGM. However, this does not
342 necessarily mean AABW was produced at a greater rate. Indeed, a *lower* rate of AABW
343 production during the LGM has been inferred from peaks in the concentration of the redox-
344 sensitive metal Mn in deglacial sediments offshore three major sites of AABW production:
345 north of the Weddell Sea (Jaccard et al., 2016), off Cape Darnley (Wu et al., 2018), and off
346 the Adelie Land margin (Jimenez-Espejo et al., 2020). A low rate of AABW production
347 during the LGM may have decreased oxygen delivery to these sites, with a subsequent
348 increase in AABW production and oxygen delivery preserving a relict sedimentary Mn peak.
349 A decrease in oxygen delivery by AABW is consistent with evidence for widespread deep
350 ocean oxygen depletion throughout the deep Pacific during the LGM (Anderson et al., 2019;
351 Pavia et al., 2021) and global deep ocean (Wang et al., 2024) during the LGM. However,
352 while a lower rate of AABW production is not necessarily incompatible with a larger volume
353 of AABW (De Boer and Hogg, 2014), the inferred changes in deep ocean oxygen, even
354 proximal to Antarctica, cannot be uniquely attributed to decreased AABW production. It may
355 be that greater Antarctic sea-ice cover decreased the preformed oxygen content of AABW by
356 inhibiting air-sea gas exchange during AABW formation, something we explore in more
357 detail in section 6.

358

359 **3 Interactions between ice sheets, sea ice, and coastal polynyas**

360 A complex suite of interconnected processes influences the relationship between ocean
361 circulation, sea ice, ice shelves, and ice sheets. These complex relationships involve: (1)
362 enhancement of ice shelf stability by the presence of a sea-ice barrier, (2) the role of ice
363 tongues and landfast ice in the formation of coastal polynyas that are sites of active sea-ice
364 formation, and (3) connections among sea ice, land ice, meltwater and surface water salinity.

365 **3.1 Sea ice as a buffer for ice shelves and ice sheets**

366 The presence of a sea-ice buffer protects the adjacent ice shelf from motion generated by
367 waves and ocean swell (Bromirski et al., 2010; Lauber et al., 2023; MacAyeal et al., 2006;

368 Robinson and Haskell, 1990; Teder et al., 2022, 2025). In the absence of sea ice, this motion
369 can weaken the ice shelf margin and lead to calving, ice sheet retreat, and ice shelf
370 disintegration. However, not all ice shelves are alike; preconditioning by flooding and
371 hydrofracturing can weaken ice shelves and make them more susceptible to the impact of
372 proximal sea-ice loss (Massom et al., 2018). Deterioration of the sea-ice margin has been
373 shown to decrease ice shelf stability at several Antarctic Peninsula ice shelves, including the
374 Larsen A and B, and the Wilkins Ice Shelf (Massom et al., 2018), while its presence has been
375 observed to facilitate ice shelf growth (Christie et al., 2022). The protective role of a sea-ice
376 barrier is also discussed by Bassis et al. (2021) who proposed that sea ice and/or calved ice
377 debris at the ice front can slow or perhaps even halt the catastrophic collapse of marine ice
378 cliffs, a process that has the potential to cause rapid retreat of grounded ice sheets (DeConto
379 and Pollard, 2016).

380 **3.2 Fast ice, polynyas, ice shelf cavities and bottom water formation**

381 Ice shelf and sea-ice processes are intimately linked with the behaviour of polynyas, which
382 are persistent, open areas with little or thin ice cover in regions where thicker sea ice would
383 otherwise be expected (Barber and Massom, 2007). Most coastal polynyas are “latent heat”
384 polynyas that form when winds blow across the ocean with a surface temperature at the
385 freezing point and push newly formed sea ice downstream, leaving an open water area on the
386 downwind side of obstructions such as landfast sea ice (fast ice) or ice tongues. Fast ice is sea
387 ice that is mechanically fastened to coastal features, and it can be annual or multi-year. Near
388 Antarctica, these coastal polynyas tend to be located on the western side of fast ice (or ice
389 shelves), due to easterly winds (Van Achter et al., 2022). This fast ice plays a critical role in
390 keeping the polynya open and determining the size and sea ice production of Antarctic
391 coastal polynyas (Fraser et al., 2019, 2023). Today, coastal polynyas serve as important sea-
392 ice factories and foci for DSW formation, as salt rejection during sea ice formation results in
393 the sinking of these salty, dense brines which act as the precursor to AABW formation
394 (Nihashi and Ohshima, 2015; Ohshima et al., 2016).

395 Dense shelf-water formation in coastal polynyas can be diminished where freshwater input
396 from upstream basal melt of ice sheets reducing the salinity of the surface water, a process
397 that also increases the stratification of the water column (Silvano et al., 2016, 2018).
398 Increased stratification is also observed at the Totten Glacier in East Antarctica and in the

399 Amundsen Sea, near the Dotson and Getz Ice Shelves (Silvano et al. 2018) where no
400 evidence for production of Dense Shelf Water exists.

401 The presence of fast ice can also result in the offshore displacement of sea-ice formation, as
402 modelled for the Totten Glacier and the Moscow University Ice Shelf region, along the
403 Sabrina Coast, East Antarctica (Van Achter et al., 2022). The displacement is caused by the
404 cover of fast ice, which impedes active sea-ice formation. The presence of this fast ice at the
405 sea surface results in a more stratified water column proximal to ice shelf cavities, since
406 dense shelf water is not forming and convecting there. In their simulations Van Achter et al.,
407 (2022) found this reduced barrier to CDW intrusion can facilitate increased warmer CDW
408 influx. The warm water influx, in turn, is associated with increased basal ice shelf melt, with
409 resulting retreat of the grounded ice sheet.

410 Solar heating of surface waters in front of ice shelves has been shown to increase basal
411 melting of the shelves (Jacobs et al., 1992; Malyarenko et al., 2019; Stern et al., 2013;
412 Stewart et al., 2019). Although these warm waters are relatively buoyant, downwelling of
413 these warm waters into the sub-ice shelf cavity, which must be driven by forcings external to
414 the ice shelf, is thought to increase basal ice shelf melting, as observed in the Ross Ice Shelf
415 cavity (Malyarenko et al., 2019; Stewart et al., 2019). Decreased sea-ice cover, and
416 associated increase in solar heating, might therefore play a role in future ice shelf stability.

417 The coastal processes described above characterize the Antarctic continental shelf today.
418 However, during glacial climates when grounded ice expanded across the continental shelves
419 around Antarctica (Bentley et al., 2014), continental margin polynyas like today may not
420 have existed, as discussed in section 2. Under glacial conditions, sea-ice formation and brine
421 rejection forming dense waters may have shifted to an open-ocean mode of deep convection
422 analogous to the Weddell Sea polynya of the mid 1970s (De Lavergne et al., 2014; Gordon,
423 2014) and 2016-2017 (Zhou et al., 2023). However, there is currently no paleo-evidence to
424 confirm this hypothesized change in the style of AABW formation.

425 **3.3 Ice sheet melt and sea ice**

426 Increased ice sheet melt can contribute to sea-ice expansion. The average extent of Antarctic
427 sea ice is known to have increased during the earliest part of the satellite era between 1979
428 and 2014 (Parkinson, 2019; Turner et al., 2015). One contributor to this observed increase
429 may have been the surface freshening of the polar ocean in response to freshwater inputs

430 from ice sheet retreat, ice shelf runoff, and melting icebergs (Bintanja et al., 2013, 2015;
431 Swart and Fyfe, 2013). Bintanja et al. (2013) described a negative feedback between ice sheet
432 melt and sea ice; as polar warming increases, the influx of cool freshwater to the surface
433 ocean from melting of the ice sheet enhances sea-ice formation during the autumn and winter
434 and may, in turn, counter the initial warming. In fact, some models forced by large freshening
435 of surface waters have shown increased sea-ice extent and surface cooling, primarily due to
436 increased stratification of the upper ocean, decreased convection, and reduced upwelling of
437 warmer waters (Purich et al., 2018).

438 Other modelling studies link basal melting of ice shelves to changes in ocean dynamics and
439 warming through a series of feedbacks involving sea ice (Fogwill et al., 2015; Kusahara et
440 al., 2023; Naughten et al., 2018; Timmermann and Goeller, 2017; Timmermann and Hellmer,
441 2013). Naughten et al. (2018) show that warming reduces winter sea-ice formation and the
442 resulting reduction in brine rejection allows for increased stratification. This increased
443 stratification allows a warm bottom layer of CDW or modified CDW to penetrate beneath ice
444 shelves, ultimately leading to increased basal melt. This process might play a role in the
445 Amundsen Sea (Naughten et al., 2018) and the Weddell Sea (Timmermann and Hellmer,
446 2013). A decline in summer sea-ice cover, on the other hand, exposes a greater fraction of the
447 ocean surface to solar radiation and longwave radiation, leading to warming of surface
448 waters; if these warm waters are subducted beneath ice shelves it also causes basal melting
449 (Naughten et al., 2018; Timmermann and Goeller, 2017). Regions that might be affected by
450 this process include the Filchner, Larsen, and Wilkins Ice Shelves, the eastern half of the
451 eastern Weddell region, the Australian sector of East Antarctica, and the Ross Ice Shelf front
452 (Naughten et al., 2018). This scenario has been further explored through modelling work
453 suggesting that extreme warming events and an associated decrease in coastal sea ice can
454 ultimately lead to ice sheet mass loss, via the intrusion of warm water across the continental
455 shelf, penetrating beneath ice shelves and resulting in their basal melt (Kusahara et al., 2023).
456 While stratification in the ocean can prevent mixing of CDW onto the continental shelf, other
457 factors can also play a role, including offshore upwelling and the strength of the Antarctic
458 Slope Current (Nakayama et al., 2021). A suite of factors must be considered when
459 addressing the complex relationship between sea ice and ice shelves. Given the role ice
460 shelves have been shown to play in the larger Antarctic ice sheet stability (Gudmundsson,

461 2013; Scambos et al., 2004), attention to sea-ice processes impacting ice shelf stability is
462 warranted.

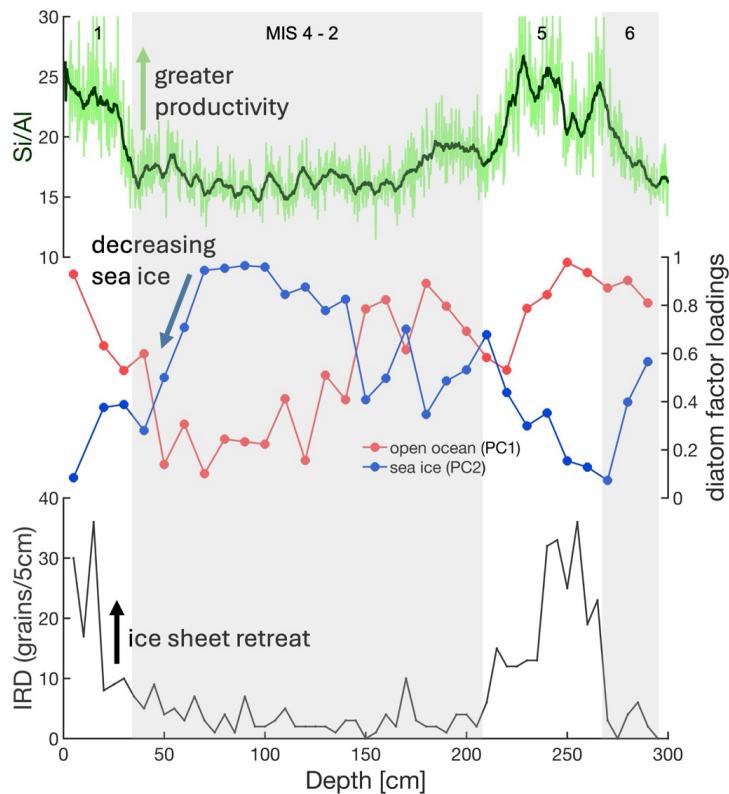
463

464 **3.4 Paleo insights into interactions between land ice and sea ice**

465 While detailed examination of the relationships between sea ice and ice shelves in the paleo
466 record is limited, some studies have addressed the topic. Smith et al. (2019) provide a
467 comprehensive review of the sedimentary signature of a retreating ice sheet/shelf,
468 documenting key sedimentary features that are characteristic of the sub-ice shelf setting. The
469 sequence of glacio-marine sediments (see Smith et al. (2019), Figure 4) can be used to track
470 the change from grounded ice, to floating ice, and finally to an open marine or seasonally
471 sea-ice covered setting. However, determining the relationship between sea ice and ice
472 shelves is complicated by difficulties in distinguishing the presence of ice shelves versus
473 multi-year or perennial sea ice in the paleo-record (Hillenbrand et al., 2009). In both cases,
474 light limitation in the underlying ocean precludes *in situ* primary production, and thus the
475 sediments have a limited to absent biological fingerprint. Studies often use the term “ice
476 canopy” to describe a paleo-setting thought to reflect thick ice cover, without specifying
477 whether that is land ice or sea ice (Lamping et al., 2020; Totten et al., 2015, 2022).

478 Changes in ice shelves in one region of Antarctica can have an indirect influence on sea ice
479 downstream. Ashley et al. (2021) used diatom assemblages and biomarker data from a high-
480 resolution Holocene sediment core from Wilkes Land margin, East Antarctica, to look at sea
481 ice changes and found an increase in sea ice at ~4.5 ka. They suggested a link between this
482 sea ice expansion and the retreat of the grounding line in the Ross Sea that resulted in the
483 formation of a large sub-ice shelf cavity and a subsequent increase in basal melting and
484 outflow of super cooled Ice Shelf Water. This outflow cooled the downstream waters along
485 the Wilkes Land margin and facilitated the increased production of sea ice. This process may
486 also have occurred westward in Prydz Bay where a similar sea-ice increase was observed
487 (Denis et al., 2010). Importantly, in smaller ice shelf cavities, such as in the Amundsen Sea,
488 the opposite response may occur today. In these locations, melting occurs as a result of
489 incursion of relatively warm CDW, with the influence of inflow of warm deep water far

490 outpacing the impact of cool ice sheet meltwater, resulting in a warm sub-ice shelf cavity and
491 reduced proximal sea ice (Jourdain et al., 2017).


492 An association between ice shelf melt and-sea ice cover during the Holocene is presented by
493 Crosta et al. (2018). Using $\delta^{18}\text{O}$ of diatoms as a proxy for ice shelf meltwater in sediment
494 cores from the Antarctic Peninsula (Pike et al., 2013), Adélie Land (Crespin et al., 2014), and
495 Prydz Bay, Crosta et al. (2018) inferred an increase in glacial ice sheet melt and discharge
496 around the Antarctic continental margin from ~ 4 ka onward with a coeval increase in spring
497 sea ice in coastal regions (Crosta et al., 2018). The ice shelf melt is not driven by air
498 temperatures as ice cores show a cooling at this time, and thus, melt must be driven by ocean
499 warming. Proxy records of sub-surface ocean temperatures (Etourneau et al., 2013; Kim et
500 al., 2012; Shevenell et al., 2011) and water column mixing (Denis et al., 2010) are interpreted
501 to reflect greater episodic presence of CDW on the continental shelves, with the warmer
502 CDW driving ice sheet melt which facilitated sea-ice formation, enhanced by decreasing
503 spring insolation. Weber et al. (2014) also modelled the impact of the Antarctic ice discharge
504 event during the Antarctic Cold Reversal of the last deglaciation (14.8 - 14.4 ka) and found it
505 was associated with ocean cooling and an expansion of sea ice due to the increase in
506 freshwater and associated stratification. The melting consequently resulted in a surface ocean
507 cooling and an expansion of sea ice due to the increase in freshwater and associated
508 stratification (Menviel et al., 2010, Golledge et al., 2014, Weber et al., 2014).

509 While the preceding examples provide evidence of sea ice responding to changes in the ice
510 sheet and ice shelves ice, a record of diatom assemblages and ice-rafted debris from the
511 Adelie Land region of the Wilkes Land margin provides an example of sea ice potentially
512 influencing the ice shelf (Fig. 5; Pesjak et al., 2023). This work shows that during the last
513 deglacial transition, sea-ice cover decreased early in parallel with warming, and was followed
514 by an increase in ice rafted debris. This sequence of events supports the link between sea ice
515 as a buffer for ice shelves and the potential role of decreased sea-ice cover in facilitating
516 basal melt and ice shelf disintegration.

517 The sensitivity of the Antarctic ice sheet to sea-ice extent (and vice versa) has been examined
518 over longer time scales using model simulations combined with paleoclimate reconstructions
519 from sediment cores recovered from the Antarctic margin (McKay et al., 2016). DeConto et
520 al. (2007) modelled the relationship between the Cenozoic growth of the cryosphere and the
521 development of sea ice surrounding the Antarctic continent. Their work illustrated that

522 reductions in atmospheric greenhouse gas concentrations were required to initiate ice sheet
523 growth, and this growth occurred prior to the significant presence of sea-ice cover. Once
524 continental-scale ice sheets were established, sea ice developed, but its seasonal distribution
525 around the Antarctic margin was strongly influenced by the configuration of the Antarctic ice
526 mass, as well as orbital forcing. In contrast, while the expanded sea-ice distribution impacted
527 coastal regions of Antarctica, it had little impact on the ice sheet interior, suggesting the
528 relatively low sensitivity of the Cenozoic Antarctic ice sheet to variability in sea ice.

529

530 **Figure 5: Proxy records of the last glacial cycle (~150 – 0 ka) from core TAN130244**
531 **from the Adelie Land margin, East Antarctica** (Fig. 2; Pesjak et al. 2023). The Si/Al ratio
532 is an indicator of siliceous productivity, which increases when sea-ice cover decreases. The
533 decrease in sea ice cover at ~50 cm, as indicated by a decline in principal component (PC)

534 factor loadings associated with sea-ice diatoms (PC2), precedes ice sheet retreat, as indicated
535 by increased concentration of ice rafted debris (IRD) near 25 cm.

536 **4 Interactions between sea ice and atmospheric circulation**

537 While sea-ice formation, transport, and melt are driven by ocean and atmospheric
538 temperatures, precipitation, and winds, the presence of sea ice also affects the state of the
539 ocean (section 2) and atmosphere (this section). The atmospheric effects are both local,
540 occurring immediately above the ice, and far-field, with impacts occurring from pole to pole
541 (England et al., 2020). Sea ice blocks the exchange of heat and moisture between the ocean
542 and the atmosphere, generally causing the atmosphere directly above sea ice to be cooler and
543 drier than an ice-free ocean (Maykut, 1986). Because the winter sea ice edge sits in the
544 atmospheric polar frontal zone, a region of uplift at the boundary between the polar and the
545 midlatitude (Ferrell) cells, relatively small changes in Antarctic sea-ice extent have the
546 potential to generate large shifts in atmospheric circulation (Raphael et al., 2011).

547

548 The recent and projected decline of Antarctic sea-ice cover (Eayrs et al., 2021; Purich and
549 Doddridge, 2023) has stimulated modelling efforts to understand the climate implications of
550 sea-ice loss. Many model-based studies have noted shifts in the position and/or intensity of
551 the southern hemisphere westerly winds (SHW) in response to sea-ice variability, with most
552 finding an equatorward shift and weakening in the SHW when Antarctic sea-ice extent
553 decreases (Ayres et al., 2022; Raphael et al., 2011). This response occurs because the loss of
554 sea ice warms the overlying atmosphere around Antarctica, expanding latitudinally the zone
555 of low pressure associated with the downward limb of the polar cell. This, in turn, tends to
556 push the Farrell cell equatorward, weakening the atmospheric pressure gradient that drives
557 the SHW. Note that the equatorward shift of the SHW linked to sea-ice decline is opposite to
558 the overall model predictions for SHW behaviour under climate warming, which uniformly
559 suggest a poleward shift of the SHW with increasing CO₂ (Goyal et al., 2021; Yin, 2005).
560 The sea-ice effect therefore acts to offset the response of the winds to warming.

561

562 The most compelling studies that identify a causal relationship between sea-ice variability
563 and climate use a modelling framework known as “ghost flux” experiments, which adjust
564 heat fluxes and sea-ice albedo to isolate the impact of changes in sea-ice extent (Deser et al.,
565 2015). Applied initially to the Arctic, these ghost flux experiments with Antarctic sea-ice loss
566 show large climate impacts that extend well beyond the sea-ice zone. This impact includes a

567 pole-to-pole response: a warming of the Antarctic interior (Ayres et al., 2022), an increase in
568 katabatic winds, cloud cover, and precipitation over coastal Antarctica (Tewari et al., 2023), a
569 decrease in ACC transport, an equatorward shift of the SHW, a warming of the equatorial
570 Pacific SSTs (England et al., 2020), and even a sea-ice loss in the Arctic (Ayres et al., 2022).
571 The impact of sea ice on the SHW, and the far-field climate responses, are driven by ocean-
572 atmosphere coupling (Ayres et al., 2022; England et al., 2020). Coupled ocean-atmosphere
573 climate models are therefore necessary to fully quantify the impact of sea ice on the
574 atmosphere.

575

576 Few studies have examined the response of the SHW to greater-than-present Antarctic sea-
577 ice cover. Those that have did not use the ghost flux method. Raphael et al. (2011) studied
578 the atmospheric response to imposed climatological maxima and minima in sea-ice extent
579 and found a relatively symmetric response. The sea-ice minima were associated with an
580 equatorward shift of the SHW and an expansion of the polar cell while the opposite was
581 found when sea-ice maxima were imposed. In contrast, Kidston et al. (2011) found an
582 asymmetric response. While a 7-degree latitudinal decrease in ice extent, in either winter or
583 summer, did nothing to the winds, a 7-degree increase in sea-ice extent, in winter only,
584 caused a poleward shift of the SHW. The latter sea ice scenario is analogous to conditions
585 during the LGM. The impact of sea-ice variability on winds thus appears sensitive to the
586 latitude of the ice edge: when it is far from the polar jet, such as in summer, or under
587 scenarios of decreased ice extent, the jet is minimally impacted by changes in sea-ice cover.

588

589 The response to increased sea-ice extent is model-dependent, with an important factor being
590 the interaction between the jet and the ice edge. A CMIP5-PMIP3 model intercomparison
591 study (Sime et al., 2016) found that, among models with an accurate representation of pre-
592 industrial sea-ice extent, those with a greater increase in sea-ice extent during the LGM also
593 had a greater poleward shift of the SHW. However, in models with an inaccurate pre-
594 industrial sea-ice extent, where the ice edge was located far from the jet, changes in sea-ice
595 extent did not impact the position of the jet. Without the effect of sea ice and associated sea-
596 surface cooling near the modern-day jet, models tended to simulate poleward-shifted
597 westerlies in warm climates and equatorward-shifted westerlies in cold climates. However, in
598 these simulations with a less-accurately placed modern-day sea-ice edge, the presence of
599 expanded LGM sea ice reversed the equatorward trend in cooler climates so that the winds in
600 colder, LGM simulations were more likely to have been shifted slightly poleward. Thus,

601 accurately reconstructing LGM sea-ice extent is the key to understanding LGM SHW wind
602 changes. This state dependence may explain why there is so much disagreement among
603 models about the sign and magnitude of the deglacial wind shifts, but near uniform
604 agreement among models that the winds will shift poleward in warming climate scenarios. It
605 may be that the offsetting effect of sea ice on winds, acting in opposition to the climate
606 warming signal, operates at different strengths in the various models, resulting in a wide
607 range of predicted wind shifts when simulating the deglacial change. An open question is
608 how important the sea-ice effect on the SHW is in the real climate system. The paleo record
609 may provide clues.

610

611 Reliable paleo reconstructions of atmospheric attributes such as winds and precipitation are
612 challenging to produce (Huiskamp and McGregor, 2021; Kohfeld et al., 2013; Shulmeister et
613 al., 2004). However, recent proxy records suggest the sea-ice effect on the SHW is of second
614 order. On glacial-interglacial timescales, Kohfeld et al. (2013) compiled environmental
615 reconstructions in the Southern Hemisphere that could plausibly be affected by a change in
616 the SHW (e.g., moisture, dust, SST). They concluded that making inferences about wind
617 shifts based on paleo-evidence alone is difficult, as the data are consistent with multiple
618 scenarios. Kohfeld et al. (2013) found that a scenario with either stronger winds or an
619 equatorward shift of the SHW during the LGM is consistent with most observations but
620 cautioned that no change, or even a poleward shift, could not be ruled out. More recently,
621 Gray et al. (2023) inferred a poleward shift of the SHW during the last deglaciation from the
622 latitude of SST gradients in the Southern Ocean, which they reconstructed from a
623 compilation of planktonic $\delta^{18}\text{O}$ measurements. This reconstruction is consistent with the
624 predicted wind direction response under future warming scenarios, but opposite in sign to the
625 typical model-derived response to a decrease in sea ice described above. These results
626 suggest that the decrease in sea ice during deglaciation (Crosta et al., 2022), which would on
627 its own yield an equatorward shift in SHW, was not enough to offset the poleward tendency
628 due to climate warming. Interestingly, the proxy-reconstructed wind shift is more than 4
629 degrees of latitude greater than that predicted by any of the CMIP4/3 models investigated
630 (Gray et al., 2023). While there are many possible explanations for this discrepancy,
631 including biases in the observational constraints, one possibility is that the sea-ice effect on

632 SHW is too strong in the models, overcompensating for the warming-driven trend that shifts
633 SHW poleward.

634

635 Ice core records also suggest sea-ice variability has little impact on winds over millennial
636 time scales. Buizert et al. (2018) studied events during MIS 3, when Antarctic and Greenland
637 climates changed asynchronously (Buizert et al., 2015). Using water isotopes in five
638 Antarctic ice cores, Buizert et al. (2018) infer an equatorward shift of the SHW nearly
639 synchronous with Northern Hemisphere warming events, and, therefore out of synchrony
640 with Antarctic warming. How did Antarctic sea ice change during these millennial events that
641 affected the SHW? While no ocean-based sea-ice records exist that resolve these millennial
642 events, the sea salt sodium (ssNa) ice core proxy provides some insight. Both the European
643 Project for Ice Coring in Antarctica Dronning Maud Land (EDML)(Fischer et al., 2007) and
644 the Talos Dome Ice Core (TALDICE) (Buiron et al., 2012) show abrupt decreases in ssNa,
645 interpreted as a rapid decrease in sea-ice extent, at the start of each Antarctic warming event,
646 followed by a gradual recovery as Antarctica cooled. The ssNa signal in the five cores
647 examined by Buizert et al. (2018) is weak and not observed in all cores. Yet, the sign and
648 timing of the sea-ice signal, and its relationship to the inferred wind changes, do not support a
649 strong link between changes in sea ice and changes in atmospheric circulation over millennial
650 timescales. The sea-ice response tracks Antarctic temperature, with a decrease in extent as
651 Antarctica warmed, while the wind response was closely tied to Northern Hemisphere
652 warming. The abrupt equatorward shift in the winds therefore occurred against a backdrop of
653 increasing Antarctic sea-ice extent and was associated with abrupt Northern Hemisphere
654 warming rather than with any notable shift in Antarctic sea-ice dynamics. Rae et al. (2018)
655 highlight a similar dynamic during millennial variability of the last deglaciation: Antarctic ice
656 core deuterium suggests a northward shift of the SHW coinciding with abrupt Northern
657 Hemisphere warming (Markle et al., 2017) and preceding the Southern Hemisphere cooling
658 and increase in Antarctic sea-ice extent by about 200 years (Buizert et al., 2015). The
659 observed changes in sea ice and SHWs over millennial scales thus suggest that the expected
660 ‘sea-ice’ effect on winds is a second-order process compared to other climate feedbacks
661 associated with warming or cooling.

662

663 The available proxy record summarised above suggests sea ice does not play a primary role
664 in driving SHW variability. However, given the limitations of the proxies, the difficulty of
665 discerning leads and lags, particularly in lower resolution marine records, and the diversity of

666 model responses to greater than present sea-ice extent, the case is not closed. Given the
667 widespread teleconnections and far-field response to declining sea ice, an avenue for future
668 research is to move beyond the response of the SHW to see if a diagnostic “sea-ice
669 fingerprint” can be found across multiple parts of the climate system associated with past
670 periods of greater or lesser sea-ice extent. Such an approach would require new modelling
671 efforts to isolate the climate signature associated with sea-ice variability in past climate
672 states, both warmer and colder than present, paleo data synthesis of multiple affected proxies
673 (e.g., precipitation, temperature and potentially wind systems), and generation of new proxy
674 records from undersampled regions. Analysis of model output could help identify regions
675 where atmospheric effects are particularly sensitive to Antarctic sea-ice variability.
676

677 **5 Impact of sea ice on marine biological activity and biogeochemistry**

678 Sea ice plays an important role in regulating productivity and the cycling of climate-active
679 gases in the Southern Ocean. Sea ice also impacts biogeochemical cycles through its
680 influence on the circulation of the Southern Ocean (see section 2), which affects the supply of
681 nutrients to the productive surface ocean via upwelling, the residence time of surface water in
682 contact with the atmosphere and sunlight, and the export of intermediate waters to the global
683 ocean. In this section, we review the role of sea ice in each of these domains, integrating
684 findings from process studies, paleo proxies, and modelling studies.

685 **5.1 Impact on primary production**

686 The dominant role of sea ice in structuring Southern Ocean food webs is reflected in the
687 long-standing use of sea ice, together with oceanographic fronts, to delimit ecological zones
688 (Deppeler and Davidson, 2017; Treguer and Jacques, 1992). According to this classification,
689 the Southern Ocean is comprised of five zones, from farthest to closest to Antarctica (see Fig.
690 2): 1) the Subantarctic Zone, between the Subtropical Front and the Subantarctic Front
691 (SAF), 2) the Polar Frontal Zone, between the SAF and the Antarctic Polar Front (APF), 3)
692 the Permanently Open Ocean Zone (POOZ), between the APF and the northern limit of
693 winter sea ice, 4) the Seasonal Sea Ice Zone (SSIZ), the region between the winter maximum
694 and summer minimum in sea-ice extent, which includes the highly productive Marginal Ice

695 Zone (MIZ) at its northern limit; and 5) the Antarctic Continental Shelf Zone (CZ), a small
696 geographic zone that includes highly productive polynyas.

697 Within the sea-ice-impacted zones (i.e., poleward of the POOZ), sea ice directly influences
698 primary productivity by modulating solar radiation, providing habitat for some species by
699 acting as a source of phytoplankton to seed the marginal ice zone when the ice melts
700 (Leventer, 1998), and delivering iron at a crucial part of the growth season (Lannuzel et al.,
701 2023). Sea ice itself hosts a diverse microbial community that represents a concentrated food
702 source for zooplankton (Swadling et al., 2023). The autotrophic community is dominated by
703 diatoms, mainly large species, while also containing flagellates (Arrigo, 2014). Rates of
704 annual primary productivity within sea ice are low, representing only about 1% of the rates
705 observed in open ocean Antarctic environments POOZ and SSIZ (Arrigo et al., 1997).
706 However, productivity and biomass in sea ice are highly variable regionally, and vertically
707 within the sea ice column. Biomass within the deepest sea ice layers (often attached to the
708 base of the sea ice) can reach very high levels (Kattner et al., 2004), at times higher than in
709 surrounding waters (McMinn et al., 2010; Van Leeuwe et al., 2018). High chlorophyll
710 concentrations are observed seasonally in the MIZ, associated with the retreating ice edge
711 (Moore and Abbott, 2000; Vernet et al., 2008). However, the annual productivity of these
712 regions is lower than in the POOZ, because of less light at higher latitudes (Moore and
713 Abbott, 2000) and light limitation due to ice cover and snow cover on ice (Roukaerts et al.,
714 2016). In some regions, including the Weddell Sea, greater sea-ice growth and melt are
715 associated with elevated phytoplankton biomass in the following spring/summer, whereas
716 this relationship is absent or reversed in other regions (Giddy et al., 2023). Very high
717 phytoplankton biomass is present in polynyas, averaging twice the concentrations in the open
718 Southern Ocean (Arrigo et al., 2015). Greater sea-ice cover tends to decrease productivity in
719 polynyas while greater sea-ice melt increases productivity (Moreau et al., 2023).

720 Sea ice plays an important role in the cycling of iron in the Southern Ocean. It provides a link
721 between continental sources of iron – from glaciers, landmasses, and sediments – and the
722 high macro nutrient offshore regions where iron is needed (Lannuzel et al., 2016). Both pack
723 ice and fast ice are enriched in iron by about an order of magnitude above surface Southern
724 Ocean seawater concentrations, with fast ice, formed in closer proximity to iron sources,
725 having higher concentrations than pack ice (Lannuzel et al., 2016). Sea-ice melt in spring
726 results in a large pulse of iron being released to seawater over a short period of time

727 (Lannuzel et al., 2008). This springtime iron release coincides with increasing light levels,
728 warming, and a stabilised water column, triggering algal blooms in the seasonal ice zone
729 (Sedwick and DiTullio, 1997).

730 Across the Southern Ocean as a whole, sea ice appears to play a dominant role in regulating
731 the annual opal flux to the seafloor. Where sea ice is present for at least part of the year, the
732 length of the ice-free season determines the upper limit of opal burial in the underlying
733 sediments (Chase et al., 2015; Ragueneau et al., 2000). Indeed, some of the earliest proxies of
734 sea-ice extent were based on the association between the northern extent of the band of high
735 opal concentration in sediments – the opal belt – and the seasonal ice edge (Burckle and
736 Cirilli, 1987; Cooke and Hays, 1982).

737 Numerous marine proxy records from south of the APF suggest opal flux in this region was
738 lower during the LGM than today (Amsler et al., 2022; Bareille et al., 1998; Chase et al.,
739 2003; Jaccard et al., 2013; Kohfeld et al., 2005, 2013; Studer et al., 2015; Thöle et al., 2019).
740 In Antarctic proximal records, low productivity during the LGM is associated with increased
741 sea-ice cover (e.g., Fig. 5); productivity records such as Ba/Al are often used as chronological
742 tools given the reliably low productivity during glacial climates (Presti et al., 2011). Given
743 the sensitivity of opal flux to sea-ice season length, lower glacial opal export might be
744 attributed to an expansion of sea ice and a shorter growing season (Ghadi et al., 2020).
745 However, at some sites with lower glacial productivity, located within the POOZ today, sea
746 ice was present only during winter during glacial periods, suggesting sea ice and light
747 limitation are not the primary cause of low productivity (Jaccard et al., 2013). Furthermore,
748 higher nitrogen isotope ratios in glacial sediments from south of the APF suggest more
749 complete consumption of nitrate by the phytoplankton community (Ai et al., 2020; Francois
750 et al., 1997; Robinson et al., 2014; Studer et al., 2015). The combination of more complete
751 nitrate consumption and lower opal flux is not consistent with light limitation, either by sea
752 ice or deeper mixed layers. The proxies have instead been interpreted as a glacial decrease in
753 the vertical supply of nitrate to surface waters, sometimes referred to as near-surface
754 stratification (Francois et al., 1997; Sigman et al., 2020), caused either by a stronger halocline
755 in response to a more intense sea-ice cycle (Shin et al., 2003) and/or less intense or northward

756 shifted SHW leading to less upwelling (Galbraith and de Lavergne, 2019; Toggweiler et al.,
757 2006).

758 Ice core records of biogenic sulphur provide another means of reconstructing marine
759 productivity. Intriguingly, records from both Dome C and Dronning Maud Land, capturing
760 integrated productivity across the Indian and Atlantic sectors, respectively, suggest there was
761 minimal glacial-interglacial change in productivity in either region (Kaufmann et al., 2009),
762 in contrast to the marine sediment evidence from south of the APF summarised above.

763 However, given that marine sediment records north of the APF consistently indicate higher
764 glacial productivity, in response to Fe fertilisation (e.g., Jaccard et al., 2013; Kohfeld et al.,
765 2005), it may be that the ice cores are reflecting an averaging of these opposing signals.

766 There are also questions about how to precisely isolate the biogenic sulphate from other
767 sulphate sources including sea salt, mineral dust and volcanic inputs. A recent study
768 combined sulphate concentration and isotopic data from the EPICA ice core in Dronning
769 Maud Land to better constrain the sources of sulphate to the ice core, concluding that
770 biogenic sulphur dominates the budget and reflects productivity in the SSIZ of the Atlantic
771 sector (Fischer et al., 2025). The authors found a 16% reduction in biogenic sulphur
772 production during the last interglacial (LIG) compared to the penultimate glacial period (MIS
773 6), which they interpret as a decrease in integrated biological productivity in the region south
774 of ~50°S in the Atlantic sector. They further note an ‘intermittent’ and slight decrease in
775 biogenic sulphur production during the LIG around 126 ka, associated with peak warming
776 (Capron et al., 2014; Civel-Mazens et al., 2024; Schneider Mor et al., 2012), a minimum in
777 sea-ice extent (Chadwick et al., 2022c), and evidence for a large reduction in AABW
778 production (Hayes et al. 2014). They argue for a causal chain whereby warmer-than-present
779 temperatures during the early LIG caused a decrease in sea-ice production, which curtailed
780 AABW production and consequently decreased the upwelling of nutrient-rich CDW. A major
781 caveat of these findings is that biogenic sulphur is produced by only a subset of primary
782 producers (see section 5.2), so it may not represent total productivity. The paucity of high-
783 resolution sediment cores in the sea-ice region, challenges with dating opal and siliciclastic
784 dominated sediments, and a lack of understanding of the mechanistic links between sea ice

785 and productivity mean many questions remain about how sea ice influenced productivity
786 during past climates.

787 Even in the POOZ and SAZ, where sea ice is absent, sea ice still impacts productivity
788 indirectly. The nitrogen isotopic composition of nitrate suggests roughly half the nitrate
789 supply to the SAZ is derived from equatorward transport of surface Antarctic waters across
790 the APF (Sigman et al., 1999). Decreased nutrient utilisation in the SSIZ, associated with
791 increased sea-ice duration, should result in a greater supply of nutrients to the SAZ
792 (Matsumoto et al., 2014), all else being equal. Conversely, decreases in sea-ice duration, as
793 predicted with climate change, should result in a reduced supply of nutrients to the SAZ
794 across the APF.

795 Antarctic sea ice can also affect nutrient supply to the low-latitude oceans. Intermediate
796 waters represent an important pathway transporting nutrients from the Southern Ocean to the
797 tropical thermocline (Sarmiento et al., 2004). To the degree that sea-ice extent and transport
798 are coupled, the impact of sea-ice dynamics on nutrient export from the Southern Ocean may
799 therefore involve complementary physical and biological mechanisms. A decrease in sea-ice
800 extent and meltwater transport would reduce the production of intermediate waters and could
801 also reduce their nutrient content by encouraging greater nutrient drawdown in southern
802 source waters. In contrast to this view, Crosta et al. (2007) argue that during the LGM, the
803 increase in biologically-driven silicic acid leakage from the Southern Ocean was
804 accompanied by a decrease in intermediate water production, such that the biological and
805 physical processes acted in opposition. The extent to which decreasing sea ice in the Southern
806 Ocean could lead to altered nutrient supply to the tropics should be further investigated as it
807 has important consequences for low-latitude biological productivity and carbon cycling under
808 future climates.

809 **5.2 Production of climate-active dimethyl sulphide**

810 Biological processes occurring within sea ice are important to the global sulphur cycle
811 through their impact on the flux of dimethyl sulphide (DMS) to the atmosphere. DMS is a
812 semi-volatile sulphur compound produced in ocean surface waters primarily by the
813 degradation of dimethylsulphoniopropionate (DMSP), a compound produced by algae in
814 response to nutrient, light, thermal, and osmotic stress (Malin and Erst, 1997). The oxidation
815 of DMS produces sulphate aerosols, which act as cloud condensation nuclei and are therefore
816 important in regulating precipitation and albedo (Charlson et al., 1987). Within the Southern

817 Ocean, which is the largest natural source of DMS to the atmosphere (Lana et al., 2011),
818 DMSP is produced by phytoplankton in both open ocean and sea-ice environments.
819 Haptophytes such as *Phaeocystis* spp. are considered strong producers of DMSP while
820 diatoms are believed to be weak producers (Kirst et al., 1991). Sea ice can accumulate high
821 levels of DMS, as algal production of DMSP is elevated in sea ice, and high grazing rates
822 convert DMSP to DMS within the sea-ice environment (Kirst et al., 1991). Sea-ice algae may
823 also release DMSP during ice melt, in response to rapidly decreasing salinity (Trevena and
824 Jones, 2006). For these reasons, very large fluxes of DMS to the atmosphere can occur during
825 the spring ice melt (Webb et al., 2019). High concentrations of DMS have also been observed
826 in low salinity lenses associated with stratified conditions in sea-ice leads in the Southern
827 Ocean (Zemmelink et al., 2005), likely associated with similar biogeochemical conditions as
828 found during the spring melt.

829 Given its climate-active status, and its link to marine productivity, there has been much
830 interest in reconstructing past changes in DMS emissions using ice core records. Indeed, the
831 methanesulphonic acid (MSA) sea-ice proxy (Crosta et al. 2022) is based on the association
832 between MSA and DMS, and between DMS production and sea-ice extent. However, MSA
833 has a preservation bias in ice cores and is not suitable for long-term reconstructions (e.g.
834 Weller et al., 2004). Non-sea salt sulphate (nssSO₄) in Antarctic ice cores is also derived
835 primarily from the oxidation of marine biogenic DMS and shows no post-depositional loss,
836 offering a more robust reconstruction of DMS fluxes (Wolff et al., 2010). Remarkably, the
837 flux of nssSO₄ in the EPICA Dome C ice core is very constant (within 15%) over the past
838 800,000 years and shows no glacial-interglacial variability (Wolff et al., 2010). If this
839 minimal variability in nssSO₄ is interpreted parsimoniously as indicating a constant
840 production of DMS south of the Antarctic Polar Front across multiple glacial cycles, it
841 suggests that the sulphur cycle was minimally impacted by sea-ice variability and was likely
842 not important in climate feedbacks over this time (Wolff et al., 2006). As discussed above, a
843 more recent and comprehensive study of sulphate sources to Dronning Maud Land, including
844 isotopic information, finds evidence for a slight decrease in biogenic sulphur emissions
845 during the last interglacial compared to the last glacial period (Fisher et al. 2024).

846 **6 Sea ice and glacial-interglacial changes in the carbon cycle**

847 Because of its influence on air-sea gas exchange, stratification, and ocean circulation,
848 Antarctic sea ice can modulate oceanic carbon storage over glacial-interglacial timescales.

849 Indeed, it is reasonable to hypothesise that the close correspondence between Antarctic
850 temperature and atmospheric CO₂ during the Pleistocene (EPICA Community Members,
851 2004; Fig. 4b) is mediated through the influence of Antarctic sea ice, and the multiple
852 mechanisms by which it influences the global carbon cycle. Here, we summarise current
853 thinking on the link between sea ice and atmospheric CO₂ on glacial-interglacial timescales.

854 The most direct way for sea ice to impact the carbon cycle is by restricting sea-to-air flux of
855 CO₂. Laboratory experiments (Loose and Schlosser, 2011) and the ²²²Ra inventory method
856 (Rutgers Van Der Loeff et al., 2014) have confirmed that under conditions of near-complete
857 ice cover, gas exchange is reduced by about an order of magnitude compared to open ocean
858 conditions. This ‘capping’ effect was first proposed by Stephens and Keeling (2000) as a
859 mechanism to explain the low glacial atmospheric CO₂ levels. Using a box model, they
860 showed that a reduction in atmospheric CO₂ of 67 ppm can be achieved if the open ocean
861 area south of the APF is reduced to 10% of its pre-industrial value. Such a large increase in
862 sea-ice extent is unrealistic given diatom proxy data indicate that glacial summer sea-ice
863 extent was comparable to modern day (Benz et al., 2016; Burckle et al., 1982; Gersonde et
864 al., 2005; Lhardy et al., 2021). Additionally, the effectiveness of the blocking mechanism is
865 limited because greater areal coverage of sea ice results in higher surface ocean dissolved
866 inorganic carbon concentrations, which in turn increases the sea-to-air CO₂ gradient and
867 fluxes (Morales Maqueda, 2002). Indeed, subsequent work found that the response of pCO₂
868 to Antarctic sea ice is much greater in box models than in ocean general circulation models
869 (Archer et al., 2003; Gottschalk et al., 2019).

870 The lack of knowledge on physical processes of gas exchange in areas of open water adjacent
871 to sea ice adds more uncertainty to the capping hypothesis. Typically, gas exchange under
872 conditions of partial ice cover is estimated by applying a linear dependence of gas exchange
873 on the fraction of open water (Takahashi et al. 2009), based on the assumption that gas
874 exchange in the surrounding open waters proceeds at the same wind-speed dependent rate
875 that it does in the absence of ice. The validity of this assumption is not clear. A study of CO₂
876 exchange in the Southern Ocean based on the eddy covariance technique (Butterworth and
877 Miller, 2016) found generally good agreement with the linear scaling assumption. However,
878 laboratory experiments suggest gas exchange in open water near sea ice is enhanced 50-70%
879 relative to open waters with no ice present (Loose et al., 2014, 2016), indicating that an
880 assumption of linear dependence on open water area underestimates the true rate of gas

881 exchange. In contrast, a study of gas exchange in the Arctic based on ^{222}Ra inventories found
882 the assumption of a linear dependence on open water results in overestimates of the rate of
883 gas exchange (Rutgers Van Der Loeff et al., 2014).

884 One objection to the capping hypothesis is that decreased productivity and carbon uptake by
885 phytoplankton due to the greater light limitation would counter the reduction in sea to air CO_2
886 flux due to greater sea-ice cover (Gupta et al., 2020; Kurahashi-Nakamura et al., 2007; Sun
887 and Matsumoto, 2010). Proxy data show decreased carbon export in the Antarctic Zone
888 during the glacial period (e.g., Kohfeld et al., 2005), supporting the suggestion that the gas
889 exchange and light impacts of sea ice may have offset each other. However, as discussed
890 above, the combination of reduced export and increased nutrient utilisation is inconsistent
891 with light limitation and has instead been attributed to a decrease in the supply of nutrients to
892 the surface (Francois et al., 1997; Jaccard et al., 2013; Sigman and Boyle, 2000). A decrease
893 in vertical nutrient supply could enhance ocean carbon sequestration despite lower export
894 production, by limiting the supply of carbon-rich waters to the surface.

895 A more active sea-ice cycle during the glacial period may have induced surface stratification
896 that decreased nutrient supply and favoured ocean carbon sequestration. An intensified sea-
897 ice cycle may have caused the decrease in surface nutrient supply, by producing a low-
898 salinity lid in regions of net ice melt, leading to increased density stratification of the surface
899 ocean (Francois et al., 1997; Sigman and Boyle, 2000, 2001). Greater surface stratification
900 during summer may have even promoted a short but highly productive growing season,
901 further limiting CO_2 outgassing (Moore et al. 2000). The production and vertical export of
902 highly concentrated brines off the shelf may have also freshened the surface and induced
903 stratification even in regions of net ice production (Bouttes et al., 2010; Sigman et al., 2020).
904 The combination of reduced supply and increased consumption of nutrients, and by extension
905 dissolved inorganic carbon, would act to strongly limit the amount of CO_2 allowed to escape
906 from the Antarctic Zone.

907 Brine rejection may have also increased ocean carbon storage by increasing deep-ocean
908 stratification and reorganizing deep-ocean circulation (Bouttes et al., 2010; Ferrari et al.,
909 2014; Jansen, 2017; Jansen and Nadeau, 2016), as described section 2. In idealised
910 experiments, either an increase in sea-ice extent or an increase in sea-ice formation rate leads
911 to a reorganisation of the overturning circulation, such that upwelling CDW encounters
912 greater sea-ice cover, providing less opportunity for gas exchange (Ferreira et al., 2018;

913 Nadeau et al., 2019). In the model experiments, the simulated increase in idealised water
914 mass age, a tracer that is sensitive to air-sea exchange, was due almost entirely to restricted
915 gas exchange beneath sea ice rather than to slower overturning (Nadeau et al., 2019). This
916 inference based on models is consistent with radiocarbon evidence, which indicates a
917 significant increase in the global mean radiocarbon ‘age’ of the ocean (Skinner et al., 2017),
918 with a significant contribution from increased surface reservoir ages (i.e. ‘preformed
919 radiocarbon ages’) (Skinner et al., 2023). The key difference from the initial Stephens and
920 Keeling (2000) proposal is the coupling of sea ice capping with a change in the overturning
921 circulation, which provides a mechanism for restricting the upwelling to occur beneath ice
922 cover, thus strongly limiting the opportunity for CO₂ to escape to the atmosphere.

923 Marzocchi and Jansen (2019) demonstrated that a 40 ppm reduction in atmospheric CO₂ can
924 be induced in an idealised model forced only with atmospheric cooling. In their model, as in
925 the idealised modelling of Ferreira et al. (2018), the dominant mechanism of glacial CO₂
926 lowering is the strengthening of the “disequilibrium pump”, in other words, the suppression
927 of air-sea gas exchange under expanded sea ice. Importantly, the impact of sea ice on
928 disequilibrium is only apparent when LGM sea ice and circulation act together, such that
929 DIC-rich waters only upwell to the surface mostly beneath sea ice (Marzocchi and Jansen,
930 2019; Nadeau et al., 2019). A similar premise underlies proposals for a water-mass
931 “volumetric effect” on marine carbon sequestration (Skinner, 2009), which would operate via
932 the maintenance of high “disequilibrium DIC” levels in southern-sourced waters (Eggleson
933 and Galbraith, 2018), in particular via sea-ice effects in a glacial climate state (Galbraith and
934 de Lavergne, 2019). This interaction between sea ice and circulation may explain why the
935 largest decrease in atmospheric CO₂ occurred at the MIS 5-4 boundary, when both sea ice
936 (Chadwick et al., 2022a) and circulation experienced large changes (Kohfeld and Chase
937 2017). A similar argument would apply to CO₂ rise across the last deglaciation (e.g., Rae et
938 al., 2018).

939 The glacial inception at the MIS5e to 5d boundary (115 – 125 ka) provides another example
940 of the importance of coupled changes in sea ice and circulation to affect atmospheric CO₂. Ai
941 et al. (2020) noted that during the initiation of the most recent glacial cycle, Antarctic
942 temperature and sea ice (based on the ssNa ice core proxy) began to transition to the glacial
943 state (i.e., decreased temperature and increased sea ice) about 3 ka before CO₂ began to
944 decrease (Fig. 4b). The lag between the expansion of sea ice and the decrease in CO₂

945 suggests the direct effect of sea ice in blocking gas exchange is not, on its own, sufficient to
946 decrease atmospheric CO₂ (in particular for moderate changes in sea-ice extent). But it is
947 worth noting that the sediment-core based sea-ice reconstruction diverges from the ice-core
948 based reconstruction during this time period (Fig. 4a), with the sediment-based reconstruction
949 showing a more gradual increase in sea ice that better tracks atmospheric CO₂, suggesting a
950 role for sea ice in the absence of circulation changes. The finding of progressively greater
951 carbon storage in the deep South Atlantic, first during MIS 5d and then during the MIS 5-4
952 transition (Garity and Lund, 2025), both of which were times of expanding sea ice cover (Fig.
953 4), is consistent with the sea-ice capping mechanism. More sea-ice reconstructions from the
954 glacial inception are needed to resolve the potential contribution of increasing sea ice in
955 driving the associated CO₂ decline.

956 A major caveat is that the models that show large sea ice impacts on oceanic overturning
957 circulation and carbon storage are highly idealised. The models either lack a seasonal cycle,
958 or have a seasonal cycle (Ferreira et al., 2018) but with more summer sea ice than indicated
959 by the proxy record (Gersonde et al., 2005), or lack details of inter-basin differences. Results
960 from more complex models show a variable response of CO₂ to sea-ice. A coarse resolution
961 earth system model suggests there is considerable scope for sea ice to limit the release of CO₂
962 from the upwelling of CDW (Stein et al., 2020). These authors simulated a 10-fold decrease
963 in the timescale for air-sea interaction during peak glacial climate, due both to increased sea-
964 ice coverage blocking gas exchange and due to a reduction in surface water residence time.
965 The sea-ice related carbon sequestration estimated by Stein et al. (2020) agrees well with that
966 estimated by Marzocchi and Jansen (2019) and Ferreira (2018). In contrast, using a more
967 complex model, Khatiwala et al. (2019) conducted a series of experiments to isolate different
968 mechanisms of CO₂ change between glacial and interglacial states. They found that expanded
969 sea ice led to a slight *decrease* in ocean carbon uptake, in response to a dominant effect of
970 reduced biological carbon uptake, as suggested by Sun and Matsumoto (2010). Isolating the
971 effects of sea ice in model experiments can be challenging (Kohfeld and Ridgwell, 2009) and
972 clearly there is model to model variability, even amongst models that appear to be consistent
973 with available (and sufficiently ambiguous) proxy evidence. Future model sensitivity and
974 model-proxy comparisons studies focused on the amount and seasonality of sea ice required

975 to initiate changes in the overturning circulation are needed to constrain the impact of sea ice
976 on the carbon cycle.

977 **7 Summary and perspective**

978 This review has highlighted the central role of sea ice in many sectors of the climate system,
979 including the atmosphere, ocean, cryosphere, and biosphere (Table 1). While we focus here
980 on modern studies, as well as paleo-records spanning the last glacial cycle (150 – 0 ka), the
981 processes described are also applicable to more ancient, recent, and future conditions. The
982 paleo data provide a foundation that supports our understanding of the diminishing sea ice we
983 are observing in the Southern Ocean today. What are the implications of decreased sea-ice
984 coverage for ocean and atmosphere circulation, nutrient distributions, and biological
985 productivity, both in the Southern Ocean and in more distal regions of the world's oceans?
986 How will carbon fluxes and carbon storage be impacted? Answers to these questions are
987 complicated because the inter-relationships are complex, and our existing data sets are far
988 from complete and often present ambiguous, under-determined or conflicting interpretations.
989 Paleoclimate data shed light on how these interactions have played out in the past, which
990 furthers our understanding of the processes involved and the interconnections between
991 Antarctic sea ice and other parts of the climate system. We note, however, that climate
992 system changes observed in response to sea-ice decline from a glacial to an interglacial state
993 may not be the same as the response to current and future decreases in sea ice. To increase
994 our knowledge and further improve our understanding, we need paleo-records with higher
995 temporal resolution and better chronologic control in more areas of the Southern Ocean. A
996 focus on millennial-scale warming events and warmer-than-present interglacial periods, is
997 particularly relevant to future projections. As we gain a better understanding of the changes
998 in the Southern Ocean across the whole of the last glacial cycle and across multiple,
999 interconnected components of the Earth system, we build towards a valuable dataset against
1000 which to evaluate climate models.

1001 **Author contributions**

1002 ZC: Conceptualization, Visualization, Writing – original draft, Writing – review & editing;
1003 KEK: Conceptualization, Funding acquisition, Project administration, Writing – original
1004 draft, Writing – review & editing; AL: Conceptualization, Funding acquisition, Writing –
1005 original draft, Writing – review & editing; DL: Conceptualization, Writing – original draft,

1006 Writing – review & editing; XC: Conceptualization, Funding acquisition, Writing – original
1007 draft, Writing – review & editing; LM: Conceptualization, Writing – original draft, Writing –
1008 review & editing; HCB: Conceptualization, Funding acquisition, Writing – original draft,
1009 Writing – review & editing; MC: Conceptualization, Writing – review & editing; SLJ:
1010 Conceptualization, Writing – review & editing; JJ: Conceptualization, Writing – review &
1011 editing; AM: Conceptualization, Funding acquisition, Writing – review & editing; KJM:
1012 Conceptualization, Funding acquisition, Writing – review & editing; ES: Conceptualization;
1013 LCS: Conceptualization, Writing – original draft, Writing – review & editing; LS:
1014 Conceptualization, Writing – review & editing

1015 **Competing interests**

1016 Some authors are members of the editorial board of Climate of the Past.

1017 **Acknowledgements**

1018 This work was conducted as part of the Cycles of Sea-Ice Dynamics in the Earth system (C-
1019 SIDE) Past Global Changes (PAGES) scientific working group; this paper benefited from
1020 discussions with participants at two C-SIDE. We thank Stacey McCormack for help drafting
1021 Figure 1 and Will Hobbs for discussions.

1022 **Financial Support**

1023 Past Global Changes (PAGES) working group funding for PAGES

1024 KEK was supported by Canadian National Science and Engineering Research Council
1025 Individual Discovery Grants RGPINs 2018-04201 and 2024-05557

1026 AM was supported by NERC grant NE/Z504166/1.

1027 ZC and LM were supported by the Australian Research Council Special Research Initiative,
1028 Australian Centre for Excellence in Antarctic Science (Project Number SR200100008)

Table 1: Summary of expected impacts of sea ice decline on components of the earth system, the paleo evidence and the associated uncertainties.

Earth system component	Expected impact of decreased sea ice	Paleo evidence <i>Evidence counter to the expectation is presented in italics</i>	Uncertainties
Ocean – upper cell	Shoaling predicted with future warming but deepening with deglacial warming (Li et al. 2021)	Deeper AAIW in SW Pacific Ocean during warm climates (e.g., Ronge et al., 2015) Decreased AAIW presence linked temporally to sea ice contraction (Jones et al. 2022; Fig. 4)	Reconstructing production rates from paleo evidence is difficult In the southeast Pacific, there is disagreement among the proxy evidence.
Ocean – lower cell	Decreased AABW production	Water mass tracers show the boundary between AABW and NADW deepened during Termination I and shoaled during the LGM (e.g., Oppo et al. 2018) <i>Benthic $\delta^{18}\text{O}$ shows the boundary between AABW and NADW shoaled during Termination II (Shub et al., 2024)</i> <i>Deglacial Mn peaks close to Antarctica (e.g., Wu et al. 2019; Jimenez-Espejo et al. 2020) suggest reinvigoration of AABW production with warming</i>	Reconstructing production rates from paleo evidence is difficult Same response could be driven by density changes in NADW (Hines et al. 2019). PMIP models show no relationship between sea ice extent and NADW/AABW boundary depth (Green et al. 2022) Bottom water oxygen changes can have multiple sources Bottom water formation is not well represented in models

Ice sheets and ice shelves	Loss of ice shelf buttressing (Massom et al. 2018) Warming of waters that enter ice shelf cavities and accelerate melting (Naughten et al. 2018)	Sea ice decline precedes ice sheet decline during last termination (Fig 5 Pesjak et al. 2023) <i>In some cases, sea ice appears to respond to glacial ice melt, in some cases increasing with increased input of glacial meltwater (e.g., Crosta et al. 2018)</i>	Limited paleo evidence proximal to Antarctica Hard to distinguishing glacial ice from perennial sea ice
Atmosphere	Weakened and northward-shifted SHW	<i>SHW shifted south with deglacial warming (Gray et al. 2023), opposite to sea ice effect. Do CMIP models underestimate the deglacial SHW shift due to the sea ice retreat?</i> <i>SHW shifted north during millennial-scale Antarctic cooling, more closely linked to NH warming (Buizert et al. 2018).</i>	Difficult to isolate the effect of sea ice as it is opposite the warming effect Paleo-reconstruction of wind is challenging
Biological productivity	Increased light could increase biological productivity while reduced iron or reduced upwelling of macro-nutrients could hinder biological productivity	Close to Antarctica and poleward of the APF marine sediment records generally show higher productivity during interglacial periods (Kohfeld et al. 2005) Ice core biogenic sulphur record suggests lower productivity in the Atlantic seasonal sea ice zone during last interglacial period, compared to the preceding glacial (Fisher et al. 2024)	Relatively few well-dated marine records far south of the APF Biogenic sulphate does not represent all primary producers

DMS	Less DMS production	Biogenic sulphate production decreased by 16% during the last interglacial period compared to the preceding glacial (Fisher et al. 2024)	Atlantic sector only
Carbon cycle	Less ocean storage of carbon especially if coupled to circulation changes (Marzocchi and Jansen 2019)	Largest glacial drop in CO ₂ occurs at MIS5-4 boundary, when sea ice and circulation change together (Kohfeld and Chase 2015) <i>At glacial inception, sea ice increases before CO₂ drops (Ai et al. 2020)</i>	Difficult to isolate and quantify multiple countervailing effects of sea ice (gas-exchange versus biological productivity) in models, but most studies suggest a limited direct impact of sea-ice changes on atmospheric CO ₂ (e.g., Gottschalk et al., 2019, Choudhury et al., 2022). Difference between sediment and ice core reconstructions of sea ice (see Fig. 4). New sediment-based reconstruction of sea-ice tracks CO ₂ better.

References

Abernathay, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, *Nature Geoscience*, 9, 596–601, <https://doi.org/10.1038/ngeo2749>, 2016.

Adkins, J. F., McIntyre, K., and Schrag, D. P.: The salinity, temperature, and $\delta^{18}\text{O}$ of the glacial deep ocean, *Science* (New York, N.Y.), 298, 1769–73, <https://doi.org/10.1126/science.1076252>, 2002.

Ai, X. E., Studer, A. S., Sigman, D. M., Martínez-García, A., Fripiat, F., Schmitt, M., Oleynik, S., Jaccard, S. L., and Haug, G. H.: Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO₂ change, 1, 1348–1352, 2020.

Amsler, H. E., Thöle, L. M., Stimac, I., Geibert, W., Ikebara, M., Kuhn, G., Esper, O., and Jaccard, S. L.: Bottom water oxygenation changes in the southwestern Indian Ocean as an indicator for enhanced resired carbon storage since the last glacial inception, *Climate of the Past*, 18, 1797–1813, <https://doi.org/10.5194/cp-18-1797-2022>, 2022.

Anderson, R. F., Sachs, J. P., Fleisher, M. Q., Allen, K. A., Yu, J., Koutavas, A., and Jaccard, S. L.: Deep-Sea oxygen depletion and ocean carbon sequestration during the last ice age, *Global Biogeochemical Cycles*, 33, 301–317, <https://doi.org/10.1029/2018GB006049>, 2019.

Archer, D. E., Martin, P. a., Milovich, J., Brovkin, V., Plattner, G.-K., and Ashendel, C.: Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO₂, *Paleoceanography*, 18, <https://doi.org/10.1029/2002PA000760>, 2003.

Arrigo, K. R.: Sea Ice Ecosystems, *Annual Review of Marine Science*, 6, 439–467, <https://doi.org/10.1146/annurev-marine-010213-135103>, 2014.

Arrigo, K. R., Worthen, D. L., Lizotte, M. P., Dixon, P., and Dieckmann, G.: Primary production in Antarctic sea ice, *Science*, 276, 394–397, <https://doi.org/10.1126/science.276.5311.394>, 1997.

Arrigo, K. R., Van Dijken, G. L., and Strong, A. L.: Environmental controls of marine productivity hot spots around Antarctica, *JGR Oceans*, 120, 5545–5565, <https://doi.org/10.1002/2015JC010888>, 2015.

Ashley, K. E., McKay, R., Etourneau, J., Jimenez-Espejo, F. J., Condron, A., Albot, A., Crosta, X., Riesselman, C., Seki, O., Massé, G., Golledge, N. R., Gasson, E., Lowry, D. P., Barrand, N. E., Johnson, K., Bertler, N., Escutia, C., Dunbar, R., and Bendle, J. A.: Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat, *Clim. Past*, 17, 1–19, <https://doi.org/10.5194/cp-17-1-2021>, 2021.

Ayres, H. C., Screen, J. A., Blockley, E. W., and Bracegirdle, T. J.: The coupled atmosphere–ocean response to Antarctic sea ice loss, *Journal of Climate*, 35, 4665–4685, <https://doi.org/10.1175/JCLI-D-21-0918.1>, 2022.

Barber, D. G. and Massom, R. A.: Chapter 1 The Role of Sea Ice in Arctic and Antarctic Polynyas, in: Elsevier Oceanography Series, vol. 74, Elsevier, 1–54, [https://doi.org/10.1016/S0422-9894\(06\)74001-6](https://doi.org/10.1016/S0422-9894(06)74001-6), 2007.

Bareille, G., Labracherie, M., Bertrand, P., Labeyrie, L., Lavaux, G., and Dignan, M.: Glacial-interglacial changes in the accumulation rates of major biogenic components in Southern Indian Ocean sediments, *Journal of Marine Systems*, 17, 527–539, 1998.

Bassis, J. N., Berg, B., Crawford, A. J., and Benn, D. I.: Transition to marine ice cliff instability controlled by ice thickness gradients and velocity, *Science*, 372, 1342–1344, <https://doi.org/10.1126/science.abf6271>, 2021.

Bentley, M. J., Ocofaigh, C., Anderson, J. B., Conway, H., Davies, B., Graham, A. G. C., Hillenbrand, C. D., Hodgson, D. A., Jamieson, S. S. R., Larter, R. D., Mackintosh, A., Smith, J. A., Verleyen, E., Ackert, R. P., Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X., Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W., Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K., Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L., Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M., Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y., Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J., Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney, R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J., Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D., Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman, W., Wagner, B., White, D. A., Witte, A. E., and Zwartz, D.: A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum, *Quaternary Science Reviews*, 100, 1–9, <https://doi.org/10.1016/j.quascirev.2014.06.025>, 2014.

Benz, V., Esper, O., Gersonde, R., Lamy, F., and Tiedemann, R.: Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean, *Quaternary Science Reviews*, 146, 216–237, <https://doi.org/10.1016/j.quascirev.2016.06.006>, 2016.

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO₂ record from 800 to 600 kyr before present, <https://doi.org/10.1002/2014GL061957>, 2015.

Bintanja, R., Van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., and Katsman, C. A.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, *Nature Geosci*, 6, 376–379, <https://doi.org/10.1038/ngeo1767>, 2013.

Bintanja, R., Van Oldenborgh, G. J., and Katsman, C. A.: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice, *Ann. Glaciol.*, 56, 120–126, <https://doi.org/10.3189/2015AoG69A001>, 2015.

Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial carbon cycle, *Clim. Past*, 6, 575–589, <https://doi.org/10.5194/cp-6-575-2010>, 2010.

Bromirski, P. D., Sergienko, O. V., and MacAyeal, D. R.: Transoceanic infragravity waves impacting Antarctic ice shelves, *Geophysical Research Letters*, 37, 2009GL041488, <https://doi.org/10.1029/2009GL041488>, 2010.

Buiron, D., Stenni, B., Chappellaz, J., Landais, A., Baumgartner, M., Bonazza, M., Capron, E., Frezzotti, M., Kageyama, M., Lemieux-Dudon, B., Masson-Delmotte, V., Parrenin, F., Schilt, A., Selmo, E., Severi, M., Swingedouw, D., and Udisti, R.: Regional imprints of millennial variability during the MIS 3 period around Antarctica, *Quaternary Science Reviews*, 48, 99–112, <https://doi.org/10.1016/j.quascirev.2012.05.023>, 2012.

Buizert, C., Adrian, B., Ahn, J., Albert, M., Alley, R. B., Baggenstos, D., Bauska, T. K., Bay, R. C., Bencivengo, B. B., Bentley, C. R., Brook, E. J., Chellman, N. J., Clow, G. D., Cole-Dai, J., Conway, H., Cravens, E., Cuffey, K. M., Dunbar, N. W., Edwards, J. S., Fegyveresi, J. M., Ferris, D. G., Fitzpatrick, J. J., Fudge, T. J., Gibson, C. J., Gkinis, V., Goetz, J. J., Gregory, S., Hargreaves, G. M., Iverson, N., Johnson, J. A., Jones, T. R., Kalk, M. L., Kippenhan, M. J., Koffman, B. G., Kreutz, K., Kuhl, T. W., Lebar, D. A., Lee, J. E., Marcott, S. A., Markle, B. R., Maselli, O. J., McConnell, J. R., McGwire, K. C., Mitchell, L. E., Mortensen, N. B., Neff, P. D., Nishizumi, K., Nunn, R. M., Orsi, A. J., Pasteris, D. R., Pedro, J. B., Pettit, E. C., Price, P. B., Priscu, J. C., Rhodes, R. H., Rosen, J. L., Schauer, A. J., Schoenemann, S. W., Sendelbach, P. J., Severinghaus, J. P., Shturmakov, A. J., Sigl, M., Slawny, K. R., Souney, J. M., Sowers, T. A., Spencer, M. K., Steig, E. J., Taylor, K. C., Twickler, M. S., Vaughn, B. H., Voigt, D. E., Waddington, E. D., Welten, K. C., Wendricks, A. W., White, J. W. C., Winstrup, M., Wong, G. J., and Woodruff, T. E.: Precise interpolar phasing of abrupt climate change during the last ice age, *Nature*, 520, 661–665, <https://doi.org/10.1038/nature14401>, 2015.

Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J., McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K., Fujita, S., Motoyama, H., Hirabayashi, M., Uemura, R., Stenni, B., Parrenin, F., He, F., Fudge, T. J., and Steig, E. J.: Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north, *Nature*, 563, 681–685, <https://doi.org/10.1038/s41586-018-0727-5>, 2018.

Burckle, L. H. and Cirilli, J.: Origin of diatom ooze belt in the Southern Ocean: Implications for late Quaternary paleoceanography, *Micropaleontology*, 33, 82–86, 1987.

Burckle, L. H., Robinson, D., and Cooke, D.: Reappraisal of sea-ice distribution in Atlantic and Pacific sectors of the Southern Ocean at 18,000 yr BP, *Nature*, 299, 435–437, <https://doi.org/10.1038/299435a0>, 1982.

Butterworth, B. J. and Miller, S. D.: Air-Sea Carbon Dioxide Exchange in the Southern Ocean and Antarctic Sea Ice Zone, *Geophysical Research Letters*, 43, 7223–7230, <https://doi.org/10.1002/2016GL069581>. Received, 2016.

Caburlotto, A., Lucchi, R. G., de Santis, L., Macri, P., and Tolotti, R.: Sedimentary processes on the Wilkes Land continental rise reflect changes in glacial dynamic and bottom water flow, *International Journal of Earth Sciences*, 99, 909–926, <https://doi.org/10.1007/s00531-009-0422-8>, 2010.

Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner, B., Rasmussen, T. L., Sime, L. C., Waelbroeck, C., and Wolff, E. W.: Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last interglacial, *Quaternary Science Reviews*, 103, 116–133, <https://doi.org/10.1016/j.quascirev.2014.08.018>, 2014.

Capron, E., Govin, A., Feng, R., Otto-Bliesner, B. L., and Wolff, E. W.: Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions, *Quaternary Science Reviews*, 168, 137–150, <https://doi.org/10.1016/j.quascirev.2017.04.019>, 2017.

Chadwick, M., Allen, C. S., Sime, L. C., and Hillenbrand, C. D.: Analysing the timing of peak warming and minimum winter sea-ice extent in the Southern Ocean during MIS 5e, *Quaternary Science Reviews*, 229, 106134–106134, <https://doi.org/10.1016/j.quascirev.2019.106134>, 2020.

Chadwick, M., Crosta, X., Esper, O., Thöle, L., and Kohfeld, K. E.: Compilation of Southern Ocean sea-ice records covering the last glacial-interglacial cycle (12–130 ka), *Clim. Past*, 18, 1815–1829, <https://doi.org/10.5194/cp-18-1815-2022>, 2022a.

Chadwick, M., Allen, C. S., Sime, L. C., Crosta, X., and Hillenbrand, C.-D.: How does the Southern Ocean palaeoenvironment during Marine Isotope Stage 5e compare to the modern?, *Marine Micropaleontology*, 170, 102066, <https://doi.org/10.1016/j.marmicro.2021.102066>, 2022b.

Chadwick, M., Allen, C. S., Sime, L. C., Crosta, X., and Hillenbrand, C.-D.: Reconstructing Antarctic winter sea-ice extent during Marine Isotope Stage 5e, *Clim. Past*, 18, 129–146, <https://doi.org/10.5194/cp-18-129-2022>, 2022c.

Chadwick, M., Sime, L. C., Allen, C. S., and Guarino, M. -V.: Model-Data Comparison of Antarctic Winter Sea-Ice Extent and Southern Ocean Sea-Surface Temperatures During Marine Isotope Stage 5e, *Paleoceanography and Paleoclimatology*, 38, e2022PA004600, <https://doi.org/10.1029/2022PA004600>, 2023.

Chandler, D. and Langebroek, P.: Southern Ocean sea surface temperature synthesis: Part 2. Penultimate glacial and last interglacial, *Quaternary Science Reviews*, 271, 107190, <https://doi.org/10.1016/j.quascirev.2021.107190>, 2021.

Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, *Nature*, 326, 655–661, <https://doi.org/10.1038/326655a0>, 1987.

Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years, *Deep-Sea Research Part II: Topical Studies in Oceanography*, 50, 799–832, [https://doi.org/10.1016/S0967-0645\(02\)00595-7](https://doi.org/10.1016/S0967-0645(02)00595-7), 2003.

Chase, Z., Kohfeld, K. E., and Matsumoto, K.: Controls on biogenic silica burial in the Southern Ocean, *Global Biogeochemical Cycles*, 29, <https://doi.org/10.1002/2015GB005186>, 2015.

Christie, F. D. W., Benham, T. J., Batchelor, C. L., Rack, W., Montelli, A., and Dowdeswell, J. A.: Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation, *Nat. Geosci.*, 15, 356–362, <https://doi.org/10.1038/s41561-022-00938-x>, 2022.

Civé-Mazens, M., Crosta, X., Cortese, G., Lowe, V., Itaki, T., Ikehara, M., and Kohfeld, K.: Subantarctic jet migrations regulate vertical mixing in the Southern Indian, *Earth and Planetary Science Letters*, 642, 118877, <https://doi.org/10.1016/j.epsl.2024.118877>, 2024.

Cooke, D. W. and Hays, J. D.: Estimates of Antarctic Ocean seasonal sea-ice cover during glacial intervals., in: Antarctic geoscience. 3rd symposium on Antarctic geology and geophysics, Madison, August 1977, edited by: Craddock, C., University of Wisconsin Press, Madison, Wisconsin, 1017–1025, 1982.

Crespin, J., Yam, R., Crosta, X., Massé, G., Schmidt, S., Campagne, P., and Shemesh, A.: Holocene glacial discharge fluctuations and recent instability in East Antarctica, *Earth and Planetary Science Letters*, 394, 38–47, <https://doi.org/10.1016/j.epsl.2014.03.009>, 2014.

Crosta, X., Beucher, C., Pahnke, K., and Brzezinski, M. a.: Silicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic circulation, *Geophysical Research Letters*, 34, L13601–L13601, <https://doi.org/10.1029/2006GL029083>, 2007.

Crosta, X., Crespin, J., Swingedouw, D., Marti, O., Masson-Delmotte, V., Etourneau, J., Goosse, H., Braconnot, P., Yam, R., Brailovski, I., and Shemesh, A.: Ocean as the main driver of Antarctic ice sheet retreat during the Holocene, *Global and Planetary Change*, 166, 62–74, <https://doi.org/10.1016/j.gloplacha.2018.04.007>, 2018.

Crosta, X., Kohfeld, K. E., Bostock, H. C., Chadwick, M., Vivier, A. D., Esper, O., Etourneau, J., Jones, J., Leventer, A., Müller, J., Rhodes, R. H., Allen, C. S., Ghadi, P., Lamping, N., Lange, C. B., Lawler, K. A., Lund, D., Marzocchi, A., Meissner, K. J., Menviel, L., Nair, A., Patterson, M., Pike, J., Prebble, J. G., Riesselman, C., Sadatzki, H., Sime, L. C., Shukla, S. K., Thöle, L., Vorrath, M. E., Xiao, W., and Yang, J.: Antarctic sea ice over the past 130 000 years - Part 1: a review of what proxy records tell us, *Climate of the Past*, 18, 1729–1756, <https://doi.org/10.5194/cp-18-1729-2022>, 2022.

Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution of $\delta^{13}\text{C}$ of ΣCO_2 in the western Atlantic Ocean, *Paleoceanography*, 20, 1–12, <https://doi.org/10.1029/2004PA001021>, 2005.

De Boer, A. M. and Hogg, A. M. C.: Control of the glacial carbon budget by topographically induced mixing, *Geophysical Research Letters*, 41, 4277–4284, <https://doi.org/10.1002/2014GL059963>, 2014.

De Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and Marinov, I.: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change, *Nature Climate Change*, 4, 278–282, <https://doi.org/10.1038/nclimate2132>, 2014.

DeConto, R., Pollard, D., and Harwood, D.: Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets, *Paleoceanography*, 22, 2006PA001350, <https://doi.org/10.1029/2006PA001350>, 2007.

DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, *Nature*, 531, 591–597, <https://doi.org/10.1038/nature17145>, 2016.

Denis, D., Crosta, X., Barbara, L., Massé, G., Renssen, H., Ther, O., and Giraudeau, J.: Sea ice and wind variability during the Holocene in East Antarctica: insight on middle–high latitude coupling, *Quaternary Science Reviews*, 29, 3709–3719, <https://doi.org/10.1016/j.quascirev.2010.08.007>, 2010.

Deppeler, S. L. and Davidson, A. T.: Southern Ocean phytoplankton in a changing climate, *Frontiers in Marine Science*, 4, 3228–3285, <https://doi.org/10.3389/fmars.2017.00040>, 2017.

Deser, C., Tomas, R. A., and Sun, L.: The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss, *Journal of Climate*, 28, 2168–2186, <https://doi.org/10.1175/JCLI-D-14-00325.1>, 2015.

Diamond, R., Sime, L. C., Holmes, C. R., and Schroeder, D.: CMIP6 Models Rarely Simulate Antarctic Winter Sea-Ice Anomalies as Large as Observed in 2023, *Geophysical Research Letters*, 51, e2024GL109265, <https://doi.org/10.1029/2024GL109265>, 2024.

Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., and Kallel, N.: Deep water source variations during the last climatic cycle and their impact on the global deep water circulation, *Paleoceanography*, 3, 343–360, 1988.

Eayrs, C., Li, X., Raphael, M. N., and Holland, D. M.: Rapid decline in Antarctic sea ice in recent years hints at future change, *Nat. Geosci.*, 14, 460–464, <https://doi.org/10.1038/s41561-021-00768-3>, 2021.

Eggleson, S. and Galbraith, E. D.: The devil's in the disequilibrium: Multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model, *Biogeosciences*, 15, 3761–3777, <https://doi.org/10.5194/bg-15-3761-2018>, 2018.

England, M. R., Polvani, L. M., Sun, L., and Deser, C.: Tropical climate responses to projected Arctic and Antarctic sea-ice loss, *Nat. Geosci.*, 13, 275–281, <https://doi.org/10.1038/s41561-020-0546-9>, 2020.

EPICA Community Members: Eight glacial cycles from an Antarctic ice core EPICA community members*, *Nature*, 429, 623–628, 2004.

Etourneau, J., Collins, L. G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A., Schouten, S., Sinnenhe Damsté, J. S., Bianchini, A., Klein, V., Crosta, X., and Massé, G.: Holocene climate variations in the western Antarctic Peninsula: evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability, *Clim. Past*, 9, 1431–1446, <https://doi.org/10.5194/cp-9-1431-2013>, 2013.

Ferrari, R., Jansen, M. F., Adkins, J. F., Burke, A., Stewart, A. L., and Thompson, A. F.: Antarctic sea ice control on ocean circulation in present and glacial climates, *Proceedings of the National Academy of Sciences of the United States of America*, 111, 8753–8758, <https://doi.org/10.1073/pnas.1323922111>, 2014.

Ferreira, D., Marshall, J., Ito, T., and McGee, D.: Linking Glacial-Interglacial States to Multiple Equilibria of Climate, *Geophysical Research Letters*, 45, 9160–9170, <https://doi.org/10.1029/2018GL077019>, 2018.

Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Wegner, A., Udisti, R., Becagli, S., Castellano, E., Morganti, A., Severi, M., Wolff, E., Littot, G., Röthlisberger, R., Mulvaney, R., Hutterli, M. A., Kaufmann, P., Federer, U., Lambert, F., Bigler, M., Hansson, M., Jonsell, U., De Angelis, M., Boutron, C., Sigaard-Andersen, M.-L., Steffensen, J. P., Barbante, C., Gaspari, V., Gabrielli, P., and Wagenbach, D.: Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica, *Earth and Planetary Science Letters*, 260, 340–354, <https://doi.org/10.1016/j.epsl.2007.06.014>, 2007.

Fischer, H., Burke, A., Rae, J., Sugden, P. J., Erhardt, T., Twarloh, B., Hörhold, M., Freitag, J., Markle, B., Severi, M., Hansson, M., Savarino, J., Prysor, H., Doyle, E., and Wolff, E.: Limited decrease of Southern Ocean sulfur productivity across the penultimate termination, *Nat. Geosci.*, 1–7, <https://doi.org/10.1038/s41561-024-01619-7>, 2025.

Fogwill, C. J., Phipps, S. J., Turney, C. S. M., and Golledge, N. R.: Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input, *Earth's Future*, 3, 317–329, <https://doi.org/10.1002/2015EF000306>, 2015.

Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., and Hemer, M.: Ocean, cryosphere and sea level change, 1211 pp., <https://doi.org/10.1017/9781009157896.011.1212>, 2021.

Francois, R., Altabet, M. A., Yu, E. F., Sigman, D. M., Bacon, M. P., Frank, M., Bohrmann, G., Bareille, G., and Labeyrie, L. D.: Contribution of Southern Ocean surface-water stratification to low atmospheric CO₂ concentrations during the last glacial period, *Nature*, 389, 929–935, 1997.

Fraser, A. D., Ohshima, K. I., Nihashi, S., Massom, R. A., Tamura, T., Nakata, K., Williams, G. D., Carpentier, S., and Willmes, S.: Landfast ice controls on sea-ice production in the Cape Darnley Polynya: A case study, *Remote Sensing of Environment*, 233, 111315, <https://doi.org/10.1016/j.rse.2019.111315>, 2019.

Fraser, A. D., Wongpan, P., Langhorne, P. J., Klekociuk, A. R., Kusahara, K., Lannuzel, D., Massom, R. A., Meiners, K. M., Swadling, K. M., Atwater, D. P., Brett, G. M., Corkill, M., Dalman, L. A., Fiddes, S., Granata, A., Guglielmo, L., Heil, P., Leonard, G. H., Mahoney, A. R., McMinn, A., Van Der Merwe, P., Weldrick, C. K., and Wienecke, B.: Antarctic Landfast Sea Ice: A Review of Its Physics, Biogeochemistry and Ecology, *Reviews of Geophysics*, 61, e2022RG000770, <https://doi.org/10.1029/2022RG000770>, 2023.

Galbraith, E. and de Lavergne, C.: Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages, *Climate Dynamics*, 52, 653–679, <https://doi.org/10.1007/s00382-018-4157-8>, 2019.

Gao, Q., Capron, E., Sime, L. C., Rhodes, R. H., Sivankutty, R., Zhang, X., Otto-Bliesner, B. L., and Werner, M.: Assessment of the southern polar and subpolar warming in the PMIP4 last interglacial simulations using paleoclimate data syntheses, *Clim. Past*, 21, 419–440, <https://doi.org/10.5194/cp-21-419-2025>, 2025.

Garity, M. L. and Lund, D. C.: Progressively greater biological carbon storage in the deep Atlantic during glacial inception, *Proceedings of the National Academy of Sciences*, 2025.

Gersonde, R. and Zielinski, U.: The reconstruction of late Quaternary Antarctic sea-ice distribution - the use of diatoms as a proxy for sea-ice, *Palaeogeography Palaeoclimatology Palaeoecology*, 162 ISI:00, 263–286, 2000.

Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum--a circum-Antarctic view based on siliceous microfossil records, *Quaternary Science Reviews*, 24, 869–896, 2005.

Ghadi, P., Nair, A., Crosta, X., Mohan, R., Manoj, M. C., and Meloth, T.: Antarctic sea-ice and palaeoproductivity variation over the last 156,000 years in the Indian sector of Southern Ocean, *Marine Micropaleontology*, 160, 101894–101894, <https://doi.org/10.1016/j.marmicro.2020.101894>, 2020.

Giddy, I. S., Nicholson, S.-A., Queste, B. Y., Thomalla, S., and Swart, S.: Sea-Ice Impacts Inter-Annual Variability of Phytoplankton Bloom Characteristics and Carbon Export in the Weddell Sea, *Geophysical Research Letters*, 50, e2023GL103695, <https://doi.org/10.1029/2023GL103695>, 2023.

Gilbert, E. and Holmes, C.: 2023's Antarctic sea ice extent is the lowest on record, *Weather*, 79, 46–51, <https://doi.org/10.1002/wea.4518>, 2024.

Gordon, A. L.: Oceanography: Southern Ocean polynya, *Nature Climate Change*, 4, 249–250, <https://doi.org/10.1038/nclimate2179>, 2014.

Gottschalk, J., Battaglia, G., Fischer, H., Frölicher, T. L., Jaccard, S. L., Jeltsch-Thömmes, A., Joos, F., Köhler, P., Meissner, K. J., Menviel, L., Nehrbass-Ahles, C., Schmitt, J., Schmittner, A., Skinner, L. C., and Stocker, T. F.: Mechanisms of millennial-scale atmospheric CO₂ change in numerical model simulations, *Quaternary Science Reviews*, 220, 30–74, <https://doi.org/10.1016/j.quascirev.2019.05.013>, 2019.

Goyal, R., Sen Gupta, A., Jucker, M., and England, M. H.: Historical and Projected Changes in the Southern Hemisphere Surface Westerlies, *Geophysical Research Letters*, 48, e2020GL090849, <https://doi.org/10.1029/2020GL090849>, 2021.

Gray, W. R., De Lavergne, C., Jnglin Wills, R. C., Menviel, L., Spence, P., Holzer, M., Kageyama, M., and Michel, E.: Poleward Shift in the Southern Hemisphere Westerly Winds Synchronous With the Deglacial Rise in CO₂, *Paleoceanog and Paleoclimatol*, 38, e2023PA004666, <https://doi.org/10.1029/2023PA004666>, 2023.

Green, R. A., Menviel, L., Meissner, K. J., Crosta, X., Chandan, D., Lohmann, G., Peltier, W. R., Shi, X., and Zhu, J.: Evaluating seasonal sea-ice cover over the Southern Ocean at the Last Glacial Maximum, *Climate of the Past*, 18, 845–862, <https://doi.org/10.5194/cp-18-845-2022>, 2022.

Gudmundsson, G. H.: Ice-shelf buttressing and the stability of marine ice sheets, *The Cryosphere*, 7, 647–655, <https://doi.org/10.5194/tc-7-647-2013>, 2013.

Gupta, M., Follows, M. J., and Lauderdale, J. M.: The Effect of Antarctic Sea Ice on Southern Ocean Carbon Outgassing: Capping versus Light Attenuation, *Global Biogeochemical Cycles*, 1–50, <https://doi.org/10.1029/2019GB006489>, 2020.

Haddam, N. A., Michel, E., Siani, G., Licari, L., and Dewilde, F.: Ventilation and Expansion of Intermediate and Deep Waters in the Southeast Pacific During the Last Termination, *Paleoceanography and Paleoclimatology*, 35, 1–16, <https://doi.org/10.1029/2019PA003743>, 2020.

Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model-data comparison of $\delta^{13}\text{C}$ in the glacial Atlantic Ocean, *Paleoceanography*, 26, 2010PA002085, <https://doi.org/10.1029/2010PA002085>, 2011.

Hillenbrand, C.-D., Kuhn, G., and Frederichs, T.: Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?, *Quaternary Science Reviews*, 28, 1147–1159, <https://doi.org/10.1016/j.quascirev.2008.12.010>, 2009.

Hobbs, W., Spence, P., Meyer, A., Schroeter, S., Fraser, A. D., Reid, P., Tian, T. R., Wang, Z., Liniger, G., Doddridge, E. W., and Boyd, P. W.: Observational Evidence for a Regime Shift in Summer Antarctic Sea Ice, *Journal of Climate*, 37, 2263–2275, <https://doi.org/10.1175/JCLI-D-23-0479.1>, 2024.

Hoffman, J. L. and Lund, D. C.: Refining the stable isotope budget for Antarctic Bottom Water: New foraminiferal data from the abyssal southwest Atlantic, *Paleoceanography*, 27, 2011PA002216, <https://doi.org/10.1029/2011PA002216>, 2012.

Hoffman, J. S., Clark, P. U., Parnell, A. C., and He, F.: Regional and global sea-surface temperatures during the last interglaciation, *Science*, 355, 276–279, <https://doi.org/10.1126/science.aai8464>, 2017.

Holloway, M. D., Sime, L. C., Singarayer, J. S., Tindall, J. C., Bunch, P., and Valdes, P. J.: Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse, *Nat Commun*, 7, 12293, <https://doi.org/10.1038/ncomms12293>, 2016.

Holloway, M. D., Sime, L. C., Allen, C. S., Hillenbrand, C., Bunch, P., Wolff, E., and Valdes, P. J.: The Spatial Structure of the 128 ka Antarctic Sea Ice Minimum, *Geophysical Research Letters*, 44, <https://doi.org/10.1002/2017GL074594>, 2017.

Hu, R., Piotrowski, A. M., Bostock, H. C., Crowhurst, S., and Rennie, V.: Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum, *Earth and Planetary Science Letters*, 447, 130–138, <https://doi.org/10.1016/j.epsl.2016.05.011>, 2016.

Huiskamp, W. and McGregor, S.: Quantifying Southern Annular Mode paleo-reconstruction skill in a model framework, *Clim. Past*, 17, 1819–1839, <https://doi.org/10.5194/cp-17-1819-2021>, 2021.

Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A., Anderson, R. F., Sigman, D. M., and Haug, G. H.: Two modes of change in Southern Ocean productivity over the past million years, *Science*, 339, 1419–1423, <https://doi.org/10.1126/science.1227545>, 2013.

Jaccard, S. L., Galbraith, E. D., Martínez-García, A., and Anderson, R. F.: Covariation of deep Southern Ocean oxygenation and atmospheric CO₂ through the last ice age, *Nature*, 530, 207–210, <https://doi.org/10.1038/nature16514>, 2016.

Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.: Melting of ice shelves and the mass balance of Antarctica, *J. Glaciol.*, 38, 375–387, <https://doi.org/10.3189/S002214300002252>, 1992.

Jansen, M. F.: Glacial ocean circulation and stratification explained by reduced atmospheric temperature, *Proc. Natl. Acad. Sci. U.S.A.*, 114, 45–50, <https://doi.org/10.1073/pnas.1610438113>, 2017.

Jansen, M. F. and Nadeau, L. P.: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification, *Journal of Physical Oceanography*, 46, 3455–3470, <https://doi.org/10.1175/JPO-D-16-0084.1>, 2016.

Jimenez-Espejo, F. J., Presti, M., Kuhn, G., Mckay, R., Crosta, X., Escutia, C., Lucchi, R. G., Tolotti, R., Yoshimura, T., Ortega Huertas, M., Macri, P., Caburlotto, A., and De Santis, L.: Late Pleistocene oceanographic and depositional variations along the Wilkes Land margin (East Antarctica) reconstructed with geochemical proxies in deep-sea sediments, *Global and Planetary Change*, 184, 103045–103045, <https://doi.org/10.1016/j.gloplacha.2019.103045>, 2020.

Jones, J., Kohfeld, K. E., Bostock, H., Crosta, X., Liston, M., Dunbar, G., Chase, Z., Leventer, A., Anderson, H., and Jacobsen, G.: Sea ice changes in the southwest Pacific sector of the Southern Ocean during the last 140 000 years, *Climate of the Past*, 18, 465–483, <https://doi.org/10.5194/cp-18-465-2022>, 2022.

Josey, S. A., Meijers, A. J. S., Blaker, A. T., Grist, J. P., Mecking, J., and Ayres, H. C.: Record-low Antarctic sea ice in 2023 increased ocean heat loss and storms, *Nature*, 636, 635–639, <https://doi.org/10.1038/s41586-024-08368-y>, 2024.

Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence, P., Dutrieux, P., and Madec, G.: Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea, *Journal of Geophysical Research: Oceans*, 122, 2550–2573, <https://doi.org/10.1002/2016JC012509>, 2017.

Kattner, G., Thomas, D., Haas, C., Kennedy, H., and Dieckmann, G.: Surface ice and gap layers in Antarctic sea ice: highly productive habitats, *Mar. Ecol. Prog. Ser.*, 277, 1–12, <https://doi.org/10.3354/meps277001>, 2004.

Kaufmann, P., Fundel, F., Fischer, H., Bigler, M., Ruth, U., Udisti, R., Hansson, M., de Angelis, M., Barbante, C., and Wolff, E. W.: Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean, *Quaternary Science Reviews*, 2009.

Kidston, J., Taschetto, A. S., Thompson, D. W. J., and England, M. H.: The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream, *Geophysical Research Letters*, 38, 2011GL048056, <https://doi.org/10.1029/2011GL048056>, 2011.

Kim, J. H., Crosta, X., Willmott, V., Renssen, H., Bonnin, J., Helmke, P., Schouten, S., and Sinnenhe Damsté, J. S.: Holocene subsurface temperature variability in the eastern Antarctic continental margin, *Geophysical Research Letters*, 39, n/a-n/a, <https://doi.org/10.1029/2012GL051157>, 2012.

Kirst, G. O., Thiel, C., Wolff, H., Nothnagel, J., Wanzenk, M., and Ulmke, R.: Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role, *Marine Chemistry*, 35, 381–388, [https://doi.org/10.1016/S0304-4203\(09\)90030-5](https://doi.org/10.1016/S0304-4203(09)90030-5), 1991.

Kohfeld, K. E. and Ridgwell, A.: Glacial-Interglacial Variability in Atmospheric CO₂, *Geophysical Research Series*, 187, 251–286, <https://doi.org/10.1029/2008GM000845>, 2009.

Kohfeld, K. E., Harrison, S. P., Que, C. L., Anderson, R. F., and Quere, C. L.: Role of Marine Biology in Glacial-Interglacial CO₂ Cycles, *Science*, 308, 74–78, 2005.

Kohfeld, K. E., Graham, R. M., de Boer, A. M., Sime, L. C., Wolff, E. W., Le Quéré, C., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis, *Quaternary Science Reviews*, 68, 76–95, <https://doi.org/10.1016/j.quascirev.2013.01.017>, 2013.

Kurahashi-Nakamura, T., Abe-Ouchi, A., Yamanaka, Y., and Misumi, K.: Compound effects of Antarctic sea ice on atmospheric *p* CO₂ change during glacial–interglacial cycle, *Geophysical Research Letters*, 34, 2007GL030898, <https://doi.org/10.1029/2007GL030898>, 2007.

Kusahara, K., Tatebe, H., Hajima, T., Saito, F., and Kawamiya, M.: Antarctic Sea Ice Holds the Fate of Antarctic Ice-Shelf Basal Melting in a Warming Climate, *Journal of Climate*, 36, 713–743, <https://doi.org/10.1175/JCLI-D-22-0079.1>, 2023.

Lamping, N., Müller, J., Esper, O., Hillenbrand, C.-D., Smith, J. A., and Kuhn, G.: Highly branched isoprenoids reveal onset of deglaciation followed by dynamic sea-ice conditions in the western Amundsen Sea, Antarctica, *Quaternary Science Reviews*, 228, 106103, <https://doi.org/10.1016/j.quascirev.2019.106103>, 2020.

Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean: UPDATED DMS CLIMATOLOGY, Global Biogeochem. Cycles, 25, n/a-n/a, <https://doi.org/10.1029/2010GB003850>, 2011.

Lannuzel, D., Schoemann, V., De Jong, J., Chou, L., Delille, B., Beccuevort, S., and Tison, J.-L.: Iron study during a time series in the western Weddell pack ice, Marine Chemistry, 108, 85–95, <https://doi.org/10.1016/j.marchem.2007.10.006>, 2008.

Lannuzel, D., Vancoppenolle, M., Van Der Merwe, P., De Jong, J., Meiners, K. M., Grotti, M., Nishioka, J., and Schoemann, V.: Iron in sea ice: Review & new insights, Elementa, 4, 119–130, <https://doi.org/10.12952/journal.elementa.000130>, 2016.

Lannuzel, D., Fourquez, M., De Jong, J., Tison, J.-L., Delille, B., and Schoemann, V.: First report on biological iron uptake in the Antarctic sea-ice environment, Polar Biol, 46, 339–355, <https://doi.org/10.1007/s00300-023-03127-7>, 2023.

Lauber, J., Hattermann, T., De Steur, L., Darelius, E., Auger, M., Nøst, O. A., and Moholdt, G.: Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice, Nat. Geosci., 16, 877–885, <https://doi.org/10.1038/s41561-023-01273-5>, 2023.

Leventer, A.: The fate of sea ice diatoms and their use as paleoenvironmental indicators, in: American Geophysical Union Antarctic Research Series 73, Antarctic Sea Ice: Biological Processes, 121–137, 1998.

Lhardy, F., Bouttes, N., Roche, D. M., Crosta, X., Waelbroeck, C., and Paillard, D.: Impact of Southern Ocean surface conditions on deep ocean circulation during the LGM: a model analysis, Climate of the Past, 17, 1139–1159, <https://doi.org/10.5194/cp-17-1139-2021>, 2021.

Li, L., Liu, Z., Zhu, C., He, C., and Otto-Bliesner, B.: Shallowing Glacial Antarctic Intermediate Water by Changes in Sea Ice and Hydrological Cycle, Geophysical Research Letters, 48, e2021GL094317, <https://doi.org/10.1029/2021GL094317>, 2021.

Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic $\delta^{18}\text{O}$ records, Paleoceanography, 20, 1–17, <https://doi.org/10.1029/2004PA001071>, 2005.

Loose, B. and Schlosser, P.: Sea ice and its effect on CO₂ flux between the atmosphere and the Southern Ocean interior, Journal of Geophysical Research: Oceans, 116, C11019-15, <https://doi.org/10.1029/2010JC006509>, 2011.

Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J., and Schlosser, P.: A parameter model of gas exchange for the seasonal sea ice zone, Ocean Science, <https://doi.org/10.5194/os-10-17-2014>, 2014.

Loose, B., Lovely, A., Schlosser, P., Zappa, C., McGillis, W., and Perovich, D.: Currents and convection cause enhanced gas exchange in the ice-water boundary layer, Tellus, Series B: Chemical and Physical Meteorology, 68, <https://doi.org/10.3402/tellusb.v68.32803>, 2016.

Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I. R., Herguera, J. C., Hirschi, J. J.-M., Ivanova, E. V., Kissel, C., Marchal, O., Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E.-F., and Zahn, R.: Atlantic Meridional Overturning Circulation During the Last Glacial Maximum, Science, 316, 66–69, <https://doi.org/10.1126/science.1137127>, 2007.

MacAyeal, D. R., Okal, E. A., Aster, R. C., Bassis, J. N., Brunt, K. M., Cathles, L. Mac., Drucker, R., Fricker, H. A., Kim, Y., Martin, S., Okal, M. H., Sergienko, O. V., Sponsler, M. P., and Thom, J. E.: Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere, Geophysical Research Letters, 33, 2006GL027235, <https://doi.org/10.1029/2006GL027235>, 2006.

Mackintosh, A. N., Verleyen, E., O'Brien, P. E., White, D. A., Jones, R. S., McKay, R., Dunbar, R., Gore, D. B., Fink, D., Post, A. L., Miura, H., Leventer, A., Goodwin, I., Hodgson, D. A., Lilly, K., Crosta, X., Golledge, N. R., Wagner, B., Berg, S., van Ommen, T., Zwart, D., Roberts, S. J., Vyverman, W., and Masse, G.: Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum, *Quaternary Science Reviews*, 100, 10–30, <https://doi.org/10.1016/j.quascirev.2013.07.024>, 2014.

Malin, G. and Erst, G. O.: Algal production of dimethylsulfide and its atmospheric role, *Journal of Phycology*, 33, 889–896, <https://doi.org/10.1111/j.0022-3646.1997.00889.x>, 1997.

Malyarenko, A., Robinson, N. J., Williams, M. J. M., and Langhorne, P. J.: A Wedge Mechanism for Summer Surface Water Inflow Into the Ross Ice Shelf Cavity, *JGR Oceans*, 124, 1196–1214, <https://doi.org/10.1029/2018JC014594>, 2019.

Marchitto, T. M. and Broecker, W. S.: Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca, *Geochemistry, Geophysics, Geosystems*, 7, n/a-n/a, <https://doi.org/10.1029/2006GC001323>, 2006.

Markle, B. R., Steig, E. J., Buizert, C., Schoenemann, S. W., Bitz, C. M., Fudge, T. J., Pedro, J. B., Ding, Q., Jones, T. R., White, J. W. C., and Sowers, T.: Global atmospheric teleconnections during Dansgaard–Oeschger events, *Nature Geosci*, 10, 36–40, <https://doi.org/10.1038/ngeo2848>, 2017.

Marshall, J. and Speer, K.: Closure of the meridional overturning circulation through Southern Ocean upwelling, *Nature Geoscience*, 5, 171–180, <https://doi.org/10.1038/ngeo1391>, 2012.

Martínez-Méndez, G., Hebbeln, D., Mohtadi, M., Lamy, F., De Pol-Holz, R., Reyes-Macaya, D., and Freudenthal, T.: Changes in the advection of Antarctic Intermediate Water to the northern Chilean coast during the last 970 kyr: AAIW ADVECTION CHANGES, *Paleoceanography*, 28, 607–618, <https://doi.org/10.1002/palo.20047>, 2013.

Marzocchi, A. and Jansen, M. F.: Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice, *Nature Geoscience*, 12, 1001–1005, <https://doi.org/10.1038/s41561-019-0466-8>, 2019.

Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, *Nature*, 558, 383–389, <https://doi.org/10.1038/s41586-018-0212-1>, 2018.

Matsumoto, K., Chase, Z., and Kohfeld, K.: Different mechanisms of silicic acid leakage and their biogeochemical consequences, *Paleoceanography*, 29, <https://doi.org/10.1002/2013PA002588>, 2014.

Maykut, G.: The surface heat and mass balance, in: *The geophysics of sea ice*, edited by: Untersteiner, N., Plenum Press, NY, 489–549, 1986.

McKay, R. M., Barrett, P. J., Levy, R. S., Naish, T. R., Golledge, N. R., and Pyne, A.: Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond, *Phil. Trans. R. Soc. A.*, 374, 20140301, <https://doi.org/10.1098/rsta.2014.0301>, 2016.

McMinn, A., Pankowskii, A., Ashworth, C., Bhagooli, R., Ralph, P., and Ryan, K.: In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities, *Mar Biol*, 157, 1345–1356, <https://doi.org/10.1007/s00227-010-1414-8>, 2010.

Meissner, K. J., Schmittner, A., Weaver, A. J., and Adkins, J. F.: Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between simulated and observed radiocarbon ages, *Paleoceanography*, 18, 2002PA000762, <https://doi.org/10.1029/2002PA000762>, 2003.

Menziel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K. J., and England, M. H.: Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study, *Paleoceanography*, 32, 2–17, <https://doi.org/10.1002/2016PA003024>, 2017.

Moore, J. K. and Abbott, M. R.: Phytoplankton chlorophyll distributions and primary production in the Southern Ocean, *Journal of Geophysical Research*, 105, 28,709–728,722, 2000.

Morales Maqueda, M. A.: Did Antarctic sea-ice expansion cause glacial CO₂ decline?, *Geophysical Research Letters*, 29, 2002.

Moreau, S., Hattermann, T., de Steur, L., Kauko, H. M., Ahonen, H., Ardelan, M., Assmy, P., Chierici, M., Descamps, S., Dinter, T., Falkenhaug, T., Fransson, A., Grønningæter, E., Hallfredsson, E. H., Huhn, O., Lebrun, A., Lowther, A., Lübcker, N., Monteiro, P., Peek, I., Roychoudhury, A., Różańska, M., Ryan-Keogh, T., Sanchez, N., Singh, A., Simonsen, J. H., Steiger, N., Thomalla, S. J., van Tonder, A., Wiktor, J. M., and Steen, H.: Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre, *Nature Communications*, 14, 1–12, <https://doi.org/10.1038/s41467-023-36992-1>, 2023.

Muratli, J. M., Chase, Z., Mix, A. C., and McManus, J.: Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water, *Nature Geoscience*, 3, <https://doi.org/10.1038/ngeo715>, 2010.

Nadeau, L. P., Ferrari, R., and Jansen, M. F.: Antarctic sea ice control on the depth of North Atlantic deep water, *Journal of Climate*, 32, 2537–2551, <https://doi.org/10.1175/JCLI-D-18-0519.1>, 2019.

Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios, *J. Climate*, 31, 5243–5261, <https://doi.org/10.1175/JCLI-D-17-0854.1>, 2018.

Naveira Garabato, A. C., McDonagh, E. L., Stevens, D. P., Heywood, K. J., and Sanders, R. J.: On the export of Antarctic Bottom Water from the Weddell Sea, *Deep Sea Research Part II: Topical Studies in Oceanography*, 49, 4715–4742, [https://doi.org/10.1016/S0967-0645\(02\)00156-X](https://doi.org/10.1016/S0967-0645(02)00156-X), 2002.

Nihashi, S. and Ohshima, K. I.: Circumpolar Mapping of Antarctic Coastal Polynyas and Landfast Sea Ice: Relationship and Variability, *Journal of Climate*, 28, 3650–3670, <https://doi.org/10.1175/JCLI-D-14-00369.1>, 2015.

Ohshima, K. I., Nihashi, S., and Iwamoto, K.: Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation, *Geosci. Lett.*, 3, 13, <https://doi.org/10.1186/s40562-016-0045-4>, 2016.

Oppo, D. W., Gebbie, G., Huang, K. F., Curry, W. B., Marchitto, T. M., and Pietro, K. R.: Data Constraints on Glacial Atlantic Water Mass Geometry and Properties, *Paleoceanography and Paleoclimatology*, 33, 1013–1034, <https://doi.org/10.1029/2018PA003408>, 2018.

Orsi, A. H., Whitworth, T., and Worth, N.: On the meridional extent and fronts of the Antarctic Circumpolar Current, *Deep Sea Research I*, 42, 641–673, 1995.

Pahnke, K. and Zahn, R.: Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability, *Science*, 307, 1741–1746, 2005.

Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic, *Proc. Natl. Acad. Sci. U.S.A.*, 116, 14414–14423, <https://doi.org/10.1073/pnas.1906556116>, 2019.

Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J.: Synchronous Change of Atmospheric CO₂ and Antarctic Temperature During the Last Deglacial Warming, *Science*, 339, 1060–1063, <https://doi.org/10.1126/science.1226368>, 2013.

Paul, A., Mulitza, S., Stein, R., and Werner, M.: A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP), *Climate of the Past*, 17, 805–824, <https://doi.org/10.5194/cp-17-805-2021>, 2021.

Pavia, F. J., Wang, S., Middleton, J., Murray, R. W., and Anderson, R. F.: Trace Metal Evidence for Deglacial Ventilation of the Abyssal Pacific and Southern Oceans, *Paleoceanography and Paleoclimatology*, 1–15, <https://doi.org/10.1029/2021pa004226>, 2021.

Pellichero, V., Sallée, J.-B., Chapman, C. C., and Downes, S. M.: The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes, *Nat Commun*, 9, 1789, <https://doi.org/10.1038/s41467-018-04101-2>, 2018.

Pesjak, L., McMinn, A., Chase, Z., and Bostock, H.: Sea ice and productivity changes over the last glacial cycle in the Adélie Land region, East Antarctica, based on diatom assemblage variability, *Climate of the Past*, 19, 419–437, <https://doi.org/10.5194/cp-19-419-2023>, 2023.

Pike, J., Swann, G. E. A., Leng, M. J., and Snelling, A. M.: Glacial discharge along the west Antarctic Peninsula during the Holocene, *Nature Geosci*, 6, 199–202, <https://doi.org/10.1038/ngeo1703>, 2013.

Pöppelmeier, F., Jeltsch-thömmes, A., Lippold, J., Joos, F., and Stocker, T. F.: Multi-proxy constraints on Atlantic circulation dynamics since the last ice age, <https://doi.org/10.1038/s41561-023-01140-3>, 2023.

Presti, M., Barbara, L., Denis, D., Schmidt, S., De Santis, L., and Crosta, X.: Sediment delivery and depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles, *Marine Geology*, 284, 96–113, <https://doi.org/10.1016/j.margeo.2011.03.012>, 2011.

Purich, A. and Doddridge, E. W.: Record low Antarctic sea ice coverage indicates a new sea ice state, *Communications Earth and Environment*, 4, <https://doi.org/10.1038/s43247-023-00961-9>, 2023.

Purich, A., England, M. H., Cai, W., Sullivan, A., and Durack, P. J.: Impacts of Broad-Scale Surface Freshening of the Southern Ocean in a Coupled Climate Model, *J. Climate*, 31, 2613–2632, <https://doi.org/10.1175/JCLI-D-17-0092.1>, 2018.

Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., Greenop, R., Li, T., Littley, E. F. M., Nita, D. C., Stewart, J. A., and Taylor, B. J.: CO₂ storage and release in the deep Southern Ocean on millennial to centennial timescales, *Nature*, 562, 569–573, <https://doi.org/10.1038/s41586-018-0614-0>, 2018.

Ragueneau, O., Treguer, P., Leynaert, A., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., and Francois, R.: A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, *Global and Planetary Change*, 26, 317–365, 2000.

Raphael, M. N., Hobbs, W., and Wainer, I.: The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer, *Clim Dyn*, 36, 1403–1417, <https://doi.org/10.1007/s00382-010-0892-1>, 2011.

Reagan, J., R., Boyer, T., Garcia, H. E., Locarnini, R. A., and Baranova, Olga: World Ocean Atlas 2023. NCEI Accession 0270533., 2024.

Rintoul, S., Hughes, C., and Olbers, D.: The Antarctic Circumpolar Current System, edited by: Siedler, G., Church, J. A., and Gould, J., Academic Press, 271 pp., <https://doi.org/10.1002/ajp.20122>, 2001.

Robinson, R. S., Brzezinski, M. A., Beucher, C. P., Horn, M. G. S., and Bedsole, P.: The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle, *Paleoceanography*, 29, 1179–1195, <https://doi.org/10.1002/2014PA002686>, 2014.

Robinson, W. and Haskell, T. G.: Calving of Erebus Glacier tongue, *Nature*, 346, 615–616, <https://doi.org/10.1038/346615b0>, 1990.

Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U., Nürnberg, D., and Kuhn, G.: Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years, *Paleoceanography*, 30, 23–38, <https://doi.org/10.1002/2014PA002727>, 2015.

Roukaerts, A., Cavagna, A.-J., Fripiat, F., Lannuzel, D., Meiners, K. M., and Dehairs, F.: Sea-ice algal primary production and nitrogen uptake rates off East Antarctica, *Deep Sea Research Part II: Topical Studies in Oceanography*, 131, 140–149, <https://doi.org/10.1016/j.dsr2.2015.08.007>, 2016.

Rutgers Van Der Loeff, M. M., Cassar, N., Nicolaus, M., Rabe, B., and Stimac, I.: The influence of sea ice cover on air-sea gas exchange estimated with radon-222 profiles, *Journal of Geophysical Research: Oceans*, 119, 2735–2751, <https://doi.org/10.1002/2013JC009321>, 2014.

Saenko, O. A. and Weaver, A. J.: Importance of wind-driven sea ice motion for the formation of Antarctic Intermediate Water in a global climate model, *Geophysical Research Letters*, 28, 4147–4150, <https://doi.org/10.1029/2001GL013632>, 2001.

Saenko, O. A., Schmittner, A., and Weaver, A. J.: On the Role of Wind-Driven Sea Ice Motion on Ocean Ventilation, *J. Phys. Oceanogr.*, 32, 3376–3395, [https://doi.org/10.1175/1520-0485\(2002\)032<3376:OTROWD>2.0.CO;2](https://doi.org/10.1175/1520-0485(2002)032<3376:OTROWD>2.0.CO;2), 2002.

Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.: High-latitude controls of thermocline nutrients and low latitude biological productivity, *Nature*, 426, 56–60, 2004.

Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca, P.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, *Geophysical Research Letters*, 31, 2004GL020670, <https://doi.org/10.1029/2004GL020670>, 2004.

Schneider Mor, A., Yam, R., Bianchi, C., Kunz-Pirring, M., Gersonde, R., and Shemesh, A.: Variable sequence of events during the past seven terminations in two deep-sea cores from the Southern Ocean, *Quaternary Research*, <https://doi.org/10.1016/j.yqres.2011.11.006>, 2012.

Sedwick, P. N. and DiTullio, G. R.: Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice, *Geophysical Research Letters*, 24, 2515–2518, 1997.

Shadwick, E. H., De Meo, O. A., Schroeter, S., Arroyo, M. C., Martinson, D. G., and Ducklow, H.: Sea Ice Suppression of CO₂ Outgassing in the West Antarctic Peninsula: Implications For The Evolving Southern Ocean Carbon Sink, *Geophysical Research Letters*, 48, e2020GL091835, <https://doi.org/10.1029/2020GL091835>, 2021.

Shevenell, A. E., Ingalls, A. E., Domack, E. W., and Kelly, C.: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula, *Nature*, 470, 250–254, <https://doi.org/10.1038/nature09751>, 2011.

Shin, S., Liu, Z., Otto-Bliesner, B. L., Kutzbach, J. E., and Vavrus, S. J.: Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation, *Geophysical Research Letters*, 30, 2002GL015513, <https://doi.org/10.1029/2002GL015513>, 2003.

Shub, A. B., Lund, D. C., Oppo, D. W., and Garity, M. L.: Brazil Margin Stable Isotope Profiles for the Last Glacial Cycle: Implications for Watermass Geometry and Oceanic Carbon Storage, *Paleoceanography and Paleoclimatology*, 39, <https://doi.org/10.1029/2023PA004635>, 2024.

Shulmeister, J., Goodwin, I., Renwick, J., Harle, K., Armand, L., McGlone, M. S., Cook, E., Dodson, J., Hesse, P. P., Mayewski, P., and Curran, M.: The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis, *Quaternary International*, 118, 23–53, [https://doi.org/10.1016/s1040-6182\(03\)00129-0](https://doi.org/10.1016/s1040-6182(03)00129-0), 2004.

Sigman, D. and Boyle, E. A.: Glacial/interglacial variations in atmospheric carbon dioxide, *Nature*, 407, 859–868, 2000.

Sigman, D. M. and Boyle, E. A.: Antarctic stratification and glacial CO₂, *Nature*, 412, 606–606, <https://doi.org/10.1038/35088132>, 2001.

Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai, X., Wang, X., Ren, H., and Haug, G. H.: The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific, *Quaternary Science Reviews*, 106732–106732, <https://doi.org/10.1016/j.quascirev.2020.106732>, 2020.

Sigman, O. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer, G.: The $\delta^{15}\text{N}$ of nitrate in the Southern Ocean: Consumption of nitrate in surface waters, *Global Biogeochemical Cycles*, 13, 1149–1166, <https://doi.org/10.1029/1999GB900038>, 1999.

Sikes, E. L., Allen, K. A., and Lund, D. C.: Enhanced $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ Differences Between the South Atlantic and South Pacific During the Last Glaciation: The Deep Gateway Hypothesis, *Paleoceanography*, 32, 1000–1017, <https://doi.org/10.1002/2017PA003118>, 2017.

Silvano, A., Rintoul, S., and Herraiz-Borreguero, L.: Ocean-Ice Shelf Interaction in East Antarctica, *Oceanog.*, 29, 130–143, <https://doi.org/10.5670/oceanog.2016.105>, 2016.

Silvano, A., Rintoul, S. R., Peña-Molino, B., Hobbs, W. R., Van Wijk, E., Aoki, S., Tamura, T., and Williams, G. D.: Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water, *Science Advances*, 4, 1–12, <https://doi.org/10.1126/sciadv.aap9467>, 2018.

Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., and De Boer, A. M.: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: The influence of state dependency on CMIP5 and PMIP3 models, *Climate of the Past*, 12, 2241–2253, <https://doi.org/10.5194/cp-12-2241-2016>, 2016.

Sime, L. C., Sivankutty, R., Malmierca-Vallet, I., Goursaud Oger, S., LeGrande, A. N., McClymont, E. L., De Boer, A., Cauquoin, A., and Werner, M.: More modest peak temperatures during the Last Interglacial for both Greenland and Antarctica suggested by multi-model isotope simulations, <https://doi.org/10.5194/egusphere-2025-288>, 29 January 2025.

Skinner, L., Primeau, F., Jeltsch-Thömmes, A., Joos, F., Köhler, P., and Bard, E.: Rejuvenating the ocean: mean ocean radiocarbon, CO_2 release, and radiocarbon budget closure across the last deglaciation, *Clim. Past*, 19, 2177–2202, <https://doi.org/10.5194/cp-19-2177-2023>, 2023.

Skinner, L. C.: Glacial-interglacial atmospheric CO_2 change: a possible “standing volume” effect on deep-ocean carbon sequestration, *Clim. Past*, 5, 537–550, <https://doi.org/10.5194/cp-5-537-2009>, 2009.

Skinner, L. C., Primeau, F., Freeman, E., De La Fuente, M., Goodwin, P. A., Gottschalk, J., Huang, E., McCave, I. N., Noble, T. L., and Scrivner, A. E.: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO_2 , *Nat Commun*, 8, 16010, <https://doi.org/10.1038/ncomms16010>, 2017.

Smith, J. A., Hillenbrand, C. D., Pudsey, C. J., Allen, C. S., and Graham, A. G. C.: The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history, *Earth and Planetary Science Letters*, 296, 287–298, <https://doi.org/10.1016/j.epsl.2010.05.008>, 2010.

Smith, J. A., Graham, A. G. C., Post, A. L., Hillenbrand, C. D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, *Nature Communications*, 10, 1–16, <https://doi.org/10.1038/s41467-019-13496-5>, 2019.

Stein, K., Timmermann, A., Kwon, E. Y., and Friedrich, T.: Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks, *Proceedings of the National Academy of Sciences of the United States of America*, 117, 29240–29240, <https://doi.org/10.1073/pnas.2020171117>, 2020.

Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on glacial-interglacial CO_2 variations, *Nature*, 404, 171–174, 2000.

Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W., and Holland, D. M.: Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica, *JGR Oceans*, 118, 7036–7048, <https://doi.org/10.1002/2013JC008842>, 2013.

Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and Dowdeswell, J. A.: Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya, *Nat. Geosci.*, 12, 435–440, <https://doi.org/10.1038/s41561-019-0356-0>, 2019.

Studer, A. S., Sigman, D. M., Martínez-García, A., Benz, V., Winckler, G., Kuhn, G., Esper, O., Lamy, F., Jaccard, S. L., Wacker, L., Oleynik, S., Gersonde, R., and Haug, G. H.: Antarctic Zone nutrient conditions during the last two glacial cycles, *Paleoceanography*, 30, 845–862, <https://doi.org/10.1002/2014PA002745>, 2015.

Sun, X. and Matsumoto, K.: Effects of sea ice on atmospheric pCO₂: A revised view and implications for glacial and future climates, *Journal of Geophysical Research*, 115, G02015–G02015, 2010.

Sun, Y., Riel, B., and Minchew, B.: Disintegration and Buttressing Effect of the Landfast Sea Ice in the Larsen B Embayment, Antarctic Peninsula, *Geophysical Research Letters*, 50, e2023GL104066, <https://doi.org/10.1029/2023GL104066>, 2023.

Swadling, K. M., Constable, A. J., Fraser, A. D., Massom, R. A., Borup, M. D., Ghigliotti, L., Granata, A., Guglielmo, L., Johnston, N. M., Kawaguchi, S., Kennedy, F., Kiko, R., Koubbi, P., Makabe, R., Martin, A., McMinn, A., Moteki, M., Pakhomov, E. A., Peeken, I., Reimer, J., Reid, P., Ryan, K. G., Vacchi, M., Virtue, P., Weldrick, C. K., Wongpan, P., and Wotherspoon, S. J.: Biological responses to change in Antarctic sea ice habitats, *Front. Ecol. Evol.*, 10, <https://doi.org/10.3389/fevo.2022.1073823>, 2023.

Swart, N. C. and Fyfe, J. C.: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends, *Geophysical Research Letters*, 40, 4328–4332, <https://doi.org/10.1002/grl.50820>, 2013.

Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J. C., Alkama, R., Kageyama, M., Michel, E., and Pailard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, *Climate of the Past*, 5, 695–706–695–706, 2009.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., and Sabine, C.: Climatological mean and decadal change in surface ocean pCO₂, and net sea-air CO₂ flux over the global oceans, *Deep Sea Research Part II: Topical Studies in Oceanography*, 56, 554–577, 2009.

Talley, L. D.: Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports, *Oceanography*, 53, 1689–1699, <https://doi.org/10.1017/CBO9781107415324.004>, 2013.

Teder, N. J., Bennetts, L. G., Reid, P. A., and Massom, R. A.: Sea ice-free corridors for large swell to reach Antarctic ice shelves, *Environ. Res. Lett.*, 17, 045026, <https://doi.org/10.1088/1748-9326/ac5edd>, 2022.

Teder, N. J., Bennetts, L. G., Reid, P. A., Massom, R. A., Pitt, J. P. A., Scambos, T. A., and Fraser, A. D.: Large-scale ice-shelf calving events follow prolonged amplifications in flexure, *Nat. Geosci.*, 18, 599–606, <https://doi.org/10.1038/s41561-025-01713-4>, 2025.

Tewari, K., Mishra, S. K., Salunke, P., Ozawa, H., and Dewan, A.: Potential effects of the projected Antarctic sea-ice loss on the climate system, *Clim Dyn*, 60, 589–601, <https://doi.org/10.1007/s00382-022-06320-2>, 2023.

Thöle, L. M., Amsler, H. E., Moretti, S., Auderset, A., Gilgannon, J., Lippold, J., Vogel, H., Crosta, X., Mazaud, A., Michel, E., Martínez-García, A., and Jaccard, S. L.: Glacial-interglacial dust and export production records from the Southern Indian Ocean, *Earth and Planetary Science Letters*, 525, 115716, <https://doi.org/10.1016/j.epsl.2019.115716>, 2019.

Timmermann, R. and Goeller, S.: Response to Filchner–Ronne Ice Shelf cavity warming in a coupled ocean–ice sheet model – Part 1: The ocean perspective, *Ocean Sci.*, 13, 765–776, <https://doi.org/10.5194/os-13-765-2017>, 2017.

Timmermann, R. and Hellmer, H. H.: Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling, *Ocean Dynamics*, 63, 1011–1026, <https://doi.org/10.1007/s10236-013-0642-0>, 2013.

Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies, atmospheric CO₂, and climate change during the ice ages, *Paleoceanography*, 21, PA2005–PA2005, <https://doi.org/10.1029/2005PA001154>, 2006.

Totten, R. L., Anderson, J. B., Fernandez, R., and Wellner, J. S.: Marine record of Holocene climate, ocean, and cryosphere interactions: Herbert Sound, James Ross Island, Antarctica, *Quaternary Science Reviews*, 129, 239–259, <https://doi.org/10.1016/j.quascirev.2015.09.009>, 2015.

Totten, R. L., Fonseca, A. N. R., Wellner, J. S., Munoz, Y. P., Anderson, J. B., Tobin, T. S., and Lehrmann, A. A.: Oceanographic and climatic influences on Trooz Glacier, Antarctica during the Holocene, *Quaternary Science Reviews*, 276, 107279, <https://doi.org/10.1016/j.quascirev.2021.107279>, 2022.

Treguer, P. and Jacques, G.: Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean, *Polar Biol.*, 12, <https://doi.org/10.1007/BF00238255>, 1992.

Trevena, A. J. and Jones, G. B.: Dimethylsulphide and dimethylsulphoniopropionate in Antarctic sea ice and their release during sea ice melting, *Marine Chemistry*, 98, 210–222, <https://doi.org/10.1016/j.marchem.2005.09.005>, 2006.

Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and Phillips, T.: Recent changes in Antarctic Sea Ice, *Phil. Trans. R. Soc. A.*, 373, 20140163, <https://doi.org/10.1098/rsta.2014.0163>, 2015.

Ullermann, J., Lamy, F., Ninnemann, U., Lembke-Jene, L., Gersonde, R., and Tiedemann, R.: Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka, *Paleoceanography*, 31, 639–650, <https://doi.org/10.1002/2016PA002932>, 2016.

Van Achter, G., Fichefet, T., Goosse, H., Pelletier, C., Sterlin, J., Huot, P.-V., Lemieux, J.-F., Fraser, A. D., Haubner, K., and Porter-Smith, R.: Modelling landfast sea ice and its influence on ocean–ice interactions in the area of the Totten Glacier, East Antarctica, *Ocean Modelling*, 169, 101920, <https://doi.org/10.1016/j.ocemod.2021.101920>, 2022.

Van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K., Meiners, K. M., Rintala, J.-M., Selz, V., Thomas, D. N., and Stefels, J.: Microalgal community structure and primary production in Arctic and Antarctic sea ice: A synthesis, *Elementa: Science of the Anthropocene*, 6, 4, <https://doi.org/10.1525/elementa.267>, 2018.

Vernet, M., Martinson, D., Iannuzzi, R., Stammerjohn, S., Kozlowski, W., Sines, K., Smith, R., and Garibotti, I.: Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance, *Deep Sea Research Part II: Topical Studies in Oceanography*, 55, 2068–2085, <https://doi.org/10.1016/j.dsr2.2008.05.021>, 2008.

Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H. H., Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Bearley, J. A., Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C. -D., Hoppe, C. J. M., Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira Garabato, A. C., Nöthig, E. -M., Peeken, I., Rutgers Van Der Loeff, M. M., Schmidtko, S., Schröder, M., Strass, V. H., Torres-Valdés, S., and Verdy, A.: The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges, *Reviews of Geophysics*, 57, 623–708, <https://doi.org/10.1029/2018RG000604>, 2019.

Wang, Y., Costa, K. M., Lu, W., Hines, S. K. V., and Nielsen, S. G.: Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation, *Science Advances*, 10, eadk2506, <https://doi.org/10.1126/sciadv.adk2506>, 2024.

Webb, A. L., Van Leeuwe, M. A., Den Os, D., Meredith, M. P., J. Venables, H., and Stefels, J.: Extreme spikes in DMS flux double estimates of biogenic sulfur export from the Antarctic coastal zone to the atmosphere, *Sci Rep*, 9, 2233, <https://doi.org/10.1038/s41598-019-38714-4>, 2019.

Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone, R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M. O., Friedrich, T., and Ohlwein, C.: Millennial-scale variability in antarctic ice-sheet discharge during the last deglaciation.pdf, *Nature*, 510, 134–138, 2014.

Weis, J., Chase, Z., Schallenberg, C., Strutton, P. G., Bowie, A. R., and Fiddes, S. L.: One-third of Southern Ocean productivity is supported by dust deposition, *Nature*, 629, 603–608, <https://doi.org/10.1038/s41586-024-07366-4>, 2024.

Weller, R., Traufetter, F., Fischer, H., Oerter, H., Piel, C., and Miller, H.: Postdepositional losses of methane sulfonate, nitrate, and chloride at the European Project for Ice Coring in Antarctica deep-drilling site in Dronning Maud Land, Antarctica, *J. Geophys. Res.*, 109, 2003JD004189, <https://doi.org/10.1029/2003JD004189>, 2004.

Whitworth, T. and Nowlin, W. D.: Water masses and currents of the Southern Ocean at the Greenwich Meridian, *J. Geophys. Res.*, 92, 6462–6476, <https://doi.org/10.1029/JC092iC06p06462>, 1987.

Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., De Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., and Gaspari, V.: Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles, *Nature*, 440, 491–496, <https://doi.org/10.1038/nature04614>, 2006.

Wolff, E. W., Barbante, C., Becagli, S., Bigler, M., Boutron, C. F., Castellano, E., de Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G. C., Mulvaney, R., Röthlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M. L., Sime, L. C., Steffensen, J. P., Stocker, T. F., Traversi, R., Twarloh, B., Udisti, R., Wagenbach, D., and Wegner, A.: Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, *Quaternary Science Reviews*, 29, 285–295, <https://doi.org/10.1016/j.quascirev.2009.06.013>, 2010.

Wu, L., Wang, R., Xiao, W., Krijgsman, W., Li, Q., Ge, S., and Ma, T.: Late Quaternary Deep Stratification-Climate Coupling in the Southern Ocean: Implications for Changes in Abyssal Carbon Storage, *Geochemistry, Geophysics, Geosystems*, 19, 379–395, <https://doi.org/10.1002/2017GC007250>, 2018.

Yin, J. H.: A consistent poleward shift of the storm tracks in simulations of 21st century climate, *Geophysical Research Letters*, 32, 1–4, <https://doi.org/10.1029/2005GL023684>, 2005.

Zemmelink, H. J., Houghton, L., Dacey, J. W. H., Worby, A. P., and Liss, P. S.: Emission of dimethylsulfide from Weddell Sea leads, *Geophysical Research Letters*, 32, 2005GL024242, <https://doi.org/10.1029/2005GL024242>, 2005.

Zhou, L., Heuzé, C., and Mohrmann, M.: Sea Ice Production in the 2016 and 2017 Maud Rise Polynyas, *JGR Oceans*, 128, e2022JC019148, <https://doi.org/10.1029/2022JC019148>, 2023.