10

15

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

The Ocean Model for E3SM Global Applications: Omega Version
0.1.0. A New High-Performance Computing Code for Exascale
Architectures

Mark R. Petersen', Xylar S. Asay-Davis', Alice M. Barthel', Carolyn Branecky Begeman',
Siddhartha Bishnu?, Steven R. Brus®, Philip W. Jones!, Hyun-Gyu Kang*, Youngsung Kim?*,
Azamat Mametjanov?, Brian J. O’Neill', Kieran K. Ringel', Katherine M. Smith!, Sarat Sreepathi?,
Luke P. Van Roekel!, and Maciej Waruszewski®

"Los Alamos National Laboratory, Los Alamos, NM 87545, USA

’Department of Earth Sciences, University of Cambridge

3Argonne National Laboratory, Lemont, IL 60439, USA

40ak Ridge National Laboratory, Oak Ridge, TN 37830, USA

SCenter for Nonlinear Studies, Los Alamos National Laboratory, NM, 87545, USA
6Sandia National Laboratories, Albuquerque, NM 87123, USA

Correspondence: Mark R. Petersen (mpetersen @lanl.gov)

Abstract. Here we introduce Omega, the Ocean Model for E3SM Global Applications. Omega is a new ocean model designed
to run efficiently on high performance computing (HPC) platforms, including exascale heterogeneous architectures with
accelerators, such as Graphics Processing Units (GPUs). Omega is written in C++ and uses the Kokkos performance portability
library. These were chosen because they are well-supported, and will help future-proof Omega for upcoming HPC architectures.
Omega will eventually replace the Model for Prediction Across Scales-Ocean (MPAS-Ocean) in the US Department of Energy’s
Energy Exascale Earth System Model (E3SM). Omega runs on unstructured horizontal meshes with variable-resolution capability
and implements the same horizontal discretization as MPAS-Ocean. In this paper, we document the design and performance of
Omega Version 0.1.0 (Omega-V0), which solves the shallow water equations with passive tracers and is the first step towards
the full primitive equation ocean model. On Central Processing Units (CPUs), Omega-VO0 is 1.4 times faster than MPAS-Ocean
with the same configuration. Omega-V0 is more efficient on GPUs than CPUs on a per-watt basis—by a factor of 5.3 on Frontier

and 3.6 on Aurora, two of the world’s fastest exascale computers.

1 Introduction

Ocean models have always required the fastest computers available to resolve the fine spatial scales and simulate the long
timescales inherent in ocean circulation. The E3SM project in particular is focused on using the fastest computers fielded by
the US Department of Energy (DOE) to perform high-resolution simulations of the Earth system, including the global ocean.
Ocean modelers have always needed to adapt to underlying HPC architectures and changing programming models. The earliest
global ocean models were written in Fortran in the 1960s (Bryan and Cox, 1968) and were later optimized in the 1970s and

1980s for vector supercomputers (e.g., Semtner and Chervin, 1988) to perform early eddy-permitting simulations. During the

20

25

30

35

40

45

50

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

parallel computing transition in the late 1980s and 1990s, the Parallel Ocean Program (POP; Dukowicz et al., 1993) led the
way with a data-parallel version of the Bryan-Cox models and the introduction of some algorithmic improvements needed for
parallel implementations (Dukowicz and Smith, 1994). POP was used to perform the first eddy-resolving simulations of the
global ocean and the North Atlantic (Maltrud and McClean, 2005; Smith et al., 2000). After nearly a decade of competition
among parallel programming models in the 1990s, the Message Passing Interface (MPI, 2025,1993) eventually became the
de facto standard programming model, and models like POP were adapted to the MPI paradigm with horizontal domain
decomposition surrounded by halo points to reduce the number of messages between domains (e.g., Smith et al., 2010). As
commodity microprocessors in HPC clusters began to include multiple Central Processing Unit (CPU) cores, OpenMP (2024)
directives were added to MPI models for on-node thread-based parallelism among the cores (Wallcraft, 2000; Kerbyson and
Jones, 2005).

Another transition in computing is now in progress, due to the power and cooling constraints that limit the performance of
CPUs. The latest HPC architectures are heterogeneous systems with a number of different processing elements, most commonly
featuring the pairing of CPUs with Graphics Processing Units (GPUs) as accelerators. In the current TOP500 ratings, only two
of the top 50 machines are not equipped with GPUs (Strohmaier et al., 2025). Moreover, the majority of computing power in
the largest machines resides in their GPUs. For example, Frontier, ranked second in the TOP500, provides 2.5 TFLOPs from
the CPU on each node and 192 TFLOPs from its 4 GPUs (98.7%). Similarly, Aurora provides 27 TFLOPs from CPUs and
314 TFLOPs per node from GPUs (92%). Thus, to fully leverage the capabilities of modern HPC systems and achieve high
performance, any computational physics model must be developed to run efficiently on GPUs.

The new Ocean Model for E3SM Global Applications (Omega) is no exception. Since our goal is for Omega to operate
effectively on these heterogeneous architectures, it must be explicitly designed to harness the computational power of GPUs.
As in the early 1990s parallel transition there are a number of competing programming models for these new heterogeneous
architectures and few options that are portable across even the Leadership Computing Facilities of the DOE that deploy the
fastest computing platforms for scientific computing. Currently, programmers have several choices: (1) adding directives
like OpenACC (OpenACC, 2022) pragmas for offloading computation to the GPUs; (2) writing low-level GPU code using
vendor-specific API (Application Programming Interface) like CUDA (NVIDIA Corporation, 2023), HIP (Advanced Micro
Devices, Inc., 2023), or DPC++ (John et al., 2021); (3) using climate or weather domain-specific language or source-to-source
compilers like PSyclone (2019) or GridTools (2019); (4) adopting performance-portable programming models such as Kokkos
(Trott et al., 2022a), YAKL (Norman et al., 2022) and Raja (Beckingsale et al., 2019), providing high-level programmer-friendly
abstractions, that are compiled down to optimized, vendor-specific backends. We define performance portability as the ability
of code to achieve high performance across different computing platforms without requiring code modifications or performance
tuning for each specific platform.

The vast majority of climate model components, including ocean models, are written in Fortran using MPI to share data
between nodes and OpenMP for multi-threading within shared-memory nodes. The easiest route to running on GPUs is to add
OpenACC directives around loops (option 1 above), as the base code remains unchanged and the format is similar to OpenMP

directives. This approach was adopted by our group for MPAS-Ocean, and also by ICON-O (Porter and Heimbach, 2025).

55

60

65

70

75

80

85

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

MPAS-Ocean with OpenACC was successfully deployed on GPUs. However, due to the MPAS-Ocean structure, only half
of the code could be accelerated with directives, resulting in limited performance gains. This ranged from modest speed-ups
on some machines, such as Frontier, to slow-downs on others, such as Perlmutter, as described in Section 5. In all cases,
performance with OpenACC was far below the expected throughput for each GPU node due to the small kernel sizes and
inability to accelerate half the code. In addition, compiler support for Fortran was poor and delayed on many GPU architectures.
These issues motivated us to look for a different GPU programming model and to pursue a complete re-write of the ocean model
itself.

For option 2, each compute vendor has an API to program their devices, which is often proprietary. This results in vendor
lock-in and lack of portability. These APIs are at a much lower level in the system software stack than the directives-based
approaches described earlier. Nvidia provides the CUDA (Compute Unified Device Architecture) toolkit to program their
GPUs and offload computation. With the right expertise, this can result in highly optimized code and excellent performance
on Nvidia GPUs. AMD in turn introduced Heterogeneous-computing Interface for Portability (HIP), a C++ runtime API
and kernel language that facilitates developing applications primarily for AMD GPUs. Although HIP promises NVIDIA GPU
support, performance portability is not guaranteed. SYCL is an open C++ standard that adds data parallelism and heterogeneous
programming to standard C++. Especially Intel GPUs can be programmed using Data Parallel C++ (DPC++), which is Intel’s
implementation of SYCL. However, these APIs are not beginner-friendly and have a steep learning curve for domain scientists.
Basic portability itself is not guaranteed. Moreover, performance portability across diverse GPU architectures is not a design
target and would require extensive optimization effort. Models that have had a version converted to run on GPUs with CUDA
include the Princeton Ocean Model (Xu et al., 2014, 2015), the Finite Volume Coastal Ocean Model (FVCOM) (Zhao et al.,
2017), and the Weather Research and Forecasting (WRF) (Mielikainen et al., 2012). This approach was not considered for our
model due to portability concerns across the diverse set of DOE computing platforms.

Domain-specific languages (option 3) that are suitable for ocean models are limited and do not yet have large community
buy-in, making them a risky choice for long-term development. Julia is a notable new option that supports performance
portability across new architectures. The Climate Modeling Alliance (CliMA) has embraced Julia as its core language, and
their ocean component, Oceananigans.jl (Ramadhan et al., 2020), has demonstrated strong computational performance on
GPUs (Silvestri et al., 2025). While Julia continues to evolve and gain traction in scientific computing, C++ offered a more
stable and production-ready foundation for building a scalable and performant ocean model from the ground up. Firedrake
(Ham et al., 2023) is an example of a more specialized domain specific language. It provides a high-level interface with partial
differential equations (PDEs) and underlying discretizations, but is not strongly supported on GPU architectures.

In designing Omega, we found the performance-portable library approach (option 4) to be the most promising. The existing
C++ based libraries (Kokkos, Raja, YAKL) all offer similar capabilities, including data array abstractions for managing the
CPU and GPU memory spaces, as well as a parallel_for construct for kernel launches and parallel execution on the GPU.
A number of additional utilities are also provided to support a performance-portable interface across the heterogeneous nodes.

We began Omega with YAKL because it was the simplest and most light-weight library, specifically developed to port existing

90

95

100

105

110

115

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Fortran atmosphere codes. However, due to the future risk associated with it being a single-developer package, we switched to
the Kokkos library.

The choice of Kokkos required our development team to transition from Fortran to C++. This is a major change, as Fortran
has been used by our group and the climate modeling community for many decades. We consider the model rewrite in C++
a worthwhile, long-term investment for its widespread support across all major HPC platforms. C++ benefits from decades of
ecosystem development, robust support by compiler vendors, and a wealth of well-established libraries for MPI, parallel 1/O,
and performance portability frameworks like Kokkos.

Kokkos was already being used by the E3SM atmosphere component, and we had developed some internal project expertise
with it. The E3SM Atmosphere Model in C++ (EAMxx) was designed from the ground up using C++ and Kokkos. EAMxx
and its high-resolution counterpart, the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM), won the 2023 Gordon
Bell Climate Prize for Modeling award for being the first global cloud-resolving model to run efficiently on an exascale
supercomputer (Donahue et al., 2024). SCREAM was designed to provide sufficient parallelism to keep GPUs fully utilized,
and surpassed one simulated year per compute day at global 3 km resolution.

A recent example of a Kokkos-based ocean model outside of DOE is LICOMK++ (Wei et al., 2024a). They showed
performance portability across CPUs and HIP-based GPUs (Wei et al., 2024b). Like the Omega effort we describe here, this
ocean model is still in the early stages of development, lacking some features found in more mature ocean models and relying
on more uniform, regular meshes. Nonetheless, it will be a valuable point of comparison for Omega going forward. It should
be noted that unlike the two efforts above, we were able to develop Omega with a small group composed primarily of domain
scientists, without a dedicated computer science team. We have purposely written the code to be legible to domain scientists,
simplifying some of the Kokkos abstractions for that purpose.

In this paper, we document the first phase of our future ocean model, Omega, using the Kokkos portability layer. The
model is described in Section 2, including the governing equations, variable definitions, and discrete formulation. The code
design in Section 3 explains the details of the model framework, Kokkos interface, and code organization. Section 4 describes
four verification tests of increasing complexity. Section 5 provides Omega performance results on three architectures with

comparisons on CPUs and GPUs, and with MPAS-Ocean. Conclusions are presented in Section 6.

2 Model Description

Omega Version 0.1.0 (Omega-V0) was created as a first version of the full Omega primitive equation model. It solves the
shallow water equations (SWE), as well as the advection-diffusion equation for passive tracers. This is sufficient to test
performance using the Kokkos library on CPUs and GPUs, as well as the framework functions described in Section 3.1.
Omega-VO0 has redundant vertical layers in order to test performance using arrays with a vertical index, but does not include

any vertical advection or diffusion terms.

120

125

130

135

140

145

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

2.1 Governing equations

The shallow water equations govern the conservation of momentum and volume for an incompressible fluid on the rotating
earth. Standard formulations may be found in textbooks on Geophysical Fluid Dynamics, such as those by Vallis (2017);
Cushman-Roisin and Beckers (2011); Gill (1982); Pedlosky (1986). Here we follow the presentation in Bishnu et al. (2024),

Section 2.1. In continuous form, the shallow water equations are

ou

E+(U~V)u+fk><u:ng(h7b), (1)
oh
E'FV'(}IU):O.)

All variables introduced in this section are summarized in Table 1. Using a vector calculus identity, the non-linear advection

term may be represented as

2
1qu:(qu)xu+Vg% 3)
2
:{k-(qu)}kxu+V% 4
—wut + VK.)

Thus the advection and Coriolis term may be combined together as

w-Vu+ fkxu=(w+flut + VK (6)
—q(hut) + VK, (7)
where ¢ is the potential vorticity. This formulation, described in Section 2.1 of Ringler et al. (2010), is useful for the mimetic

properties of potential vorticity and energy conservation in the TRiSK discretization (Thuburn et al., 2009).

The governing equations for Omega-V0 in continuous form are

ou 1\ 5 4 ulu| T
E-l—q(hu)——gV(h—b)—VK—i-VQV u—v4V u—CDT—i—E 8)
oh
57 TV (hu) =0 ©)
Ohy 2 4
2t + V- (huyp) = kahV=p — kyhV . (10)

In order to bring these equations closer to the layered formulation of the upcoming full ocean model in Omega-V1, we have
added Laplacian and biharmonic dissipation to the momentum equation, along with quadratic bottom drag and wind forcing.
The thickness equation (9) is derived from conservation of mass for a fluid with constant density, which reduces to conservation
of volume. The model domain uses fixed horizontal cells with horizontal areas that are constant in time, so the area drops out
and only the layer thickness h remains as the prognostic variable. The tracer equation (10) is the conservation equation for
a passive tracer (scalar), with only advective and diffusive terms. It is not included in the textbook shallow water equations,

but is useful for us to test tracer advection in preparation for a primitive equation model in Omega-V1. In this equation set,

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

the tracer equation does not feed back into the momentum or thickness equations. It is written in a thickness-weighted form

because the conserved quantity is the tracer mass. Here (hpA), where A is horizontal cell area, typically has units of tracer

mass in kg, while ¢ has units of concentration in kg m~3. Since A is fixed, it is divided out, making (10) thickness-weighted,

150 rather than volume-weighted. A derivation of the thickness-weighted tracer equation appears in Appendix A-2 of Ringler et al.

(2013). The Omega-VO0 governing equations do not include any vertical advection or diffusion. Although Omega-V0 includes

a vertical index for performance testing and future expansion, vertical layers are currently redundant.

Table 1. Definition of variables

symbol name units location notes
b bottom depth m cell always positive
Cp bottom drag m~! constant typically 0.001
f Coriolis parameter st vertex
g gravitational acceleration ms™2 constant
h layer thickness m cell
k vertical unit vector unitless none
K kinetic energy m? s 2 cell K =|lu|?/2
q potential vorticity mtsTt vertex g=w+f)/h
t time S none
u velocity, vector form ms~? edge
Ue velocity, normal to edge ms~? edge
ul velocity, tangential to edge ms™? edge
K2 tracer diffusion m? s} cell
K4 biharmonic tracer diffusion ~ m* s™! cell
12 viscosity m?s7! edge
vy biharmonic viscosity m?s™? edge
tracer varies cell units: kg m~* or similar
T wind stress Pa edge
w relative vorticity st vertex w=k-(Vxu)

2.2 Discretization

The horizontal domain is partitioned into polygonal finite-volume cells. Definitions of the mesh variables, differential operators

155 and illustrative figures can be found in Ringler et al. (2010), Section 3, and are not reproduced here.

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

In discrete form, the governing equations are

Oue k-Vxuc.+ f, 1.1\))) 2 4 ue‘ue‘ Te
5 [il L ([hz}eue> =—gV(h;i —b;)) = VK; +1Vu, —v4Viu, — Cp hil. + il (11
Oh;
([hi)eue) = y 12
e 5 (o) =0 a2
ahl(pl +V. (Ue [hﬁpz]e) = thl'VQ(pi - H4hiv4§0i7 (13)

ot
160 where subscripts ¢, e, and v indicate cell, edge, and vertex locations (i was chosen for cell because ¢ and e look similar). Here
square brackets [-]. and [-], represent quantities that are interpolated to edge and vertex locations. The interpolation is typically
centered, but may vary by method, particularly for advection schemes. For vector quantities, u. denotes the normal component

at the center of the edge, while uZ denotes the tangential component.
Documentation of operator convergence rates are provided in Bishnu et al. (2023) Section 4.1 and Figure 1. All TRiSK
165 spatial operators demonstrate second-order convergence on a uniform hexagon grid, except for the curl on vertices, which is
first order. The curl interpolated from vertices to cell centers regains second order convergence. The rates of convergence are
typically less than second order on nonuniform meshes, including spherical meshes. Tracer advection uses center-weighted
thickness and tracer values at each edge. The boundary conditions are no normal flow and no-slip. This is accomplished by

setting the edge-normal velocity u. = 0 on the boundary for flux and vorticity calculations.

170 3 Code design

Omega-VO0 has been designed to perform efficiently on modern parallel, hybrid HPC architectures. The design utilizes a domain
decomposition of the unstructured mesh across parallel nodes with data communicated between the partitions using the MPI
(2025,1993). Within a single shared-memory node, we have adopted the Kokkos (Trott et al., 2022a) programming model to
map the computational work to either CPU cores (host) or GPU accelerators (device). This necessitated that Omega be written
175 in the C++ programming language (Stroustrup, 1986, 2013). We have added some additional abstractions or aliases to simplify
some of the Kokkos syntax and make it more accessible to Omega developers (see Section 3.2). Kokkos is a well-supported,
portable framework (Trott et al., 2021) that has enabled us to create a performance-portable ocean model.
All components of Omega follow a process of design document writing and review, and then code writing, testing and
review. Each feature is accompanied with a user’s guide, developer’s guide, and the original design document on the Omega
180 documentation website (Asay-Davis et al., 2025b). This detailed information, created by each developer during code development,

will serve as a comprehensive reference for the completed model.
3.1 Framework
3.1.1 Domain Decomposition

As described above, the top level of parallelism is a domain decomposition of the horizontal mesh. We utilize the Metis library

185 (Karypis, 2013) to perform the decomposition, given a mesh connectivity computed from JIGSAW (Engwirda, 2018). Unlike

190

195

200

205

210

215

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

the previous MPAS model, the decomposition is computed at startup with a call to the Metis library rather than being computed
off-line. This eliminates a preprocessing step and the need to maintain partition files for different model configurations. The
number of tasks is determined at run time from either the MPI environment when running a standalone ocean model or from a
coupled model driver when Omega is run coupled within E3SM. The actual layout of MPI tasks across CPU cores and GPUs
within a node can be set with job submission scripts. Multiple domain decompositions are supported so that some phases (e.g.,
a barotropic mode solver or analysis tasks) can be run in a different task configuration to optimize for communication or to

enable a larger subgrid size.
3.1.2 Message Passing Infrastructure

Message passing is used to communicate data between the horizontal domains. The Omega base infrastructure layer provides
simple interfaces for performing communications like the broadcast of data from a single task, the updating of domain halos
and performing global reductions like sums across the global domain. All communication routines can determine whether the
data exists on the host or device and can utilize GPU-aware MPI capabilities wherever available. The global sum function
is bit-reproducible for all data types. For single-precision (32-bit) floating point types, the sums are performed in double
precision (64-bit) and converted back to single precision. For double-precision floating point data, the sums are computed
using the double-double algorithms of Knuth (1969) and Hida et al. (2008) following the implementation of He and Ding
(2001).

We have implemented an MPI halo exchange module that handles the transfer of data across interfaces between adjacent
partitions in a given domain decomposition. This implementation supports exchanges of multidimensional arrays of fundamental
data types residing in either CPU or GPU memory. The module is designed to minimize latency by utilizing non-blocking MPI
routines (i.e., MPI_Isend and MPI_Irecv) and supports a user-configurable halo width.

To maximize performance on GPU-accelerated systems, the halo exchange module can leverage GPU-aware MPI, enabled
via a compile-time build flag. When built for GPU execution, halo elements are packed into and unpacked from contiguous
buffers directly on the device using parallel kernels. With GPU-aware MPI enabled, send and receive buffers in device memory
are passed directly to the MPI routines; otherwise, the packed send buffers must be copied from device to host for traditional
host-staged MPI, and the received buffers are copied back from host to device before unpacking. Benchmarking on Frontier
at Oak Ridge National Laboratory with GPU-aware Cray MPICH demonstrates that this approach significantly reduces halo
exchange overhead, yielding approximately a 4-6x reduction in halo exchange time per time step compared to host-staged

MPI at large node counts, where communication is latency dominated (Figure 1).
3.1.3 Other utilities

Configuration of Omega is done through an input configuration file in YAML (YAML, 2009) format. We use the yaml-cpp
library (Beder, 2023) to read and parse the configuration on initialization. Logging of both informational and error messages

are part of Omega’s logging and error handling capabilities that are built on the spdlog library (Melman, 2023). This supports

220

225

230

235

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

GPU-aware MPI Performance Improvement

g 13— . .

o 512 x512 x 96 —x—

€ 1of 1024 % 1024 x 96 —=— |
3 2048 x 2048 x 96

& 1F .
[0]

T oW e |
o AN

& S

@? ot A g
g “x

u

z 8r \ b
5 ™

2 7r R E
& e N

o gl AT |
2 o e

© —x

{:)2, sl —-\,(_ I
w e

% 4 | H H HE H H I A —

T 1 10 100

Number of Nodes

Figure 1. Ratio of execution time per timestep for halo exchanges using host-staged MPI versus GPU-aware MPI on the Frontier
supercomputer at Oak Ridge National Laboratory with Cray MPICH. Results are shown for three different planar mesh sizes, utilizing

eight MPI tasks per node.

varying levels of error/log severity and messages can be written from either a master task or from all tasks, depending on a
build-time configuration.

All input and output are performed in parallel using the SCORPIO library (Krishna et al., 2024) that writes distributed data
using a runtime configuration of IO tasks. It supports both NetCDF (Unidata, 2023) and ADIOS (Godoy et al., 2020) formats.
Multiple IO streams can be defined with each stream having its own frequency of input/output and its own set of fields. The
details of each stream are specified by the user in the streams section of the input configuration file. Each field available for IO
is defined within Omega using a field class that defines the metadata associated with the field and attaches/detaches the data
array as needed. The field creation interfaces ensure that all required metadata are defined in accordance with the NetCDF CF
metadata conventions (Eaton et al., 2024).

A time manager tracks model time in the context of a number of supported calendars. It uses integer arithmetic to avoid
round-off in accumulated time. It is a reimplementation of the Earth System Modeling Framework (ESMF, 2020) time manager,
that has been simplified for more clarity and streamlined by removing unnecessary functionalities, such as Fortran interfaces.
It includes support for a model clock, time instants, time intervals (e.g., time step) and alarms for various model events like
forcing and I0O.

We use a profiling interface called Pacer to keep track of the computational time spent in various model processes using
application level markers that designate beginning and end of each process. These timers are aggregated across multiple ranks
and a summary report is generated when running in parallel. This timing infrastructure is based on our extensions to the General
Purpose Timing Library (GPTL) (Rosinski, 2018).

240

245

250

255

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

3.2 Performance Portability with Kokkos

To achieve performance portability, Omega has adopted the Kokkos Programming Model (Trott et al., 2022b). The Kokkos
Programming Model is implemented as a C++ library and provides abstractions necessary to achieve performance on the
diverse set of modern computing architectures. Kokkos abstractions can be divided into abstractions for data storage (View,
Memory Space, Memory Layout, and Memory Traits) and parallel execution (Execution Space, Execution Policy, and Execution
Pattern). Omega builds its own abstractions on top of these fundamental components to provide a simpler interface for domain
scientists.

For data storage, Omega uses the Kokkos View data structure. For convenience, type aliases are provided for commonly

needed views of fundamental data types, such as
— ArraylDI4 : device-resident one-dimensional array of four-byte integers,
— Array3DReal : device-resident three-dimensional array of user-configurable floating-point type,
— HostArray2DI8 : host-resident two-dimensional array of eight-byte integers,

and similarly for other combinations of ranks and types.
For parallel execution, Omega provides a parallelFor function, that can express parallel iteration over a multi-dimensional

index range. Figure 2 shows how a simple Fortran loop nest is expressed in Omega. Internally, this function dispatches to

real, dimension(3, 4, 5) :: A Array3DReal A("A", 3, 4, 5);
do k=1,5 parallelFor({3, 4, 5},
do j =1, 4 KOKKOS_LAMBDA (int i, int j, int k) {
doi=1, 3 A(L, j, k) =13 +Kk;
A(i, j, k) =1+ j+Kk 1)
end do
end do
end do

Figure 2. Multi-dimensional iteration expressed in Fortran (left) and using Omega abstractions (right).

the best performing (in the context of Omega) Kokkos execution policy for the chosen compute platform. Currently, we use
Kokkos MDRangePolicy on CPU platforms, but opt to use a one-dimensional RangePolicy with manual index unpacking on
GPUs, as this reduces GPU runtime overhead by replacing the more complex index mapping logic of MDRangePolicy with a
simpler manual calculation performed within each thread. This simplification can lower instruction count and improve memory
access patterns and cache utilization. Additionally, flattening the iteration space enables Kokkos’s internal heuristics to more

effectively select GPU kernel launch parameters, such as block size and grid configuration, thereby improving occupancy and

10

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

load balancing. On Frontier and Perlmutter GPU nodes, this approach yielded a 10-20% reduction in kernel execution time
compared to MDRangePolicy.

Individual computations in Omega (for example, tendency terms or auxiliary variables) are implemented as C++ functors,

260 which are classes that implement the function call operator. Functors can be called similarly to normal C++ functions, but may
contain an internal state. In Omega, functors are used to represent computations for a given mesh element (e.g., vertex, cell, or
edge) index and over a chunk of vertical levels. Our strategy is to design functors that perform computations over contiguous
chunks of vertical indices with a chunk size known at compile time, to facilitate vectorization on CPUs. For GPU execution,
the chunk size is set to 1 to distribute the workload across as many GPU threads as possible. To simplify the calling interfaces,

265 Omega functors store as member variables the static data needs to implement their operation, such as mesh connectivity or
geometry information. Variable input data are passed as arguments.

To give a concrete example, a functor that implements the kinetic energy gradient tendency term is shown in Figure 3. Its
constructor takes a pointer to the HorzMesh object so that the functor can store pointers to the CellsOnEdge connectivity
array and the DcEdge geometry array. The operator() implements the kinetic energy gradient computation for the edge

270 index IEdge and over the range [KChunk * VecLength, KChunk x VecLength + VecLength) of vertical levels. This
functor can then be used to compute the tendency term over the whole mesh by using the parallelFor function, as shown in
Figure 4.

Omega tendencies are composed of multiple terms. The functor approach makes it possible to easily switch between
computing multiple tendency terms in one parallel loop or in separate parallel loops. For example, given another functor

275 that computes the ssh gradient term SSHGradOnEdge, the kinetic energy and the ssh gradients can be computed together or
separately, as shown in Figure 5. Kernel fusion is a powerful optimization technique that often results in better performing code
due to reduced overheads and data reuse. However, overuse of this optimization may result in high register usage, which can

sometimes lead to worse performance. Therefore, having the flexibility to experiment with different splittings is important.
3.3 Code Organization and C++ Classes

280 Omega is organized into modularized classes to handle major pieces of the PDE solver such as Decomp, Halo, Mesh, State
variables, Auxiliary variables, Timestepping, and Tendency terms. The decomposition of the mesh into local MPI rank subdomains
is performed online in the Decomp class with the resulting local subdomain mesh represented in the Mesh class. The infrastructure
necessary to perform message passing on the host and device between local subdomain halo regions is contained in the Halo
class. The State class manages the prognostic variables, while the Auxiliary variable class stores and computes diagnostic

285 quantities derived directly from the prognostic variables and used in the tendency terms, e.g., kinetic energy andpotential
vorticity. The tendency terms are implemented as functors, where the operator method computes the tendency term for a single
mesh location (e.g., cell or edge) and over a range of vertical levels. The constructor of each tendency functor takes in and

stores static mesh information as private member variables, which simplifies the calling arguments in the PDE solution.

11

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

class KEGradOnEdge {
public:
bool Enabled;

/// constructor
KEGradOnEdge (const HorzMesh *Mesh)
: CellsOnEdge(Mesh->CellsOnEdge), DcEdge(Mesh->DcEdge) {}

/// The functor takes edge index, vertical chunk index, and kinetic energy

/// array as inputs, outputs the tendency array

KOKKOS_FUNCTION void operator()(const Array2DReal &Tend, I4 IEdge, I4 KChunk,
const Array2DReal &KECell) const {

KChunk * VeclLength;

CellsOnEdge(IEdge, 0);

CellsOnEdge(IEdge, 1);

1._Real / DcEdge(IEdge);

const I4 KStart
const I4 JCellO
const I4 JCelll
const Real InvDcEdge

for (int KVec = 0; KVec < VecLength; ++KVec) {
const I4 K KStart + KVec;
Tend(IEdge, K) -= (KECell(JCelll, K) - KECell(JCellO, K)) * InvDcEdge;

private:
Array2DI4 CellsOnEdge;
ArraylDReal DcEdge;

b

Figure 3. Kinetic energy gradient functor in Omega.

KEGradOnEdge KEGrad(Mesh);
parallelFor({NEdges, NChunks},
KOKKOS_LAMBDA (int IEdge, int KChunk) {
KEGrad (NormalVelocityTend, IEdge, KChunk, KECell);
3

Figure 4. Computation of kinetic energy gradient over the whole mesh.

12

290

295

300

305

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

KEGradOnEdge KEGrad(Mesh); KEGradOnEdge KEGrad(Mesh);
parallelFor({NEdges, NChunks}, SSHGradOnEdge SSHGrad(Mesh);
KOKKOS_LAMBDA (int IEdge, int KChunk) {
KEGrad (NormalVelocityTend, IEdge, parallelFor({NEdges, NChunks},
KChunk, KECell); KOKKOS_LAMBDA (int IEdge, int KChunk) {
1} KEGrad (NormalVelocityTend, IEdge,

KChunk, KECell);
SSHGradOnEdge SSHGrad(Mesh);

parallelFor({NEdges, NChunks}, SSHGrad (NormalVelocityTend, IEdge,
KOKKOS_LAMBDA (int IEdge, int KChunk) { KChunk, SSHCell);
SSHGrad (NormalVelocityTend, IEdge, 1)

KChunk, SSHCell);

1}

Figure 5. Split (left) or fused (right) computation of two tendency terms.

3.4 Build and Internal Testing

The Omega build system, built on the widely adopted CMake (Kitware, Inc., 2023b) tool, establishes a robust framework for
managing the compilation process. It operates in two distinct modes: standalone and E3SM component. In standalone mode,
Omega generates a generic E3SM case and derives its build configurations from it. In contrast, the E3SM component build
mode leverages build configurations provided by the CIME (Anderson et al., 2015) build system within an existing E3SM case.
The build process, meticulously defined in the top-level CMakeLists.txt file, is segmented into four sequential steps: Setup,
Update, Build, and Output.

A comprehensive testing strategy ensures Omega’s quality assurance and continuous integration. All major Omega algorithms
and software frameworks are rigorously validated using CTest (Kitware, Inc., 2023c), CMake’s integrated testing tool. This
enables the execution of functional tests, activated by setting OMEGA_BUILD_TEST=O0ON during the CMake configuration.
These tests are critical to verify the correct functionality and integrity of the codebase.

Furthermore, nightly tests are developed and integrated with CDash (Kitware, Inc., 2023a) to maintain ongoing stability and
performance. This integration facilitates automated reporting of test results, providing continuous feedback on the codebase’s
status. This robust testing infrastructure, which includes both CTest-based functional tests and CDash-driven nightly regressions,

is paramount to ensuring the high quality and reliability of the Omega ocean model.

4 Verification Tests

A series of Omega-V0 tests were conducted to verify the accuracy of the model solution, and document the computing

performance across several platforms. Convergence studies against exact solutions in idealized domains were conducted with

13

310

315

320

325

330

335

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

the manufactured solution, tracer transport, and barotropic gyre test cases. The global wind-driven Simulation was designed to
introduce coastlines, bathymetry, and wind forcing, in order to test the workflow for realistic domains.

We developed a python package polaris to facilitate the set-up and execution of verification and validation tests for
Omega. polaris is responsible for creating the MPAS mesh using the JIGSAW library (Engwirda, 2018), generating the
initial condition, configuring the forward model run and linking the model executable, and conducting analysis including
producing visualizations on the native MPAS mesh. polaris facilitates the creation of identical test cases for MPAS-Ocean

and Omega, supporting the benchmarking of Omega implementations against MPAS-Ocean.
4.1 Manufactured Solution

The method of manufactured solutions is commonly used for the code verification of partial differential equations (PDE)
solvers. Unlike code validation, which assesses whether a model captures the correct physics by comparing its results to
experimental or observational data, code verification is a purely mathematical exercise that evaluates whether a code correctly
implements the intended numerical method. The manufactured solution approach was formalized in the computational science
literature by Salari and Knupp (2000) and further refined in Roache (2002). The key idea is to choose an exact solution,
substitute it into the PDE, and include the residual terms as a source term. This enables the creation of analytic test cases for
the full shallow water system, including non-linear terms. It stands out in this respect, as other shallow water test cases, such as
the coastal Kelvin wave or the inertia-gravity wave test case (Bishnu et al., 2024) only provide analytic solutions to the linear,
inviscid form of the equations. Therefore, the manufactured solution represents the single best test case for the verification of
all terms in the model. We ‘manufactured’ our solution to match the test case described in detail in Bishnu et al. (2024) Section
2.10. However, as noted in that work, any smooth solution in space and time can be used, provided that the source terms are
correctly defined. The test case verifies the time-stepping scheme along with the sea surface height gradient, Coriolis, and
non-linear advection terms. We have only modified the source term to include both Laplacian and biharmonic dissipation.

The polaris system automates the testing of the manufactured solution for both MPAS-Ocean and Omega. The expected
convergence rate is second order, as shown in Bishnu et al. (2024) Figures 13 and 19. These results are reproduced in Figure
6, which is generated by polaris using data from regular planar hexagonal meshes with grid cells of width 200, 100, 50,
and 25 km. The corresponding time steps are 300, 150, 75, and 37.5 seconds, and the error was measured after 10 hours of
simulation time. All tests use Laplacian and biharmonic viscosity coefficients of v, =1.5¢06 m?s~! and 4 =5e13 m*s™!
respectively, classical fourth-order Runge-Kutta time-stepping (e.g. section 24.2 of Hamming (1973)), and a center-weighted
thickness advection. The tracer equation (13) is not used in this test.

Individual operators such as the gradient, divergence, curl, and tangential velocities were verified in the early stages of model
development. These used simple analytic functions such as sine waves on a doubly-periodic domain, where the exact solution
was easily computed. The test setup follows Bishnu et al. (2023) Section 4.1, and was able to reproduce the second-order
convergence for TRiSK operators shown in Figure 1 of that paper. The manufactured solution test is a superset of these tests,

as it includes these individual terms.

14

340

345

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

Error Convergence of SSH

L2 norm

first order

second order

— linear fit (order=2.044)
® numerical

2 %102 102 6x 10! 4x10' 3x10!
Horizontal resolution (km)

EGUsphere\

Figure 6. Convergence plot for Omega with the Manufactured Solution Test, showing the L2 norm of the difference between the computed

and analytic solution in sea surface height.

Numerical solution Analytical solution Error (Numerical - Analytical)
7500 - dSSH
— 0.25
E‘. 5000 A 0.00
> 2500 1 -0.25
0 5000 0 5000
x (km) x (km)

Figure 7. Sea Surface Height of the Manufactured Solution with a 25km grid.

4.2 Tracer transport on the sphere

Tracer transport was verified using a fixed angular velocity field and a tracer distribution that is advected around the sphere. This

is named the cosine bell test case, and is available in polaris under cosine_bell. It was first described in Williamson

et al. (1992) but we use the variant from Sec. 3a of Skamarock and Gassmann (2011). A flow field representing solid-body

rotation transports a bell-shaped perturbation in a tracer 1) once around the sphere, and the exact solution is the original

distribution after one full rotation. The standard case evaluates error convergence with resolution, where the time step varies in

proportion to the cell size. Another polaris test performs two runs of the cosine bell at coarse resolution, once with 12 and

once with 24 cores, to verify the bit-for-bit identical results for tracer advection across different core counts. A final polaris

test with the cosine bell configuration runs for two time steps at coarse resolution, then performs reruns of the second time

step, as a restart run to verify the bit-for-bit restart capability for tracer advection.

15

350

355

360

365

370

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

0° 60°E 120°E 180° 120°W 60°W

Figure 8. Initial tracer concentration for the Cosine Bell Advection Test.

The cosine bell domain is an aquaplanet without continents, with a uniform depth of 300 m. The initial bell is defined by a

passive tracer

(¥0/2) [1+cos(xr/R)] ifr <R
= (14)

0 ifr>R
where {9 = 1 and the bell radius, R = a/3, with a representing the radius of the sphere, as shown in Figure 8. The zonal and
meridional components of the fixed velocity field are

2 0
. m(acosh)
T

, (15)
v=0, (16)

where 7 is the time it takes to complete one full rotation around the globe and 6 is the latitude. The default value of the time
period 7 is 24 days. Momentum and thickness are not evolved in this test.

The convergence test uses spherical icosahedral meshes, each with average grid cell widths of 480, 240, 120, and 60 km.
These meshes are constructed by subdividing the triangular faces of an icosahedron 4, 5, 6 and 7 times, respectively, projecting
the vertices onto the sphere, and then creating the dual spherical Voronoi mesh. The results of the convergence test are shown
in Figure 9. The order of convergence is 1.36 for the centered advection scheme. Flux corrected transport (Skamarock and
Gassmann, 2011) shows a convergence rate of 2.42 in MPAS-Ocean for this test, and is currently under development for the

next version of Omega.
4.3 Wind-driven Barotropic Gyre

The barotropic gyre test case is used to evaluate linearized barotropic ocean dynamics with Laplacian viscosity and surface
wind forcing. It is based on the Munk Model (Munk and Carrier, 1950), which is an idealized configuration of an ocean basin.
Using a single layer in a rectangular domain on a 8-plane, Munk was able to produce a basin-wide circulation with a western
boundary current. The width of the jet is controlled by a single parameter L,, = (v/ 6)1/ 3, where 3 = df /dy is the meridional

gradient of the Coriolis parameter and v is the kinematic viscosity. The jet becomes narrower as decreases or v increases

16

375

380

385

390

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Error Convergence of tracerl

100 4

L2 norm

first order
second order

linear fit (order=1.364)
® numerical

T
4x102 3x10? 2x10? 102 6x 10!
Horizontal resolution (km)

Figure 9. Convergence plot for Omega-VO0 for the Cosine Bell Advection Test.

(Vallis, 2017, eqn. 14.43). Alternately, a similar barotropic gyre can be generated through a balance between wind stress and
bottom stress, rather than viscosity. This variant is known as the Stommel Model (Stommel, 1948; Pal et al., 2023, App. B),
which is not considered in this study.

The Munk Model serves as an excellent test case for the shallow water equations, as it is one of the few configurations with

a physically meaningful circulation and an exact analytical solution. The wind stress field (7,7,) is given by

Tx = T COS <7rLyy> , (17a)

Ty =0, (17b)

on a domain of width L, x L,,. We evaluate MPAS-Ocean and Omega against the analytic solution for the streamfunction ¥

under no slip boundary conditions (Vallis, 2017, p.743 equation 19.49):

. 3z 1-2 3 :
U =rsin(ry) | 1 -7 —e /() cos(\gj>+ \/gesin<\2[€x> +ee®D/e (18)

where £ = z/L, and € = L,,/L,. Free slip boundary conditions are not available for either model and are not evaluated.

The wind-driven barotropic gyre is available in the polaris testing environment under the name barotropic_gyre.
It uses a dimensional version of the Munk Model in order to test Omega with realistic parameter values. The domain size is
1200 by 1200 km, with a resolution of 20 km. The maximum zonal wind stress amplitude, 79 = 0.1; the horizontal viscosity,
v =4e02 m? /s; the Coriolis parameter, f = fo + By with fo =10"*s71 and 3 =10"1" s~'m~!. Omega’s advection term is
linearized to permit a comparison against the analytical solution. The boundaries are non-periodic in both x and y, and the
bottom topography is flat.

The case begins from rest with a uniform depth of 5000 m and zero sea surface height perturbations. It is spun up for
three years, with a time step of 1 hour 23 minutes, chosen to satisfy the CFL condition with a Courant number of 0.25 and

an assumed maximum velocity of 1 m s~!. Upon completion, the streamfunction is computed from the native edge-normal

17

395

400

405

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Numerical solution Analytical solution Error (Numerical - Analytical)

y y dy .

3.160 2 3.160 :

2.107 1000 2.107 1000 A 0.5

0.3

1.053 750 1.053 750 o1
0.000 0.000 o1
-1.053 >00 -1.053 200 —03
-2.107 250 -2.107 250 - o5
0 y ' —3.160 0 —3.160 0 :] -0.7

0 500 1000 0 500 1000 0 500 1000
x (km) x (km) x (km)

Numerical solution Analytical solution Error (Numerical - Analytical)

y y dy

3.167 » 3.167 :

1000 {4 2.112 1000 2112 1000 - 0.5

—_ 0.3

c 750 1.056 750 1.056 750 - 01
~ 0.000 0.000 o1
< 50 1056 500 1056 500 o
250 55 -2.112 250 4 -2.112 250 1 o5
0 . : -3.167 0 -3.167 0] . -07

0 500 1000 0 500 1000 0 500 1000
x (km) X (km) x (km)

Figure 10. Barotropic gyre test case after three years, showing the streamfunction for Omega (top) and MPAS-Ocean (bottom).

velocity. Both MPAS-Ocean and Omega have on the order of 10 percent differences in streamfunction magnitude from the
analytic solution 10. After three years of simulation, small differences between the two models occur at the boundary. This

may be due to different order of operations or compiler optimization.
4.4 Wind-driven Global Simulations

The final test of Omega adds realistic components to the configuration: Earth’s coastlines and bathymetry on the sphere,
climatological wind stress, bottom drag, and the full Coriolis parameter. This results in basin-wide circulations with western
boundary currents such as the Gulf Stream and the Kuroshio current, and an Antarctic Circumpolar Current. This is the most
realistic configuration one may attain with the shallow water equations, as variations in temperature and salinity, and the layered
baroclinic dynamics are necessarily missing. Still, the wind-driven global simulation is an important step from the idealized
box of the Munk Model, and demonstrates that the infrastructure for realistic geography and wind forcing is working properly.
These components are essential for the upcoming layered version of Omega, where we can make quantitative comparisons to
ocean observations.

There is no exact solution to the wind-driven global simulation. Therefore, we compare Omega-V0 to MPAS-Ocean, solving
the shallow water equations with the same configuration. Both are run with the full nonlinear advection term, with a bottom
drag coefficient of C'= 1073, Laplacian diffusion with 15 = 103 m?s~! and biharmonic with v, = 1.2 x 10'* m*s~!. The
coastal boundaries and realistic bathymetry for these single-layer simulations are interpolated from the GEBCO 2023 (GEBCO
Bathymetric Compilation Group 2023, 2023) and BedMachine Antarctica v3 (Morlighem, 2022) which have been blended

together between 60°S and 62°S. The ocean begins at rest with a uniform sea surface height of zero, and spins up for 40 days.

18

410

415

420

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h .
© Author(s) 2025. CC BY 4.0 License. spnere

@ ® Preprint repository

BY

A
=3
=
Q
o
]
£
o]
=
9]
08

Figure 11. Detail of the icosahedral 7.5 km mesh, showing bottom depth in the Gulf of Mexico (top), and a close-up view of the Mississippi
River Delta Region (bottom).

MPAS-Ocean and Omega read in the identical initial condition file, as they both use the MPAS mesh specification in a NetCDF
file format.

A sequence of spherical icosahedral meshes were generated using the JIGSAW software via Compass (Asay-Davis et al.,
2025a), the predecessor to polaris. The first mesh has 8 icosahedral subdivisions resulting in an average gridcell width of
30 km, and the width halves with each progressive subdivision. Here we show results for 10 subdivisions, with a resolution of
7.5 km and 7.44 million horizontal cells (Figure 11). A time step of 15 seconds is required at this resolution, which is similar
to the barotropic time step in time-split layered ocean models, in order to satisfy the CFL condition for surface gravity waves.
The wind forcing is constant in time, so there is no diurnal or seasonal variation. After a spin-up period of 40 days, one can
observe the structure of the global circulation in the sea surface height (Figure 12), which is a proxy for the streamfunction.
In the wind-driven shallow water system, strong currents develop along western boundaries and along deep sea ridges in the
Southern Ocean (Figure 13). Omega and MPAS-Ocean produce the same circulation patterns, with differences of less than 5%

throughout most of the domain. Visible differences along coastlines may stem from the accumulation of numerical errors in

19

https://doi.org/10.5194/egusphere-2025-3500

Preprint. Discussion started: 24 October 2025 EG U h .
© Author(s) 2025. CC BY 4.0 License. spnere
Preprint repository

£
i
o
©
<
o
o
o
£
2
o]
o
3

sea surfce height (m)

sea surface height (m)

Figure 12. Global wind-driven test case showing SSH in meters at day 40, with the 7.5 km icosahedral mesh. Results are for Omega (top),
MPAS-Ocean (middle) and the difference (bottom).

20

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

kinetic energy

>
)]
2
0]
c
[0)
9
E
)
£
3

kinetic energy

Figure 13. Global wind-driven test case showing kinetic energy in m?s 2 at day 40, with the 7.5 km icosahedral mesh. Results are for Omega

(top), MPAS-Ocean (middle) and the difference (bottom).

21

425

430

435

440

445

450

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

energetic regions after 2.3e5 time steps. The 7.5 km mesh was run on 10 nodes, with a total of 1280 processors, on Perlmutter

at the National Energy Research Scientific Computing Center (NERSC).

5 Computational Performance

Experiments were conducted to evaluate the computational performance of Omega-V0. The goals of this campaign are to
measure: the computational throughput on both CPUs and GPUs; scaling with the number of compute nodes; and performance
across a range of operational resolutions. The promise of the performance portability of Kokkos is tested in this section with
three DOE platforms, which contain two types of CPUs and three different GPU designs. In order to take full advantage of
DOE’s computing resources, Omega must be able to achieve high throughput at large node counts with high resolution domains

on all of these machines.
5.1 Hardware and Compiler Specifications

Performance testing was carried out on three of the largest supercomputers in the world: Frontier, Aurora, and Perlmutter. These
were ranked second, third and twenty-fifth, respectively in the most recent Top500 list (Strohmaier et al., 2025), as shown in
Table 2. Currently, the DOE owns the only three exascale computers on the list—EIl Capitan at 1.74 EFlop s~!; Frontier at
1.35 EFlop s~!; and Aurora at 1.01 EFlop s~!, as measured by the High-Performance Linpack benchmark implementation.
While we did not have access to El Capitan for this project, we were able to test Omega-V0’s performance on architectures
most relevant to DOE computing.

Frontier, Aurora, and Perlmutter provided a variety of chip designs to test the performance portability of the Kokkos library,
as shown in Table 3. CPUs include AMD’s EPYC 7763 and Intel’s Xeon Max 9470. The three machines use three different
GPU models: the AMD MI250X in Frontier; the Intel Data Center in Aurora; and the NVIDIA A100 Ampere in Perlmutter.
Likewise, we tested three compilers on these machines: gnu on Frontier, intel on Aurora, and cray clang on Perlmutter (see
Table 4).

5.2 Strong Scaling Tests

We conducted performance tests using the inertial-gravity wave shallow water test, available in the polaris suite under
inertial_gravity_wave, and described in Section 2.6 of Bishnu et al. (2022). In order to mimic the performance
requirements of a primitive equation ocean model, the Omega-V0 shallow water model was run with 96 identical vertical
layers, five active tracers, the full non-linear advection terms, and the Laplacian and biharmonic terms active in both the
momentum equation 11 and tracer equation 13. The choice of 96 layers was made as it is a multiple of 8, allowing for better
vectorization. Wind forcing and bottom stress were not applied in these steps. The time-stepping scheme was chosen to be
classical fourth-order Runge-Kutta.

The domain is doubly periodic on a Cartesian, regular hexagonal grid. Configurations of 1024x1024x96 and 2048x2048x96

gridcells are presented here. Performance times are equivalent for regular cartesian and unstructured spherical meshes, so the

22

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Top500 statistics Frontier Aurora Perlmutter
Rank, June 2025 2 3 25

Linpack Performance (Rmax) 1,353 PFlop s~ * 1,012 PFlops™* 79 PFlops™*
Theoretical Peak (Rpeak) 2,056 PFlops~' 1,980 PFlops~" 113 PFlop s™*
Nmax 24,837,120 28,773,888 5,800,000
HPCG 14,054 TFlops~—' 5,613 TFlops™* 1,905 TFlop s~ !
CPU cores for test 9,066,176 9,264,128 888,832

Power Consumption 24,607 kW 38,698 kW 2,945 kW

Table 2. Performance statistics from the Top500 Supercomputers list, June 2025 (Strohmaier et al., 2025). Rmax is the maximum
performance achieved using the LINPACK benchmark suite. Rpeak is the theoretical peak performance. Nmax refers to the size of the
largest problem (specifically, the matrix size in a LINPACK benchmark) that a computer can solve. HPCG is the High-Performance Conjugate
Gradient (HPCG) Benchmark results.

Hardware Frontier Aurora Perlmutter
Manufacturer HPE Intel HPE
Location Oak Ridge National Lab. Argonne National Lab. NERSC
Installation Year 2021 2023 (available 2025-Feb-14) 2021
Nodes 9856 10,624 4904 (1792 GPU; 3072 CPU; 40 login)
CPU AMD Opt. 3rd Gen EPYC 2GHz 2x Xeon Max 9470 2.4GHz AMD EPYC 7763 2.45GHz
Cores per CPU 64 51 64 (GPU node); 128 (CPU node)
GPU 4x AMD MI250Xs w/ 2 GCD 6x Intel Data Center GPU Max 4x NVIDIA A100 Ampere
CPU performance 2.51 TFlops/socket 13.3 TFlops/socket 2.51 TFlops/socket
GPU performance 47.9 TFlops (FP64)/GPU 52.4 TFlops (FP64)/GPU 9.7 TFlops (FP64)/GPU
Memory per node 512 GB of DDR4 1024 GB of DDRS, 128 GB HBM 256 GB of DDR4 DRAM

64 GB HBM2E / GCD 768 GB HBM for GPU
Memory bandwidth 204.8 GB s~ CPU 2,870 Peak GB s~! CPU HBM 204.8 GBs~! CPU

1600 GB s~' GPU 19,660 Peak GB s ' GPU 15552 GB s~ GPU
Interconnect Slingshot-11 Slingshot-11 Slingshot-11

Infinity Fabric

PCle 5.0 NIC-CPU connection

PCle 4.0 NIC-CPU connection

Table 3. Hardware specifications for computers in this study, collected from Dongarra and Geist (2022); Oak Ridge National Laboratory
(2025); Argonne National Laboratory (2025); NERSC (2025).

23

455

460

465

470

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Software for Omega-V0 tests Frontier Aurora Perlmutter
Operating System HPE Cray OS SUSE Linux Enterprise Server 15 SP4 HPE Cray OS
Compiler gce (SUSE Linux) 13.2.1 Intel OneAPI DPC++ 2025.0.4 Cray clang 18.0.1
MPI cray-mpich/8.1.30 mpich v5.0.0al cray-mpich/8.1.31
Programming environment PrgEnv-gnu/8.5.0 oneapi/release/2025.0.5 PrgEnv-cray/8.6.0

Table 4. Software for performance tests presented in this section.

former is used here for convenience. Its horizontal grid cell count can easily be incremented by factors of two to produce a
sequence of grid resolutions. The number of horizontal gridcells is approximately one million for the 1024x1024x96 domain
and four million for the 2048x2048x96 domain. This compares to recent publications of 235 thousand horizontal cells by 64
vertical layers for the low-resolution global MPAS-Ocean E3SM domain (Smith et al., 2025), and 3.7 million by 80 vertical
layers for the high-resolution 6 to 18 km MPAS-Ocean domain (Caldwell et al., 2019). Omega-V1 will be a full ocean model
with additional computations such as vertical advection and mixing, equation of state, pressure computation, and physics
parameterizations. Despite this, the current shallow water configurations provide a good preliminary representation of the
performance comparison between Omega and MPAS-Ocean, between CPU and GPUs, and scaling to large node counts.
For these tests, MPAS-Ocean has some of its primitive equation terms disabled so that it is solving the identical equations
as Omega-V0. MPAS-Ocean was not tested on Aurora, the newest machine, because the purpose of three machines was to
demonstrate the versatility of Omega on different hardware, and Frontier and Perlmutter were considered sufficient for the
Omega versus MPAS-Ocean comparison.

Performance results for Omega-VO0 are shown in Figure 14 for the 1024x1024x96 mesh, and in Figure 15 for the 2048x2048x96
mesh. Corresponding results for MPAS-Ocean are shown in Figures 16 and 17. In all cases, computation (blue lines) scales
better than halo communication (green line), which is expected (Bishnu et al., 2023). Inter-node communication can be highly
variable, depending on the competing traffic on the interconnect. Each point on these plots represents the time per timestep
averaged over 5 simulations of 12 timesteps each, excluding start-up and I/O time. Since communication does not scale well
with increasing node counts, low resolution configurations exhibit poor scaling due to insufficient computational intensity. This
effect is more pronounced on GPUs (right column) than on CPUs (left column). In the “GPU” simulations, all CPUs and GPUs
on each node are fully utilized for the timing test. As expected, the problem of poor scaling at a particular node count can be

alleviated by running the model with higher resolution.

24

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

Omega-0 CPU, Frontier, 1024x1024x96

10 4

-

o
°
s

Wall Clock Time per Step (s)

,_.

5]
&
N

—8— total integration
computation
halo communication

perfect scaling

2 a 8 16 32
Number of Nodes, Frontier

64 128

Omega-0 CPU, Aurora, 1024x1024x96

=

o
°
L

-

S)
i
s

Wall Clock Time per Step (s)

—8— total integration
—8— computation

—8— halo communication
——- perfect scaling

;
2 4 8 64

Number of Nodes, Aurora

Omega-0 CPU, Perimutter, 1024x1024x96

10 4

-

o
E)
s

Wall Clock Time per Step (s)

—&— total integration
computation
halo communication

perfect scaling

T T T

2 4 8
Number of Nodes, Perimutter

16 32 64 128

Wall Clock Time per Step (s)

Wall Clock Time per Step (s)

Wall Clock Time per Step (s)

EGUsphere\

Omega-0 GPU, Frontier, 1024x1024x96

10! 4

-

S}
o
N

=
o
1
w
s

—— total integration
computation
halo communication

perfect scaling

1 2 4 8 16 32 128

Number of Nodes, Frontier

64

Omega-0 GPU, Aurora, 1024x1024x96

H

2
L
.

H

<
%
;

—8— total integration
—8— computation

—8— halo communication
——- perfect scaling

T T T T T T

1 2 4 8 16
Number of Nodes, Aurora

;
64

Omega-0 GPU, Perlmutter, 1024x1024x96

=
o
D
s

,_.

2
8
|

—&— total integration
computation
halo communication

perfect scaling

2 4 8

16 32 64
Number of Nodes, Perlmutter

Figure 14. Strong scaling of Omega-VO0 for the 1024x1024x96 resolution on Frontier (top), Aurora (middle) and Perlmutter (bottom),

showing CPU-only simulations (left column), and GPUs with CPUs (right column). The colors separate the total (red) between the inter-node

halo communication (green) and the on-node computation (blue). Start-up time and I/O are not included.

25

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Omega-0 CPU, Frontier, 2048x2048x96

T
2 4 8 16 32 64

Number of Nodes, Aurora

Omega-0 CPU, Perimutter, 2048x2048x96

Omega-0 GPU, Frontier, 2048x2048x96

10°
—8— total integration —— total integration
—8— computation —e— computation
iy —e— halo communication i —e— halo communication
:;_ 10% 4 perfect scaling z perfect scaling
[J]]
4 -
w0 " 107! 4
o o
(] (]
o Qo
(] (]
£ E
= =
g $ 104
° o S~
(@] 0 -
© ©
= =
1073 4
é A‘l é 1‘6 3‘2 6‘4 1 é 8 i i 4'1 é 1‘6 3‘2 6: 4 1 é 8
Number of Nodes, Frontier Number of Nodes, Frontier
Omega-0 CPU, Aurora, 2048x2048x96 Omega-0 GPU, Aurora, 2048x2048x96
m —e— total integration m —e— total integration
; 10 4 —8— computation E —— computation
8 —8— halo communication E —8— halo communication
%] perfect scaling 0 perfect scaling
—_ —_
(] [
[oX o
(V] ()
£ £
= =
4 X~
1% 1%
=} °
O O
g g

T
1 2 4 8 16 32 64

Number of Nodes, Aurora

Omega-0 GPU, Perlmutter, 2048x2048x96

—8— total integration —— total integration
—e— computation 10° 4 —e— computation

2 10t 4 —e— halo communication E —e— halo communication

a perfect scaling a perfect scaling

[} []

+J +J

(2] "

- =

(] ()

Q 1004 o

(] ()

E £

E N F -l

~ ~ 10

9] [%}

© 10714 o

O O

g g

1072 4

Figure 15. Same as Figure 14 but for the 2048x2048x96 resolution.

2 a 8 16 32 64
Number of Nodes, Perimutter

128

26

4 8 16 32 64
Number of Nodes, Perlmutter

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

MPAS-Ocean CPU, Frontier, 1024x1024x96 MPAS-Ocean GPU, Frontier, 1024x1024x96
14
N —e— total integration 10 —e— total integration
10% 4 —e— computation —e— computation
—e— halo communication —e— halo communication
I —--- perfect scaling I ——- perfect scaling
[=% [=%
Q Q
e =1
0 0
@ 10°4]
Q <%
9] 1]
£ £
= F
4 4
1% 1%
i=} i=}
(@] O
3 07 3
= =
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Nodes, Frontier Number of Nodes, Frontier
MPAS-Ocean CPU, Perimutter, 1024x1024x96 MPAS-Ocean GPU & CPU, Perimutter, 1024x1024x96
N —8— total integration —— total integration
10% 4 —e— computation —e— computation
—8— halo communication —8— halo communication
@ —--- perfect scaling a ——-- perfect scaling
a a
9] 9]
1 =1
0) 0
5 10°] 5
<% o
] L]
£ £
= =
v ~
[[%)
o °
O 10-14 s}
© ©
= =

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Nodes, Perimutter Number of Nodes, Perimutter

Figure 16. Strong scaling of MPAS-Ocean for the 1024x1024x96 resolution on Frontier (top) and Perlmutter (bottom), showing CPU-only
simulations (left column), and GPUs with CPUs (right column).

27

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025
(© Author(s) 2025. CC BY 4.0 License.

Wall Clock Time per Step (s)

Wall Clock Time per Step (s)

MPAS-Ocean CPU, Frontier, 2048x2048x96

10! 4

—e— total integration
—e— computation

—e— halo communication
perfect scaling

8 16 32
Number of Nodes, Frontier

T T
64 128

s

MPAS-Ocean CPU, Perimutter, 2048x2048x96

10! 4

100 4

10-1 4

—8— total integration
—8— computation

—8— halo communication
perfect scaling

8 16 2
Number of Nodes, Perimutter

T T
64 128

o

Figure 17. Same as Figure 16 but for the 2048x2048x96 resolution.

28

Wall Clock Time per Step (s)

Wall Clock Time per Step (s)

EGUsphere

MPAS-Ocean GPU, Frontier, 2048x2048x96

10! 4

—e— total integration
—e— computation

—o— halo communication
——- perfect scaling

8 16 32
Number of Nodes, Frontier

T
64

PN

MPAS-Ocean GPU & CPU, Perlmutter, 2048x2048x96

10! 4

—— total integration
—&— computation

—8— halo communication
—-=—- perfect scaling

2 4 8 16 32
Number of Nodes, Perimutter

:
64

475

480

485

490

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Frontier Frontier Aurora Aurora Perlmutter Perlmutter

CPU GPU+CPU CPU GPU+CPU CPU GPU+CPU

WC time/timestep s, full node Omega 8.5 0.18 4.3 0.18 8.5 1.4
MPAS-Ocean 12.0 8.5 na na 12.0 4.4

number of CPUs/node used for test 56 32 104 6 64 64
number of GPUs 0 4 0 6 0 4
power, TDP watts per CPU or GPU 280 560 350/socket 600 280 300
power, TDP watts per node 280 2520 700 4300 280 1480
Throughput (model step/WC time) Omega 0.118 5.556 0.233 5.556 0.118 0.714
MPAS-Ocean 0.083 0.118 na na 0.083 0.227

Throughput per watt for 1000 steps ~ Omega 0.420 2.205 0.332 1.292 0.420 0.483
MPAS-Ocean 0.298 0.047 na na 0.298 0.154

Throughput per watt Omega 1.00 5.25 1.00 3.89 1.00 1.15
relative to Omega CPU MPAS-Ocean 0.71 0.11 na na 0.71 0.37

Table 5. Timing for the 2048x2048x96 on four nodes, with thermal design power and throughput per watt power consumption.

Next, we compare throughput on CPU-only nodes versus when GPUs are added, and between Omega and MPAS-Ocean.
To do this, we fix our comparison at four nodes, all within the “perfect scaling” regime, using the 2048x2048x96 mesh. These
comparisons are not sensitive to the choice of resolution, as for each case, the 2048x2048x96 timing is almost exactly four
times that of 1024x1024x96, demonstrating ideal weak scaling. The average wallclock time per time step is provided in the
first two rows of Table 5. There are several ways to measure the speed-up when transitioning from CPU-only nodes to nodes
with both CPUs and GPUs. The simplest method is to take the ratio of the compute times when the full resources of each node
are utilized. For Omega-VO, this yields speed-ups of 47x on Frontier, 22x on Aurora, and 6.1x on Perlmutter, as shown in the
top row of each arrow on Figure 18. Another comparison involves using the full CPU set versus a single GPU, which results
in speed-ups of 12x, 3.7x, and 1.5x for Omega-V0 on these machines. However, one could argue that modern supercomputers
are designed to deliver high GPU throughput, and the CPUs are simply helpers to coordinate the GPU computations. A major
hardware design consideration is the reduced power usage per flop for GPUs, as the full supercomputer must aim to maximize
computational throughput while minimizing total power consumption. To this end, we estimate the computational efficiency
of our models with the thermal design power (TDP) of each chip (row 4 of Table 5). For example, on Frontier, the AMD
EPYC 2GHz CPU is rated at 2.5 TFLOPs of double-precision performance and 225-280W TDP (HPCwire, 2021). In contrast,
Frontier’s AMD MI250X GPU specifications state 47.9 TFLOPs for 500-560W TDP (AMD, 2025), for a total of 191.6
TFLOPs and 2000-2240W TDP for the four GPUs on a single node. This means that the lion’s share of computing and
power consumption on Frontier takes place on the GPUs. Thus, the most meaningful comparison of code performance between

CPUs and GPUs for a new model is based on the computational throughput per watt of power consumption. For Omega-V0,

29

495

500

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

CPU Speed-up GPU+CPU

Frontier
47x full node

Omega CPU: 8.5s | 12x per GPU
5.3x per watt

Omega GPU + CPU: 0.18s

1.4x full node
MPAS-O CPU: 12s | 0.35x per GPU
0.16x per watt

MPAS-O GPU + CPU: 8.5s

Aurora

22x full node
Omega CPU: 4s 3.7x per GPU
3.6x per watt

Omega GPU + CPU: 0.2s

Perlmutter
6.1x full node

Omega CPU: 8.5s | 1.5x per GPU
1.2x per watt

Omega GPU + CPU: 1.4s

2.7x full node
MPAS-O CPU: 12s | 0.7x per GPU
0.5x per watt

MPAS-O GPU + CPU: 4.4s

Figure 18. A diagram of the speed-up factors when including the GPUs on each machine, for Omega-V0 and MPAS-Ocean. Times are based
on four-node results on the 2048x2048x96 resolution shown in Table 5. The speed-up per watt uses the thermal design power of each CPU
and GPU.

this metric shows performance improvements of 5.3x on Frontier, 3.6x on Aurora, and 1.2x on Perlmutter. Using this same
method, these numbers for MPAS-Ocean are 0.16x on Frontier and 0.5x on Perlmutter, indicating a reduction in computational
throughput per watt. Omega’s relative performance is further highlighted in head-to-head comparisons on each chip: Omega-V0
is 1.4x faster than MPAS-Ocean on the AMD EPYC CPU, 3.1x faster with Perlmutter’s NVIDIA A100 Ampere GPU, and 47x
faster on Frontier’s AMD MI250Xs. These results underscore the effectiveness of Omega’s performance-portable design based

on C++ and the Kokkos library.

6 Conclusions

This paper documents the governing equations, design philosophy, coding implementation, verification, and performance of
Version 0.1.0 of the Ocean Model for E3SM Global Applications (Omega-V0). Version 0 is the first step towards a layered
non-Boussinesq ocean model that can be used for realistic global applications as a component within E3SM. The motivation

for rewriting the ocean model is to create a code base that is resilient to changing supercomputer architectures. We found

30

505

510

515

520

525

530

535

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

that our previous framework of Fortran code with MPI, OpenMP, and more recently OpenACC was not suitable for the new
exascale computing landscape within DOE.

The key to the new Omega design is performance portability. The investment into developing a code base from scratch will
pay off as new architectures are introduced, because the underlying Kokkos library will be updated and optimized for new
machines while the Omega code may remain unchanged. Moving from Fortran to C++ offers the additional advantages of
more standard libraries, modern code abstractions, and a language familiar to the next generation of developers.

The verification of Omega-VO0 included convergence against exact solutions for the nonlinear shallow water equations using
a manufactured solution test case, and for tracer advection on the sphere using a cosine bell test case. The barotropic gyre
test case adds wind forcing, solid boundaries, and viscosity in an idealized domain, while the wind-driven global simulations
validate our workflow with coastlines and bathymetry on a rotating earth. These tests are all automated and available in our
polaris package, including the generation of initial conditions, statistical analysis, and visualization. Comparisons with
exact solutions and MPAS-Ocean simulations provide confidence that Omega-VO0 is working as expected.

Performance results on GPUs are of particular importance for this study, as that is the driving purpose of Omega. Omega-V0
is significantly faster on GPUs than on CPUs, as measured on a per node, per GPU, or per watt basis. Performance measurements
on Frontier and Aurora, two of the world’s fastest exascale computers, were quite promising. The speed-up from full-node
CPU-only to full-node with GPUs was 47x on Frontier, 22x on Aurora, and 6.1x on Perlmutter (this is 12x, 3.7x, and 1.5x,
respectively, on a per-GPU basis). Regarding energy consumption, improvement in throughput from CPUs to GPUs on a per
Watt basis was 5.3x on Frontier, 3.6x on Aurora, and 1.2x on Perlmutter. This means that Omega’s central design principle
of performance portability was demonstrated on the exascale architectures that are most relevant to the DOE. In addition,
performance tests were conducted to 128 nodes with high-resolution domains of 4 million horizontal cells and 96 layers.
Compute times scale nearly perfectly to 128 CPU nodes and 32 GPU nodes. Good scaling to more nodes can be achieved
with higher resolution configurations. Direct GPU-to-GPU communication was an important factor for successful Omega-V0
simulations on GPUs.

MPAS-Ocean is an important standard of comparison because it is the current ocean model in E3SM, and Omega is the
candidate replacement. Omega-VO0 is 1.4 times faster than MPAS-Ocean on CPUs. They use the same mesh specification, array
structure, and indirect addressing of horizontal neighbors. Thus, the performance gains on CPUs can be attributed to improved
optimization and memory layout in C++ and Kokkos. The speed-ups of MPAS-Ocean to Omega is particularly notable on
GPUs, with a 4.7x speedup on Frontier and a 3.1x speedup on Perlmutter. In these tests, Omega-V0 and MPAS-Ocean had
identical configurations and computed the same shallow water terms. The performance results confirm that MPAS-Ocean was
constrained by the OpenACC approach on GPUs, whereas Omega has the potential to deliver faster simulations on GPU-based
exascale computers.

Omega Version 1 will be a layered non-Boussinesq ocean model intended for real-world simulations. The underlying Kokkos
framework will remain the same, but with additional terms for vertical advection and diffusion, an equation of state, hydrostatic
pressure, and higher-order tracer advection. Version 1 will have similar capabilities as MPAS-Ocean in Ringler et al. (2013),

and will be compared to realistic climatology. Version 2 will add coupling capability for surface fluxes within E3SM as in

31

540

545

550

555

560

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Petersen et al. (2019), and more advanced parameterizations. The improved performance of Omega on GPUs, along with the
atmospheric component EAMxx (Donahue et al., 2024), will allow E3SM to pursue state-of-the-art science on the world’s

newest and largest exascale supercomputers.

Code and data availability. Omega Version 0.1.0 is available at https://zenodo.org/records/17418901 and in the E3SM code repository
under the tag Omega-v0.1.0-alpha.1 (https://github.com/E3SM-Project/Omega/releases/tag/Omega-v0.1.0-alpha.1) This version has the DOI
10.11578/dc.20250723.1 and is documented by DOE CODE at https://doi.org/10.11578/dc.20250723.1 (Petersen et al., 2025). Within the
E3SM repository, Omega may be compiled as a standalone application by running cmake in the components/omega subdirectory.
The Omega User’s Guide may be found at https://docs.e3sm.org/Omega/omega. The testing framework is polaris version 0.7.0 (https:
/ldoi.org/10.5281/zenodo.15470123).

Author contributions. Code development, testing, and timing were conducted by all authors. Omega framework development was led by
PJ, with team members SRB, YK, BO, MW. Shallow water model code developers included SRB, HK, AM, BO, MW. Testing, including
the polaris development, was led by XSAD and CB with contributions by SB, SRB, MP, AB, KS. Performance measurement and
improvements on three DOE computers were by MP, YK, AM, KR, SS, MW. Project management was by LVR, MP, SRB. The manuscript

writing was led by MP, with contributions by all authors.
Competing interests. The authors declare no competing interests

Acknowledgements. Omega development is supported by the Energy Exascale Earth System Model (E3SM) project funded by the U.S.
Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research (BER). KR was additionally supported by
the DOE’s Los Alamos National Laboratory (LANL) LDRD Program and the Center for Nonlinear Studies.

This research used computational resources provided by: the National Energy Research Scientific Computing Center (NERSC), a DOE
Office of Science User Facility supported by the Office of Science of the DOE under Contract No. DE-AC02-05CH11231; Oak Ridge
Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DOE under
Contract No. DE-AC05-000R22725; Argonne Leadership Computing Facility, a U.S. DOE Office of Science user facility at Argonne
National Laboratory and is based on research supported by the U.S. DOE Office of Science-Advanced Scientific Computing Research
Program, under Contract No. DE-AC02-06CH11357.

32

565

570

575

580

585

590

595

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

References

Advanced Micro Devices, Inc.: HIP Programming Guide, https://rocmdocs.amd.com/en/latest/Programming Guides/HIP-GUIDE.html,
accessed: 2025-07-14, 2023.

AMD: AMD Instinct MI250X Accelerators, https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html, accessed
2025-06-30, 2025.

Anderson, J., Craig, A., Dennis, J., Edwards, J., Evans, K., Fischer, C., Jacob, R., Mickelson, S., Taylor, M., and Worley, P.: The Common
Infrastructure for Modeling the Earth (CIME), https://esmci.github.io/cime, accessed: 2025-07-15, 2015.

Argonne National Laboratory: Aurora Factsheet, https://www.alcf.anl.gov/sites/default/files/2024-07/Aurora_FactSheet_2024.pdf, accessed
2025-06-30, 2025.

Asay-Davis, X., Hoffman, M., Begeman, C., Petersen, M., Hillebrand, T., Han, H., Nolan, A., Brus, S., Wolfram, P. J., barthel, a.,
Capodaglio, G., Calandrini, S., Denlinger, A., Vankova, 1., Roekel, L. V., yariseidenbenz, pbosler, Brady, R., mperego, Smith, C.,
Moore-Maley, B., Takano, Y., Cao, Z., Zhang, T., Lilly, J., Carlson, M., Turner, M., and Engwirda, D.: MPAS-Dev/compass: v1.7.0,
https://doi.org/10.5281/zenodo.15857467, 2025a.

Asay-Davis, X. S., Begeman, C. B., Barthel, A. M., Brus, S. R., Jones, P. W., Kang, H.-G., Kim, Y., Mametjanov, A., O’Neill, B. J., Petersen,
M. R., Smith, K. M., Sreepathi, S., Van Roekel, L. P, and Waruszewski, M.: Omega Documentation, https://docs.e3sm.org/Omega/omega/
develop/index.html, 2025b.

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A. J., Pearce, O., Robinson, P., Ryujin, B. S., and Scogland,
T. R. W.: RAJA: Portable Performance for Large-Scale Scientific Applications, in: IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2019.

Beder, J.: https://github.com/jbeder/yaml-cpp, 2023.

Bishnu, S., Petersen, M., Quaife, B., and Schoonover, J.: Verification Suite of Test Cases for the Barotropic Solver of Ocean Models,
https://doi.org/10.22541/ess0ar.167100170.03833124/v1, 2022.

Bishnu, S., Strauss, R. R., and Petersen, M. R.: Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI
versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1), Geoscientific Model Development, 16, 5539-5559,
https://doi.org/10.5194/gmd-16-5539-2023, 2023.

Bishnu, S., Petersen, M. R., Quaife, B., and Schoonover, J.: A Verification Suite of Test Cases for the Barotropic Solver of Ocean
Models, Journal of Advances in Modeling Earth Systems, 16, €2022MS003 545, https://doi.org/https://doi.org/10.1029/2022MS003545,
€2022MS003545 2022MS003545, 2024.

Bryan, K. and Cox, M. D.: A Nonlinear Model of an Ocean Driven by Wind and Differential Heating: Part I. Description of the
Three-Dimensional Velocity and Density Fields, Journal of the atmospheric sciences, 25, 945-967, 1968.

Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J. C., et al.: The DOE E3SM Coupled Model Version 1: Description
and Results at High Resolution,] ADV MODEL EARTH SY, 11, 4095-4146, https://doi.org/10.1029/2019MS001870, 2019.

Cushman-Roisin, B. and Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects, Academic press, 2011.

Donahue, A. S., Caldwell, P. M., Bertagna, L., Beydoun, H., Bogenschutz, P. A., Bradley, A. M., Clevenger, T. C., Foucar, J., Golaz, C.,
Guba, O., Hannah, W., Hillman, B. R., Johnson, J. N., Keen, N., Lin, W., Singh, B., Sreepathi, S., Taylor, M. A., Tian, J., Terai, C. R.,
Ullrich, P. A., Yuan, X., and Zhang, Y.: To Exascale and Beyond—The Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM),

33

600

605

610

615

620

625

630

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

a Performance Portable Global Atmosphere Model for Cloud-Resolving Scales, Journal of Advances in Modeling Earth Systems, 16,
€2024MS004 314, https://doi.org/https://doi.org/10.1029/2024MS004314, €2024MS004314 2024MS004314, 2024.

Dongarra, J. and Geist, A.: Report On The Oak Ridge National Laboratory’s Frontier System, Tech. rep., University of Tennessee, https:
/ficl.utk.edu/files/publications/2022/icl-utk- 1570-2022.pdf, 2022.

Dukowicz, J. and Smith, R.: Implicit free-surface formulation of the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99, 7991-8014,
1994.

Dukowicz, J. K., Smith, R. D., and Malone, R. C.: A Reformulation and Implementation of the Bryan-Cox-Semtner
Ocean Model on the Connection Machine, Journal of Atmospheric and Oceanic Technology, 10, 195 - 208,
https://doi.org/10.1175/1520-0426(1993)010<0195:ARAIOT>2.0.CO;2, 1993.

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., et al.: NetCDF Climate and Forecast (CF) Metadata Conventions (1.12), Tech. rep.,
CF Community, https://doi.org/10.5281/zenodo.14275599, 2024.

Engwirda, D.: Generalised primal-dual grids for unstructured co-volume schemes, Journal of Computational Physics, 375, 155-176,
https://doi.org/https://doi.org/10.1016/j.jcp.2018.07.025, 2018.

ESMF: Earth System Modeling Framework, http://earthsystemmodeling.org/, 2020.

GEBCO Bathymetric Compilation Group 2023: The GEBCO_2023 Grid - a continuous terrain model of the global oceans and land.,
https://doi.org/10.5285/f98b053b-0cbc-6¢23-e053-6¢86abcOaf7b, 2023.

Gill, A. E.: Atmosphere-Ocean Dynamics, vol. 30 of International Geophysics Series, Academic Press, San Diego, California 92101, 1982.

Godoy, W. F,, Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P., Choi, J., Germaschewski, K., Huck, K., Huebl, A., Kim,
M., Kress, J., Kurc, T., Liu, Q., Logan, J., Mehta, K., Ostrouchov, G., Parashar, M., Poeschel, F., Pugmire, D., Suchyta, E., Takahashi, K.,
Thompson, N., Tsutsumi, S., Wan, L., Wolf, M., Wu, K., and Klasky, S.: ADIOS 2: The Adaptable Input Output System. A framework for
high-performance data management, SoftwareX, 12, 100 561, https://doi.org/https://doi.org/10.1016/j.s0ftx.2020.100561, 2020.

GridTools: GridTools, https://gridtools.github.io/gridtools/latest/index.html, 2019.

Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani, N., Vorderwuelbecke, S., Gregory, T. J.,
Betteridge, J., Shapero, D. R., Nixon-Hill, R. W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, 1., Gibson, T. H., Homolya, M.,
Sun, T., McRae, A. T. T., Luporini, F., Gregory, A., Lange, M., Funke, S. W., Rathgeber, F., Bercea, G.-T., and Markall, G. R.: Firedrake
User Manual, Imperial College London and University of Oxford and Baylor University and University of Washington, first edition edn.,
https://doi.org/10.25561/104839, 2023.

Hamming, R. W.: Numerical Methods for Scientists and Engineers, McGraw-Hill, Inc., 2nd edn., 1973.

He, Y. and Ding, C.: Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in Parallel Applications, J.
Supercomputing, 18, 259-277, 2001.

Hida, Y., Xiaoye, S., and Bailey, D. H.: Library for double-double and quad-double arithmetic, https://www.davidhbailey.com/dhbpapers/qd.
pdf, 2008.

HPCwire: AMD Launches Epyc Milan with 19 SKUs for HPC, Enterprise and Hyperscale, https://www.hpcwire.com/2021/03/15/
amd-launches-epyc-milan-with- 19-skus-for-hpc-enterprise-and-hyperscale/, accessed 2025-06-30, 2021.

John, J. R., Jeffers, T., and Sodani, P.: Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using C++ and
SYCL, Apress, 2021.

Karypis, G.: https://github.com/KarypisLab/METIS, 2013.

34

635

640

645

650

655

660

665

670

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Kerbyson, D. and Jones, P: A Performance Model of the Parallel Ocean Program, IJHPCA, 19, 261-276,
https://doi.org/10.1177/1094342005056114, 2005.

Kitware, Inc.: CDash: Continuous Integration Dashboard, https://www.cdash.org, accessed: 2025-07-15, 2023a.

Kitware, Inc.: CMake: Cross-Platform Make, https://cmake.org, accessed: 2025-07-15, 2023b.

Kitware, Inc.: CTest: Testing Tool for CMake Projects, https://cmake.org/cmake/help/latest/manual/ctest.1.html, accessed: 2025-07-15,
2023c.

Knuth, D.: The Art of Computer Programming, vol. 2, chap. 4, Addison-Wesley Press, 1969.

Krishna, J., Wu, D., Edwards, J., Hartnett, E., Dennis, J. M., and Vertenstein, M.: Software for Caching Output and Reads for Parallel I/O,
v1.6, https://github.com/E3SM-Project/scorpio, 2024.

Maltrud, M. and McClean, J. L.: An eddy resolving global 1/10 degree ocean simulation, Ocean modelling (Oxford), 8, 31-54, 2005.

Melman, G.: Https://github.com/gabime/spdlog, 2023.

Mielikainen, J., Huang, B., Huang, H.-L. A., and Goldberg, M. D.: Improved GPU/CUDA Based Parallel Weather and
Research Forecast (WRF) Single Moment 5-Class (WSMS5) Cloud Microphysics, IEEE J SEL TOP APPL, 5, 1256-1265,
https://doi.org/10.1109/JSTARS.2012.2188780, 2012.

Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 3, https://doi.org/10.5067/FPSUOV1IMWUBSG6, 2022.

MPI: MPI: A Message-Passing Interface Standard Version 5.0, https://www.mpi-forum.org/docs/mpi-5.0/mpi50-report.pdf, 2025,1993.

Munk, W. H. and Carrier, G. F.: The Wind-driven Circulation in Ocean Basins of Various Shapes, Tellus, 2, 160-167,
https://doi.org/10.1111/j.2153-3490.1950.tb00327.x, 1950.

NERSC: Perlmutter architecture specification, https://docs.nersc.gov/systems/perlmutter/architecture/, accessed 2025-06-30, 2025.

Norman, M., Lyngaas, I., Bagusetty, A., and Berrill, M.: Portable C++ Code that can Look and Feel Like Fortran Code with Yet Another
Kernel Launcher (YAKL), International Journal of Parallel Programming, https://doi.org/10.1007/s10766-022-00739-0, 2022.

NVIDIA Corporation: CUDA C Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming- guide/index.html, accessed:
2025-07-14, 2023.

Oak Ridge National Laboratory: Frontier System Specifications, https://www.olcf.ornl.gov/olct-resources/compute-systems/frontier/,
accessed 2025-06-30, 2025.

OpenACC: The OpenACC Application Programming Interface Version 3.3, https://www.openacc.org/sites/default/files/inline-images/
Specification/OpenACC-3.3-final.pdf, 2022.

OpenMP: OpenMP Application Programming Interface, https://www.openmp.org/wp-content/uploads/OpenMP- API-Specification-6-0.pdf,
2024.

Pal, N., Barton, K. N., Petersen, M. R., Brus, S. R., Engwirda, D., Arbic, B. K., Roberts, A. F., Westerink, J. J., and Wirasaet,
D.: Barotropic tides in MPAS-Ocean (E3SM V2): impact of ice shelf cavities, Geoscientific Model Development, 16, 1297-1314,
https://doi.org/10.5194/gmd-16-1297-2023, 2023.

Pedlosky, J., ed.: Geophysical Fluid Dynamics, Springer-Verlag, New York, second edn., 1986.

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud, M. E., Price,
S. F, Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P.,, Veneziani, M., Wolfe, J. D., Wolfram, P. J., and Woodring, J. L.: An
Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE-II Forcing,] ADV MODEL EARTH SY, 11,
14381458, https://doi.org/10.1029/2018MS001373, 2019.

35

675

680

685

690

695

700

705

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Petersen, M. R., Asay-Davis, X. S., Barthel, A. M., Begeman, C. B., Brus, S. R., Jones, P. W., Kang, H.-G., Kim, Y., Mametjanov, A.,
O’Neill, B. J., Smith, K. M., Sreepathi, S., Van Roekel, L. P., and Waruszewski, M.: E3SM-Project/Omega, [Computer Software] https:
//doi.org/10.11578/dc.20250723.1, https://doi.org/10.11578/dc.20250723.1, 2025.

Porter, A. R. and Heimbach, P.: Unlocking the power of parallel computing: GPU technologies for ocean forecasting, State of the Planet,
5-opst, 23, https://doi.org/10.5194/sp-5-opsr-23-2025, 2025.

PSyclone: PSyclone User Guide, https://psyclone.readthedocs.io/en/stable/, 2019.

Ramadhan, A., Wagner, G. L., Hill, C., Campin, J.-M., Churavy, V., Besard, T., Souza, A., Edelman, A., Ferrari, R., and
Marshall, J.: Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs, Journal of Open Source Software, 5, 2018,
https://doi.org/10.21105/joss.02018, 2020.

Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A unified approach to energy conservation and potential vorticity dynamics
for arbitrarily-structured C-grids,] COMPUT PHYS, 229, 3065-3090, 2010.

Ringler, T. D., Petersen, M. R., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A multi-resolution approach to global ocean
modeling, OCEAN MODEL, 69, 211-232, 2013.

Roache, P. J.: Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10, 2002.

Rosinski, J.: https://jmrosinski.github.io/GPTL/, 2018.

Salari, K. and Knupp, P.: Code verification by the method of manufactured solutions, Tech. rep., Sandia National Labs., Albuquerque, NM
(US), 2000.

Semtner, A. J. and Chervin, R. M.: A simulation of the global ocean circulation with resolved eddies, Journal of Geophysical Research, 93,
15502-15522, 1988.

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., Bishnu, S., Churavy, V., Marshall, J., and Ferrari,
R.: A GPU-Based Ocean Dynamical Core for Routine Mesoscale-Resolving Climate Simulations, Journal of Advances in Modeling Earth
Systems, 17, €2024MS004 465, https://doi.org/https://doi.org/10.1029/2024MS004465, €2024MS004465 2024MS004465, 2025.

Skamarock, W. C. and Gassmann, A.: Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for
ODE-Based Time Integration, Monthly Weather Review, 139, 2962-2975, https://doi.org/10.1175/MWR-D-10-05056.1, 2011.

Smith, K. M., Barthel, A. M., Conlon, L. M., Van Roekel, L. P., Bartoletti, A., Golaz, J.-C., Zhang, C., Begeman, C. B., Benedict, J. J., Bisht,
G., Feng, Y., Hannah, W., Harrop, B. E., Jeffery, N., Lin, W., Ma, P.-L., Maltrud, M. E., Petersen, M. R., Singh, B., Tang, Q., Tesfa, T.,
Wolfe, J. D., Xie, S., Zheng, X., Balaguru, K., Garuba, O., Gleckler, P.,, Hu, A., Lee, J., Moore-Maley, B., and Ordofiez, A. C.: The DOE
E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales, Geoscientific Model Development,
18, 1613-1633, https://doi.org/10.5194/gmd-18-1613-2025, 2025.

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., et al.: The Parallel
Ocean Program (POP) Reference Manual: Ocean Component of the Community Climate System Model (CCSM) and Community Earth
System Model (CESM), Tech. Rep. LAUR-01853, Los Alamos National Laboratory, Los Alamos, NM, 2010.

Smith, R. D., Maltrud, M. E., Bryan, F. O., and Hecht, M. W.: Numerical simulation of the North Atlantic Ocean at 1/10, Journal of physical
oceanography, 30, 1532-1561, 2000.

Stommel, H.: The westward intensification of wind-driven ocean currents, Eos, Transactions American Geophysical Union, 29, 202-206,
1948.

Strohmaier, E., Dongarra, J., Simon, H., and Meuer, M.: TOP500 List - June 2025, https://top500.org/lists/topS00/1ist/2025/06/, accessed
2025-06-30, 2025.

36

710

715

720

725

730

735

740

745

https://doi.org/10.5194/egusphere-2025-3500
Preprint. Discussion started: 24 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Stroustrup, B.: The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

Stroustrup, B.: The C++ Programming Language, Addison-Wesley, 4th edn., 2013.

Thuburn, J., Ringler, T. D., Skamarock, W. C., and Klemp, J. B.: Numerical representation of geostrophic modes on arbitrarily structured
C-grids,] COMPUT PHYS, 228, 8321-8335, 2009.

Trott, C., Berger-Vergiat, L., Poliakoff, D., Rajamanickam, S., Lebrun-Grandie, D., Madsen, J., Al Awar, N., Gligoric, M., Shipman, G.,
and Womeldorff, G.: The Kokkos Ecosystem: Comprehensive Performance Portability for High Performance Computing, Computing in
Science Engineering, 23, 10-18, https://doi.org/10.1109/MCSE.2021.3098509, 2021.

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S., Ibanez, D.,
Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., and Wilke, J.:
Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE Transactions on Parallel and Distributed Systems, 33, 805-817,
https://doi.org/10.1109/TPDS.2021.3097283, 2022a.

Trott, C. R., Lebrun-Grandié, D., et al.: Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE T PARALL DISTR, 33,
805-817, https://doi.org/10.1109/TPDS.2021.3097283, 2022b.

Unidata: network Common Data Form, https://www.unidata.ucar.edu/software/netcdf/, 2023.

Vallis, G. K.: Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, Cambridge university press, Cambridge,
second edn., https://doi.org/10.1017/9781107588417, 2017.

Wallcraft, A. J.: SPMD OpenMP versus MPI for ocean models, Concurrency: Practice and Experience, 12, 1155-1164,
https://doi.org/https://doi.org/10.1002/1096-9128(200010)12:12<1155:: AID-CPE532>3.0.C0O;2-5, 2000.

Wei, J., Han, X., Yu, J., Jiang, J., Liu, H., Lin, P, Yu, M., Xu, K., Zhao, L., Wang, P., Zheng, W., Xie, J., Zhou, Y., Zhang, T., Zhang,
F., Zhang, Y., Yu, Y., Wang, Y., Bai, Y., Li, C., Yu, Z.,, Deng, H., Li, Y., and Chi, X.: A Performance-Portable Kilometer-Scale Global
Ocean Model on ORISE and New Sunway Heterogeneous Supercomputers, in: SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-12, https://doi.org/10.1109/SC41406.2024.00009, 2024a.

Wei, J., Han, X., Yu, J., Jiang, J., Liu, H., Lin, P, Yu, M., Xu, K., Zhao, L., Wang, P., Zheng, W., Xie, J., Zhou, Y., Zhang, T., Zhang,
F, Zhang, Y., Yu, Y., Wang, Y., Bai, Y., Li, C., Yu, Z., Deng, H., Li, Y., and Chi, X.: A Performance-Portable Kilometer-Scale Global
Ocean Model on ORISE and New Sunway Heterogeneous Supercomputers, in: SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-12, https://doi.org/10.1109/SC41406.2024.00009, 2024b.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztrauber, P. N.: A standard test set for numerical approximations to the
shallow water equations in spherical geometry, Journal of Computational Physics, 102, 211-224, 1992.

Xu, S., Huang, X., Zhang, Y., Hu, Y., Fu, H., and Yang, G.: Porting the Princeton Ocean Model to GPUs, in: Algorithms and Architectures
for Parallel Processing, edited by Sun, X.-h., Qu, W., Stojmenovic, 1., Zhou, W., Li, Z., Guo, H., Min, G., Yang, T., Wu, Y., and Liu, L.,
Lecture Notes in Computer Science, pp. 1-14, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-11197-1_1,
2014.

Xu, S., Huang, X., Oey, L.-Y., Xu, F,, Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, GEOSCI
MODEL DEYV, 8, 2815-2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015.

YAML: YAML Ain’t Markup Language v1.2, https://yaml.org/, 2009.

Zhao, X.-d., Liang, S.-x., Sun, Z.-c., Zhao, X.-z., Sun, J.-w., and Liu, Z.-b.: A GPU accelerated finite volume coastal ocean model, J
HYDRODYN, Ser. B, 29, 679-690, https://doi.org/10.1016/S1001-6058(16)60780-1, 2017.

37

