
​The authors thank the reviewers for the helpful comments, which improved the content and​
​readability of the paper.​

​Reviewer #1​

​General Comments​

​This manuscript describes Omega-V0.1.0, a new C++/Kokkos-based ocean model for E3SM​
​targeting performance portability across heterogeneous CPU/GPU architectures. The paper​
​provides a clear scientific motivation for the rewrite from MPAS-Ocean, presents the governing​
​equations and discretization in sufficient detail, and includes a broad set of verification tests and​
​multi-platform performance benchmarks. The performance results, especially on multiple​
​exascale-class GPU systems, are a valuable contribution to the community and align well with​
​the objectives of GMD model description papers.​

​That said, several clarifications are still needed to strengthen reproducibility and to help readers​
​interpret key results. In particular, the paper should provide more concrete explanations of why​
​OpenACC offloading was limited in MPAS-Ocean, supply missing experimental details for the​
​benchmarks, and expand the discussion of some performance claims (for example, regular​
​versus unstructured mesh equivalence, CPU–GPU work partitioning). I also encourage the​
​authors to discuss how the current performance conclusions are expected to extend to​
​Omega-V1 when more complex physical parameterizations are added.​

​Overall, the manuscript is strong and suitable for publication after minor-to-moderate revisions​
​focused on clarification and consistency.​

​Specific Comments​

​1.​ ​Programming model taxonomy (around line 41):​

​The authors list four competing GPU programming approaches. Given the focus on​
​portability, it would be useful to briefly mention recent language-standard based parallel​
​models (for example, C++ and Fortran standard parallelism), and position them relative​
​to the four categories already listed.​

​Author response:​​Changes to language standards are​​in progress to express loop-level​
​parallelism and accelerator models, but are not yet implemented widely and will take​
​some time before they can be considered as a portable option. We have added a​
​statement to that effect.​

​2.​ ​Limitations of OpenACC in MPAS-Ocean (around line 56):​

​The manuscript explains that only about half of MPAS-Ocean could be accelerated with​
​OpenACC and that this led to small kernels and poor throughput. Please add a concise,​
​concrete explanation of which specific structural aspects of MPAS-Ocean prevented​
​directive-based offload (for example, dynamic data structures, or control-flow​



​complexity).​

​Author response:​​We were trying to keep this initial justification section brief, but have​
​added text that mentions the use of community based libraries that could not be​
​accelerated, the MPI-dominated barotropic mode and the complexity of the tracer data​
​structure and related loop complexity.​

​3.​ ​Engagement of domain scientists and transition strategy (around line 106):​

​The text states that Omega was developed by a small group mainly composed of​
​domain scientists, and that Kokkos abstractions were simplified for legibility. Given that​
​Omega-V1/V2 will require substantial physics and infrastructure development, it would​
​be valuable to comment on how the Omega developer community is expected to grow​
​(e.g., anticipated contributors from E3SM and the broader ocean/atmosphere​
​community) and on practical strategies for enabling uptake by scientists less familiar with​
​C++.​

​Author response:​​Our primary strategy is providing​​extensive documentation, with​
​templates and examples, for domain scientists with less experience in C++ and Kokkos.​
​Text has been added to that paragraph to address this point.​

​4.​ ​Halo-exchange benchmark reproducibility (Figure 1 discussion around line 210):​

​The description of GPU-aware MPI and the observed 4–6× speedup is clear, but key​
​experimental parameters are missing. Please specify halo width, number and type of​
​variables communicated per step, whether variables were packed separately or​
​aggregated, and total and per-call message sizes.​

​Author response:​​In Omega-V0, three types of halo exchanges are performed during​
​each time step, each with different message sizes: layer thickness, normal velocity, and​
​an aggregated set of five tracer fields. All tests reported here use a halo width of three​
​cells. Text has been added to explicitly state these details. These simulations use a​
​fourth-order Runge-Kutta time stepper, which performs each type of exchange twice per​
​time step (i.e., six total exchanges). For each exchange and for each communicating​
​MPI task, data are packed into a contiguous buffer and communicated via a separate​
​MPI call; variables are not aggregated across exchange types. In the single-node​
​configuration, each MPI task communicates with five other MPI tasks, while in all other​
​configurations, the average MPI task communicates with six MPI tasks. A new plot has​
​been added that reports the average data sent per MPI task per time step, aggregated​
​over all communicating tasks and all six halo exchanges. Across all configurations,​
​approximately 11% of the communicated volume corresponds to the layer thickness​
​exchanges, 34% to the normal velocity exchanges, and 55% to the tracer exchanges.​



​5.​ ​Contiguous vertical chunk strategy and layout choice (around line 262):​

​Please clarify whether you tested or considered other memory orderings of the 3-D fields​
​in Kokkos (changing which index is contiguous), and why the current choice (vertical​
​index contiguous) is expected to be optimal across CPU and GPU architectures. In​
​particular, for vertically dependent physics, non-coalesced access on GPUs could​
​become a bottleneck; a short justification or discussion of tested layouts would be​
​helpful.​

​Author response:​​Only the vertically contiguous memory​​layout has been tested. This​
​is the same memory layout that MPAS-Ocean uses. The EAMxx atmosphere model also​
​uses this layout on both CPUs and GPUs, and is able to obtain good performance.​
​Which layout is optimal for a given architecture is a difficult question to answer, since it​
​depends on the choice of numerical algorithms. However, numerical algorithms are also​
​tailored to the layout, making it hard to make a fair comparison between different​
​memory layouts. To give a concrete example, future versions of Omega will need to​
​solve a tridiagonal system for each column using a batched tridiagonal solver. On GPUs​
​the classical Thomas algorithm parallelized over columns with the Omega memory​
​layout leads to non-coalesced memory accesses. However, using the parallel cyclic​
​reduction algorithm in shared memory is efficient with this layout, and exposes more​
​parallelism in the vertical. In general, we believe that as long as most computations that​
​have vertical dependencies can be parallelized, the vertically contiguous memory layout​
​might be optimal. Kokkos provides efficient implementations of batched reduce and scan​
​operations that can be used to express many such computations. Only for a select few,​
​we might need to write different implementations for CPUs and GPUs. A paragraph​
​summarizing this answer has been added at the end of Section 3.2.​

​6.​ ​Regular Cartesian vs. unstructured spherical mesh performance (line 450):​

​The claim that performance is “equivalent” between regular Cartesian and unstructured​
​spherical meshes is not explained. Please clarify what metric “equivalent” refers to and​
​why indirect or irregular accesses in unstructured meshes do not measurably degrade​
​performance.​

​Author response:​​The regular hexagon cartesian mesh​​is treated as an unstructured​
​mesh. There are no special data structures that take advantage of the physical regularity​
​of the hexagon grid. That choice was made because the target application is​
​unstructured spherical meshes, and the regular hex grids are just for performance​
​testing. The performance is equivalent because both cartesian and spherical use the​
​same indirect-addressed data structures. Text has been added to state this.​

​7.​ ​Grid size notation and horizontal cell counts (line 450):​



​The mesh is described as a regular hexagonal grid, and the test cases are labeled as​
​1024×1024×96 and 2048×2048×96. However, the mapping between the “1024×1024”​
​notation and the reported horizontal cell counts (approximately one million and four​
​million, respectively) is not obvious for a hexagonal mesh. Please add a brief​
​explanation of what the 1024 and 2048 represent and how these translate to the stated​
​horizontal cell numbers.​

​Author response:​​Thanks. We added text to this section​​to be more specific.​

​8.​ ​CPU–GPU work partitioning in GPU runs (around line 470):​

​The manuscript notes full utilization of CPUs and GPUs. Please describe how workload​
​sharing between CPU and GPU is determined: automatic or manually tuned.​

​Author response:​​In the current implementation, the​​workload is not actually shared​
​between CPUs and GPUs during GPU builds. The vast majority of computational work is​
​executed on GPUs, while CPUs are primarily used for tasks like flow control, kernel​
​launches, synchronization, and I/O. This sentence might be responsible for the​
​confusion: “Within a single shared-memory node, we have adopted the Kokkos​
​programming model to map the computational work to either CPU cores (host) or GPU​
​accelerators (device).” This statement references the capability within Kokkos to map​
​work to either host or device, but in Omega-V0 this is used exclusively to target the​
​device during GPU builds. Future versions may utilize CPUs more to share the​
​workload. A clarification in the manuscript to the above sentence has been added to​
​make explicit that the compute-intensive work is handled entirely by the GPUs.​

​9.​ ​Different CPU counts in Table 5 GPU vs. CPU-only runs:​

​Table 5 uses fewer CPUs in GPU simulations than in CPU-only simulations. Please​
​explain why the CPU count differs.​

​Author response:​​The difference reflects differences in the optimal execution models​
​for the various cases. In Omega GPU builds, the compute-intensive work is handled by​
​the GPUs, and the current implementation maps one MPI task to one CPU and one​
​GPU. An optimal CPU-to-GPU ratio is generally 1, since using more than one CPU per​
​GPU would require CPUs to share a GPU, leading to contention for kernel execution;​
​conversely, using fewer CPUs reduces the number of mesh partitions and allows larger​
​GPU kernels, improving computational efficiency relative to kernel-launch overhead. In​
​CPU-only builds of Omega, these constraints do not apply, and all CPU cores on each​
​node are used to maximize performance. In these tests, Table 5 reports throughput per​
​watt comparisons between Omega and MPAS-Ocean, and both models use the same​
​CPU counts within each configuration to ensure a fair comparison. At present, not all​
​computational work in MPAS-Ocean has been ported to GPUs, and significant portions​
​rely on OpenMP threading on CPUs, which motivates using higher CPU counts per node​



​in the GPU-enabled configurations on Frontier and Perlmutter. On Aurora, MPAS-Ocean​
​was not tested; therefore, an optimal configuration of one CPU per GPU is used for​
​Omega. The manuscript has been revised to include this motivation.​

​10.​​Figure 7 missing reference:​

​Figure 7 is not cited in the text. Please either reference and explain it or remove it.​

​Author response:​​Reference added to previous paragraph.​​Thank you.​

​11.​​Convergence comparison with and without FCT (around line 362):​

​Omega’s tracer transport tests are conducted without FCT, whereas the manuscript​
​reports the MPAS-Ocean convergence rate only for the FCT case (2.42). To enable a​
​clearer like-for-like comparison, please also provide the MPAS-Ocean convergence rate​
​without​​FCT and discuss whether that baseline is comparable​​to Omega’s 1.36 rate.​

​Author response:​​We tested MPAS-Ocean with the identical mesh files and reduced​
​order advection scheme, and obtained the same convergence rate. This was noted in​
​the text.​

​12.​​CPU runtime identity across machines (Figure 18):​

​CPU runtimes on Frontier and Perlmutter are identical despite different compilers being​
​used. Please double-check and add a brief comment confirming correctness if intended.​

​Author response:​​We retested and updated the values,​​which are within a few percent​
​but not identical. You can also see this by comparing CPU Frontier to CPU Perlmutter in​
​Figures 14-17. We expect them to be close but not identical. We added a sentence to​
​point out that the compilers differ.​

​13.​​Why Omega outperforms MPAS-Ocean on GPUs (around line 527):​

​The reported GPU speedups of Omega over MPAS-Ocean are very large. However, the​
​benchmark configuration targets a relatively simple shallow-water system with passive​
​tracers and does not include the more complex, branching-heavy physical​
​parameterizations that often challenge directive-based approaches. For such a​
​comparatively regular workload, one might expect OpenACC to achieve reasonably high​
​GPU efficiency as well. It is therefore unclear why the performance gap remains so​
​dramatic. Please expand the discussion to identify which kernels or design choices​
​dominate the difference (e.g., memory layout, kernel fusion/granularity, indirect​
​addressing, communication overlap, or data movement), and explain concretely why​
​OpenACC fails to reach similar efficiency for this specific configuration.​



​Author response:​​The MPAS-O OpenACC port was a very basic port with limited​
​optimization. In particular, because it was only partially ported, we needed to retain​
​host/device copies of the model state and the MPAS code structure prevented any​
​kernel fusion. The MPAS MPI infrastructure was not GPU-aware so all communications​
​were host-based. All of this required more data movement between host and device and​
​limited any ability to reduce kernel launch overhead. Omega includes many of these​
​optimizations. We have added some text to describe this.​

​14.​​Absolute performance metrics:​

​The performance analysis is currently presented almost entirely in terms of​​relative​
​comparisons (across machines and against MPAS-Ocean). While these are useful, the​
​absence of​​absolute​​performance metrics makes it difficult to assess efficiency against​
​hardware limits or to compare with other studies. Please add at least one absolute​
​metric (e.g., achieved memory bandwidth/FLOPS, or fraction of peak) to complement the​
​relative results and strengthen the performance section.​

​Author response:​​Absolute performance metrics have been added to the new section​
​5.3. This includes the new Figures 19 and 20, and Table 6.​

​15.​​Performance outlook when physical parameterizations are added:​

​Omega-V0 benchmarks a relatively regular, shallow-water workload with passive tracers.​
​Omega-V1 is expected to include more complex processes such as vertical advection​
​and mixing, equation of state, pressure computation, and physics parameterizations.​
​These additions often introduce more branching, irregular memory access, and​
​heterogeneous kernel costs than the current configuration. Please include a short​
​discussion on how the present performance conclusions are expected to translate to​
​Omega-V1. For example:​

​· which future modules are anticipated to be performance-critical or memory-bound,​

​· whether the current kernel design strategy (functor granularity, vertical chunking,​
​policy choices) is expected to remain optimal, and​

​· how OpenACC vs. Kokkos performance might change once less regular physics​
​kernels are introduced.​

​Even a qualitative outlook would help readers assess the generality of the current​
​performance results.​

​Author response:​​Thank you for the suggestion. A paragraph​​on the future​
​performance outlook was added to the end of section 5.3.​



​Technical Corrections​

​· Replace nonstandard capitalization “Nvidia” → “NVIDIA” consistently.​
​Author response:​​Done.​

​· Define abbreviations at first use (SSH).​
​Author response:​​Done.​

​· Fix minor typos:​

​o   “kinetic energy andpotential” → “kinetic and potential energy” (line 285)​

​o   “analytic solution 10.” → “analytic solution (Figure 10)” (line 392)​

​o   “Simulation” → “simulation” (line 307).​
​Author response:​​Done.​

​· Replace e-notation in prose (for example, “1.5e06”) with “1.5 × 10​​6​​”.​
​Author response:​​Done.​

​· The sentence starting “The tendency terms are …” (around line 286) largely repeats​
​the content of the preceding paragraph (around lines 259–). Please remove it or​
​merge the two passages to avoid redundancy.​
​Author response:​​removed.​

​· Figure 2 aims to show equivalent multi-dimensional iteration in Fortran (left) and​
​Omega abstractions (right), but the right panel uses A(i,j,k)=i*j+k whereas the left uses​
​i+j+k. This appears to be a typo and should be made consistent.​
​Author response:​​Done.​

​Overall recommendation:​​Minor revision. The required​​changes are mainly clarification for​
​reproducibility and a small set of consistency and formatting fixes, with an added request to​
​outline how performance expectations extend to Omega-V1 physics.​


