The authors thank the reviewers for the helpful comments, which improved the content and
readability of the paper.

Reviewer #1
General Comments

This manuscript describes Omega-V0.1.0, a new C++/Kokkos-based ocean model for E3SM
targeting performance portability across heterogeneous CPU/GPU architectures. The paper
provides a clear scientific motivation for the rewrite from MPAS-Ocean, presents the governing
equations and discretization in sufficient detail, and includes a broad set of verification tests and
multi-platform performance benchmarks. The performance results, especially on multiple
exascale-class GPU systems, are a valuable contribution to the community and align well with
the objectives of GMD model description papers.

That said, several clarifications are still needed to strengthen reproducibility and to help readers
interpret key results. In particular, the paper should provide more concrete explanations of why
OpenACC offloading was limited in MPAS-Ocean, supply missing experimental details for the
benchmarks, and expand the discussion of some performance claims (for example, regular
versus unstructured mesh equivalence, CPU-GPU work partitioning). | also encourage the
authors to discuss how the current performance conclusions are expected to extend to
Omega-V1 when more complex physical parameterizations are added.

Overall, the manuscript is strong and suitable for publication after minor-to-moderate revisions
focused on clarification and consistency.

Specific Comments

1. Programming model taxonomy (around line 41):

The authors list four competing GPU programming approaches. Given the focus on
portability, it would be useful to briefly mention recent language-standard based parallel
models (for example, C++ and Fortran standard parallelism), and position them relative
to the four categories already listed.

Author response: Changes to language standards are in progress to express loop-level
parallelism and accelerator models, but are not yet implemented widely and will take
some time before they can be considered as a portable option. We have added a
statement to that effect.

2. Limitations of OpenACC in MPAS-Ocean (around line 56):

The manuscript explains that only about half of MPAS-Ocean could be accelerated with
OpenACC and that this led to small kernels and poor throughput. Please add a concise,
concrete explanation of which specific structural aspects of MPAS-Ocean prevented
directive-based offload (for example, dynamic data structures, or control-flow



complexity).

Author response: We were trying to keep this initial justification section brief, but have
added text that mentions the use of community based libraries that could not be
accelerated, the MPI-dominated barotropic mode and the complexity of the tracer data
structure and related loop complexity.

Engagement of domain scientists and transition strategy (around line 106):

The text states that Omega was developed by a small group mainly composed of
domain scientists, and that Kokkos abstractions were simplified for legibility. Given that
Omega-V1/V2 will require substantial physics and infrastructure development, it would
be valuable to comment on how the Omega developer community is expected to grow
(e.g., anticipated contributors from E3SM and the broader ocean/atmosphere
community) and on practical strategies for enabling uptake by scientists less familiar with
C++.

Author response: Our primary strategy is providing extensive documentation, with
templates and examples, for domain scientists with less experience in C++ and Kokkos.
Text has been added to that paragraph to address this point.

Halo-exchange benchmark reproducibility (Figure 1 discussion around line 210):

The description of GPU-aware MPI and the observed 4-6x speedup is clear, but key
experimental parameters are missing. Please specify halo width, number and type of
variables communicated per step, whether variables were packed separately or
aggregated, and total and per-call message sizes.

Author response: In Omega-V0, three types of halo exchanges are performed during
each time step, each with different message sizes: layer thickness, normal velocity, and
an aggregated set of five tracer fields. All tests reported here use a halo width of three
cells. Text has been added to explicitly state these details. These simulations use a
fourth-order Runge-Kutta time stepper, which performs each type of exchange twice per
time step (i.e., six total exchanges). For each exchange and for each communicating
MPI task, data are packed into a contiguous buffer and communicated via a separate
MPI call; variables are not aggregated across exchange types. In the single-node
configuration, each MPI task communicates with five other MPI tasks, while in all other
configurations, the average MPI task communicates with six MPI tasks. A new plot has
been added that reports the average data sent per MPI task per time step, aggregated
over all communicating tasks and all six halo exchanges. Across all configurations,
approximately 11% of the communicated volume corresponds to the layer thickness
exchanges, 34% to the normal velocity exchanges, and 55% to the tracer exchanges.



5. Contiguous vertical chunk strategy and layout choice (around line 262):

Please clarify whether you tested or considered other memory orderings of the 3-D fields
in Kokkos (changing which index is contiguous), and why the current choice (vertical
index contiguous) is expected to be optimal across CPU and GPU architectures. In
particular, for vertically dependent physics, non-coalesced access on GPUs could
become a bottleneck; a short justification or discussion of tested layouts would be
helpful.

Author response: Only the vertically contiguous memory layout has been tested. This
is the same memory layout that MPAS-Ocean uses. The EAMxx atmosphere model also
uses this layout on both CPUs and GPUs, and is able to obtain good performance.
Which layout is optimal for a given architecture is a difficult question to answer, since it
depends on the choice of numerical algorithms. However, numerical algorithms are also
tailored to the layout, making it hard to make a fair comparison between different
memory layouts. To give a concrete example, future versions of Omega will need to
solve a tridiagonal system for each column using a batched tridiagonal solver. On GPUs
the classical Thomas algorithm parallelized over columns with the Omega memory
layout leads to non-coalesced memory accesses. However, using the parallel cyclic
reduction algorithm in shared memory is efficient with this layout, and exposes more
parallelism in the vertical. In general, we believe that as long as most computations that
have vertical dependencies can be parallelized, the vertically contiguous memory layout
might be optimal. Kokkos provides efficient implementations of batched reduce and scan
operations that can be used to express many such computations. Only for a select few,
we might need to write different implementations for CPUs and GPUs. A paragraph
summarizing this answer has been added at the end of Section 3.2.

6. Regular Cartesian vs. unstructured spherical mesh performance (line 450):

The claim that performance is “equivalent” between regular Cartesian and unstructured
spherical meshes is not explained. Please clarify what metric “equivalent” refers to and
why indirect or irregular accesses in unstructured meshes do not measurably degrade
performance.

Author response: The regular hexagon cartesian mesh is treated as an unstructured
mesh. There are no special data structures that take advantage of the physical regularity
of the hexagon grid. That choice was made because the target application is
unstructured spherical meshes, and the regular hex grids are just for performance
testing. The performance is equivalent because both cartesian and spherical use the
same indirect-addressed data structures. Text has been added to state this.

7. Grid size notation and horizontal cell counts (line 450):



The mesh is described as a regular hexagonal grid, and the test cases are labeled as
1024%1024x96 and 2048x2048%96. However, the mapping between the “1024x1024”
notation and the reported horizontal cell counts (approximately one million and four
million, respectively) is not obvious for a hexagonal mesh. Please add a brief
explanation of what the 1024 and 2048 represent and how these translate to the stated
horizontal cell numbers.

Author response: Thanks. We added text to this section to be more specific.
CPU-GPU work partitioning in GPU runs (around line 470):

The manuscript notes full utilization of CPUs and GPUs. Please describe how workload
sharing between CPU and GPU is determined: automatic or manually tuned.

Author response: In the current implementation, the workload is not actually shared
between CPUs and GPUs during GPU builds. The vast majority of computational work is
executed on GPUs, while CPUs are primarily used for tasks like flow control, kernel
launches, synchronization, and 1/0. This sentence might be responsible for the
confusion: “Within a single shared-memory node, we have adopted the Kokkos
programming model to map the computational work to either CPU cores (host) or GPU
accelerators (device).” This statement references the capability within Kokkos to map
work to either host or device, but in Omega-VO0 this is used exclusively to target the
device during GPU builds. Future versions may utilize CPUs more to share the
workload. A clarification in the manuscript to the above sentence has been added to
make explicit that the compute-intensive work is handled entirely by the GPUs.

Different CPU counts in Table 5 GPU vs. CPU-only runs:

Table 5 uses fewer CPUs in GPU simulations than in CPU-only simulations. Please
explain why the CPU count differs.

Author response: The difference reflects differences in the optimal execution models
for the various cases. In Omega GPU builds, the compute-intensive work is handled by
the GPUs, and the current implementation maps one MPI task to one CPU and one
GPU. An optimal CPU-to-GPU ratio is generally 1, since using more than one CPU per
GPU would require CPUs to share a GPU, leading to contention for kernel execution;
conversely, using fewer CPUs reduces the number of mesh partitions and allows larger
GPU kernels, improving computational efficiency relative to kernel-launch overhead. In
CPU-only builds of Omega, these constraints do not apply, and all CPU cores on each
node are used to maximize performance. In these tests, Table 5 reports throughput per
watt comparisons between Omega and MPAS-Ocean, and both models use the same
CPU counts within each configuration to ensure a fair comparison. At present, not all
computational work in MPAS-Ocean has been ported to GPUs, and significant portions
rely on OpenMP threading on CPUs, which motivates using higher CPU counts per node



10.

1.

12.

13.

in the GPU-enabled configurations on Frontier and Perlmutter. On Aurora, MPAS-Ocean
was not tested; therefore, an optimal configuration of one CPU per GPU is used for
Omega. The manuscript has been revised to include this motivation.

Figure 7 missing reference:

Figure 7 is not cited in the text. Please either reference and explain it or remove it.
Author response: Reference added to previous paragraph. Thank you.
Convergence comparison with and without FCT (around line 362):

Omega’s tracer transport tests are conducted without FCT, whereas the manuscript
reports the MPAS-Ocean convergence rate only for the FCT case (2.42). To enable a
clearer like-for-like comparison, please also provide the MPAS-Ocean convergence rate
without FCT and discuss whether that baseline is comparable to Omega’s 1.36 rate.

Author response: We tested MPAS-Ocean with the identical mesh files and reduced
order advection scheme, and obtained the same convergence rate. This was noted in
the text.

CPU runtime identity across machines (Figure 18):

CPU runtimes on Frontier and Perimutter are identical despite different compilers being
used. Please double-check and add a brief comment confirming correctness if intended.

Author response: We retested and updated the values, which are within a few percent
but not identical. You can also see this by comparing CPU Frontier to CPU Perimutter in
Figures 14-17. We expect them to be close but not identical. We added a sentence to
point out that the compilers differ.

Why Omega outperforms MPAS-Ocean on GPUs (around line 527):

The reported GPU speedups of Omega over MPAS-Ocean are very large. However, the
benchmark configuration targets a relatively simple shallow-water system with passive
tracers and does not include the more complex, branching-heavy physical
parameterizations that often challenge directive-based approaches. For such a
comparatively regular workload, one might expect OpenACC to achieve reasonably high
GPU efficiency as well. It is therefore unclear why the performance gap remains so
dramatic. Please expand the discussion to identify which kernels or design choices
dominate the difference (e.g., memory layout, kernel fusion/granularity, indirect
addressing, communication overlap, or data movement), and explain concretely why
OpenACC fails to reach similar efficiency for this specific configuration.



14.

15.

Author response: The MPAS-O OpenACC port was a very basic port with limited
optimization. In particular, because it was only partially ported, we needed to retain
host/device copies of the model state and the MPAS code structure prevented any
kernel fusion. The MPAS MPI infrastructure was not GPU-aware so all communications
were host-based. All of this required more data movement between host and device and
limited any ability to reduce kernel launch overhead. Omega includes many of these
optimizations. We have added some text to describe this.

Absolute performance metrics:

The performance analysis is currently presented almost entirely in terms of relative
comparisons (across machines and against MPAS-Ocean). While these are useful, the
absence of absolute performance metrics makes it difficult to assess efficiency against
hardware limits or to compare with other studies. Please add at least one absolute
metric (e.g., achieved memory bandwidth/FLOPS, or fraction of peak) to complement the
relative results and strengthen the performance section.

Author response: Absolute performance metrics have been added to the new section
5.3. This includes the new Figures 19 and 20, and Table 6.

Performance outlook when physical parameterizations are added:

Omega-V0 benchmarks a relatively regular, shallow-water workload with passive tracers.
Omega-V1 is expected to include more complex processes such as vertical advection
and mixing, equation of state, pressure computation, and physics parameterizations.
These additions often introduce more branching, irregular memory access, and
heterogeneous kernel costs than the current configuration. Please include a short
discussion on how the present performance conclusions are expected to translate to
Omega-V1. For example:

- which future modules are anticipated to be performance-critical or memory-bound,

- whether the current kernel design strategy (functor granularity, vertical chunking,
policy choices) is expected to remain optimal, and

- how OpenACC vs. Kokkos performance might change once less regular physics
kernels are introduced.

Even a qualitative outlook would help readers assess the generality of the current
performance results.

Author response: Thank you for the suggestion. A paragraph on the future
performance outlook was added to the end of section 5.3.



Technical Corrections

- Replace nonstandard capitalization “Nvidia” — “NVIDIA” consistently.
Author response: Done.

- Define abbreviations at first use (SSH).
Author response: Done.

- Fix minor typos:
o “kinetic energy andpotential” — “kinetic and potential energy” (line 285)
0 “analytic solution 10.” — “analytic solution (Figure 10)” (line 392)

o “Simulation” — “simulation” (line 307).
Author response: Done.

- Replace e-notation in prose (for example, “1.5e06”) with “1.5 x 10°”,
Author response: Done.

- The sentence starting “The tendency terms are ...” (around line 286) largely repeats
the content of the preceding paragraph (around lines 259-). Please remove it or
merge the two passages to avoid redundancy.

Author response: removed.

- Figure 2 aims to show equivalent multi-dimensional iteration in Fortran (left) and
Omega abstractions (right), but the right panel uses A(i,j,k)=i*j+k whereas the left uses
i+j+k. This appears to be a typo and should be made consistent.

Author response: Done.

Overall recommendation: Minor revision. The required changes are mainly clarification for
reproducibility and a small set of consistency and formatting fixes, with an added request to
outline how performance expectations extend to Omega-V1 physics.



