

1 **Why Is Height-Dependent Mixing Observed in Stratocumulus?**

2

3 Zeen Zhu¹, Fan Yang¹, Steven Krueger², Yangang Liu¹

4 ¹Environmental Science and Technologies Department, Brookhaven National Laboratory, Upton,
5 NY, 11973, USA

6 ²Department of Atmospheric Science, University of Utah, Salt Lake City, UT, 84112, USA

7 *Correspondence to:* Zeen Zhu (zzhu1@bnl.gov)

8

9

10

11 **Abstract.** Recent aircraft measurements in stratocumulus clouds suggest that entrainment mixing
12 is inhomogeneous (IM) near cloud top and homogeneous (HM) within the cloud. However, this
13 proposed height-dependence of mixing transition is uncertain because of artifacts involved in the
14 aircraft measurements. In this study, we use the Explicit Mixing Parcel Model to simulate mixing
15 scenarios in stratocumulus clouds and reconstruct the virtual aircraft measurements to investigate
16 the mixing signature. Results show that, from the aircraft-measurement perspective, the mixing
17 signature always exhibits IM characteristic near cloud top and HM characteristic within cloud,
18 independent of the types of the local entrainment-mixing process. The appearance of the vertical
19 IM-to-HM transition is essentially a collective behavior of multiple parcels sampled at the same
20 height, experiencing distinct entrainment-mixing-evaporation histories. This bulk view of mixing
21 process, which is widely used for aircraft measurements, could lead to misinterpretations of the
22 true mixing mechanism occurring in clouds. Our result underscores the limitations of using aircraft
23 measurements to identify the entrainment-mixing mechanism at the process level.

24

25

26

27

28

29

30

31

32

33

34

35 **1. Introduction**

36 Entrainment-mixing is a critical cloud process and plays important roles in simulating precipitation
37 formation, radiative properties and macroscopic structures (Lasher-Trapp et al., 2005; Baker et al.,
38 1980; Lehmann et al., 2009; Magaritz-Ronen et al., 2014; Chosson et al., 2007). In the
39 stratocumulus, entrainment-mixing is initiated near cloud top where the dry, warm free-
40 troposphere air is partially mixed with the cloudy air and then entrained (Wood, 2012). After
41 entrainment, cloud droplets start to evaporate in a subsaturated environment along with the mixing
42 process. Depending on the efficiency of mixing and evaporation, two mixing scenarios are
43 generally considered: homogeneous mixing (HM) and inhomogeneous mixing (IM) (Latham and
44 Reed, 1977; Baker et al., 1980). For HM, turbulent mixing is much faster than droplet evaporation.
45 Under the extreme condition, the cloudy air is mixed immediately with the entrained air such that
46 all cloud droplets are exposed to the same sub-saturation environment, resulting in reduced droplet
47 size and unchanged number concentration. For the IM, turbulent mixing is slower than evaporation.
48 Under the IM condition, cloud droplets adjacent to the dry entrained air are quickly evaporated
49 while leaving the remaining droplets unaffected.

50 Over the recent decades, a consensus has emerged from aircraft observations across multiple field
51 campaigns that stratocumulus clouds tend to exhibit IM signature near the cloud top and a HM
52 signature in the mid-levels (Yum et al., 2015; Yeom et al., 2021; Desai et al., 2021; Wang et al.,
53 2009; Gao et al., 2021). One hypothesis to explain this behavior is the “vertical circulation”
54 concept which is proposed by Wang et al. (2009), further refined by Yum et al. (2015) and detailed
55 in Yeom et al. (2021). Specifically, after entrainment occurs near cloud top, the cloud parcel starts
56 to descend. The droplets in the diluted descending parcels evaporate and reduce the particle sizes.
57 Therefore, if the mid-level cloud is horizontally sampled by the aircraft, droplets are likely to be
58 evaporated in the diluted regions than those in the undiluted regions, leading to the HM signature
59 in the middle of cloud. Yeom et al. (2023) further conducted experiments in the cloud chamber by
60 injecting dry air into the well-mixed cloud to mimic the entrainment-mixing process. Result shows
61 that cloud microphysical responses to entrainment and mixing are locally inhomogeneous and
62 globally homogeneous, implying that the global versus local sampling of clouds can lead to
63 contradictory mixing results. These studies provide critical insights to reevaluate the applicability
64 of using aircraft measurements for HM/IM mixing classification.

65 Conventionally, cloud microphysical properties (e.g., droplet number and size) measured by
66 aircraft flying along a horizontal path are used to calculate the mixing metrics (see section 2.2) for
67 IM/HM classification. However, this aircraft-based perspective is known with several issues: 1):
68 the global mean cloud properties are not representative of the cloud structures at small scales. For
69 instance, Allwayin et al. (2024) utilizes holographic measurements showing that droplet size
70 distributions are more narrow at small scales than those at whole-cloud averages. 2) If the mixing
71 in each small sampling is inhomogeneous, then an average of several samplings may lead to

72 apparent homogeneous mixing (Burnet and Brenguier, 2007); 3) the aircraft flying along a path at
73 the same height measures a collection of mixed air parcels with different entrainment-mixing
74 stages, this collected behavior from various mixing parcels may not represent the original mixing
75 process in each individual parcel (Yeom et al., 2023). In this study, we revisit the applicability of
76 using aircraft measurements for mixing identification. We design a simulation framework based
77 on the Explicit Mixing Parcel Model (EMPM) to emulate the aircraft measurements in the
78 Stratocumulus (Sc). We show that, using aircraft measurements, the mixing behavior in Sc is
79 always identified as IM near cloud top and HM within clouds, regardless of the local mixing
80 scenario within individual parcels.

81 The layout of this paper is organized as follows: Section 2 introduces the EMPM model, including
82 the adapted assumptions and the experiment set up. The mixing metrics used for HM/IM
83 identification applied in this study are introduced. In Section 3, the EMPM simulations are
84 analyzed from two perspectives: bulk and local. We show that, based on the same simulation
85 output, the mixing process in clouds may exhibit differently from the two perspectives; this
86 discrepancy is the key to understanding the limitations of aircraft measurements. In section 3, we
87 conducted an additional isobaric mixing experiment to isolate the mixing and adiabatic warming
88 process which are coexisting in previous experiments. In Section 4, we explain the phenomenon
89 of the IM-HM transition in Sc and discuss the insights on future mixing studies. Finally, a
90 conclusion constitutes Section 5.

91

92 2. Methods

93 2.1 Experiment Design

94 The Explicit Mixing Parcel Model (EMPM) was developed by Krueger et al. (1997) to simulate
95 the evolution of cloud thermodynamic properties influenced by turbulent mixing in a rising cloudy
96 parcel. The EMPM can resolve fine-scale variability in the 1D domain down to the smallest
97 turbulent scales (about 1 mm) and calculate the growth/evaporation of individual cloud droplet
98 based on each droplet's local environment Su et al. (1998). One unique characteristic of the EMPM
99 is applying the linear eddy model (Kerstein, 1991) to simulate turbulent deformation and molecular
100 diffusion separately as an explicit representation of the turbulent mixing process. Specifically,
101 turbulent deformation is represented by a sequence of discrete rearrangement events along the 1D
102 domain, where the scalar field is randomly rearranged using a “triplet map” approach detailed in
103 (Krueger et al., 1997). Molecular diffusion is calculated with the 1D diffusion equation. With the
104 capabilities of resolving fine-scale variations and explicitly simulating turbulent mixing, the
105 EMPM is recognized as a unique and extensively used tool for entrainment and mixing studies (Lu
106 et al., 2013; Tölle and Krueger, 2014).

107 To emulate the aircraft measurements using the EMPM, three assumptions are made in this study:
108 1) entrainment occurs at cloud top; 2) after each entrainment event, the parcel undergoing mixing
109 descends from cloud top; 3) the virtual aircraft samples sufficient cloudy parcels along a path at
110 the same height, and those cloudy parcels experience various degrees of entrainment near the cloud

111 top. The first and second assumptions are satisfied for stratocumulus where the turbulent eddies
112 and evaporative cooling drives entrainment at cloud top (Wood, 2012). The third assumption is
113 proposed to mimic the aircraft measurements in real stratocumulus clouds.

114 The simulation design is illustrated in Fig. 1a. We consider a virtual aircraft that flies at a typical
115 speed of 100 m s^{-1} within the cloud, measuring droplet properties at 5 Hz along the leg. Over 2
116 second interval, the aircraft traverses 200 meters, consisting of 10 in-situ samples, each 20 meters
117 in length. In the EMPM, each in-situ sample is configured as a one-dimensional domain with a
118 length of 20 m and the width/depth of 1 mm, resulting in a total volume of 20 cm^3 (right panel of
119 Fig. 1a). The detailed model configuration is shown in Table. 1. The initial droplet number
120 concentration is set as 80 cm^{-3} , consisting of monodisperse haze particles of radius $0.216 \mu\text{m}$. The
121 simulation begins with adiabatic lifting of the parcel at a constant velocity of 1 m s^{-1} until it reaches
122 the cloud top. The parcel then encounters entrainment, during which subsaturated air replaces a
123 segment of the cloudy parcel of equal size. The fraction of subsaturated entrained air relative to
124 the domain size is referred as the entrainment fraction (EF). For instance, Fig. 1a illustrates an
125 entrainment event with EF of 0.5, indicating that 50% of the cloudy parcel, which is effectively 10
126 m, is replaced by the entrained subsaturated air. We assume that the entrained dry air is Cloud
127 Condensation Nuclei (CCN) free thus no CCN is entrained into clouds. After entrainment, the
128 parcel descends adiabatically at a velocity of -1 m s^{-1} . As the parcel descends, the cloudy air and
129 the entrained air undergo finite-rate mixing, during which droplets encounter the subsaturated air
130 and partially or completely evaporate. The number and size of droplets in the domain are updated
131 at each time step (1s) until all the droplets are completely evaporated.

132 For each experiment, a total of ten EMPM simulations is conducted with the same initial setting
133 but with various EFs from 0 to 0.9, representing multiple entrainment events occurring at the cloud
134 top. Combining all the simulation results produces the collective output illustrated in Fig. 1b. In
135 this study, we will analyze the output from two perspectives: “bulk” and “local”. The bulk-based
136 perspective emulates the aircraft measurements in clouds, where multiple parcels are sampled at
137 the same height with each one experiencing distinct entrainment-mixing histories. The local-based
138 perspective tracks the evolution of cloud microphysical properties in individual parcel after
139 entrainment, representing the “true” mixing process within the parcel.

140 To drive the simulations, the idealized thermodynamical profile (Fig. 2) is constructed from the
141 observations on June 30th, 2017 during the Aerosol and Cloud Experiments in the Eastern North
142 Atlantic (ACE-ENA) field campaign (Wang et al., 2022). It is noted that a strong inversion layer
143 exists at 950 m, defining the cloud top height in Table 1. For the Control simulation, the Eddy
144 Dissipation Rate (EDR) is adapted from the in-situ observation as $0.0025 \text{ m}^2 \text{ s}^{-3}$, representing a
145 typical Sc environment. The thermodynamics of the entrained air is estimated as the parcel at 10
146 m above cloud top experiencing adiabatic descent to cloud top. Particularly, the entrained air
147 temperature and water vapor is estimated as 285.77 K and 8.6 g/kg. In addition to the control case,
148 four sensitivity simulations were conducted to evaluate the robustness of the experimental design.
149 The *Dry Entrained Air* experiment represents the scenario in which the entrained air is drier.
150 Specifically, the model setup is the same as the control one except the entrained air property is

151 using the parcel at 20 m above cloud top experiencing adiabatic descent to cloud top. The selection
152 of the distance of the entrained parcel from cloud top is arbitrary and does not affect the
153 conclusions of this study. The *Enhanced Turbulence* experiment simulates stronger turbulent
154 environment with EDR set to $0.01 \text{ m}^2 \text{ s}^{-3}$. The *CCN entrained Air* experiment allows the entrained
155 air containing dry aerosols entrained from free atmosphere. The properties and concentrations of
156 the entrained aerosols are identical to those initially specified within the parcel. Finally,
157 the *Reduced Velocity* experiment represents parcels subjected to a smaller vertical velocity than in
158 the control case. A complete summary of the model configurations for these sensitivity
159 experiments is provided in Table 1.

160

161 2.2 Entrainment Mixing Metrics

162 With the aircraft measurements, the mixing process is characterized by overlaying the cloud
163 properties on the mixing diagram and analyzing their collective behaviors (Burnet and Brenguier,
164 2007; Lehmann et al., 2009; Yum et al., 2015). In this study, the simulation result is displayed in
165 mixing diagrams similar to those used in the aircraft-measurement studies. In addition, we adapt
166 the homogeneous mixing degree (ψ) to identify the mixing process from the local-based
167 perspective. The mixing diagram and the associated metrics are introduced in the following.

168 2.2.1 $n-r^3$ Mixing Diagram

169 The $n-r^3$ mixing diagram is commonly applied to characterize the mixing process in clouds. In the
170 diagram, the horizontal and vertical axes represent the normalized number concentration (n) and
171 the average of the third moment of droplet radius (r^3). The measurements are normalized by their
172 theoretical values assuming the cloud parcel ascends adiabatically. For extreme IM, droplet
173 number is further reduced while the size remains constant, therefore the measurements are
174 horizontally aligned. For extreme HM, droplet number remains unchanged after dilution, while the
175 size is reduced due to evaporation. In reality, the mixing can be between the two extreme mixing
176 types, and thus both droplet number and size may be reduced in the diagram.

177 2.2.2 $LWC - \tau_{phase}$ mixing diagram

178 The $L - \tau_{phase}$ mixing diagram was proposed by Yeom et al. (2021) with x -coordinates as the
179 logarithm of liquid water content (L) and y -coordinates as the logarithm of phase relaxation time
180 (τ_{phase}). L is calculated as:

$$181 L = \frac{4\pi\rho_L n r^3}{3} \quad \text{Eq. 1}$$

182 where n and r represent the number concentration and droplet radius, and ρ_L is the density of
183 liquid water.

184
185 The phase relaxation time (τ_{phase}) characterizes how rapidly an equilibrium vapor saturation is
186 reached by evaporation of a population of droplets (Lehmann et al., 2009; Jeffery and Reisner,

187 2006). For the EMPM simulation output, τ_{phase} is calculated following the method applied in
 188 Tölle and Krueger (2014):

$$189 \quad \tau_{phase} = \frac{1}{4\pi D_v N} \frac{R_v + a}{R_v^2} \quad \text{Eq. 2}$$

190 where N and R_v represent the domain-mean droplet number and radius estimated at the time
 191 immediately following the entrainment event. D_v is the molecular diffusivity of water vapor and
 192 is taken as $0.256 \text{ cm}^2 \text{s}^{-1}$. a is the accommodation length taken as $2 \mu\text{m}$, which is introduced for
 193 analytic convenience (Jeffery and Reisner, 2006).

194 To interpret the L - τ_{phase} mixing diagram, linear regression is performed between the logarithm
 195 of L and τ_{phase} dataset and the corresponding slope is used for mixing classification: the slope of
 196 -1 represents extreme IM, while the HM should asymptote to the line with slope of $-1/3$.
 197

198 2.2.3 Homogeneous mixing degree

199 Based on the n - r^3 mixing diagram, Lu et al. (2013) proposed the homogeneous mixing degree
 200 following the calculation:

$$201 \quad \beta = \tan^{-1} \left(\frac{\frac{r_v^3}{r_{va}^3} - 1}{\frac{n}{n_a} - \frac{n_h}{n_a}} \right) \quad \text{Eq. 3}$$

202 where r_v and r_{va} represent the volume-mean radius and the adiabatic radius of droplets, n is the
 203 number concentration, n_a is the adiabatic number concentration, n_h is the number concentration
 204 immediately following the entrainment event but prior to evaporation and accounts for the dilution
 205 by entrainment; The parameter β effectively calculates the angle, with unit of radian, from the
 206 extremely IM line (detailed illustration is shown in Fig. 1 in Lu et al. (2013)).

207 β is commonly normalized by $\pi/2$ to represent the homogeneous mixing degree (ψ):

$$208 \quad \psi = \frac{\beta}{\pi/2} \quad \text{Eq. 4}$$

209 ψ ranges from 0 to 1, with larger value indicating higher degree of HM. Since ψ is estimated upon
 210 each parcel instead of a collective datapoints, we apply ψ to characterize the local mixing process
 211 within the parcel.

212

213

214

215

216

217 **3. Results**

218 **3.1 Cloud Properties from the EMPM simulation**

219 The simulated domain-averaged cloud properties under various entrainment events are shown in
220 Fig. 3. When the parcel ascends adiabatically, the LWC linearly increases from cloud base (i.e.
221 745 m) to cloud top with the maximum value of 0.42 g m^{-3} (red line in Fig. 3a). The domain-
222 averaged cloud droplet radius increased to 10.7 \mu m (red line in Fig. 3b). Correspondingly, a total
223 of 1600 droplets is activated at cloud base and the number remain unchanged towards cloud top.
224 Considering the EMPM domain of 20 cm^3 , the number concentration within the undiluted
225 ascending parcel is 80 cm^{-3} . As introduced in Sec 2.1, the parcel descent immediately after reaching
226 cloud top. When no entrainment occurs at the cloud top, the simulated cloud properties within the
227 descending parcel is shown as the blue line in Fig. 3. It is noticed that LWC and the droplet radius
228 do not follow the trajectory of the ascending parcel but with slightly enhanced value. This
229 enhanced radius/LWC is caused by the hysteresis effect manifested as the time-lag adjustment of
230 the parcel supersaturation responding to the change of dynamics (Yang et al., 2018). Specifically,
231 as the parcel starts moving downward as a consequence of the changed velocity from 1 ms^{-1} to -1 ms^{-1} ,
232 the supersaturation within the parcel remains positive with value of 0.47 % (red line in Fig.
233 3d). Consequently, the droplet continues to grow until the supersaturation is removed. It is shown
234 that the supersaturation turns to negative at the height of 943m, which is 7 m down from cloud top.
235 The extra growth over this 7m distance led to a larger LWC and radius in the downward branch
236 (Fig. 3a, c).

237 For the descending parcels with various entrainment events, LWC and droplet number reduce
238 instantaneously at cloud top (Fig. 3a, c) due to the replacement by entrained air. Meanwhile, the
239 domain-mean radius remains constant at cloud top (Fig. 3 b) as the evaporation-mixing process has
240 not yet begun. As the parcel descends, LWC, droplet radius and number decrease due to
241 evaporation. The extent of the reduction depends on the entrainment fraction. For strong
242 entrainment event, the mixed parcel is much drier thus experiencing stronger evaporation, leading
243 to lower LWC, smaller radius, and fewer droplets. Under large EF, droplets within the parcel are
244 completely evaporated at a higher altitude. For instance, for the EF of 0.4 (black line in Fig. 3),
245 droplets are evaporated at 862 m, which is 88 m below the cloud top (Fig. 3c).

246

247

248

249

250

251

252

253

254 **3.2 Entrainment Mixing Behavior within Clouds**
255 **3.2.1 Bulk Perspective**

256 The normalized standard deviation of water vapor is plotted to illustrate the temporal evolution of
257 the mixing process in the Control experiment (Fig. 4a). The standard deviation of water vapor (δq_v)
258 is calculated at each time step within the one-dimensional domain (20 m in length with a 1 mm
259 grid spacing) and normalized by its value at 1 s after entrainment. The evolution of δq_v reflects
260 the characteristic mixing timescale (Tölle and Krueger, 2014). As shown in Fig. 4a, δq_v peaks
261 after entrainment and decreases over time as mixing between entrained and cloudy air proceeds.
262 Parcels with smaller EF exhibit shorter mixing times than those with larger EF; for example, parcel
263 with EF = 0.1 reaches equilibrium after roughly 20 s, whereas the one with EF = 0.7 requires about
264 100 s to homogenize water vapor within the domain.

265 In the Control configuration, the parcel descends immediately after entrainment at a constant
266 velocity of -1 m s^{-1} , allowing elapsed time to be directly related to distance below the cloud top.
267 Accordingly, three representative height levels: 5 m, 50 m, and 200 m below the cloud top, are
268 selected to characterize three mixing stages. In this study, the “near-cloud-top region” is defined
269 as the layer within 10 m below the cloud-top height (950 m). We then use two mixing diagrams to
270 analyze the EMPM simulations from the aircraft-based perspective. In the $n-r^3$ mixing-diagram
271 (Fig. 4b), droplet number and r^3 are normalized by the value in the descending parcel without
272 entrainment occurring (blue line in Fig. 3b, c). For the control experiment (Fig. 4b), the collective
273 behavior of the 10 simulations with different EFs shows reduced droplet number but unchanged
274 radius at 5m below cloud top (circles in Fig. 4b). The reduced number is caused by the entrainment
275 when a given fraction of the domain is instantaneously replaced by the droplet-free air. At 5m
276 below cloud top, droplets have not yet experienced strong evaporation because only 5 s has elapsed
277 since the entrainment event. To better visualize the mixing signature at different heights,
278 polynomial lines are fitted based on the normalized $n-r^3$ diagram. The fitted line at 5 m below
279 cloud top is horizontally aligned reasonably well with the normalized $r^3 = 1$ (black line in Fig. 4b),
280 exhibiting a typical IM signature. This IM phenomenon is echoed in the $L-\tau_{phase}$ mixing diagram:
281 the slope of the linear regression of the datasets at 5 m below cloud top is -0.81 (circles in Fig. 4b),
282 which is close to the IM reference line with the slope of -1.

283 As the parcels descend deeper into the cloud, those with different EFs exhibit distinct evaporation
284 histories, leading to contrasting mixing signatures. Taking the control experiment at 50 m below
285 cloud top (squares in Fig. 4b) as an example, the normalized r^3 is reduced to 0.48 for the parcel
286 with EF equals 0.8, while the normalized r^3 is 0.92 for the parcel with EF equals 0.1. As a result,
287 the collected behavior of all the parcels at this level exhibit HM signatures (red line in Fig. 4b)
288 with reduced droplet numbers and radii. It is further noted that the HM signature is more prominent
289 deeper into the cloud (i.e., further away from the cloud top). Comparing the fitted lines from two
290 height levels (red and blue lines in Fig. 4b), parcels at 200 m below cloud top show greater
291 reduction of radius compared to the parcels at 50 m below cloud top. This transition of the mixing
292 signatures is more evident in the $L-\tau_{phase}$ mixing diagram (Fig. 4c). As the distance from the cloud
293 top increases, the collective datapoints rotate counterclockwise from the IM (red line) to the HM
294 (blue line) reference line. Specifically, for heights at 5m (circles), 50m (squares) and 200m

295 (triangles) from cloud top, the slopes of the linear regression are -0.81, -0.32 and -0.28, exhibiting
296 a stronger HM degree deeper into cloud.

297

298 The four sensitivity experiments (Fig. 5) lead to similar conclusions as the Control one with
299 slightly different behavior. Fig. 5a shows that when the entrained air is drier, the mixed parcel
300 experiences stronger evaporation thus exhibiting a small degree of IM signature near cloud top.
301 Particularly, the normalized r^3 at 5 m below cloud top decreases by 17% with an EF of 0.9, causing
302 the fitted line to bend downward toward smaller radii in the large EF regime (black line in Fig. 5a).
303 However, it is still clear that the mixing behavior of all the parcels at cloud top is predominantly
304 IM with significant reduction of droplet number and a small reduction of radius. This IM-
305 dominated signature is also identified in the $L-\tau_{phase}$ mixing diagram (Fig. 5b) in which parcels at
306 cloud top (circles) align well with the IM reference line (red dashed line). In the Enhanced
307 Turbulence experiment (Fig. 5c, d), the mixing signature is similar to the Control one (Fig. 4) near
308 cloud top but shows differences deeper into the cloud. For a given normalized n , the Enhanced
309 Turbulence experiment is characterized by a greater reduction of radius compared to the Control
310 one. For instance, at 200 m from cloud top, where the normalized n equals 0.6, the normalized r^3
311 for the Control and Enhanced Turbulence experiments are 0.72 and 0.48, respectively. This large
312 reduction of droplet size is expected as strong turbulence favors efficient mixing and enhance the
313 HM signature. In the CCN-Entrained-Air experiment (Fig. 5e, f), the normalized r^3 values for
314 each normalized number concentration are smaller than those in the control case, indicating a more
315 pronounced reduction in droplet size. This feature reflects a stronger HM tendency under CCN
316 entrainment, consistent with previous findings that activation of entrained CCN broadens the
317 droplet size distribution toward smaller droplets and amplifies the characteristics of homogeneous
318 mixing (Lim and Hoffmann, 2023; Luo et al., 2022). In the Reduced-Velocity experiment, the
319 mixing diagram (Fig. 5g) shows a stronger HM characteristics at 5 m below cloud top,
320 accompanied by a greater reduction in droplet radius. This arises because the slower descent
321 velocity allows droplets to remain longer near the cloud top compared to the control one, thereby
322 experiencing longer mixing-evaporation time. An interesting feature of this case is that the fitted
323 lines at the two sampled heights (red and blue line in Fig. 5g) are closely aligned, suggesting small
324 evolution of droplet properties with depth from 50 m to 200 m. This behavior indicates that the
325 environment has nearly reached a homogeneous mixing state, as the reduced descent rate
326 effectively extends the available mixing-evaporation time, allowing the system to equilibrate more
327 rapidly toward HM conditions.

328

329 Overall, despite variations in the thermodynamic and dynamic properties of the entrained air, all
330 simulations consistently exhibit an IM signature at the cloud top and a transition toward HM within
331 the cloud, with an increasing degree of HM deeper into the cloud layer. These model-based results
332 align well with aircraft observations in stratocumulus (Yum et al., 2015; Yeom et al., 2021),
333 providing a robust basis for more detailed analysis presented in the following section.

334

335 **3.2.2 Local Perspective**

336 In this section the EMMPM simulations in Sec 3.2.1 are interpreted from the local-based perspective
337 as introduced in Fig. 1. Specifically, instead of analyzing parcels with different EFs at given height,
338 we evaluate the mixing process of each parcel by tracking its history. Figure 6a shows the local
339 mixing history for four parcels with EF of 0.1, 0.3, 0.5, and 0.7. The parcels initially follow a near-
340 vertical path (i.e., indicating a reduction in droplet size with minimal change in number
341 concentration) near the cloud top, then gradually tilt toward the smaller number regime. These
342 features show HM near cloud top and the mixing more tends to inhomogeneous deeper into cloud.
343 The strongest HM signature is observed for the parcel with EF = 0.1 (blue symbols), where at 50
344 m below the cloud top, the normalized r^3 decreases by 18%, while the normalized number
345 decreases by only 1.5%.

346 To quantitatively describe the mixing process in each parcel, we adapt the homogeneous mixing
347 degree ψ proposed by Lu et al. (2013). As introduced in Sec 2.2, ψ is evaluated based on the $n-r^3$
348 mixing diagram by calculating the relative changes of droplet size and number after each mixing
349 event. Since estimating ψ only requires the change of cloud microphysics within each parcel, it is
350 suitable to illustrate the mixing process from the local perspective. For the four selected parcels,
351 ψ consistently decreases from cloud top to base (Fig. 6b). As $\psi = 1$ indicates extremely HM, the
352 large ψ at Fig. 6b indicates strong HM at cloud top. Deeper into the cloud, ψ decreases, indicating
353 a weakening of HM and an increasing influence of IM. This behavior holds true for the four EF
354 experiments. Parcel with EF 0.1 has the largest ψ throughout the cloud and exhibits the most
355 pronounced HM signature. Parcel with EF of 0.3 and 0.5 have ψ decreasing from 1 to 0.65 and
356 0.76 at 100 below cloud base.

357 The HM–IM transition observed from the local perspective appears to contradict the mixing
358 behavior suggested by the bulk perspective. We propose that this inconsistency arises from the
359 differing analytical perspectives. The local perspective indicated in Fig. 6 follows the continuous
360 evolution of individual parcel, revealing the “true” mixing processes. While the bulk perspective
361 captures a “snapshot” of an ensemble of parcels, each with distinct entrainment and mixing
362 histories. At cloud top, the entrained air is configurated to replace the cloudy air and
363 instantaneously reduce the droplet number. Immediately following entrainment, parcels with large
364 EF experience larger reductions of droplet number, while evaporation is not yet active enough to
365 reduce droplet size. Thus, a collection of multiple parcels with different entrainment events
366 generates an IM signature. As the parcel, as simulated within the model domain, descends deeper
367 into the cloud, mixing with dry air continues and evaporation becomes efficient, leading to a
368 reduction in droplet size. As a result, parcels with larger EF experiencing stronger evaporation and
369 this results in a more pronounced decrease in droplet size and number. Consequently, a collection
370 of parcels with different EFs tends to exhibit a HM signature deeper into the cloud.

371 Based on this reasoning, we further propose that from the bulk perspective, mixing is always
372 manifested as IM near cloud top and HM towards cloud base, regardless of the mixing process
373 exhibited from local perspective. To testify this hypothesis, we conduct a strict IM experiment
374 with the same configuration as the Control experiment but setting an extremely low EDR value of
375 $10^{-14} \text{ m}^2 \text{ s}^{-3}$. This nonrealistic EDR value results in low mixing efficiency in the EMMPM simulation

376 where 100 steps of diffusion (e.g. evaporation) are performed per turbulent mixing step. As a
377 comparison, for the “Turbulent” experiment where EDR is $0.01 \text{ m}^2 \text{ s}^{-3}$, the EMPM performs 100
378 mixing steps per diffusion step. Thus, the conducted IM experiment ensures strict IM scenario
379 with evaporation much faster than the turbulent mixing.

380 The mixing process of the strict IM experiment from the local perspective is shown in Fig. 7. In
381 the $n-r^3$ mixing diagram, the parcel experiencing greater reduction of number compared with
382 radius. Take the simulation with EF of 0.1 (blue symbol in Fig. 7a) for example, from 2m to 150m
383 from cloud top, droplet number is reduced by 6% while the normalized r^3 is only reduced by 0.8%.
384 The evolution of ψ within clouds (Fig. 7b) indicate an IM-HM transition from cloud top to base.
385 Specifically, ψ increase from 0 to approximately 0.4 through the clouds, suggesting strong IM
386 feature near cloud top and an increase degree of HM at lower levels. The negative β near cloud
387 top is caused by the growth of droplet after entrainment, which may be caused by the remaining
388 supersaturated environment at cloud top as discussed in Fig. 3d.

389 Although strong IM signature is identified for each parcel, the collective behavior of multiple
390 parcels still exhibits IM near cloud top and HM within cloud. At 2m below cloud top, parcels with
391 various EFs are aligned horizontally (circles in Fig. 7a) and is manifested as IM signature. At 150
392 m below the cloud top, stronger entrainment events lead to greater reductions in droplet radius.
393 For the parcel with $\text{EF} = 0.7$ (yellow symbols), the normalized r^3 decreases by 13%, whereas for
394 the parcel with $\text{EF} = 0.1$, the reduction is only 0.8%. As a result, the collective behavior of the
395 parcels at 150m below cloud top (inverted triangles in Fig. 6a) reveals HM signature. It is
396 noticeable that the reduction of droplet size in Fig. 7a is significantly smaller than the control
397 experiment as shown in Fig. 6a. This difference is expected as the turbulent mixing is strongly
398 inhibited in Fig. 7a, thus the entrained dry air cannot efficiently mix with cloudy air, which
399 eventually inhibits evaporation of droplets. Nevertheless, results in Fig. 6 and Fig. 7 demonstrate
400 that, from the bulk perspective, mixing behavior consistently exhibits IM at cloud top, with an
401 increasing signature of HM deeper within the cloud, regardless of the local mixing processes
402 occurring in individual parcels.

403 Finally, it is noted that this study primarily aims to explain the IM–HM transition within cloud as
404 observed from the bulk perspective. We do not attempt to draw conclusions about the local (e.g.
405 parcel-based) mixing state within cloud. The local mixing behavior can vary depending on the
406 model configuration and analysis approach, and it is strongly influenced by the timescale over
407 which droplet properties (i.e. size and number) adjust following entrainment. For instance, in real
408 cloud parcels may briefly dwell near the cloud top before descending, and the inferred local mixing
409 characteristics therefore depend on this residence time. A longer dwell time near cloud top would
410 permit greater vapor–droplet interaction at cloud top, potentially altering the local mixing signature
411 with depth. A detailed investigation of these time-dependent local mixing processes is beyond the
412 scope of this study.

413

414

415

416

3.3 Isobaric-Mixing Experiment

417 In previous sections, we have reconstructed the mixing behavior in Sc using EMPM simulations
418 which is consistent with the aircraft-based measurements. However, the non-isobaric mixing
419 process in previous experiments may lead to ambiguity for mixing interpretation. Specifically,
420 when droplets evaporate in a descending parcel, the subsaturated environment can be caused by
421 adiabatic warming and non-isobaric mixing. To isolate these two effects, we conduct an isobaric
422 mixing experiment. The experiment setup is the same as the control one except after entrainment
423 event near cloud top, the parcel velocity is set to 0 m s^{-1} . This setting ensures the parcel only
424 experiencing isobaric mixing after the entrainment at cloud top.

425 Fig. 8 shows the mixing diagrams at three elapsed times after the entrainment event. At 3s, parcels
426 with different EFs are closely aligned with the line of normalized $r^3 = 1$. Correspondingly, the
427 slope of the fitted line in the $L - \tau_{\text{phase}}$ diagram is -0.81 (Circle in Fig. 8b). These two features
428 suggest IM at the beginning of mixing process. At 15s, HM signature is identified with parcels of
429 large EF experiencing greater reduction of radii and number (red line in Fig. 8a). At 90s, stronger
430 reduction of droplets size and number indicating a more prominent HM signature (blue line in Fig.
431 8a). The $L - \tau_{\text{phase}}$ diagram echoes the stronger HM feature as mixing continuing with the fitted
432 slope increases from -0.56 to -0.42 from 15s to 90s.

433 To better illustrate the mixing process as a function of time, the normalized standard deviation of
434 water vapor is plotted for the isobaric-mixing experiment (Fig. 9a). In Fig. 9a, δ_{qv} is maximum
435 after the entrainment. As time goes by, q_v decreases as mixing occurs between the entrained air
436 and cloudy air. Parcels with the small EF experience a short mixing time compared with those with
437 large EF. For instance, the parcel with EF 0.3 needs 60 s to reach the equilibrium state (green line
438 in Fig. 9a) while the one with EF 0.1 needs only 20 s (blue line in Fig. 9a) to homogenize water
439 vapor within the domain.

440 The parcel-based mixing behavior for four parcels is shown in Fig. 9b. Tracking individual parcels,
441 it is clearly shown that the parcel experiencing HM has a greater reduction of radii compared to
442 number. The most extreme case is for the parcel with EF of 0.1 (blue symbols in Fig. 9b): during
443 the mixing process the normalized r^3 decreases by 17% while the normalized number barely
444 changes. Correspondingly, the ψ parameter decreases from 1 to 0.97 from 0 to 12 s, indicating
445 extreme HM. Parcels with large EF exhibit HM signatures after a greater duration of mixing. For
446 instance, ψ for the parcels with EF of 0.3 and 0.4 decrease from 1 to 0.7 at 80 s after entrainment,
447 suggesting the HM signature is enhanced as the mixing proceeds.

448 In a nutshell, the isobaric mixing experiment exhibits similar results as shown in the previous
449 experiments. The collective mixing behavior of multiple parcels exhibits IM at the beginning of
450 mixing and HM at later time. The elapsed time in the isobaric mixing experiment is equivalent to
451 the distance from cloud top for the non-isobaric mixing experiments. The true mixing process as
452 indicated from the local-based perspective, on the other hand, may be completely different from
453 the collective mixing behavior. This isobaric mixing experiment reinforces the conclusion that the
454 IM-HM transition from the bulk perspective results from the sampling strategy in clouds rather
455 than true mixing process in the parcel.

456

457 **4. Discussion**

458 Using multiple EMMP simulations, we successfully reproduce the commonly aircraft-observed
 459 result with IM near cloud top and HM within cloud. We further explain this phenomenon in Fig.
 460 10. The aircraft measurements include multiple cloud parcels experiencing different entrainment-
 461 mixing histories. In Sc, entrainment occurs at the cloud top where a horizontal fraction of cloudy
 462 air is replaced by the free atmosphere. If the entrained air is cloud droplet-free, the entrainment
 463 event instantaneously reduces droplet number. Parcels experiencing strong entrainment have
 464 greater reductions of droplet number. The moment after entrainment, the dry air has not yet mixed
 465 with cloudy air, which is required to generate strong evaporation, thus the domain-averaged size
 466 remains constant. A collection of multiple parcels at cloud top are aligned along a horizontal line
 467 indicating the IM signature. As the parcel descends into cloud, mixing and evaporation occur
 468 collectively to reduce droplet size and number. Parcels with strong entrainment at the cloud top
 469 are associated with large entrainment fraction, resulting in a drier environment compared to parcels
 470 with smaller EF. Deeper into the cloud, parcels with large EF experience stronger evaporation,
 471 leading to a greater reduction in both droplet size and number. The collective view of parcels with
 472 different EFs in the $n-r^3$ mixing diagram exhibits HM signature.

473 This explanation is essentially consistent with the “vertical circulation” hypothesis as discussed in
 474 previous studies (Yum et al., 2015; Wang et al., 2009; Yeom et al., 2021). In this study we use the
 475 EMMP simulations for a thoughtful demonstration and aim to raise the awareness of this modeling
 476 approach for investigating entrainment-mixing processes. Particularly, the aircraft measurements
 477 should be interpreted with caution especially when multiple samples along the aircraft traverse are
 478 overlapped in the mixing diagram. The collective behavior of different samples at given altitude
 479 may exhibit a result which does not represent the true mixing mechanism of each sample. For the
 480 similar reason, the Large Eddy Simulation (LES) output should also be analyzed with caution.
 481 Collecting cloud properties along multiple grids at a given height in the model generates pseudo
 482 “aircraft-based measurements”, which may also lead to misinterpretation of the mixing process.
 483 Lagrangian-based models, with the capability of tracking the history of each parcel, should serve
 484 as a more suitable tool for mixing investigations (Hoffmann and Feingold, 2019; Lim and
 485 Hoffmann, 2024). From the observational perspective, while the Lagrangian-based tracking
 486 approach is not applicable, alternative measurement methods developed in recent decades is
 487 helpful to mitigate the mixing artifacts generated from the aircraft measurements. For instance, the
 488 Cloudkite platform deployed at the kite-stabilized balloons (Schröder, 2023) and the holographic
 489 imaging technique (Beals et al., 2015) can provide high spatio-temporally resolved measurements
 490 down to cm-scales. Such fine-resolution observations capture the local cloud mixing state more
 491 representatively, offering deeper insights into the entrainment mixing processes within clouds.

492

493

494

495

496 **5. Conclusion**

497 In this study, we conduct EMPM simulations to understand the entrainment-mixing process
498 observed from aircraft measurements in stratocumulus cloud. Three experiments are conducted
499 with different thermodynamic and turbulence environments. Each experiment consists of ten
500 simulations, with each simulation representing a 20-meter parcel undergoing various entrainment
501 degree at cloud top and distinct mixing history. The overall entrainment-mixing process for the
502 simulations is analyzed from two views: the bulk-based and local perspective. The bulk
503 perspective resembles the aircraft measurements in clouds and is illustrated by two commonly
504 used mixing diagrams. The local perspective reflects the true mixing behavior in each parcel and
505 is quantified by the homogeneous mixing degree (ψ) developed by Lu et al. (2013).

506 From the bulk perspective, the simulated mixing is identified as IM near cloud top and HM within
507 cloud, which is consistent with the aircraft measurements in real clouds. However, this vertical
508 progression primarily arises from the collective view of multiple parcels experiencing different
509 mixing stages, in which strong evaporation in some parcels juxtapose with weak evaporation in
510 others. This bulk view obscures the parcel's actual mixing process and leads to the appearance of
511 a systematic IM-HM transition within cloud, even in cases where the underlying local mixing
512 within each parcel could be substantially different. It is suggested that future mixing investigations
513 in clouds should carefully re-examine the aircraft-based interpretation and consider incorporating
514 Lagrangian approaches.

515 It is noted that the purpose of this study is to urge caution when interpreting aircraft measurements
516 and LES simulations in entrainment-mixing research. This study does not aim to conclude the
517 entrainment mixing behaviors in clouds. To advance the understanding of mixing processes in real
518 clouds, emerging measurement technologies, such as the holographic detectors and tethered
519 platforms, offer critical insights to observe mixing at the parcel scale. Additionally, for illustrative
520 purposes, this study employs an idealized mixing framework in which each parcel evolves
521 independently, with no mixing between parcels with differing entrainment histories. While a more
522 sophisticated mixing scheme could better approximate observational realities, such complexity
523 falls outside the scope of the present work.

524

525

526

527

528

529 **Code/Data availability:**

530 The EMPM codes used in this study is available upon request from the authors.

531

532 **Financial Support:**

533 Z. Zhu, F. Yang, Y. Liu were funded by the Department of Energy (DOE) as part of the
534 Atmospheric System Research (ASR) program under Contract DE-SC0012704. S. Krueger was
535 supported by NSF grant AGS-2133229.

536

537 **Author contribution:**

538 ZZ designed the methodology and carried out the analysis. FY contributed to the study design. SK
539 provided guidance on the use of the EMPM. YL assisted with the interpretation of results. ZZ
540 drafted the manuscript, with all co-authors contributing to revisions and editing.

541

542

543 **Competing interests:**

544 The corresponding author has declared that neither they nor their co-authors have any competing
545 interests.

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560 **Reference**

561 Allwayin, N., Larsen, M. L., Glienke, S., and Shaw, R. A.: Locally narrow droplet size
562 distributions are ubiquitous in stratocumulus clouds, *Science*, 384, 528-532, 2024.

563 Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud
564 droplet spectra: I. A model of inhomogeneous mixing, *Quarterly Journal of the Royal
565 Meteorological Society*, 106, 581-598, 1980.

566 Beals, M. A., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic
567 measurements of inhomogeneous cloud mixing at the centimeter scale, *Science*, 350, 87-90,
568 2015.

569 Burnet, F. and Brenguier, J.-L.: Observational study of the entrainment-mixing process in warm
570 convective clouds, *Journal of the atmospheric sciences*, 64, 1995-2011, 2007.

571 Chosson, F., Brenguier, J.-L., and Schüller, L.: Entrainment-mixing and radiative transfer
572 simulation in boundary layer clouds, *Journal of the atmospheric sciences*, 64, 2670-2682, 2007.

573 Desai, N., Liu, Y., Glienke, S., Shaw, R. A., Lu, C., Wang, J., and Gao, S.: Vertical variation of
574 turbulent entrainment mixing processes in marine stratocumulus clouds using high-resolution
575 digital holography, *Journal of Geophysical Research: Atmospheres*, 126, e2020JD033527, 2021.

576 Gao, S., Lu, C., Liu, Y., Yum, S. S., Zhu, J., Zhu, L., Desai, N., Ma, Y., and Wu, S.:
577 Comprehensive quantification of height dependence of entrainment mixing between stratiform
578 cloud top and environment, *Atmospheric Chemistry and Physics*, 21, 11225-11241, 2021.

579 Hoffmann, F. and Feingold, G.: Entrainment and mixing in stratocumulus: Effects of a new
580 explicit subgrid-scale scheme for large-eddy simulations with particle-based microphysics,
581 *Journal of the Atmospheric Sciences*, 76, 1955-1973, 2019.

582 Jeffery, C. A. and Reisner, J. M.: A study of cloud mixing and evolution using PDF methods.
583 Part I: Cloud front propagation and evaporation, *Journal of the atmospheric sciences*, 63, 2848-
584 2864, 2006.

585 Kerstein, A. R.: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive
586 scalar mixing fields, *Journal of Fluid Mechanics*, 231, 361-394, 1991.

587 Krueger, S. K., Su, C.-W., and McMurtry, P. A.: Modeling entrainment and finescale mixing in
588 cumulus clouds, *Journal of the atmospheric sciences*, 54, 2697-2712, 1997.

589 Lasher-trapp, S. G., Cooper, W. A., and Blyth, A. M.: Broadening of droplet size distributions
590 from entrainment and mixing in a cumulus cloud, *Quarterly Journal of the Royal Meteorological
591 Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography*,
592 131, 195-220, 2005.

593 Latham, J. and Reed, R.: Laboratory studies of the effects of mixing on the evolution of cloud
594 droplet spectra, *Quarterly Journal of the Royal Meteorological Society*, 103, 297-306, 1977.

595 Lehmann, K., Siebert, H., and Shaw, R. A.: Homogeneous and inhomogeneous mixing in
596 cumulus clouds: Dependence on local turbulence structure, *Journal of the Atmospheric Sciences*,
597 66, 3641-3659, 2009.

598 Lim, J. S. and Hoffmann, F.: Between broadening and narrowing: How mixing affects the width
599 of the droplet size distribution, *Journal of Geophysical Research: Atmospheres*, 128,
600 e2022JD037900, 2023.

601 Lim, J. S. and Hoffmann, F.: Life cycle evolution of mixing in shallow cumulus clouds, *Journal
602 of Geophysical Research: Atmospheres*, 129, e2023JD040393, 2024.

603 Lu, C., Liu, Y., Niu, S., Krueger, S., and Wagner, T.: Exploring parameterization for turbulent
604 entrainment-mixing processes in clouds, *Journal of Geophysical Research: Atmospheres*, 118,
605 185-194, 2013.

606 Luo, S., Lu, C., Liu, Y., Li, Y., Gao, W., Qiu, Y., Xu, X., Li, J., Zhu, L., and Wang, Y.:
607 Relationships between cloud droplet spectral relative dispersion and entrainment rate and their
608 impacting factors, *Advances in Atmospheric Sciences*, 39, 2087-2106, 2022.

609 Magaritz-Ronen, L., Pinsky, M., and Khain, A.: Effects of turbulent mixing on the structure and
610 macroscopic properties of stratocumulus clouds demonstrated by a Lagrangian trajectory model,
611 *Journal of the Atmospheric Sciences*, 71, 1843-1862, 2014.

612 Schröder, M.: Cloud Microphysics Investigations with the Cloudkite Laboratory, Georg-August-
613 Universität Göttingen Göttingen, 2023.

614 Su, C.-W., Krueger, S. K., McMurtry, P. A., and Austin, P. H.: Linear eddy modeling of droplet
615 spectral evolution during entrainment and mixing in cumulus clouds, *Atmospheric research*, 47,
616 41-58, 1998.

617 Tölle, M. H. and Krueger, S. K.: Effects of entrainment and mixing on droplet size distributions
618 in warm cumulus clouds, *Journal of Advances in Modeling Earth Systems*, 6, 281-299, 2014.

619 Wang, J., Daum, P. H., Yum, S. S., Liu, Y., Senum, G. I., Lu, M. L., Seinfeld, J. H., and Jonsson,
620 H.: Observations of marine stratocumulus microphysics and implications for processes
621 controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment, *Journal*
622 *of Geophysical Research: Atmospheres*, 114, 2009.

623 Wang, J., Wood, R., Jensen, M. P., Chiu, J. C., Liu, Y., Lamer, K., Desai, N., Giangrande, S. E.,
624 Knopf, D. A., and Kollias, P.: Aerosol and cloud experiments in the Eastern North Atlantic
625 (ACE-ENA), *Bulletin of the American Meteorological Society*, 103, E619-E641, 2022.

626 Wood: Stratocumulus Clouds, *Monthly Weather Review*, 140, 2373-2423, 10.1175/mwr-d-11-
627 00121.1, 2012.

628 Yang, F., Kollias, P., Shaw, R. A., and Vogelmann, A. M.: Cloud droplet size distribution
629 broadening during diffusional growth: ripening amplified by deactivation and reactivation,
630 *Atmospheric Chemistry and Physics*, 18, 7313-7328, 2018.

631 Yeom, J. M., Helman, I., Prabhakaran, P., Anderson, J. C., Yang, F., Shaw, R. A., and Cantrell,
632 W.: Cloud microphysical response to entrainment and mixing is locally inhomogeneous and
633 globally homogeneous: Evidence from the lab, *Proceedings of the National Academy of*
634 *Sciences*, 120, e2307354120, 2023.

635 Yeom, J. M., Yum, S. S., Shaw, R. A., La, I., Wang, J., Lu, C., Liu, Y., Mei, F., Schmid, B., and
636 Matthews, A.: Vertical variations of cloud microphysical relationships in marine stratocumulus
637 clouds observed during the ACE-ENA campaign, *Journal of Geophysical Research:*
638 *Atmospheres*, 126, e2021JD034700, 2021.

639 Yum, S. S., Wang, J., Liu, Y., Senum, G., Springston, S., McGraw, R., and Yeom, J. M.: Cloud
640 microphysical relationships and their implication on entrainment and mixing mechanism for the
641 stratocumulus clouds measured during the VOCALS project, *Journal of Geophysical Research:*
642 *Atmospheres*, 120, 5047-5069, 2015.

643

644

645

Fig. 1a

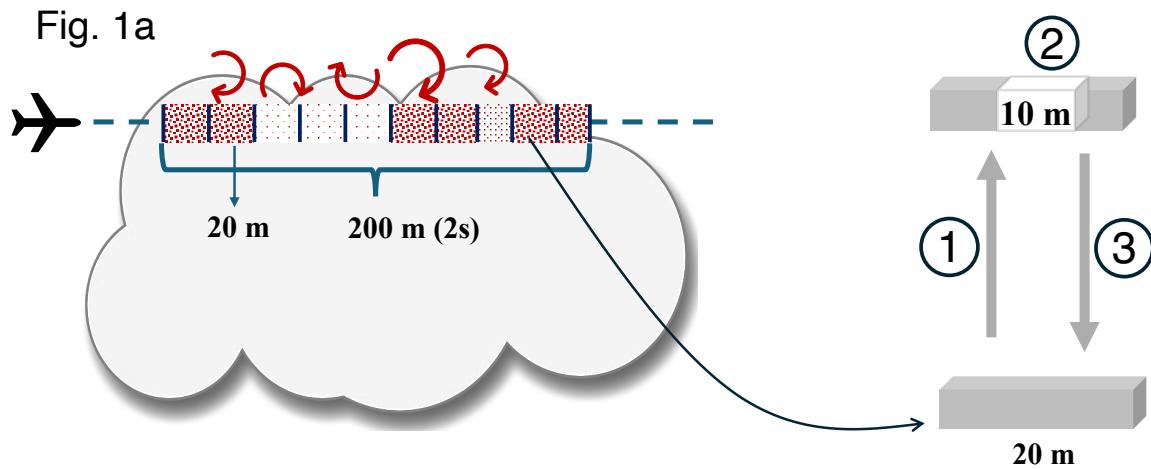
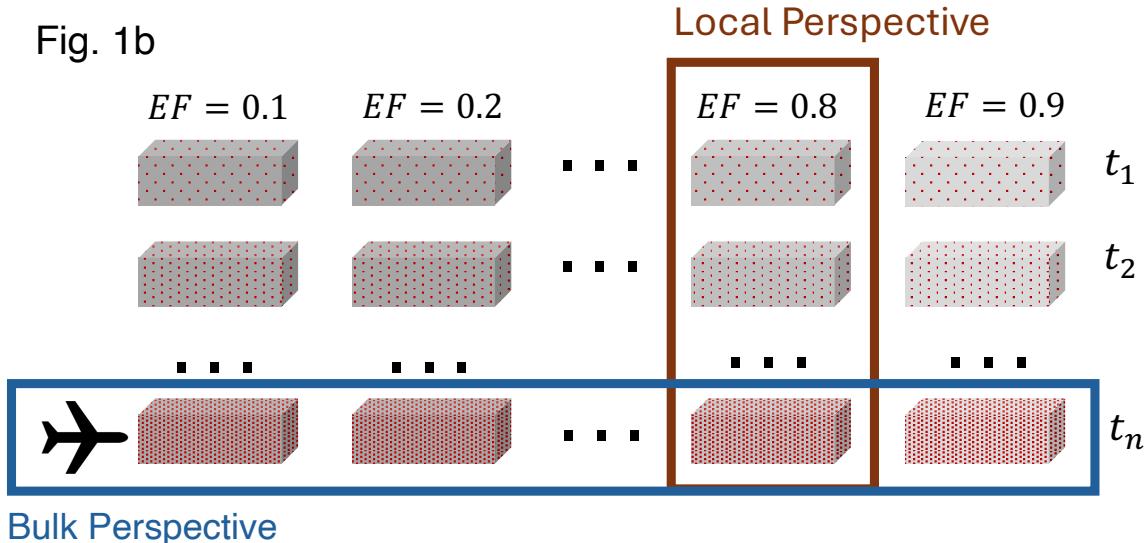
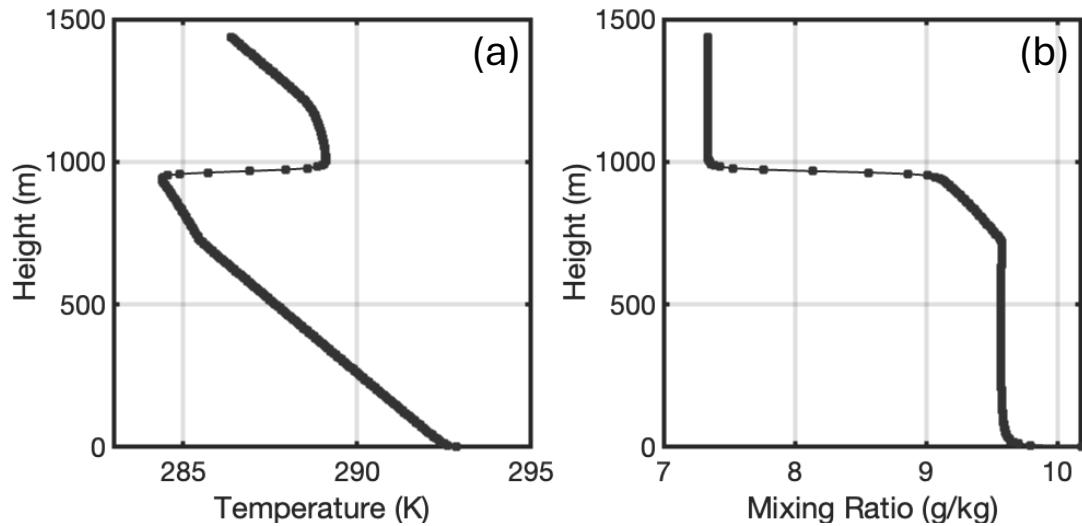



Fig. 1b


646

647 Figure 1: Illustration of experiment set up: a) the left panel illustrates aircraft measurements at
648 cloud top. During 2s, the aircraft traverse 200 m, acquiring 10 samples. Each sample corresponds
649 to a 20-m cloud parcel, which is simulated by the EMPM. The sampled cloud parcels exhibit
650 varying entrainment fractions as indicated by the shading. Lighter (sparser) shading corresponds
651 to samples with higher entrainment fractions. The right panel illustrates the simulated parcel
652 experiencing three stages: ① rising, ② entrainment and ③ sinking. b) Illustration of the local and
653 bulk-based perspective for simulations analysis: the local perspective tracks the change of
654 properties with time after the entrainment events; the bulk perspective collects multiple parcels
655 with various EF at a given time. t_1 represents the entrainment moment, t_n represents an arbitrary
656 time step after entrainment.

657

658

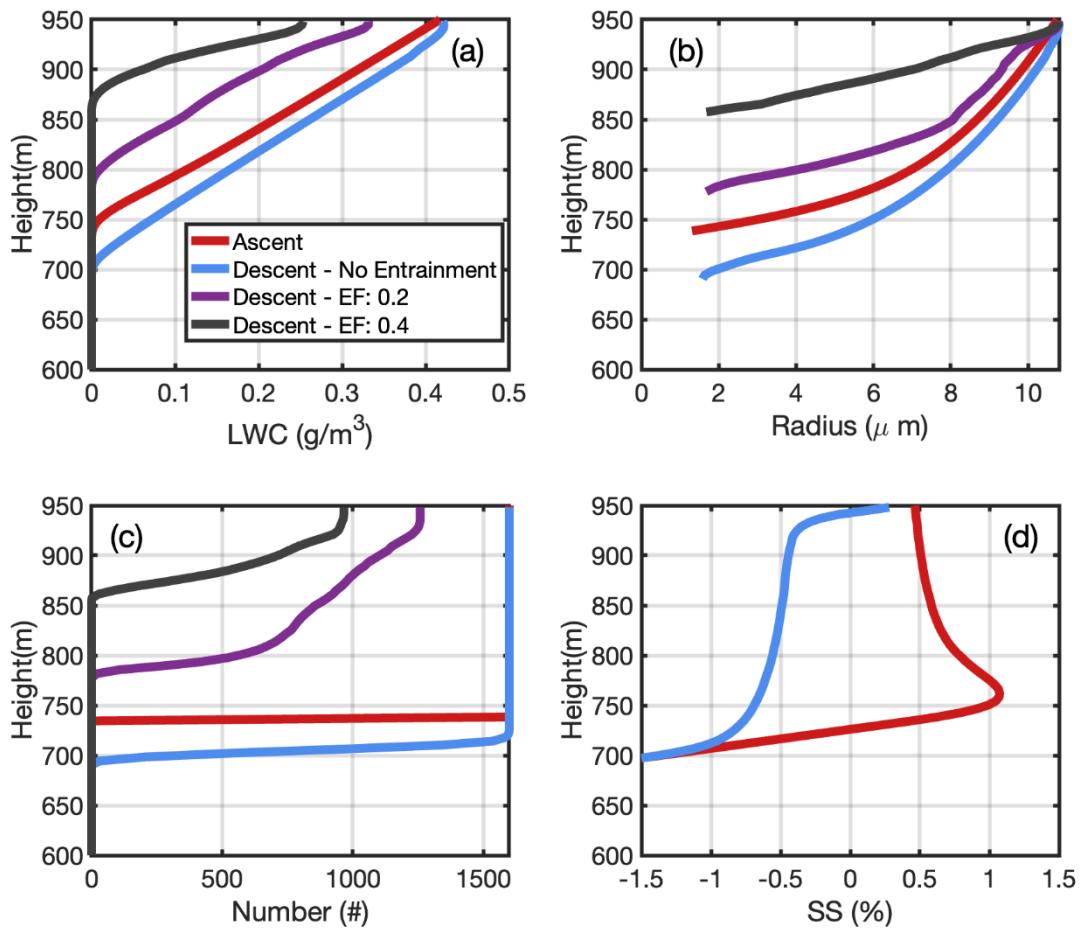
659
660
661
662
663

664

665 Figure 2: The idealized a) temperature and b) mixing ratio profiles based on the sounding
666 observation at 5:30 UTC on June 30th, 2017 during the ACE-ENA field campaign.

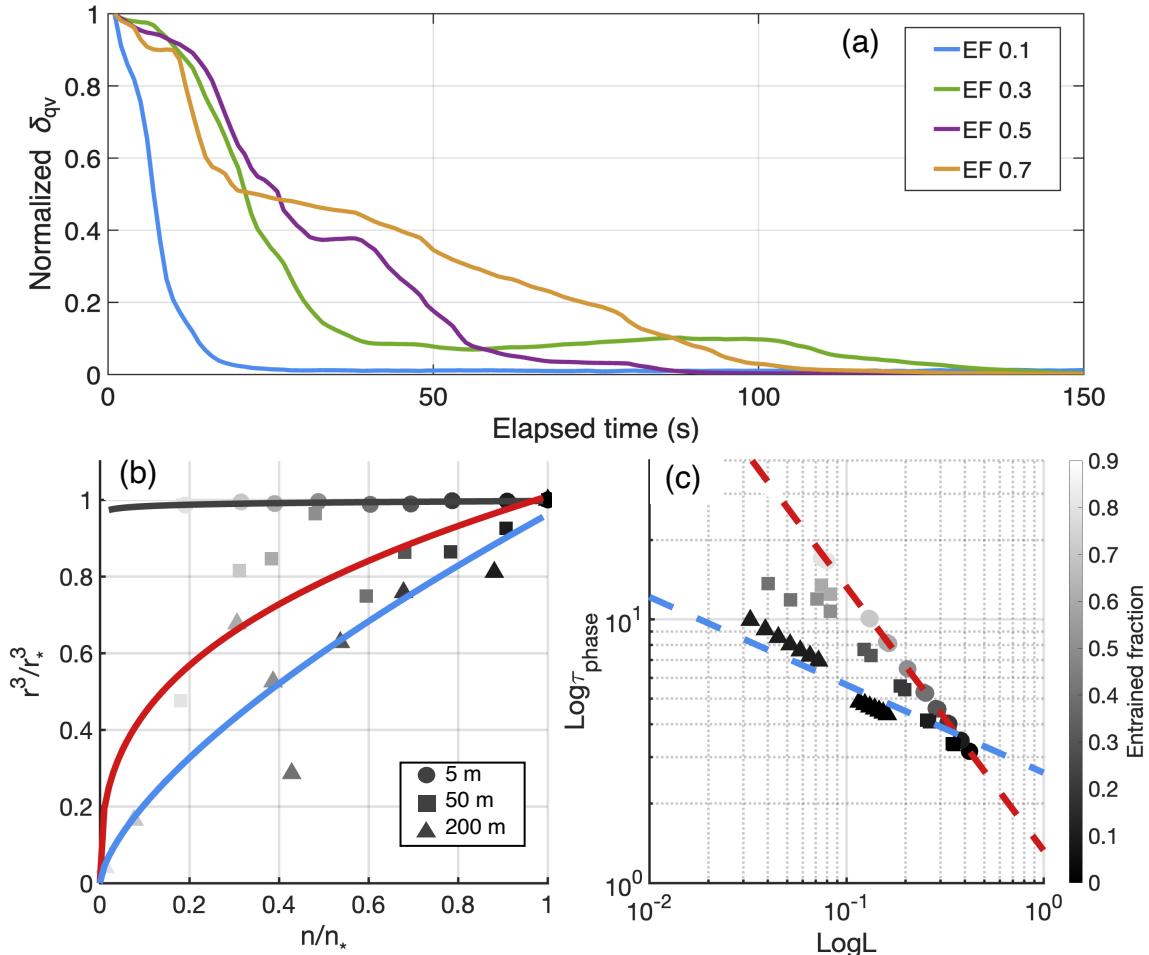
667
668
669
670
671
672
673
674
675
676
677

678

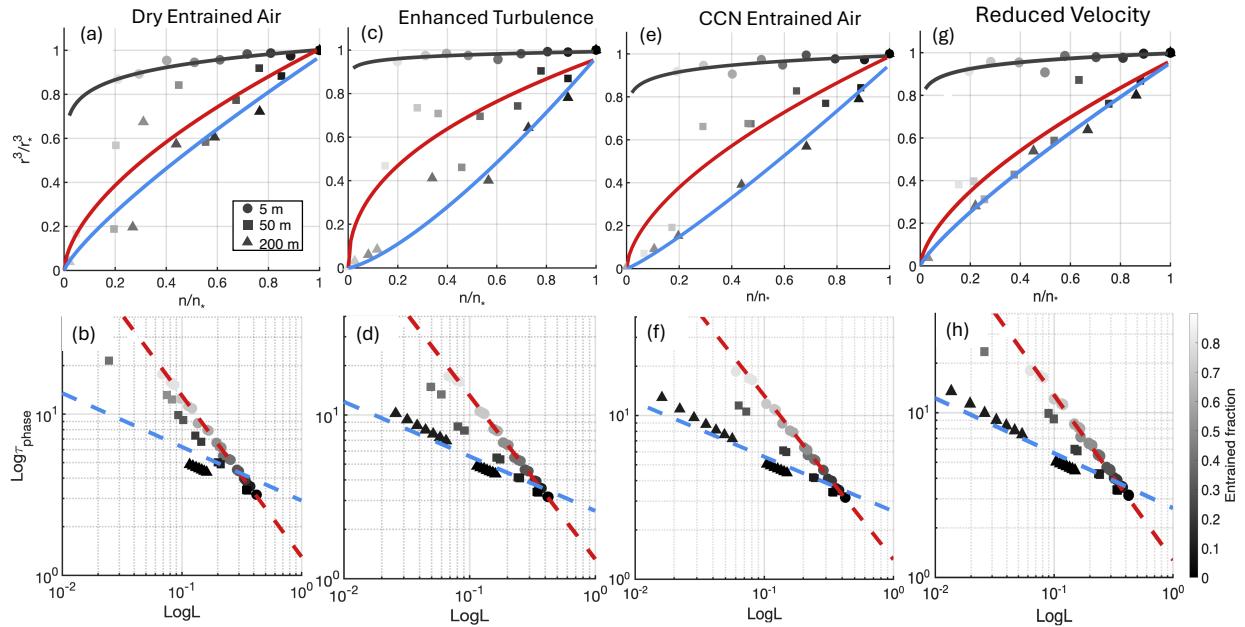

Table 1: Model Configuration

Parameter	Control	Dry Entrained Air	Enhanced Turbulence	CCN- Entrained Air	Reduced Velocity
Domain Length (m)			20		
CCN Concentration (cm ⁻³)			80		
Cloud Top Height (m)			950		
Aerosol Size Distribution			Monodisperse		
Initial solute mass (kg)			0.1122*10 ⁻¹⁷		
Initial aerosol radius (m)			0.216*10 ⁻⁶		
Type of aerosol			NaCl		
Eddy Dissipation Rate (m ² s ⁻³)	0.0025	0.0025	0.01	0.0025	0.0025
Entrained air temperature (K)	285.77	288	285.77	285.77	285.77
Entrained air water vapor(g/kg)	8.6	7.9	8.6	8.6	8.6
Entrained CCN in the dry air	N	N	N	Y	N
Vertical Air Velocity (ms ⁻¹)	±1	±1	±1	±1	±0.5

679

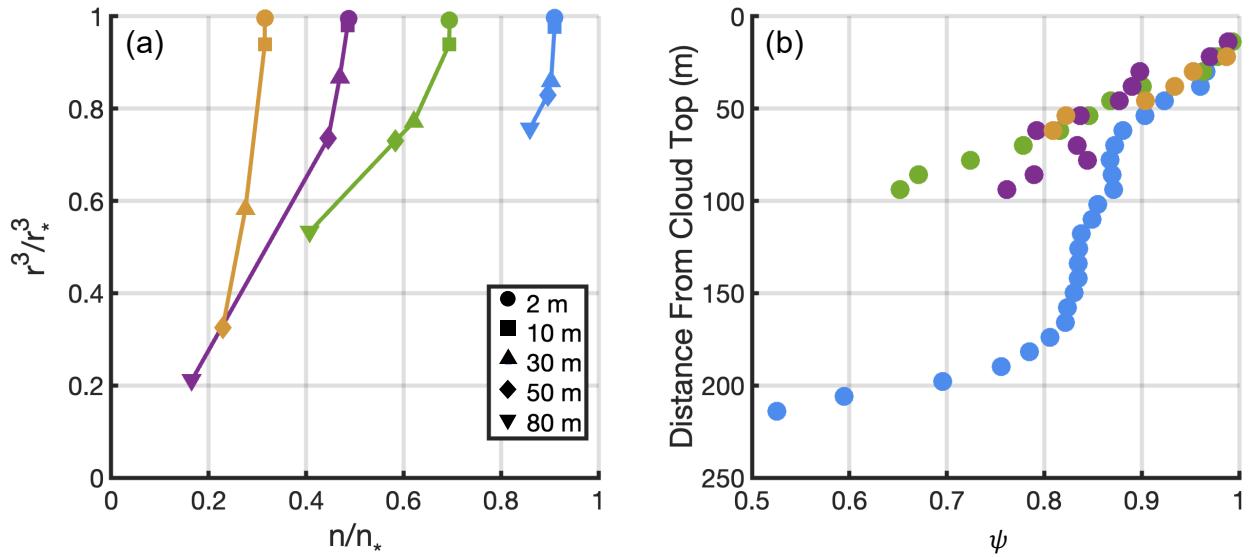

680

681


682

683 Figure 3: For the control experiment, domain-averaged cloud properties as function of height: a)
 684 LWC, b) radius, c) droplet number d) supersaturation. The red line represents the ascending parcel,
 685 while the blue, purple and black lines represent the descending parcel with entrainment fraction of
 686 0, 0. 2 and 0.4 respectively. In (d) only the ascending parcel and the descending parcel with EF of
 687 0. 4 is shown.

690 Figure 4: (a) Normalized standard deviation of water vapor (δ_{qv}) in the parcel after entrainment
 691 for the control experiment. The blue, green, purple and yellow line represents the parcel with EF
 692 of 0.1, 0.3, 0.5 and 0.7. (b) and (c): Mixing diagrams for control experiment: The left panel (b)
 693 represents the $n-r^3$ mixing diagram where the circle, square and triangle represents simulations at
 694 5, 50 and 200m from cloud top. The black (IM-like), red (HM-like) and blue (HM-like) lines
 695 represent the polynomial fitting of the parcels at each height level. (c) The right panel indicates
 696 the $L-\tau_{\text{phase}}$ mixing diagram, where the circle, square and triangle represents simulations at three
 697 heights as indicated in (b). The red, blue dashed line represents the IM and HM reference line with
 698 slope of -1 and $-1/3$.


703
704
705
706
707

708
709 Figure 5: Same as Figure 4, but for the four sensitivity experiments: (a)–(b) correspond to the Dry-
710 Entrained-Air experiment; (c)–(d) to the Enhanced-Turbulence experiment; (e)–(f) to the CCN-
711 Entrained-Air experiment; and (g)–(h) to the Reduced-Velocity experiment.

712
713
714
715
716

717

718

719 Figure 6: a) $n-r^3$ mixing diagram from the parcel-based perspective for the control experiment.
 720 The circle, square, triangle, diamond and the reverse-triangle indicate the height of 2m, 10m, 30m,
 721 50m and 80m from cloud top. The blue, green, purple and yellow represents the parcel with EF of
 722 0.1, 0.3, 0.5 and 0.7. b) The homogeneous mixing degree (ψ) as a function of distance from cloud
 723 top, different color represents parcel with different EF as indicated in (a).

724

725

726

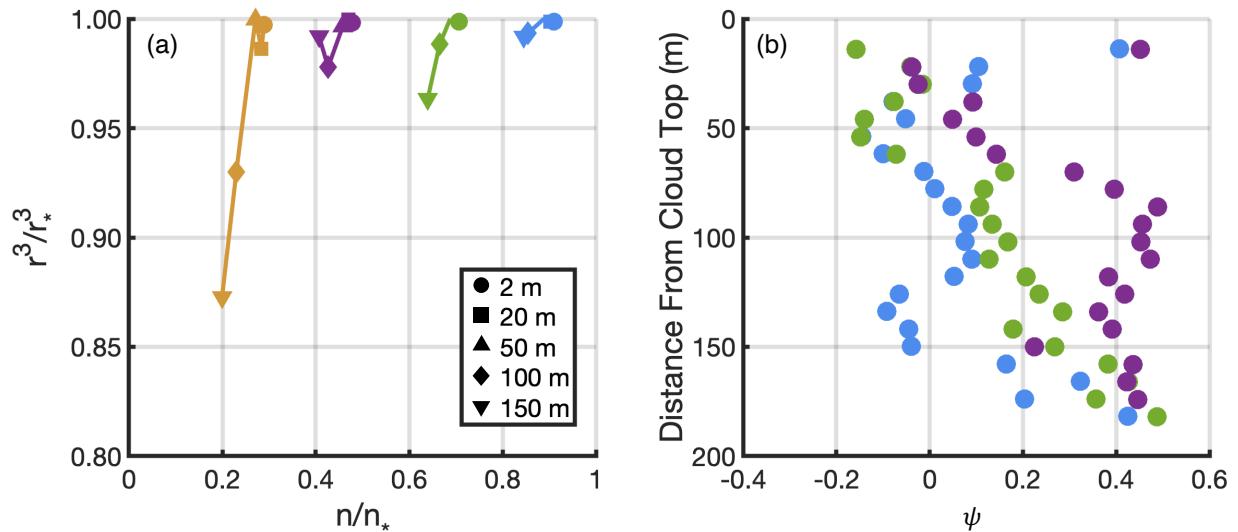
727

728

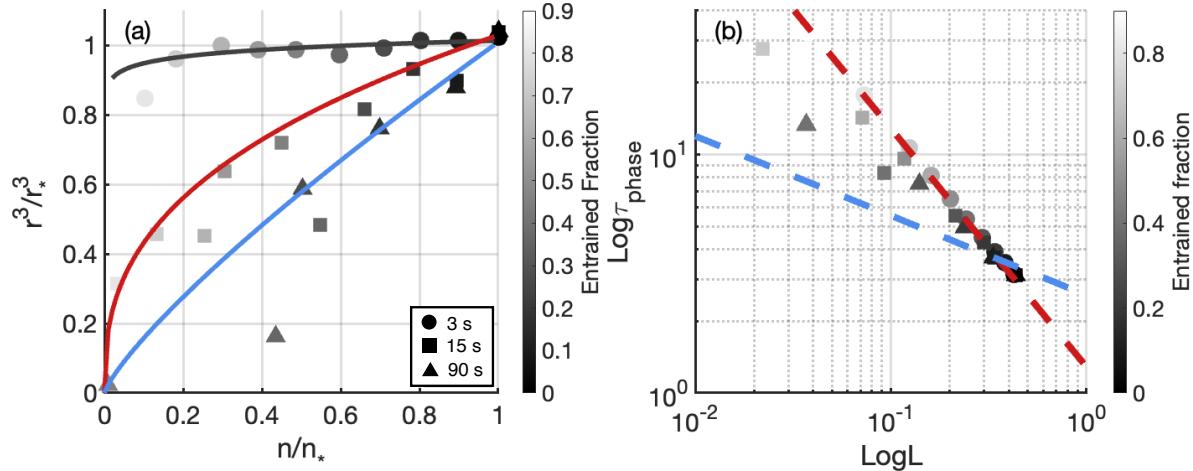
729

730

731

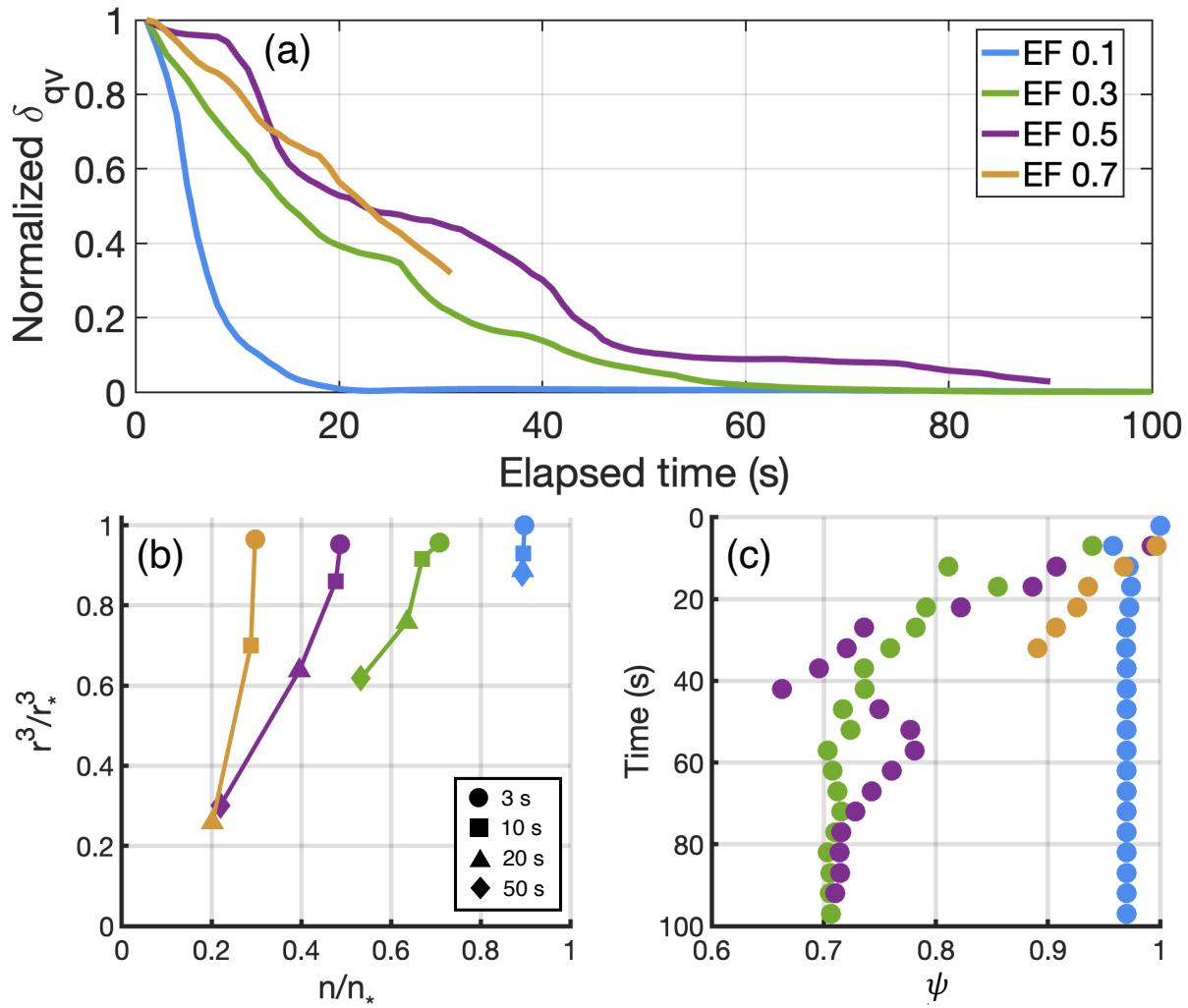

732

733

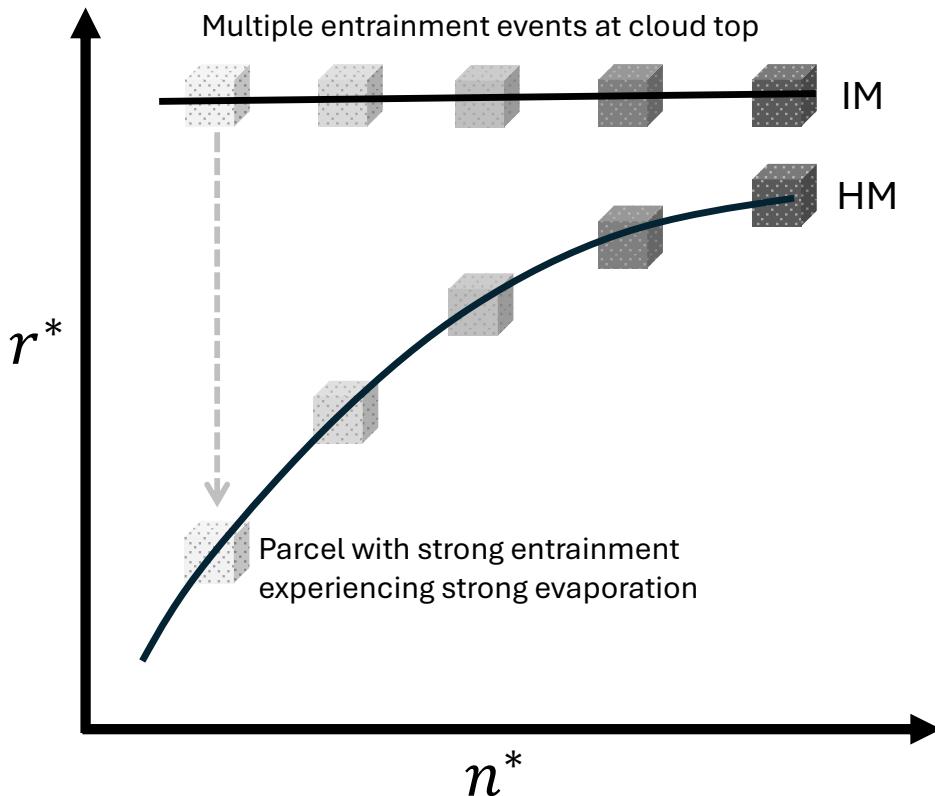

734

735

736


739 Figure 7: a) $n-r^3$ mixing diagram from the parcel-based perspective for the strict IM experiment.
 740 The circle, square, triangle, diamond and the reverse-triangle indicate the parcel at height of 2m,
 741 20m, 50m, 100m and 150m from cloud top. The blue, green, purple and yellow represents parcel
 742 with EF of 0.1, 0.3, 0.5 and 0.7. b) The homogeneous mixing degree (ψ) as a function height for
 743 the strict IM experiment. The blue, green, purple color represents parcel with EF of 0.1, 0.3, 0.5.

751 Figure 8: (a) $n-r^3$ mixing diagram from the bulk perspective for the isobaric mixing experiment:
 752 The circle, square and triangle represent the elapsed time of 3s, 15s and 90s after entrainment. The
 753 black (IM-like), red (HM-like) and blue (HM-like) lines represent the polynomial fitting for the
 754 parcels at 3s, 15s and 90s, respectively. (b) $L-\tau_{\text{phase}}$ mixing diagram for the isobaric mixing
 755 experiment. The circle, square and triangle represents the elapsed time at 3s, 15s and 90s after
 756 entrainment. The red, blue dashed line represents the IM and HM reference line with slope of -1
 757 and -1/3.


758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772

773
774

775
776 Figure 9: (a) Normalized standard deviation of water vapor (δ_{qv}) in the parcel after entrainment
777 for the isobaric mixing experiment. The blue, green, purple and yellow line represents the parcel
778 with EF of 0.1, 0.3, 0.5 and 0.7. (b) $n-r^3$ mixing diagram for the isobaric mixing experiment. The
779 blue, green, purple and yellow symbol represents parcel with EF of 0.1, 0.3, 0.5 and 0.7. The circle,
780 square, triangle and diamond indicate the parcel at elapsed time of 3s, 10s, 20s, 50s after
781 entrainment. (c) The homogeneous mixing degree (ψ) as a function elapsed time for the isobaric
782 mixing experiment. Different color represents parcel with different EF indicated in (b).
783

784

785

786 Figure 10: Illustration of the IM-HM transition within Sc from the bulk perspective. Parcels with
787 darker (lighter) shading corresponds to samples with lower (higher) entrainment fractions. The
788 horizontal black line represents the IM behavior occurring near cloud top, the curved line
789 represents the HM behavior occurring within cloud.

790

791

792

793

794

795

796

797

798

799