
We thank both reviewers for their helpful comments.
In this document, italics denote reviewer comments and the grey boxes contain excerpts of the manuscript
where changes were made.

::::
Blue

::::::::
indicates

::::::
added

::::
text

:
and red indicates deleted text, in keeping with the

changes file.

Response to Reviewer 1’s Comments

“L23: The use of fractal dimensions to compare satellite observations to numerical simulations comes up a
number of times in this paper, but the authors seem to conflate different scales and resolutions. Here, the
authors mention kilometre-scale climate models; is the argument that satellite images (at 250-m resolution
with MODIS, for example), can be used as a link “quite directly to climate physics” of these climate
models? How? ”

One of the main appeals of the metrics we propose is that they offer a resolution-independent way to
quantify the statistics, as they quantify relationships between scales rather than at any given scale. We
have added a sentence emphasizing this benefit:

“ensemble” fractal dimension may prove particularly useful for the validation of model performance or
to compare meteorological and climate states while reflecting the symmetries of spatial scale that
underly

::::::::::::
characterizing

::::::
cloud

:::::
fields

::
as

::
it
:::::::::
quantifies

::::::::::::
relationships

::::::::
between

::::::
clouds

::
of

::::::::
different

:::::
sizes

::
in

::
a

:::
way

:::::
that

:::
the

:::::
more

::::::::
common

::::::::::::
“individual”

::::::
fractal

:::::::::
dimension

:::::
does

::::
not.

:

:::
We

::::
also

::::
aim

::
to

::::::::
examine

::::
and

:::::::
improve

::::
the

:::::::::::::
methodologies

:::
by

:::::
which

::::
the

::::::
fractal

::::::::::
dimensions

::::
are

:::::::::
calculated

::
in

:::::
order

::
to

::::
give

::::::
future

::::::
model

:::::::::::::::
intercomparison

::
or

::::::
cloud

:::::::::::
classification

:::::::
studies

::::::
better

:::::
tools.

:::
A

:::::::::
particular

::::::
appeal

::
of

::::::
fractal

:::::::
metrics

::
is
:::::
that

:::
the

::::::
values

:::::::::::
characterize

:::::::::
statistical

::::::::::::
relationships

:::::::
between

:::::
scales

::::::
rather

::::
than

::::::::
statistics

:::
at

:::
any

::::::::::
particular

:::::
scale,

:::
for

::::::::
example

::::::::
enabling

:::::
more

::::::::::::::
straightforward

:::::::::::
comparisons

::::::::
between

:::::::::::
observations

::
or

:::::::
models

::::
with

::::::::
differing

:::::::::::
resolutions.

::::
But

:::
for

:::::
such

:::::::
benefits

::
to

:::
be

::::::::
realized,

:::
the

:::::::
metrics

:::::
must

::
be

::::::::::
accurately

:::::::::
calculated

::
in

::::
the

::::
first

:::::
place

:::::
such

::::
that

:::::
their

::::::
values

::
do

::::
not

:::::::
depend

:::
on

:::
the

::::::::::
particulars

:::
of

::::::
domain

::::
size

:::
or

:::::::
dataset

:::::::::
resolution.

:::::::
When

:::::::::
accurately

::::::::::
measured,

::::::
fractal

:::::::
metrics

:::::::
instead

::::::
reflect

:::
the

:::::::::
underlying

::::::::::
symmetry

::
of

::::::
spatial

:::::
scale

:::::::
present

::
in

::::::
cloud

:::::
fields

::::
and the physics governing dynamic

processes in the Earth’s atmosphere
::::
more

::::::::
broadly.

We’ve also added that the resolution of the MODIS data we use is 1 km in response to a below comment.

“L26: The two papers cited here are pretty clear about the measure of uncertainty, so the authors could be
more clear about the struggle to accurately represent the radiative effects of clouds. Also, there have been
quite a number of studies recently on this very topic since 2020. ”

We rephrased the sentence to be more specific and added three references to studies published 2020 and
after.

Also, they are
::::::
Clouds

:::
are

::::
also

:
a particularly challenging test: as clouds pass overhead, they can

dramatically alter the local radiation budget (Stephens et al., 2015), and at the same time they are the
aspect of the atmosphere that climate models struggle most to represent (Ceppi et al., 2017; Sherwood
et al., 2020)

:
,
::
as

:::::::::
feedbacks

::::::::
between

:::::
cloud

:::::::::
radiative

::::::
effects

::::
and

:::::::
surface

:::::::::::
temperature

:::::::
remain

:::
the

:::::
most

::::::::
uncertain

::::::::::
component

:::
of

:::::::::::::
model-derived

::::::::
estimates

:::
of

:::
the

:::::::
climate

::::::::::
sensitivity

:::::::::
(Stephens

::
et

:::
al.,

::::::
2015;

:::::
Ceppi

::
et

:::
al.,

:::::
2017;

:::::::
Zelinka

:::
et

:::
al.,

:::::
2020;

:::::::::
Sherwood

:::
et

:::
al.,

:::::
2020;

:::::
Arias

:::
et

:::
al.,

:::::
2021;

:::::
Bock

::::
and

::::::
Lauer,

::::::
2024)

:
.

“L87: It would be nice to see the actual resolution, and exactly how much it varies. ”

Thank you for noticing this omission. We added:
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To analyze the geometries of cloud fields, we use a calibrated optical reflectance product R from
MODIS that is sensitive to visible wavelengths between 620 nm and 670 nm (Band 1).

:::
The

:::::::
dataset

::::
has

:
a
:::::
nadir

:::::::::
resolution

:::
of

:::::
1 km,

:::::::::
increasing

:::
to

:::::::
roughly

:::::
2 km

::
at

::
a
::::::
sensor

::::::
zenith

:::::
angle

::
of
::::

60°.
::::

We
::::
only

::::::::
consider

:::
the

:::::::
portion

::
of

::::
the

:::::
swath

:::::
that

:::
has

::
a
::::::
sensor

::::::
zenith

:::::
angle

::
of

::::
60°

::
or

::::
less.

“L120 A “simple linear fit” can mean two things. Either that the (unwieldy) distribution has been estimated
by a linear function, or that the power-law fit worked exceptionally well. Can we have a figure that actually
shows the linear fit? ”

As described in section 3.2 (Measurements), we provide Figs. 5 and 6 showing the fit. Also, there is a
linear relationship between log p and log

√
a, which implies a power-law relationship between p and a, so we

are unsure of the ”two things” to which the reviewer refers. We also note that this section does not discuss
size distributions, although size distributions are mentioned elsewhere, and we are unsure if the reviewer
meant size distribution by the word “distribution” or simply a relationship between areas and perimeters.
More broadly, the point we are making in this section is that the simple fitting procedure the reviewer is
referencing is often done in past studies but is not valid for clouds. We then go on to propose a different
method, fitting log p to log

√
a after filling cloud holes, which improves the power-law behavior as shown in

Fig. 5.

“L214 It is indeed true that the perimeter and the size of a cloud are positively correlated, but the
relationship is not linear (cf. https://doi.org/10.5194/acp-13-7795-2013). Either this significantly affects
the power-law relationship, or I think it should be made clear that the power-law fit is not an exact
representation of the cloud size distribution. ”

We apologize if we did not understand the question; however, around L214 in the original manuscript we
are proposing a relationship between perimeter and number, not size, and furthermore we propose a
power-law relationship, not a linear one. For another comment, we also added Fig 12, which was previously
in the appendix and shows that a power law perimeter distribution is indeed a close fit to the observed
perimeter distribution.
If the reviewer meant to reference the discussion around Figs. 5 and 6, we again find a power-law
relationship between perimeter and area, not a linear one, as discussed in the previous comment. In fact,
the relationship found in Fig. 6 appears consistent with the p ∝ a0.73 dependence mentioned in the
abstract of the paper the reviewer linked.

“L225 I believe the authors are being intentionally ambiguous here, as the cloud field geometry being “tied
to” turbulent processes can be used to mean anything; if the authors are implying that the ensemble fractal
dimension De from satellite images can be used to infer the strength of turbulent mixing processes, or
thermodynamic properties, then I would love to see more details. ”

That was not our intention. Rather, the manuscript is intended to serve as a methodological paper
describing how fractal metrics may be measured, not what their physical interpretation in terms of
turbulent mixing may be. Nonetheless, other studies have proposed such physical links, and this motivates
why we might want more accurate methods of measuring fractal metrics in the first place. We have made a
small change to indicate that these physical links are expanded upon in other past work:

If true, the ensemble fractal dimension given by Eqn. 6 provides a simple observational metric for
quantifying cloud field geometries, one that can also be tied

:::
has

:::::::::
previously

:::::
been

:::::::
related to the invisible

turbulent processes that roughen each individual cloud’s edge (Di; Hentschel and Procaccia, 1984;
Siebesma and Jonker, 2000) as well as the physics controlling the competition for available energy
among clouds of varying sizes (β; Garrett et al., 2018).
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“L280 There is very little discussion on how the linear fits in Figure 10 were obtained. The power-law
distributions on the log-log plots are only marginally linear, and they are dependent on the choice of the
bins and other factors (see the comment below); one could also argue that the intermediate sizes used for
the linear fit have been cherry-picked. There is a lot of literature on using the power-law fit for the cloud
size distribution, and I believe there is much to be justified here. ”

To address the fitting point, we added the following:

N(ε) ∝ ε−Dbox . (1)

:::::
From

:::
this

:::::::::
equation,

:::::
Dbox::::

may
:::

be
:::::::::
estimated

::::::
using

:
a
::::::::::::
least-squares

::::::
linear

:::::::::
regression

::
to

::
a
::::
plot

::
of

:::::
N(ε)

:::
vs.

:
ε.
:

Note that the box dimension is equal to the usual dimension for Euclidian
:::::::::
Euclidean objects; for

example, a line has Dbox = 1 and a disk has Dbox = 2 (Strogatz, 2018).

For the rest of the comment, Figure 10 is a plot of the box-counting function N(ε) as a function of box
size, not a distribution of cloud sizes, so there is no binning done here. We agree that the intermediate
sizes are somewhat ”cherry-picked” in this case. We ultimately recommend that future work does not use
this method for the reason the reviewer notes (in addition to the argument at line 274 in the revised
manuscript), and we describe the method because it is currently more common than the correlation
dimension. Thus, this section is at least partly attempting to make the reviewer’s point: that the box
dimension is not the best measure of cloud scaling properties. We added the following to clarify:

These values are somewhat higher than those obtained using the box dimension but display a similar
trend of decreasing values with increasing R.

::
As

::::::
shown

:::
in

::::
Fig.

:::
11,

::::
the

::::::::::
correlation

:::::::
integral

:::::
C(r)

::
is

:::::
better

:::::::::::
represented

:::
by

:
a
::::::::::
power-law

:::::
when

:::::::::
compared

:::
to

:::
the

::::::::::::
box-counting

::::::::
function

:::::
N(ε)

:::::
(Fig.

::::
10),

::::::::
implying

::::::::
estimates

:::
of

:::
Dc:::

are
:::::
more

::::::::
accurate

:::::
when

::::::::::
compared

::
to

:::::
Dbox.

:

It seems the reviewer may have been expecting to see a distribution plot of cloud perimeters. We have
added one, Fig. 12, and figure numbering has been updated accordingly.

“L281 This sounds like a significant amount of large clouds being filtered out. I do understand the need to
filter truncated clouds, but given that larger clouds naturally have higher chances of extending beyond the
observed domain, it sounds like a considerable chunk of the cloud field that is being omitted. For a typical
MODIS scene, how much of the observed cloud field has been filtered out at this stage? The authors
mention that including those clouds will result in “a substantial bias”, but could it be the other way around?
Also, why the bins that include 50% of whole clouds? These choices seem too arbitrary to me. Ultimately, I
think this directly opposes the main goal of this paper, which is to come up with a measure of geometric
features of a cloud field, especially for convective organization. ”

Thank you, the text may not have been sufficiently clear. The problem of accurately estimating β is in
itself a significant methodological challenge, and in a prior study we investigated the problem in detail
using both numerical tools and observations of clouds. The 50% threshold, for example, was recommended
there for future work after considering multiple options and the resulting bias that was observed for each
method. Although it does omit a portion of the cloud field, it was found to be necessary because the
perimeters of clouds that are truncated by the domain edge cannot be estimated. Here, we intended to
mention the problem but defer to that prior study the details of the method. We have updated the
following paragraph to emphasize that the method is described in full detail in the prior study:
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To evaluate the hypothesis that De = βDi (Eqn. 6), β is determined directly from the MODIS cloud
masks. Power law fits are obtained from

:::::::::
Accurately

::::::::::::
determining

:::
the

:::::::::
power-law

:::::::::::
distribution

:::::::::
exponent

::
in

:::::::
satellite

:::::
data

:::
can

:::
be

:::::::::::
surprisingly

:::::::::::
challenging,

:::::::::
primarily

:::::::
because

:::
the

::::::::
artificial

::::::::::
truncation

::
of
:::::::
clouds

:::::
along

:::
the

:::::::
domain

:::::
edge

:::
can

:::::::::
influence

:::
the

:::::::::
measured

:::::
cloud

::::
size

::::::::::::
distribution.

::
A

:::::::::::::
comprehensive

::::::::
analysis

::
of

:::
the

:::::::
possible

::::::
biases

:::::::
arising

::::
from

:::::::
domain

::::::::::
truncation

::::
was

:::::
done

:::
by

:::::::
DeWitt

::::
and

:::::::
Garrett

:::::::
(2024),.

::::::
Here,

:::
we

:::::::::
implement

:::::
their

:::::::::::::
recommended

::::::::::::
methodology,

::::::
which

:::
was

:::
to

::::::::
calculate

::
β
:::::
using

:
a linear regression to a

logarithmically binned and transformed histogram of cloud perimeter . Fits
::::
(Fig.

::::
12).

::::
As

::::::::::::
recommended

:::
by

:::::::
DeWitt

::::
and

:::::::
Garrett

:::::::
(2024),

:::
fits

:
are performed only for those bins for which at least

50% of clouds in that bin are entirely contained within the measurement domain, ignoring the
:
.
:::::
This

:::::::
method

:::::::
ensures

::::
that

::
β

::
is

:::::::::
calculated

:::::
from

::::
only

::::
the

::::::::
unbiased

:
portion of the distributionthat is

:
,
:::
i.e.

::::
the

::::::
portion

:::::
that

::
is

:::
not

:
dominated by large clouds that extend beyond the measurement domain.

The reason for this approach, as outlined in DeWitt and Garrett (2024), is that the perimeters of
clouds that are truncated by the edge of a satellite image cannot be accurately measured. Such clouds
tend to be large, and including them in the large-cloud tail of the distribution can introduce a
substantial bias in the calculated value for β.

As for ”how much of the observed cloud field has been filtered out at this stage”, we calculated the fraction
of total perimeter and total number of clouds that are removed at the large end of the spectrum for two
thresholds for illustration. By count, and for threshold R = 0.05, 0.4% of all clouds are removed, and for
R = 0.2, 0.06% of all clouds are removed. These removed clouds account for 30% and 16% of the total
cloud perimeter, respectively.
As for whether the methodology ”opposes the main goal of the paper”, we respectfully disagree. The main
goal of the paper is to point out that subtle measurement biases may result when measuring parameters
such as β and the fractal dimensions if sufficient care is not taken. The truncation threshold is also
necessary to ensure the domain geometry does not bias estimates of β. We believe that DeWitt and
Garrett (2024) provides ample evidence that the bias is not ”the other way around” and hope the text
changes above make it more clear that we are relying on this past analysis.

“Figure 10 The exponents are missing on the y-axis (same for Figure 11). I am not sure if I agree with the
observation. The slope Dbox does tend towards 0 for small and large values of ε (for very different reasons),
but I am not sure if we can say it tends towards 1, unless the authors mean that the slope is close to 1 for
small ε, in which case I disagree. ”

Thank you, the figure tick marks have been fixed. Since the slope of the plot is equal to −Dbox, we do
mean that the slope tends toward -1 for small ε, as can be seen in the smallest two points, which have a
flatter slope than the portion to which the regression is done.

“L300 I do not see how this number came about; is 1.7 just an average across all estimates of the ensemble
fractal dimension? I feel like these numbers depend more on the filtering of large clouds and the linear fit
than the actual properties of the cloud field, as they behave differently at smaller thresholds. ”

Yes, as shown in Table 1, the majority of the estimates for the ensemble fractal dimension are close to 1.7,
with some exceptions noted in the text. We made this change:

All
:::
As

::::::
shown

::
in

:::::
Table

:::
1,

::
all

:
three methods for calculating the ensemble fractal dimension – the box

dimension, correlation dimension, and βDi – point to a value of De ≈ 1.7, with a possible exception of
the box dimension at higher reflectivity thresholds.

We hope the specific concerns discussed above address the reviewer’s point about filtering. If the comment
refers to additional methodological concerns, we are unsure of what threshold (e.g. cloud perimeter,
reflectivity, or something else) is being referred to, and request the comment be clarified if it has not
already been addressed above.
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“L330 I believe it should be “strict definition of the fractal dimension”. ”

Thank you for catching this.

Not filling cloud holes violates the strict definition
:
of

::::
the fractal dimension, while filling the holes

misses an important physical property defining the cloud field.

“L332 See my first comment. ”

Please see our response to that comment and check whether the changes made are satisfactory.

Response to Reviewer 2’s Comments

“This paper discusses different definitions of fractal dimensions for cloud fields. Its detailed exploration of
what different fractal dimensions actually mean, and how they behave across different cloud fields is a
worthwhile addition to the literature, and it should be published. The paper is clearly written, although
sometimes a bit long and could serve from a small additional round of editing (e.g., I’m not sure that it is
necessary to cite the Feynman lectures here). ”

Thank you. We have removed the Feynman citation as suggested.

“I am not convinced about the framing of this paper as an objective classification of cloud fields. For that to
be the case, I would expect some kind of relevant difference to occur between clouds in different classes of
D, beyond the relatively trivial relationship with other metrics. I could guess that there are certain distinct
differences (e.g., certain values correspond roughly with cumulus, stratus, gravel, fish, etc – but in a more
precise way), but the paper is not actually that case. I recommend either making that case (in which case
the paper becomes likely quite different, for instance by applying De to Janssens’ cloud botany), or
reframing the introduction and conclusions to simply focus on fractal properties. ”

Thank you for raising this point, as it brings up a distinction that we hope to better clarify. To rephrase
the reviewer’s point as we understand it: it is one thing to propose a metric that can be used to infer
something about the cloud field. It is another to propose that such a metric may be used to distinguish one
meteorological state from another, because then we would additionally require that the value of the
proposed metric varies based on the local atmospheric conditions.
As the reviewer notes, we do not currently test whether any of the metrics we consider vary with the local
meteorological conditions, and consider this question beyond the scope of the present paper. However, we
do believe that it is appropriate to suggest that future studies could, in principle, use our metrics for such
classification studies. Furthermore, some of these metrics have already been used for classification, so there
is a precedent for using them in this manner and we believe this is sufficient justification for the claim that
these metrics could be used for classification in the future. We added some discussion of this prior work in
response to the reviewer’s other comment about L63 below (see changes there), which might also partly
address this comment.
Regardless, any classification metric requires, as a prerequisite, accurate methods for its calculation. It is
this point where we believe our study adds value. We have made several changes to emphasize these points,
first in the introduction:

We are proposing here an alternative for classifying clouds that ties together cloud geometries with
cloud

:::
As

::
an

::::::::::
alternative

:::
to

:::::::::
subjective

::::::::::
categories,

::::
here

:::
we

::::::::
propose

::::
that

:::::
cloud

::::::
fields

::::
may

:::
be

::::::
better

::::::::::::
characterized

::
by

:::::
their

:::::::::
geometry

:::::
given

::::
that

::::::
cloud

::::::::::
boundaries

:::
are

:::::::
shaped

:::
by physics.

In the conclusions:
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Calculation of the ensemble fractal dimension De bypasses these issues and offers
::::
may

::::
offer

:
a more

objective alternative to
:
a
:::::::::
subjective

::::::::::::
classification

:::::::
scheme

::::
such

:::
as

:
sugar, gravel, fish, and flowers

(Stevens et al., 2020), particularly if calculated as a correlation integral. The ease of its calculation of

:::::
using the correlation integral in satellite imagery makes it well-suited for evaluating the accuracy of
atmospheric numerical simulations or for comparing regional meteorology.

“Around line 260, and further on around line 280, I would like the authors to be more specific about their
methods (e.g., “ignoring the portion the distribution that is dominated by large clouds that extend beyond
the measurement domain”) , and the biases their choices may or may not introduce. For instance, in the
method section it was stated that clouds over land were not included, but that could easily bias against
larger clouds.Likewise, the exclusion on L 260 does something similar. ”

This point was also brought up by the other reviewer. We did not make it sufficiently clear that the
methodology for calculating β was already analyzed in detail in a previous paper, DeWitt and Garrett
(2024). We have updated the relevant paragraph to emphasize that the methods, the reasoning behind
them, and the bias that could result if such methods were not used are described in detail in that past
paper:

To evaluate the hypothesis that De = βDi (Eqn. 6), β is determined directly from the MODIS cloud
masks. Power law fits are obtained from

:::::::::
Accurately

::::::::::::
determining

:::
the

:::::::::
power-law

:::::::::::
distribution

:::::::::
exponent

::
in

:::::::
satellite

:::::
data

:::
can

:::
be

:::::::::::
surprisingly

:::::::::::
challenging,

:::::::::
primarily

:::::::
because

:::
the

::::::::
artificial

::::::::::
truncation

::
of
:::::::
clouds

:::::
along

:::
the

:::::::
domain

:::::
edge

:::
can

:::::::::
influence

:::
the

:::::::::
measured

:::::
cloud

::::
size

::::::::::::
distribution.

::
A

:::::::::::::
comprehensive

::::::::
analysis

::
of

:::
the

:::::::
possible

::::::
biases

:::::::
arising

::::
from

:::::::
domain

::::::::::
truncation

::::
was

:::::
done

:::
by DeWitt and Garrett (2024)

:
.
:::::
Here,

:::
we

:::::::::
implement

:::::
their

:::::::::::::
recommended

::::::::::::
methodology,

::::::
which

:::
was

:::
to

::::::::
calculate

::
β
:::::
using

:
a linear regression to a

logarithmically binned and transformed histogram of cloud perimeter . Fits
::::
(Fig.

::::
12).

::::
As

::::::::::::
recommended

:::
by DeWitt and Garrett (2024)

:
,
:::
fits

:
are performed only for those bins for which at least

50% of clouds in that bin are entirely contained within the measurement domain, ignoring the
:
.
:::::
This

:::::::
method

:::::::
ensures

::::
that

::
β

::
is

:::::::::
calculated

:::::
from

::::
only

::::
the

::::::::
unbiased

:
portion of the distributionthat is

:
,
:::
i.e.

::::
the

::::::
portion

:::::
that

::
is

:::
not

:
dominated by large clouds that extend beyond the measurement domain.

The reason for this approach, as outlined in DeWitt and Garrett (2024), is that the perimeters of
clouds that are truncated by the edge of a satellite image cannot be accurately measured. Such clouds
tend to be large, and including them in the large-cloud tail of the distribution can introduce a
substantial bias in the calculated value for β.

It is true that we do not consider clouds over land, because land makes a simple reflectance-based threshold
such as that used here insufficient for identifying clouds. Although we have found in prior work (DeWitt
et al., 2024) that there is little difference between land- and ocean- based cloud perimeter distributions, as
the reviewer mentioned in the previous comment, investigation of such differences is not the main goal of
the present paper.
Note that we have also added Fig. 12 showing the computed perimeter distributions are very close to
power-law, which may address part of the comment relating to larger clouds. We find the frequency of
large clouds is what would be expected from prior work on global size distributions (e.g. (DeWitt et al.,
2024; Wood and Field, 2011)).
As for line 260, we changed the threshold as follows to be more consistent with the reasoning stated in the
text:

An important subtlety for calculation of Dc is that, without proper care, even a few small circles might
extend beyond the domain boundary. If Cj(r) is computed including such circles, Dc will be biased
towards the dimension of the artificially straight domain boundary of Dc = 1. To remedy this issue, we
only consider values of r that are small in comparison to the domain size and ensure that no circles
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extend beyond the domain boundary . Specifically, we enforce r ≤ rmax = min(L,W )/10
::
by

:::::::::
enforcing

::::::::::::::::::::::
r ≤ rmax = min(L,W )/3 where W and L are the domain width and length, respectively.

As described in the text, this procedure is necessary to prevent the finite domain size, and the clouds
truncated by the domain boundary, from affecting the results. This has the potential to bias against larger
clouds in the sense that we are unable to measure very large-scale statistics due to the finite domain size,
but this is a limitation of any dataset.

“L 63: Please give some citations ”

The relevant sentence has been expanded to describe prior work using fractal metrics:

Ascribing fractal properties to clouds is not new
::::
Not

::
all

:::
of

:::
the

:::::::
metrics

:::
we

:::::::
discuss

:::
are

::::::
novel,

::
as

:::::::
various

::::::
fractal

::::::::::
dimensions

::::
and

::::
size

::::::::::
distribution

::::::::::
exponents

::::
have

::::::::::
previously

:::::
been

::::
used

:::
to

:::::::
classify

:::::::::
individual

:::::
cloud

:::::
types

::::
such

:::
as

::::::
cirrus

:::
and

::::::::
cumulus

:
(Batista-Tomás et al., 2016),

:::::
cloud

:::::
field

:::::
types

:::::
such

::
as

:::::
sugar

:::
and

::::::
gravel

:
(Janssens et al., 2021)

:
,
::::
and

::::::::
compare

:::::::::
simulated

::::
and

::::::::
observed

::::::
clouds

:
(Siebesma and Jonker,

2000; Christensen and Driver, 2021; Raghunathan et al., 2025). But, as we show in Sect. 3 there are
important pitfalls to fractal dimension analyses that have been almost entirely overlooked in prior
literature. Specifically, the fractal dimension of clouds is typically

::::
most

::::::::::
commonly

:
determined from a

relationship between individual cloud perimeter and area, as first introduced by Lovejoy (1982).

“L78: What is the pixelsize/resolution of the satellite images? ”

Thank you for noticing this omission. We added:

To analyze the geometries of cloud fields, we use a calibrated optical reflectance product R from
MODIS that is sensitive to visible wavelengths between 620 nm and 670 nm (Band 1).

:::
The

:::::::
dataset

::::
has

:
a
:::::
nadir

:::::::::
resolution

:::
of

:::::
1 km,

:::::::::
increasing

:::
to

:::::::
roughly

:::::
2 km

::
at

::
a
::::::
sensor

::::::
zenith

:::::
angle

::
of
::::

60°.
::::

We
::::
only

::::::::
consider

:::
the

:::::::
portion

::
of

::::
the

:::::
swath

:::::
that

:::
has

::
a
::::::
sensor

::::::
zenith

:::::
angle

::
of

::::
60°

::
or

::::
less.

“L86: 72 images is not a whole lot to process into powerlaws. Is it possible to generate a larger dataset?
What is the resulting number of clouds that are analyzed, and the margin of error in some of the later
analysis as a result? ”

This is a good point. We have added a Supplement containing a sensitivity analysis and this note in the
Datasets section:

::
As

::::::
shown

:::
in

:::
the

::::::::::::
Supplement,

:::::::::
computed

:::::::::
parameter

::::::
values

::::
can

::::
vary

::::
for

:::::::::
individual

:::::::
images

:::
but

::::::::
converge

:::::
when

:::::::::
computed

::::
over

:::::::
roughly

::::::
10-15

:::::::::
randomly

:::::::
selected

:::::::
images.

:::::
This

::::::::
indicates

::::
that

::::
the

:::::::::
parameter

::::::
values

:::::::::
computed

::::
here,

:::::::::
obtained

:::::
using

:::
all

::
72

:::::::
images,

:::::::::
represent

:::::
their

:::::::::::::
climatological

::::::
values.

The text in the Supplement and the associated figure are shown below.

Here we compute the parameters β, Di, Dc, and Dbox for varying dataset sizes. We consider
reflectance thresholds R = 0.1, R = 0.2, and R = 0.3. Without replacement, a varying number of
images are randomly selected from the ensemble of 72 images and each parameter is calculated for the
subset as described in the text. All thresholds and methodological considerations are identical to those
used for the full dataset in the main text. As can be seen in Fig. 1, when the parameters are computed
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using only one or two images, their values can differ by as much as 0.3, although the individual fractal
dimension shows less dependence. Once the dataset is composed of at least 10 to 15 images, the
resulting parameters converge to a value close to that obtained using all 72 images. This suggests that
our full dataset of 72 images is large enough that statistical uncertainty arising from the finite sample
size is negligible.
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Figure 1: Parameter values computed as in the main text but for randomly selected subsets of the MODIS
dataset.
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