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Abstract. Wildfires are key ecological agents in the Gran Chaco, one of the world’s largest dry forest ecosystems, where fire regimes are 17 

increasingly shaped by human pressure and climate variability. However, the drivers of fire size variability remain poorly understood. We 18 

analysed over 100,000 fire patches (2001–2022) from the FRYv2.0 database to assess environmental controls on fire size and morphology 19 

across the Wet, Dry, and Very Dry Chaco. High-resolution fire polygon data were combined with ERA5-Land reanalysis, vegetation and 20 

topographic metrics, and anthropogenic layers. Fire sizes were highly skewed: >80% were <5 km², yet large events (Megafires >100 km², 21 

Gigafires >1000 km²) dominated burned area (BA). Gigafires were rare but mostly confined to the Dry Chaco, whereas the Wet Chaco had the 22 

highest BA, fire frequency, and Megafire count. Fire Weather Index (FWI)–BA correlations reached r = 0.7 in the Wet Chaco but were weaker 23 

and spatially fragmented in drier subregions, where fuel continuity and ignition context played larger roles. Lag analyses showed that in drier 24 

areas, wet-season biomass buildup (4–6 months prior) increased subsequent fire activity, while in wetter areas short-term dryness (1–3 months 25 

prior) was more predictive. During-fire meteorology, especially persistent strong winds, better explained fire morphology than pre-fire 26 

conditions. Random Forest models ranked static landscape features (elevation, land-cover evenness, slope, tree cover) highest in size prediction. 27 

Our results reveal region-specific fire–environment couplings, clarifying the interplay of meteorological, ecological, and anthropogenic factors, 28 

and providing actionable insights for fire risk forecasting and management in the Gran Chaco. 29 

 30 

 31 
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1 INTRODUCTION 32 

Wildfires shape global ecosystems by influencing vegetation structure, biodiversity, and landscape 33 

composition (Bowman et al., 2009; Archibald et al., 2013; Chuvieco et al., 2020).  The Gran Chaco, 34 

spanning parts of Argentina, Bolivia, Paraguay, and Brazil, is one of the largest remaining dry forest 35 

ecosystems, with marked variation in precipitation, vegetation, and human land use (Morello & 36 

Adámoli, 1968; Olson et al., 2001; Ginzburg et al., 2005; Torrella & Adámoli, 2005). Fire has long 37 

modulated its forest structure and driven transitions between forests, shrublands, and grasslands 38 

(Bucher, 1982; Kunst et al., 2003; Vidal-Riveros et al., 2023). 39 

In recent decades, Gran Chaco fire regimes have shifted under land-use intensification and climate 40 

variability (Gasparri et al., 2008; De Marzo et al., 2021; Baumann et al., 2022; Marengo et al., 2022; 41 

Vidal-Riveros et al., 2023; San Martín et al., 2023; San Martín, 2024). These changes often produce 42 

larger, more intense fires, especially in areas with non-native grasses or monocultures (D’Antonio & 43 

Vitousek, 1992; Bravo et al., 2014; Vidal-Riveros et al., 2023). Natural fire breaks (e.g., water bodies) 44 

and traditional management can limit spread (Kunst et al., 2003; Bowman et al., 2011; Archibald et al., 45 

2013; Bravo et al., 2014; Andela et al., 2017, 2019), while landscape heterogeneity further constrains 46 

propagation (Bowring et al., 2024), challenging assumptions of uniform anthropogenic effects (Bistinas 47 

et al., 2014; Archibald et al., 2018; Kelley et al., 2019). At broader scales, climatic variability—48 

especially rainfall patterns and drought—can outweigh land use in shaping fire size and frequency 49 

(Krawchuk et al., 2009; Jolly et al., 2015; Jones et al., 2022). 50 

The complexity of fire size drivers in the Gran Chaco is increasingly recognized, yet key mechanisms 51 

remain poorly understood (Kelley et al., 2019; Jones et al., 2022; Vidal-Riveros et al., 2023, 2024). 52 

Prolonged droughts reduce fuel moisture, increasing flammability and enabling extreme events (Alencar 53 

et al., 2015; Naumann et al., 2023). Several major droughts coincided with strong negative El Niño–54 

Southern Oscillation (ENSO) phases, including the record-breaking 2020–2023 La Niña (Doblas-Reyes 55 

et al., 2021; De Marzo et al., 2023; Meteorological Organization et al., 2023; Arias et al., 2024). 56 

Although recent studies have advanced understanding of Gran Chaco fire regimes, key links between 57 

patterns and meteorological or anthropogenic drivers remain unclear. Land cover and socio-58 

environmental factors play a major role: Baumann et al. (2022) found that deforestation pathways vary 59 

by actor and context, influencing fire–landscape interactions; San Martín et al. (2023) showed that 60 

precipitation–burned area (BA) relationships differ by land cover; and Levers et al. (2024) projected that 61 

agribusiness expansion could intensify fire impacts in ecologically and socially sensitive areas. 62 

Fire classification efforts also overlook important drivers. Vidal-Riveros et al. (2024) grouped 63 

Paraguayan Chaco fire regimes by severity, frequency, and extent, while Naval-Fernández et al. (2025) 64 

applied multivariate clustering of landscape attributes to delineate pyroregions in the Argentinian Chaco. 65 
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Both captured spatial variability in fire activity, but neither incorporated meteorological conditions, 66 

limiting insights into atmospheric controls on fire behavior and size. 67 

Research has further addressed post-fire vegetation recovery and cultural dimensions of fire. Saucedo 68 

and Kurtz (2025) reported rapid regrowth after the 2022 megafires, followed by climate-constrained 69 

stabilization. Sugiyama et al. (2025) highlighted Indigenous fire narratives as valuable sources of local 70 

knowledge on ignition, spread, and ecosystem recovery. 71 

However, no study has yet combined high-resolution meteorological data, fire morphology, and 72 

landscape context to assess how fire size responds to both short-term anomalies and long-term 73 

environmental patterns in the Gran Chaco. 74 

Advances in satellite Earth observation now make this integration possible. Global BA products such as 75 

FireCCI51 provide consistent daily burned surface estimates at moderate spatial resolutions (Chuvieco 76 

et al., 2020). Event-based datasets like FRY (Laurent et al., 2018; Chen, 2025) and the Global Fire Atlas 77 

(Andela et al., 2019) reconstruct individual fires from these burned pixels, enabling analysis of attributes 78 

such as ignition date, duration, size, and morphology (Moreno et al., 2021; García et al., 2022a; Takacs 79 

et al., 2021). In this study, we used FRYv2.0, which integrates the FRYv1.0 pixel aggregation method 80 

with FireCCI51 BA mapping (Lizundia-Loiola et al., 2020), and combined it with environmental and 81 

climate products to address gaps in understanding BA dynamics and fire size variability in the Gran 82 

Chaco. 83 

Specifically, we aim to answer the following scientific questions:  84 

(1) What are the primary fire size characteristics and frequency in the Gran Chaco between 2001 and 85 

2022? (2) To what extent do meteorological conditions influence the size and expansion of these fires? 86 

(3) Beyond weather, what roles do vegetation type, topography, and human activity play in shaping fire 87 

size and fire occurrence across the region? (4) Which of these drivers best explains the spatial and 88 

temporal variability in fire size across the different Gran Chaco subregions? 89 

This study adds value by providing a spatially explicit, multiscale analysis of BA and individual fire 90 

events, clarifying fire size dynamics across landscapes from wet to arid ecosystems. By quantifying the 91 

relative contributions of climate, landscape, and human factors, it advances understanding of fire 92 

regimes in one of the world’s most dynamic yet understudied deforestation and fire frontiers 93 

(Kuemmerle et al., 2017; Baumann et al., 2022; Vidal-Riveros et al., 2023; Levers et al., 2024; San 94 

Martín, 2024). 95 
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2 METHODS 96 

2.1. Study area 97 

 98 

 99 
Fig. 1. The Gran Chaco location in South America (a) and its topography (b) with its different subregions, main rivers, and lakes. Based on 100 
Shuttle Radar Topography Mission (SRTM) at 90m (SRTM | Earthdata, 2024) and HydroSHEDS (Lehner et al., 2008). 101 

 102 

The Gran Chaco is an extensive tropical and subtropical region of South America, covering 103 

approximately 1,100,000 km² (Fig. 1). It contains the world’s largest continuous dry tropical forest and 104 

extensive wetland systems (Bucher, 1982; Olson et al., 2001). Terminology varies in the literature 105 

(South American Chaco, Gran Chaco, Chaco); here we use Gran Chaco for clarity. 106 

The region is mostly flat (<200 m a.s.l.), with higher terrain in the northeast (to 500 m), Sierras de 107 

Córdoba (to 2,900 m), and Andean foothills (~2,000 m). Following Olson et al. (2001), we distinguish 108 

a humid eastern Wet Chaco from a drier western Dry Chaco, shaped by west–east gradients in 109 

precipitation, vegetation, and hydrology (Bucher, 1982; Ginzburg et al., 2005; Morello and Adámoli, 110 

1968; Torrella and Adámoli, 2005). The Wet Chaco receives up to 1,800 mm/year and supports wetlands 111 

and palm savannas, while the Dry Chaco gets 300–800 mm/year and is dominated by drought-adapted 112 

forests. To refine this scheme, we follow Baumann et al. (2018) and designate a Very Dry Chaco in the 113 

southwest (Mendoza, San Luis, Córdoba, San Juan, La Rioja), characterized by lower biomass, greater 114 

aridity, higher elevations, and distinct fire regimes. 115 

The Gran Chaco forms part of the La Plata basin (Musser, 2024). Rivers such as the Pilcomayo, Bermejo, 116 

and Salado originate in the Andes, cross the Dry Chaco, and disperse into megafans, streams, and 117 

wetlands in the eastern Wet Chaco. This west–east hydrological gradient drives seasonal contrasts: in 118 
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dry months, the Dry Chaco faces water scarcity, whereas the Wet Chaco retains permanent wetlands 119 

that sustain ecological processes and fauna (Naumann et al., 2023). 120 

The region harbors exceptional biodiversity, with over 3,400 plant species and hundreds of vertebrates, 121 

many endemic (Redford et al., 1990; Bucher and Huszar, 1999; Nori et al., 2016). 122 

 123 

2.2 Datasets 124 

2.2.1 Fire patches 125 

In this study, we used FRYv2.0, a comprehensive global database dedicated to the functional traits 126 

(morphology, fire spread, and timing) of fire patches (FPs), to investigate fire dynamics and their 127 

underlying drivers in the Gran Chaco. FRYv2.0 incorporates burned area (BA) data from the FireCCI51 128 

dataset as well as from MODIS MCD64A1 in two different versions, with different temporal cut-offs of 129 

6, 12, or 24 days, as described in Laurent et al. (2018). It offers medium-resolution FPs covering the 130 

period from 2001 to 2022, including metrics for FPs, such as morphological traits (e.g., area, shape 131 

index), temporal traits (e.g., burn dates, duration), dynamic traits (e.g., rate of spread, fire radiative 132 

power, and burn severity), and land cover.  133 

For this work, we selected the FRYv2.0 dataset based on FireCCI51 over the MODIS MCD64A1 134 

version, due to the higher spatial resolution of the FireCCI51 input data (250 m compared to 500 m), its 135 

suitability for the heterogeneous Chaco landscapes, and its consistency with our previous FireCCI51-136 

based analysis (San Martín et al., 2023), avoiding uncertainties from mixing datasets. The dataset is 137 

available at https://osf.io/rjvz5/files/osfstorage (last accessed on 10 June 2025). 138 

 139 

2.2.2 Meteorological Data 140 

To study meteorological and climate time series in the region, we used the ERA5-Land global reanalysis 141 

dataset focused on land surface variables, developed by the European Centre for Medium-Range 142 

Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021). It provides high-resolution data for land–143 

atmosphere interactions, designed to improve the ERA5 dataset by offering finer detail (0.1° instead of 144 

0.25° spatial resolution) for variables affecting the land surface.  145 

The product is available in the Copernicus Data Store (CDS) in NetCDF at 146 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (last accessed on 30 May 2024). 147 

We downloaded hourly data arrays covering January 2001 through January 2023. 148 

 149 
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2.2.3 Environmental and Anthropogenic Data 150 

We compiled multiple spatial datasets to represent landscape and human-related drivers of fire activity. 151 

Topography was derived from the Shuttle Radar Topography Mission (SRTM) digital elevation model 152 

at 30 m resolution (https://srtm.csi.cgiar.org, accessed 26 May 2025) and resampled to 0.01° (~1 km). 153 

Slope was calculated from the elevation surface using standard GIS tools. 154 

Land cover (LC) was obtained from the ESA Climate Change Initiative Moderate Resolution Land 155 

Cover (ESA CCI MRLC) product (https://cds.climate.copernicus.eu/datasets/satellite-land-cover, 156 

accessed 26 May 2025), reclassified into groups relevant to the Gran Chaco (e.g., forests, shrublands, 157 

grasslands, seasonally flooded herbaceous vegetation) for 2001–2022. 158 

Human pressure variables included population density from the Gridded Population of the World v4 159 

(CIESIN, 2017; https://www.earthdata.nasa.gov/data/projects/gpw, accessed 26 May 2025) and road 160 

density from OpenStreetMap networks (https://www.openstreetmap.org, accessed 26 May 2025) 161 

calculated via kernel density estimation. 162 

Livestock density came from the Gridded Livestock of the World v4 163 

(https://dataverse.harvard.edu/dataverse/glw_4, accessed 26 May 2025), resampled to match the 164 

analytical resolution. 165 

Soil properties (bulk density, sand content, and organic carbon at 0–5 cm depth) were obtained from 166 

SoilGrids250m (Hengl et al., 2017; https://soilgrids.org, accessed 26 May 2026). 167 

2.2.3 Climate Oscillations 168 

To account for the influence of large-scale climate variability, we included the Multivariate El Niño–169 

Southern Oscillation (ENSO) Index version 2 (MEI.v2), developed by NOAA's Physical Sciences 170 

Laboratory. The MEI.v2 time series was obtained from NOAA PSL at https://psl.noaa.gov/enso/mei/ 171 

(last accessed 26 May 2025). 172 

 173 

2.3 Data processing and analysis methods 174 

2.3.1 Fire Weather Index (FWI) 175 

We built an ERA5-Land-based Canadian Fire Weather Index (FWI; Van Wagner, 1987) dataset for the 176 

Gran Chaco at 0.1° resolution and daily time steps. We converted hourly accumulated precipitation to 177 

hourly rainfall by differencing successive steps and summed totals from 15 UTC (day D-1) to 15 UTC 178 

(day D), matching the FWI daily window and corresponding to local noon. We applied this fixed 15 179 

UTC cutoff to avoid inconsistencies from varying national time zones and daylight-saving changes. 180 

We extracted daily meteorological inputs—air temperature, relative humidity, wind speed at local noon, 181 

and 24-h precipitation—to compute the six FWI sub-indices: Fine Fuel Moisture Code (FFMC), Duff 182 

Moisture Code (DMC), Drought Code (DC), Initial Spread Index (ISI), Build-Up Index (BUI), and FWI. 183 
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We performed calculations with an adapted version of the FireDanger Python package 184 

(https://github.com/steidani/FireDanger) compatible with xarray and netCDF, including pixel-level day 185 

length for DMC and hemisphere-specific drying factors for DC. 186 

We initialized the system on 1 January 1981 using Copernicus ERA5–FWI moisture codes at 0.25° 187 

(Vitolo et al., 2020) interpolated to 0.1°. For anomaly analysis, we restricted the time series to 2001–188 

2022 to match satellite-based burned area (BA) records and calculated daily climatologies for all 189 

variables and indices using 2001–2020 as the baseline. 190 

2.3.2 Fire size classification 191 

To better characterize fire activity across the Chaco, we classified all fire polygons (FPs) from FRYv2.0 192 

into six size categories, ranging from very small fires (<1 km²) to gigafires (>1000 km²), following and 193 

adapting the typology proposed by Linley et al. (2022). We used this to assess both the frequency and 194 

relative contribution of different fire sizes across regions and seasons. 195 

 196 

2.3.3 Gridded burned area 197 

To enable a spatio-temporal comparison between fire activity from FRYv2.0 polygons and meteorology, 198 

we developed a pipeline to transform the FP-based data into a monthly gridded product at 0.1°, matching 199 

the ERA5-Land grid  (Fig. 2).  200 

 201 

 202 

Fig. 2. Example of a FRY polygon (red line) over the gridded FRY dataset. Each grid cell at 0.1º is assigned the burned area corresponding to 203 

the total fraction of the polygon that overlaps it. The values printed over each grid cell correspond to these values. 204 

 205 
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The temporal assignment of fires to months followed a hybrid strategy: where MODIS-derived hotspot 206 

detection dates (mindtc_frp and maxdtc_frp) were available in a given FP (typically absent in very small 207 

FPs) they were used. Both FireCCI51- and MODIS-based versions of FRYv2.0 include these hotspot 208 

date variables when available for the FP. When hotspot dates were missing, we used the FireCCI51-209 

derived burn dates (minBD and maxBD), which are based on surface reflectance changes and are 210 

available for all FPs. For FPs spanning multiple months, we assigned the fire to the month in which it 211 

started, unless its duration in a subsequent month exceeded that of the starting month by more than two 212 

days. 213 

Each FP was rasterized over the ERA5 grid by intersecting it with individual cells. The intersected area 214 

in square kilometers was computed using the WGS84 ellipsoid model. These contributions were 215 

aggregated per cell and per assigned month to build a three-dimensional array of monthly BA (lat x lon 216 

x time). A similar procedure was implemented for fire counts, using ignition coordinates when available. 217 

Each FP’s fire ignition coordinate was allocated to the closest cell in the 0.1º grid. The resulting monthly 218 

gridded dataset included two variables: BA and counts. 219 

 220 

2.3.4 Fire-weather types 221 

We classified fire patches (FPs) into three groups based on associated atmospheric conditions using the 222 

K-means clustering algorithm (MacQueen, 1967) in scikit-learn v1.3. This approach follows prior 223 

applications in fire studies (Ruffault et al., 2016, 2020; Vidal-Riveros et al., 2024) and aimed to identify 224 

distinct fire-weather types and assess their influence on fire size and shape. 225 

We retained only FPs between 1 and 100 km² (N = 76,263) to reduce biases from very small or very 226 

large events. For each FP, we extracted daily ERA5-Land meteorological data and generated FWI time 227 

series from 7 months before ignition to 7 months after. Two feature sets were built: one for pre-fire 228 

conditions and one for during-fire conditions.  229 

For the Pre-Fire set, we used normalized anomalies of 2-m air temperature, 10-m wind speed, relative 230 

humidity (RH), drought code (DC), and duff moisture code (DMC) (Ruffault et al., 2020). Pre-fire 231 

values were calculated as the 3-day mean from ignition day (D) to D-2 to limit detection-date bias 232 

(Lizundia Loiola et al., 2020; Pettinari et al., 2021) while avoiding noise from longer lags. 233 

For the During-Fire set, we computed the same variables averaged over the fire’s duration and added a 234 

metric specifically designed to capture the role of strong, persistent winds in shaping fire behavior: the 235 

Extreme Wind Directionality Index (EW_dir_index). This index measures both how often extreme 236 

winds occurred and how steady their direction was.  237 

The first component, fraction of extreme-wind days (EW_frac), is the proportion of burning days when 238 

the daily maximum wind speed exceeded 25 km h⁻¹: 239 

(Eq. 1):  240 
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EW_frac =
EW

N
  241 

where EW is the number of days with extreme winds and N is the total fire duration (days). 242 

High values indicate that strong winds occurred on many burning days. 243 

The second component, wind direction steadiness (wind_dir_R), reflects how consistent the wind 244 

direction was across the fire’s duration (N). Each day’s mean wind direction (θᵢ, in radians) is 245 

represented as a unit vector, summed across all days, and normalized by the fire duration:  246 

(Eq. 2): 247 

wind_dir_R = 
√(∑ cos θi

N
i=1  )

2
+(∑ sin θi

N
i=1 )

2

N
 248 

Values near 1 mean winds blew in a stable direction throughout the event, while values near 0 mean 249 

wind directions shifted substantially from day to day. 250 

The EW_dir_index is the product of EW_frac and wind_dir_R:  251 

(Eq. 3): 252 

𝐸𝑊_𝑑𝑖𝑟_𝑖𝑛𝑑𝑒𝑥 = 𝐸𝑊_𝑓𝑟𝑎𝑐 × 𝑤𝑖𝑛𝑑_𝑑𝑖𝑟_𝑅 253 

It reaches high values only when strong winds occur on many burning days and blow consistently from 254 

the same direction, identifying fires likely driven by sustained, unidirectional wind conditions. 255 

All variables were standardized (mean = 0, σ = 1) before clustering. The resulting data matrix (nnn fires 256 

× ppp variables) was clustered with k = 3, squared Euclidean distance, k-means++ initialization, 50 257 

random restarts, and a convergence tolerance of 10⁻⁴. We retained three clusters based on a prior 258 

hypothesis (wind-driven, drought-driven, and neutral), an elbow in the within-cluster sum-of-squares 259 

curve, and a peak in the silhouette coefficient at k = 3. 260 

Cluster labels were assigned by interpreting centroid positions in principal component space and 261 

examining the temporal evolution of variables (Fig. A1). Robustness was assessed using mean silhouette 262 

coefficients and their distribution across clusters. The first two principal components explained more 263 

than 60 % of the variance and clearly separated cluster centroids. 264 

 265 

2.3.5 Fire size drivers 266 

To investigate the role of environmental and anthropogenic variables in shaping fire activity, we 267 

extracted a diverse set of FP-level predictors encompassing topographic, climatic, anthropogenic, 268 

vegetation, and landscape heterogeneity dimensions. These variables, listed in Table 1, were used as 269 

inputs in the Random Forest (RF) models to assess their relative importance in explaining fire size and 270 

frequency. 271 

 272 

 273 

 274 
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Table 1. Polygon-level predictor variables used in the Random Forest models, grouped by variable type. 275 

 276 

 277 

The Shannon diversity (H) and Pielou's evenness (E) were computed as follows: 278 

 279 

(Eq. 4) Shannon Diversity Index (Shannon, 1948): 280 

H =  − ∑ pi  log (pi)

m

i = 1

  281 

Where m is the number of land cover classes present in the polygon, 𝑝𝑖  is the proportion of land cover 282 

type i, and the sum includes all classes with 𝑝𝑖  >0. 283 

 284 

(Eq. 5) Pielou’s evenness (Pielou, 1966): 285 

E =  
H

log (m)
  286 

Where H is the Shannon Diversity Index and m is the number of land cover classes present in the 287 

polygon. 288 

Once all predictor variables were derived, we trained RF models using a set of 17 explanatory variables 289 

to analyze the drivers of fire behavior, using the variable n_cell from the FRY dataset as the response 290 

variable. This variable represents the number of FireCCI51 pixels within each FP and was preferred 291 

over polygon-based area due to the latter’s dependency on latitude, which introduced artificial 292 

discontinuities. In contrast, n_cell provided a discrete and spatially consistent proxy for BA, improving 293 

model stability and interpretability. 294 

Category Variables 

Topographic 
Mean Slope (%) 

Mean Elevation (m) 

Climatic (during fire) 

Precipitation (mm) 

Maximum Wind Speed (km/h) 

Extreme Wind and Direction Index (EW_dir_index) 

Extreme Wind Days Fraction (EW_frac) 

Anthropogenic 

Cattle Density (heads/km²) 

Road Density (km/km²) 

Population Density (p/km²) 

Vegetation productivity LAI for previous growing season (MODIS-derived) 

Land Cover Composition 

Flooded Herbaceous vegetation (%) 

Tree Cover (%) 

Shrublands (%) 

Trees/Shrubs/Herbs Mosaics (%) 

Natural/Croplands Herbaceous Mosaics (%) 

Landscape Heterogeneity 
Land Cover Diversity (Shannon Index, H) 

Land Cover Evenness (Pielou Index, E) 
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We implemented 12 RF models across five configurations: (i) a global model using all 76,263 polygons 295 

(1–100 km²); (ii) three subregion-specific models for the Wet, Dry, and Very Dry Chaco; (iii) two 296 

seasonal models based on ignition season (wet vs dry); and (iv) two sets of three cluster-based models 297 

(pre-fire and during-fire conditions) derived from the meteorological classification (see Section 2.3.4). 298 

All models were trained using the ranger R package (Wright and Ziegler, 2017) with quantile regression 299 

forests (Meinshausen, 2006). We used 500 trees, a minimum node size of 5, variance-based importance, 300 

and the Poisson split rule, with 4 variables considered at each split. Feature selection included correlation 301 

filtering (r > 0.8 threshold) and preliminary importance scores. Each model was trained on 75% of the 302 

data and validated on the remaining 25%. We evaluated feature contributions using SHAP (SHapley 303 

Additive exPlanations) values. 304 
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3 RESULTS 305 

3.1 Burned area and ignitions 306 

 307 

 308 
Fig. 3. Total annual burned areas (a), ignitions (b), and mean fire durations (c), between 2001 and 2022 in the Wet, Dry, and Very Dry Chaco 309 

regions. Extracted from FRYv2.0. 310 

 311 

We examined the interannual relationship between total burned area (BA) and the number of fire 312 

polygons (FPs) across the Chaco (Fig. 3). Overall, BA and ignition counts show a positive association, 313 

though with regional and seasonal variability. In the Wet Chaco, strong correlations were found in both 314 

wet and dry seasons (R² = 0.96 and 0.91), indicating fire extent is largely proportional to ignition 315 

frequency (Fig. A2). The Dry Chaco also showed a high wet-season correlation (R² = 0.87), but a weaker 316 

dry-season one (R² = 0.45), suggesting a greater role of other drivers in the latter. In the Very Dry Chaco, 317 

wet-season fires were sparse and weakly correlated with BA (R = 0.11), while a stronger correlation 318 

emerged in the dry season (R² = 0.78). Mean fire duration remained relatively stable over time, implying 319 

that interannual variability in BA is primarily linked to ignition frequency and fire size, rather than 320 

duration. 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 
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3.2 Fire size distribution and regional differences 331 

 332 
Fig. 4. (a) and (b) Land-cover distribution in the Gran Chaco based on ESA-CCI MRLC for 2001 and 2022, respectively. (c) Forest transition 333 

classes between 2001 and 2022, showing forest loss (forest to non-forest), forest gain (non-forest to forest), and stable forest. Forests include 334 

all tree cover classes; non-forest pixels appear in grey. (d) Spatial distribution of fire events (2001–2022) categorized by fire size using FRYv2.0 335 

data. Fire-size classes range from Very Small (< 1 km²) to Gigafires (> 1000 km²). Fires polygons overlapping the Chaco boundary are retained. 336 
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 337 

Fig. 4 shows the LC distribution of the Gran Chaco in 2001 and 2022 (panels a and b), the spatial pattern 338 

of forest transitions between 2001 and 2022 (panel c), and all fire events recorded during 2001–2022 339 

categorized by fire size (panel d). The Wet Chaco is dominated by seasonally flooded herbaceous 340 

vegetation, forest mosaics, productive grasslands, and croplands, and it exhibits the highest fire 341 

frequency. In contrast, the Dry and Very Dry Chaco regions show increasing proportions of shrublands, 342 

fragmented forests, and agricultural frontiers. 343 

Fire size distribution is strongly right-skewed across all subregions: over 80 % of events fall within the 344 

Very Small (< 1 km²) and Small (1–5 km²) categories (Table A1; Fig. A3). Larger fires, although less 345 

frequent, account for a disproportionate share of total burned area. While Very Small to Large (10–100 346 

km²) fires are widespread, Megafires (100–1000 km²) are most common in the Wet Chaco, likely due 347 

to continuous fuel beds in grasslands and wetlands. These large fires often occur in areas dominated by 348 

seasonally flooded herbaceous vegetation, which can generate high flammability during dry periods. 349 

Gigafires (> 1000 km²), although rare, are almost exclusively observed in the Dry and Very Chaco. 350 

Forest loss is widespread across the Chaco in all three countries, with extensive deforestation frontiers 351 

in both Argentina and Paraguay. However, the association between fires and these frontiers differs 352 

regionally. In Argentina, deforestation zones often coincide with clusters of small and medium fires, 353 

whereas in Paraguay and Bolivia fire activity is less evident along recent forest loss edges. In all regions, 354 

most large fires occurred in non-forest areas. Shrublands were excluded from the forest class definition, 355 

which here only includes tree-cover categories. 356 

 357 

 358 
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 359 
Fig. 5. Cumulative burned area (2001–2022) by fire-size class across the Wet, Dry, and Very Dry Chaco subregions. 360 

 361 

According to Fig. 5, the Wet Chaco registers the highest total burned area, nearly double that of the Dry 362 

and Very Dry regions. In this subregion, Large fires contribute ~40% of annual BA, and Small fires 363 

~20% (Fig. A4). Despite their modest size, small fires contribute substantially to BA in the Wet Chaco 364 

due to their high frequency between 2001 and 2022 (>36,000). Extreme years such as 2003 and 2020 365 

were marked by widespread outbreaks. 366 

In the Dry Chaco, fire frequency is lower, but large fires play a more prominent role. Large fires account 367 

for about 25% of the annual burned area, and Gigafires can dominate totals in some years. For example, 368 

in 2019, just three Gigafires in the Dry Chaco burned approximately 10,000 km², which corresponds to 369 

the region’s mean annual BA and represented more than 50% of the total for that year. 370 

The Very Dry Chaco, while recording the lowest overall BA, exhibits abrupt interannual peaks driven 371 

by isolated Megafires and Gigafires, pointing to a more stochastic fire regime. 372 

Between 2020 and 2022, the Wet Chaco experienced an unprecedented number of Megafires and 373 

Gigafires, both in terms of event counts and their contribution to total BA. These patterns align with the 374 

extreme fire-weather anomalies described in Section 3.3. 375 

 376 

 377 
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3.3 Fire–weather relationship 378 

 379 

 380 

Fig. 6. Seasonality of burned area (BA, km²) in the Wet, Dry, and Very Dry Chaco. The black curve is the 2001–2022 monthly mean and the 381 

grey band shows the interquartile range (25–75%). Colored curves overlay monthly BA for 2020 (orange circles), 2021 (blue crosses), and 382 

2022 (green squares), highlighting differences from the climatological envelope. Y-axis limits differ by panel. 383 

 384 

Fig. 6 presents the monthly BA climatology (2001–2022) with 2020–2022 overlaid for the Wet, Dry, 385 

and Very Dry Chaco. In the Wet Chaco, BA in 2020 is above average for most months, with a secondary 386 

pulse in March–April (late wet season) preceding pronounced peaks in August–September (winter/dry 387 

season). In contrast, anomalies in 2021–2022 are concentrated in the summer/wet season (December–388 

March), reaching levels similar to the typical late-winter/early-spring maximum, while post-winter 389 

months in 2022 remain mostly below average. In the Dry Chaco, 2020 stands out as extreme, particularly 390 

in July and September, whereas 2021 records an exceptional August at or above historical maxima and 391 

2022 stays near or below the mean. In the Very Dry Chaco, positive anomalies are dominated by 2020, 392 

with a sharp October maximum; 2021 shows only minor increases, and 2022 remains subdued. Overall, 393 

2020 shows widespread positive anomalies lasting several months across all subregions. In contrast, 394 

2021 and 2022 generally feature shorter peaks, often concentrated in summer, although 2021 also 395 

records exceptional winter fires in the Dry Chaco. Activity during the canonical late-winter fire season 396 

is otherwise limited, particularly in 2022. 397 

Spatial patterns of fire–weather coupling are explored in Fig. 7, which shows the per-pixel Pearson 398 

correlation between monthly Fire Weather Index (FWI) anomalies and BA during wet and dry seasons. 399 

Significant positive correlations (p < 0.05) are concentrated in the Wet Chaco, where coefficients reach 400 

up to 0.7 during the wet season. In contrast, the Dry and Very Dry Chaco show weaker and more 401 

spatially scattered relationships, partly due to lower fire frequency. 402 

 403 
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 404 

Fig. 7. Spatial distribution of pixel-wise Pearson correlation coefficients between monthly Fire Weather Index (FWI) anomalies and monthly 405 

burned area (BA) for the period 2001–2022: (a) Wet Season and (b) Dry Season. The color bar indicates the strength and direction of the 406 

correlation (from negative in blue to positive in red). Inset statistics summarize the distribution of coefficients (Min, Mean, Max). Pixels marked 407 

with small black circles represent non-significant correlations (p-value > 0.05), while unmarked pixels indicate significant correlations (p-408 

value < 0.05). Only pixels with more than 3 time steps with burned area >0 were kept to avoid biased correlations related to very few or no 409 

fires. 410 

 411 

To further explore the spatial sensitivity of fire activity to fire weather, Fig. 8 compares per-pixel 412 

correlations between monthly FWI anomalies and two metrics: fire counts (ignitions) and BA. Each dot 413 

represents a 0.1° grid cell, and quadrants classify response types. In the Wet Chaco, 93% of cells fall in 414 

Q1, where both metrics show positive correlations with FWI, with moderate mean values (0.17 ± 0.12 415 

for ignitions, 0.19 ± 0.13 for BA) and strong inter-metric correlation (r = 0.76). The Dry and Very Dry 416 

Chaco show more heterogeneous patterns, with Q1 proportions of 59% and 61%, and weaker mean 417 

correlations (~0.04–0.06). Still, inter-metric spatial correlations remain high (r = 0.81 and r = 0.72), 418 

indicating that regions more sensitive to fire weather in terms of ignitions also tend to be more sensitive 419 

in terms of fire extent. 420 

 421 
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 422 

Fig. 8. Each panel shows a scatterplot of per-pixel Pearson correlation coefficients between the Fire Weather Index (FWI) and two fire activity 423 

metrics—ignition frequency (x-axis) and burned area (y-axis)—over the period 2001–2022. The panels correspond to the Wet, Dry, and Very 424 

Dry Chaco subregions, and each dot represents a 0.1° × 0.1° grid cell. Quadrants are defined by the sign of each correlation coefficient to 425 

classify spatial patterns of fire–weather association: Q1 (top-right) includes pixels with positive correlations for both ignitions and burned area; 426 

Q3 (bottom-left) includes negative correlations for both; Q2 and Q4 represent divergent cases. For each subregion, quadrant counts, 427 

percentages, and summary statistics (mean ± standard deviation of each correlation axis and Pearson r between them) are annotated. 428 

 429 

Finally, the temporal co-evolution of annual BA and FWI anomalies is illustrated in the appendix 430 

(Figs. A5–A6). Several years, especially in the Wet Chaco, show strong spatial correspondence between 431 

extensive fire activity and positive FWI anomalies (e.g. 2012, 2020–2022). However, other years (e.g. 432 

2003) reveal extensive BA without matching FWI extremes, underscoring that weather is not the sole 433 

driver of interannual variability. 434 

 435 

3.4 Temporal dynamics of fire–environment interactions 436 

To explore how conditions evolve before and after fire events, we analyzed both regional time series 437 

and lagged correlations between BA anomalies and three key drivers: FWI, rainfall, and vegetation 438 

greenness (EVI), over the period 2001–2022. 439 

The time series analysis (Fig. A07) reveals a coherent pattern in all subregions. Typically, positive 440 

rainfall anomalies (which automatically decrease FWI) are followed by increased EVI, indicating 441 

vegetation growth and fuel accumulation. When this is then followed by elevated FWI values (due to 442 

negative rain and humidity anomalies, extreme heat and/or strong winds), peaks in BA are frequently 443 

observed. This pattern supports the interpretation of a fire-favoring sequence: moisture enables biomass 444 

build-up, which is later dried and made flammable under high fire-weather conditions, culminating in 445 

fire activity. This cycle is particularly evident in major fire years such as 2020 and 2022, especially in 446 

the Wet Chaco, where the alignment between environmental anomalies and BA peaks is striking. In the 447 

Dry and Very Dry Chaco, the sequence is also well defined, although slightly more variable probably 448 

due to limited fuel accumulation.  449 

The influence of large-scale climate variability, particularly the El Niño–Southern Oscillation (ENSO), 450 

is also reflected in the fire–environment dynamics. During La Niña phases (negative ENSO), we observe 451 

reduced rainfall and elevated FWI values, often coinciding with increased BA. Conversely, El Niño 452 
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episodes (positive ENSO) are associated with wetter conditions, lower fire-weather pressure, and 453 

reduced fire activity (Fig. A7 and Fig. A8).  454 

 455 

 456 

Fig. 9. Lagged correlations between monthly anomalies of FWI, rainfall, and EVI with burned area in the Chaco. Each heatmap shows the 457 

Pearson correlation coefficient between the anomaly of a given variable (FWI, rainfall, or EVI) at different time lags and the burned area 458 

anomaly, for each Chaco subregion. Negative lags indicate the variable leads burned area; positive lags indicate it follows. Correlations are 459 

computed from pixel-based, region-averaged monthly time series for 2001–2022. 460 

 461 

Fig. 9 shows lagged Pearson correlations between monthly anomalies of BA and FWI, rainfall, and EVI 462 

for the three Chaco subregions. Positive correlations between BA and FWI at lags 0 to +1 months, 463 

indicate that peak fire activity coincides with high fire-weather conditions. Rainfall and EVI display 464 

negative correlations with BA at short negative lags (−1 to −3 months), consistent with dry, senescent 465 

vegetation promoting flammability. At longer negative lags (−5 to −6 months), especially in the Dry and 466 

Very Dry Chaco, both variables correlate positively with BA, suggesting that wetter, greener periods 467 

months earlier promote fuel build-up. In the Wet Chaco, lag correlations are weaker and less structured, 468 

likely due to consistently moist conditions that buffer fire–environment coupling. 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 
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3.5 Fire-weather types 479 

 480 

 481 

Fig. 10. Spatial distribution and frequency of pre- and during-fire meteorological clusters across the Gran Chaco (2001–2022). Panels (a) and 482 

(b) show the geographic location of fire patches classified into three Fire–Weather Types (FWTs)—Neutral (blue), Drought-Driven (orange), 483 

and Wind-Driven (green)—for the pre-fire and during-fire periods, respectively, overlaid on Chaco sub-region boundaries Some patches 484 

overlap through the years and may partially or totally cover each other. Panels (c) and (d) display the total number of patches assigned to each 485 

FWT for pre-fire and during-fire clustering methods, respectively.  486 

 487 

Fig. 10 shows the spatial distribution and frequency of three Fire–Weather Types (FWTs)—Neutral, 488 

Drought-Driven, and Wind-Driven—for the pre-fire and during-fire periods. Using k-means clustering 489 

with k = 3, each FP was assigned an FWT twice: first based on conditions in the 0–3 days before ignition 490 

(Pre-Fire) and then based on mean conditions during the active burning period (During-Fire). 491 

Neutral FWTs dominate both clusterings, but their share decreases from 50.9 % to 45.3 % overall, while 492 

Drought-Driven rises from 26.6 % to 30.8 % and Wind-Driven from 22.4 % to 23.9 % (Fig. 10c–d and 493 

Fig. A9). In the Wet Chaco, Neutral drops from 49 % to 42 % with a marked increase in Drought-494 

Driven; in the Dry Chaco, both non-neutral types grow moderately; in the Very Dry Chaco, Wind-495 
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Driven increases sharply (15 % → 26 %), especially in the south where complex topography may 496 

strongly influence fire–atmosphere dynamics (see Section 2.1).  497 

 498 

    499 
Fig. 11. Mean daily anomalies of temperature (Temp.), relative humidity (RH), 10-meter wind speed, Drought Code (DC), and Duff Moisture 500 

Code (DMC) from 20 days before to 20 days after fire ignition, averaged over fire polygons assigned to the Neutral, Drought-Driven, and 501 

Wind-Driven clusters for Pre-Fire (left) and During-Fire (right) clustering approaches.  502 

 503 

 504 

Fig. 12. Clusters mean morphology profiles for (a) Pre-Fire and (b) During-Fire clusterings. Each axis represents a standardised morphology 505 

variable (z-score), and each colored polygon shows the mean profile for one cluster. The radial extent indicates the relative value of each 506 

variable within the dataset. 507 

 508 

Fig. 11 shows mean daily anomalies from 20 days before to 20 days after ignition for each FWT. Wind-509 

Driven fires present a sharp rise in wind speed and temperature in the days around ignition, coupled with 510 

https://doi.org/10.5194/egusphere-2025-3484
Preprint. Discussion started: 11 August 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

a drop in RH, creating highly flammable conditions. Drought-Driven fires exhibit a long build-up of 511 

dryness before ignition, with persistently high DC and DMC values and low RH, indicating extended 512 

fuel curing. Neutral fires occur under conditions close to climatology, with only small fluctuations in all 513 

variables. 514 

Morphology across Pre-Fire FWTs is broadly similar (Fig. 12, A10–A11), with comparable FP area, 515 

shape index, core-area index, eccentricity, and perimeter-to-area ratio. 516 

In contrast, During-Fire FWTs display clear differences: Wind-Driven fires tend to be larger, more 517 

elongated, and more cohesive (higher core-area index, lower perimeter-to-area ratio) than Drought-518 

Driven fires, consistent with directional spread under sustained winds. 519 

Overall, Pre-Fire FWTs capture the atmospheric context leading to ignition, whereas During-Fire 520 

FWTs better reflect the conditions that shape the eventual size and geometry of the burned area. Other 521 

factors such as fuel continuity, topography, and human interventions likely modulate these outcomes. 522 

 523 

3.6 Fire size drivers 524 

To identify drivers of fire size and shape beyond meteorological conditions, we trained Random Forest 525 

(RF) models using 17 landscape and environmental predictors for all FPs between 1 km² and 100 km² 526 

(see Section 2.3.5). 527 

 528 

529 

Fig. 13. SHAP summary plot for the Random Forest model predicting fire polygon size (n_cell) using all fire patches in the FRY dataset with 530 

areas between 1 km2 and 100 km2, with 17 explanatory features extracted for each polygon. The left panel shows the mean absolute SHAP 531 
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value for each feature, ranking them by overall importance. The right panel displays the distribution of SHAP values for each feature across 532 

all observations, with color indicating the feature value (purple = low, yellow = high).  533 

 534 

 535 

 536 

Fig. 14. SHAP feature importance ranks across all trained Random Forest models used to predict fire polygon size (n_cell) based on 17 537 

explanatory variables. Colored dots at the end of bars shows the rank of a variable’s importance (1 = most important, 17 = least important) for 538 

a given model.  539 

 540 

In the global RF model (Fig. 13), static topographic and vegetation structure variables dominated: mean 541 

elevation had the highest mean SHAP value (31.3), followed by land-cover (LC) evenness (21.0), tree 542 

cover (19.3) and mean slope (15.2). These four variables consistently ranked in the top positions across 543 

all twelve cluster-specific and global models (Fig. 14). Land-cover composition metrics such as 544 

cropland or flooded herbaceous cover showed moderate contributions, while meteorological and social 545 

variables (e.g. maximum wind speed, precipitation, population or cattle density) were surprisingly of 546 

lower importance. 547 

 548 
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 549 

Fig. 15. SHAP dependence plots for all 17 explanatory variables used to predict fire polygon size (n_cell) with the Random Forest model 550 

trained on all fire patches between 1 km² and 100 km². Each panel shows the SHAP value (y-axis) across the range of a given feature (x-axis), 551 

illustrating the marginal effect of that feature on the model's output. Dots are colored by fire size (number of burned pixels), with darker tones 552 

indicating larger fires.  553 

 554 

SHAP dependence plots (Fig. 15) revealed clear non-linear responses. Elevation had a steep positive 555 

effect up to ~70 m, plateauing thereafter, suggesting that slightly elevated terrain favors larger fires, 556 

while low-lying areas may be constrained by water bodies or vegetation type. Slope effects were similar: 557 

flat to gently undulating terrain (≤10 %) supported larger fires, while steeper slopes curtailed spread. 558 

Lower LC evenness (i.e. more homogeneous fuels) and sparse tree cover were associated with larger 559 

predicted sizes, reflecting the role of fuel continuity and open vegetation in promoting spread; 560 

conversely, heterogeneous landscapes and dense tree cover dampened fire growth. 561 

Most other predictors showed weak or flat SHAP responses. Only maximum wind speed displayed a 562 

consistent positive association with fire size among the dynamic variables, indicating a secondary but 563 

detectable influence compared with dominant topographic and structural gradients. 564 

 565 
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4 DISCUSSION 566 

Building on event-level fire polygons (FPs), we examine how meteorology, landscape structure, and 567 

human pressures shape fire size and morphology across the Wet, Dry, and Very Dry Chaco. 568 

4.1 Fire regime and extreme events 569 

FP data reveal a strongly skewed size distribution: many small fires (<5 km²) and a few very large events 570 

that dominate burned area (BA), consistent with global patterns (Archibald et al., 2009; García et al., 571 

2022b; Haas et al., 2022; Hantson et al., 2015, 2017). Megafires (>100 km²) are most frequent in the 572 

Wet Chaco, where continuous herbaceous fuels in savannas and seasonally flooded vegetation support 573 

spread. Gigafires (>1000 km²), although rare, occur almost exclusively in the drier subregions, often in 574 

remote areas with limited suppression access, higher shrub biomass, and lower humidity. In extreme 575 

years such as 2019–2022, a handful of these events contributed a substantial share of total BA in their 576 

respective regions. 577 

These size patterns indicate that both fuel configuration and atmospheric conditions influence the 578 

potential for very large fires. We therefore examined how short-term fire weather relates to BA across 579 

subregions. Fire weather–BA coupling shows marked spatial variability: in the Wet Chaco, high FWI is 580 

consistently associated with large BA, confirming moisture limitation and strong sensitivity to 581 

atmospheric conditions, in line with earlier BA-based analyses (San Martín et al., 2023). In the Dry and 582 

Very Dry Chaco, correlations are weaker and more heterogeneous, indicating partial decoupling 583 

between short-term fire weather and final size, mediated by fuel continuity and antecedent conditions. 584 

Lagged relationships clarify this contrast: in drier areas, positive rainfall and vegetation productivity 4–585 

6 months before fire are followed by higher BA once fuels cure, supporting the fire–productivity 586 

hypothesis (Pausas and Bradstock, 2007). In wetter areas, where fuels are rarely limiting, short dry spells 587 

immediately prior to fire are more predictive of activity, consistent with a moisture-limited regime 588 

within varying-constraint frameworks across resource gradients (Krawchuk and Moritz, 2011). 589 

 590 

4.2 Fire-weather types across the Chaco region 591 

To assess how daily fire weather influences fire size, we built on the framework of Hernandez et al. 592 

(2015) and Ruffault et al. (2016, 2020), who classified Mediterranean wildfires into Fire-Weather Types 593 

(FWTs) based on pre-fire meteorological anomalies (heat, drought, wind) and found that Hot-Drought 594 

and Wind-Driven types were strongly linked to large events. Applying a similar pre-fire clustering in 595 

the Gran Chaco (Neutral, Drought-Driven, Wind-Driven) captured ignition contexts but explained little 596 

variation in final size or shape. 597 

In contrast, clustering based on during-fire variables (maximum wind speed, total precipitation, drought 598 

indices, and the Extreme Wind Directionality Index developed in this study) clearly separated groups 599 
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with significant differences in size and morphology. Dry, windy days during the fire, favored rapid and 600 

large expansion. 601 

Our findings contrast with Ruffault et al. (2016, 2020) and Belhadj-Kheder et al. (2020), who found pre-602 

fire or near-ignition anomalies predictive in Mediterranean and North African settings, respectively, 603 

with the latter highlighting anomaly duration in low-suppression contexts. This stronger size–weather 604 

link for during-fire meteorology likely reflects Chaco-specific traits such as flat terrain, continuous fuels, 605 

and permissive fire conditions (Bucher, 1982; Vidal-Riveros et al., 2023), which make wind and 606 

humidity more decisive than pre-fire anomalies. In the Mediterranean, fragmented fuels, complex 607 

topography, and strong suppression (Ruffault and Mouillot, 2015, 2017), translate into ignition-day 608 

extremes mattering more. Similar modulation by suppression capacity occurs in western U.S. forests 609 

(Higuera et al., 2015). 610 

Our clustering extends fire-weather typologies to a tropical dry forest context and complements recent 611 

Gran Chaco regime classifications (Vidal-Riveros et al., 2024; Naval-Fernández et al., 2025) that 612 

omitted meteorological variables, highlighting the key role of fire-active weather in shaping fire 613 

morphology. 614 

Separately, our results also showed that La Niña phases, characterised by precipitation deficits in the 615 

Gran Chaco, coincided with elevated FWI, higher BA, and a greater likelihood of large fire events. This 616 

pattern was particularly evident during the extreme fire seasons of 2019–2022, illustrating how 617 

interannual climate variability modulates fire size potential at regional scales. 618 

 619 

4.3 Landscape pattern influence on fire types 620 

Beyond meteorological effects, anthropogenic and structural landscape factors strongly modulated fire 621 

size. Random Forest (RF) models consistently identified elevation as the most important predictor across 622 

all subregions and seasons, followed by land-cover evenness, tree cover, and slope (Fig. 14). While 623 

elevation is not a direct control on combustion, it reflects broad ecological gradients in vegetation 624 

composition, fuel moisture regimes, and land-use history that shape the conditions under which fires 625 

develop. In the Chaco, these gradients often translate into water presence and seasonal flooding in 626 

lowlands, which can limit spread, and stronger, more persistent winds in higher terrain, which can 627 

enhance it. 628 

Vegetation composition exerted a strong influence on size outcomes. Areas dominated by herbaceous 629 

or shrub cover, often linked to past or ongoing land-use change, were more prone to large fires, whereas 630 

higher tree cover was associated with smaller fires. This pattern aligns with global evidence that 631 

increasing tree cover generally reduces burned area (Bistinas et al., 2014; Haas et al., 2022), although 632 

exceptions occur where certain forest types, such as introduced pine plantations, have higher 633 

flammability than native broadleaf evergreen forests (Barros and Pereira, 2014; Paritsis et al., 2018; 634 
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Vidal-Riveros et al., 2023). Differences in live fuel moisture between growth forms (Yebra et al., 2019) 635 

further explain the greater spread potential in shrub- and grass-dominated systems. 636 

Landscape heterogeneity, expressed as lower land-cover evenness (i.e., more homogeneous fuels), was 637 

also linked to larger fires, reflecting the role of continuous fuel beds in enabling propagation. 638 

Conversely, heterogeneous mosaics with high evenness disrupted spread, acting as natural firebreaks 639 

(Povak et al., 2018). Together, these results show that while fire-active weather is an important 640 

determinant of spread (Section 4.2), the physical and vegetative structure of the landscape sets the upper 641 

limits for how large fires can become. 642 

 643 

4.4 Fire shape as an indicator of fire weather 644 

Building on the fire-weather clustering (Section 4.2) and landscape controls (Section 4.3), we examined 645 

whether fire morphology can reveal the influence of landscape or climatic drivers of spread, taking 646 

advantage of the detailed FP-level shape and size metrics provided by FRYv2.0 (Laurent et al., 2018; 647 

Chen, 2025). We hypothesized that elongation and perimeter complexity would be enhanced by strong, 648 

steady winds, whereas complex topography or fragmented fuels would produce more irregular shapes. 649 

In the Gran Chaco, fires occurring under strong, persistent winds displayed significantly larger 650 

perimeters and greater elongation, supporting our hypothesis and highlighting morphology as a signature 651 

of wind-driven fire types. 652 

To our knowledge, the hypothesis that fire elongation and perimeter complexity can serve as indicators 653 

of prevailing wind influence on fire spread has rarely been tested directly, making this a novel 654 

contribution of our study. Barros et al. (2012, 2013) showed that watershed orientation influenced fire 655 

spread in California, and Mansuy et al. (2014) reported similar effects in Canadian boreal forests, but 656 

neither explicitly linked shape to dominant wind direction. We propose that the combined analysis of 657 

shape and size offers a valuable benchmark for process-based fire models, which often rely on simplified 658 

ellipsoidal spread assumptions (Hantson et al., 2016), and could help train emerging machine-learning 659 

approaches for global fire hazard prediction (Li et al., 2023; Liu et al., 2025; Zhang et al., 2023). 660 

 661 

4.5 Deforestation and Prescribed Burning 662 

Anthropogenic influences on the Gran Chaco fire regime include the advancing agricultural frontier, 663 

characterized by rapid land-use change and deforestation (Arriaga Velasco-Aceves et al., 2021; Boletta 664 

et al., 2006), and the widespread use of fire as a management tool. Prescribed burning typically occurs 665 

in late winter and early spring, before the wet season (San Martín et al., 2023), and is generally limited 666 

to periods with lower wind speed and limited drought, following decision-support guidelines for ignition 667 

(Hsu et al., 2025). However, forecasts are uncertain, and fire-prone conditions can quickly develop after 668 
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ignition, allowing burns to escape their intended boundaries. Such escaped prescribed fires, although 669 

often managed to limit societal impacts, remain a recurrent hazard (Black et al., 2020; Li et al., 2025). 670 

FRYv2.0 and other global burned-area products cannot distinguish between wildfires and prescribed 671 

burns, restricting our ability to assess their occurrence in the region. Although Hsu et al. (2025) compiled 672 

a global prescribed fire dataset, the Gran Chaco is not covered. Many spring fires are likely prescribed 673 

burns, but systematic monitoring is lacking. Similarly, we could not isolate deforestation fires, which in 674 

the region tend to occur mostly within three years after forest clearing (San Martín et al., 2023). High-675 

resolution burned-area products combined with tree-cover data could help identify such events, as 676 

demonstrated for Africa (Khairoun et al., 2024). 677 

Improved detection of prescribed and deforestation fires would enable better risk assessment of escaped 678 

burns and could promote greater societal acceptance of prescribed fire as part of integrated fire 679 

management for hazard mitigation (Oliveras Menor et al., 2025). 680 

 681 

4.6 Limitations 682 

Direct human influences, such as ignition sources, suppression actions, and fire management practices, 683 

could not be explicitly included in this study due to limited data availability. Their effects are likely 684 

reflected indirectly through variables such as vegetation structure, road density, population density, and 685 

land cover, but their absence restricts our ability to fully capture anthropogenic modulation of fire size. 686 

The ERA5-Land reanalysis at 0.1° (~9 km) resolution, although considered high for a global 687 

meteorological dataset, remains too coarse to fully represent local-scale wind variability, solar radiation 688 

heterogeneity, and terrain-induced thermal gradients that can influence fire spread. Advances in 689 

downscaling techniques for wind (Dujardin and Lehning, 2022), solar radiation (Druel et al., 2025), and 690 

temperature (Kusch and Davy, 2022) may improve the spatial realism of these variables in future fire 691 

regime analyses, especially in complex landscapes. However, these approaches were not applied here. 692 

More fundamentally, the absence of dynamic coupling between fire behaviour and atmospheric 693 

processes remains a key constraint, as fire–atmosphere feedbacks are not represented in our predictors. 694 

The FRYv2.0 fire dataset is based on the global 250 m FireCCI51 product, which can both overestimate 695 

and underestimate fire size. Overestimation may occur when partially burned pixels are classified as 696 

fully burned, particularly along fire edges or within heterogeneous scars (Pettinari et al., 2021). 697 

Underestimation arises from omission errors, which are common for small, low-intensity, or fragmented 698 

fires that fall below the detection threshold, or in areas affected by cloud cover, dense smoke, or mixed 699 

land cover (Lizundia-Loiola et al., 2022).  700 

Other FireCCI51-specific limitations should also be acknowledged. BA is likely underestimated during 701 

the early period of the dataset (2001 to mid-2002) when only Terra MODIS data were available. Ignition 702 

dates may contain biases depending on satellite detection quality and meteorological conditions 703 

(Lizundia-Loiola et al., 2020). Furthermore, the aggregation of pixels into FPs depends on temporal 704 
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thresholds used to group neighbouring pixels within the same event (Moreno et al., 2021; Oom et al., 705 

2016). 706 

Future developments in fine-resolution burned-area products (e.g. 20 m), such as FireCCISFD20, have 707 

already demonstrated substantial improvements in Africa, detecting 80–120 % more burned area 708 

(Chuvieco et al., 2022). Delivering similar products at continental or global scale, as long requested by 709 

the fire science community (Mouillot et al., 2014), will be critical to reduce both overestimation from 710 

coarse-pixel classification and underestimation from omission errors, and to improve the accuracy of 711 

fire size and distribution assessments. 712 

 713 
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5 CONCLUSIONS 714 

This study advances understanding of fire regimes across the Wet, Dry, and Very Dry Chaco through a 715 

spatially explicit analysis of fire events from 2001–2022. We document strong regional contrasts in fire 716 

size, seasonality, and drivers, shaped by interactions between fuels, weather, and land use. 717 

Fire sizes were highly skewed: over 80% of detected fires were <5 km², yet large events dominated 718 

burned area (BA). Megafires (>100 km²) occurred in all subregions, with the Wet Chaco recording the 719 

most. Gigafires (>1000 km²) were rare but concentrated in the Dry Chaco, where some single events 720 

exceeded 50% of annual BA. The Wet Chaco burned most extensively (~2× the Dry Chaco), with the 721 

highest fire frequency and ignition density, reflecting greater biomass productivity and continuous fuels. 722 

The Fire Weather Index (FWI) showed its strongest, most coherent relationship with BA in the Wet 723 

Chaco (r up to 0.7), while drier subregions displayed weaker, more heterogeneous patterns, indicating 724 

additional controls. The 2020–2022 drought produced unprecedented fire activity, though large 725 

outbreaks also occurred without extreme FWI, underscoring the role of ignition patterns and fuel 726 

availability. In the Wet Chaco, 93% of pixels had positive FWI–fire correlations, compared to ~60% in 727 

the Dry and Very Dry Chaco. 728 

Lag analyses revealed dual mechanisms: in drier areas, wet-season biomass buildup (4–6 months prior) 729 

preceded high fire activity, while in wetter areas, short-term pre-fire dryness was more predictive. La 730 

Niña phases amplified fire potential via reduced rainfall and elevated FWI. 731 

During-fire clustering of fire-weather types (FWTs) identified wind intensity and directionality as 732 

stronger predictors of fire morphology than other pre-fire conditions. Persistent winds produced larger, 733 

elongated, and cohesive burns, highlighting morphology as an indicator of wind-driven dynamics. 734 

Random Forest models ranked mean elevation, land cover evenness, tree cover, and slope highest in 735 

size prediction. Larger fires occurred in flat, low-elevation areas with low tree cover; steeper slopes and 736 

higher forest cover limited spread. 737 

In the Dry and Very Dry Chaco, part of the BA comes from one-time deforestation fires occurring after 738 

clearing, generally small to moderate in size. Extreme megafires and gigafires instead resulted from rare 739 

alignments of continuous fuels and exceptional weather, especially persistent winds and prolonged 740 

dryness, which exceeded suppression capacity. This distinction is critical for separating land-use-related 741 

burns from large climatic extremes in risk assessments. 742 

By combining medium-resolution fire patch data, reanalysis-based weather metrics, machine learning, 743 

and landscape analysis, we identify key biophysical, climatic, and anthropogenic determinants of fire 744 

size and shape. These findings inform fire risk forecasting and management under ongoing land-use 745 

intensification and climate variability, and highlight the potential of morphology and during-fire wind 746 

metrics to benchmark and improve process-based global fire models. 747 

  748 
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6 APPENDIX A 749 

 750 

 751 
Fig. A1: Principal Component Analysis (PCA) biplot of pre-fire meteorological anomalies used for K-means clustering, showing the 752 

distribution of fire patches across the first two principal components (PC1 and PC2), which explain 49.1% and 23.6% of the total variance, 753 

respectively. The three clusters are color-coded and numbered as follows: Cluster 1 (blue) corresponds to Neutral conditions, Cluster 2 (orange) 754 

to Drought-Driven conditions (with high DC and DMC anomalies), and Cluster 3 (pink) to Wind-Driven conditions (characterized by elevated 755 

wind speed and temperature anomalies). Arrows represent the contribution of the original variables to the PCA axes. This ordination was used 756 

to guide the semantic naming of clusters. 757 

 758 

 759 

Fig. A2: Scatter plots and linear regressions between total annual BA and total annual ignitions between 2001 and 2022 in the Wet, Dry and 760 

Very Dry Chaco, divided into wet season fires (blue circles) and dry season fires (red crosses). 761 

 762 
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 763 
Fig. A3: Total counts of fire polygons separated by size category between 2001 and 2022 in the Wet, Dry, and Very Dry Chaco. 764 

 765 

Table A1. Number of fires detected by FRYv2.0 between 2001 and 2022 classified by fire size. WS: wet season; DS: dry season. 766 

Region Very Small 

(0-1 km²) 

Small 

(1-5 km²) 

Medium 

(5-10 km²) 

Large 

(10-100 km²) 

Megafire 

(100-1000 km²) 

Gigafire 

(> 1000 km²) 

Total 

Season WS DS WS DS WS DS WS DS WS DS WS DS 

Wet 8414 6322 17,018 18,992 4340 5667 3264 4534 91 163 2 0 68,807 

14,736 36,010 10,007 7,798 254 2 

Dry 3526 5332 5754 10,302 1201 2485 841 1991 24 94 0 15 31,565 

8,858 16,056 3,686 2,832 118 15 

Very Dry 334 300 708 691 187 203 200 238 13 29 0 1 2,904 

634 1,399 390 438 42 1 

Total 24,228 53,465 14,083 11,068 414 18 103,276 

 767 

 768 
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 769 

Fig. A4: Annual percentage distribution of burned areas across different size categories between 2001 and 2022 in the Wet, Dry, and Very Dry 770 

Chaco. 771 

 772 

 773 

Fig. A5: Annual burned area maps of the Chaco region between 2001 and 2022. Burned areas extracted from FRYv2.0. 774 
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 775 

Fig. A6: Annual mean Fire Weather Index (FWI) anomalies with respect to the period 2001–2020, averaged for the Chaco region for each year 776 

between 2001 and 2022. FWI built from ERA5-Land. 777 

 778 

 779 

Fig. A7: Monthly anomalies of rainfall, vegetation (EVI), fuel dryness (FWI), and burned area in the Chaco subregions. Panels show 3-month 780 

running means of region-averaged anomalies for each variable, calculated from gridded (pixel-based) data and averaged over the Wet, Dry, 781 

and Very Dry Chaco subregions. Shaded backgrounds in the burned area panel indicate ENSO phases (red for El Niño, blue for La Niña), 782 

calculated with the Multivariate ENSO index (MEI).  783 
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 784 

 785 

Fig. A8: The maps display the monthly anomalies (with 2001–2021 as the baseline) for the Chaco region for each year within the period. 786 
Additionally, each map counts with the Multivariate ENSO Index (MEI) showing the presence of an El Niño (EN; red) or La Niña (LN; blue) 787 
when during five consecutive three-month periods, MEI values are above +0.5 or below -0.5, respectively. Otherwise, the months are in a 788 
neutral (N) phase. The Niño/Niña events are classified by intensity based on the absolute MEI values. W: Weak (≥ 0.5); M: Moderate (≥ 1); S: 789 
Strong (≥ 1.5); VS: Very Strong (≥ 2). 790 

 791 

 792 
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 793 

Fig. A9: Regional distribution of fire-weather types (FWTs) across the three Chaco subregions based on the Pre-Fire clustering (top row) and 794 

the During-Fire clustering (bottom row). Pie charts represent the proportion of fire patches assigned to each cluster—Drought-Driven (orange), 795 

Wind-Driven (green), and Neutral (blue)—based on pre-fire (0–3 days before ignition) and during-fire meteorological conditions.  796 

 797 

 798 

Fig. A10: Distribution of morphology variables by cluster (quartile–dot plots). For each morphology variable, the interquartile range (IQR; 799 

thick horizontal bar) and median (dot) are shown for each cluster, separately for Pre-Fire and During-Fire clusterings (first and second rows, 800 

respectively). This visualizes the spread and central tendency of each variable within clusters, highlighting differences in fire patch morphology 801 

between cluster types and fire periods. 802 

 803 

 804 
Fig. A11: Each heatmap shows the mean z-score (standardised value) of key fire patch morphology variables for each cluster, separately for 805 

Pre-Fire (left) and During-Fire (right) cluster assignments. Rows correspond to clusters (Neutral, Drought-Driven, Wind-Driven), and columns 806 

to morphology variables. The color scale indicates the relative position of each cluster’s mean within the overall distribution, highlighting 807 

differences in fire patch shape and size between clusters and fire periods.  808 
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