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Abstract 

Boreal forest soils store 30% of global forest soil carbon, making them a crucial component of the carbon cycle. However, 

climate change at high latitudes is resulting in heightened temperatures and increasingly unpredictable precipitation patterns. 10 

Soil organic carbon (SOC) formation and stabilization is tied to precipitation patterns, thus climate change will inevitably 

influence the stability and longevity of boreal forest SOC. The current size and distribution of this reservoir is poorly 

understood, creating uncertainty under current and future climate scenarios. Previous research demonstrates mineral soil 

properties may be used to model boreal forest SOC accurately. The surface slope, depth of carbon enriched horizon, and 

climate characteristics are important parameters for modelling SOC and can generally be obtained or estimated via remote 15 

sensing. However, information about aluminum availability – the weatherable aluminum capable of interacting with organic 

matter to form stable carbon rich organometal complexes in mineral soils – is not widely available but is controlled by soil 

parent material. To bridge this gap, the Newfoundland and Labrador till geochemistry dataset was used here to map and model 

aluminum availability in glacial till across the island of Newfoundland as a function of geology and climate. The Random 

Forest Algorithm was employed to develop two models: one relying solely on the strength of geological and climatic variables, 20 

and the other drawing additionally on the spatial context of sample points. The first model performed well (R2=0.60), however, 

adding a spatial component increased the performance of the second model (R2=0.71). Bedrock type and proximity of the 

samples to certain units were indicated to be the strongest controls on aluminum availability, while environmental factors were 

less influential. Additionally, model uncertainty was calibrated empirically and mapped spatially, providing reliable and 

actionable information about the confidence of predictions over the study area. This project demonstrates the value of 25 

predictive geospatial modelling for till geochemistry mapping and delivers key aluminum availability predictions for deriving 

SOC reservoir estimates across Newfoundland. 
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1 Introduction 

Soils are a crucial component of the global carbon cycle, with soil carbon (C) stocks on average three times larger than the 30 

atmospheric C reservoir (Scharlemann et al., 2014). Of this, boreal forest soils store 30% of global forest soil C alone 

(Scharlemann et al., 2014). This is primarily stored in podzols – an acidic mineral soil characterised by a nutrient- and organic-

depleted eluvial (Ae) horizon overlying the enriched illuvial (B) horizon (Hagemann et al., 2010). Soil organic carbon (SOC) 

is sequestered when dissolved organic matter leached from the overlaying organic layer infiltrates into the mineral soil and 

interacts with reactive metals, precipitating as organometal complexes (OMCs) in an organic matter enriched soil horizon 35 

(Baldock & Skjemsted, 2000). Transport of SOC through the soil profile to the persistent deep mineral soil C pool depends on 

water infiltration, with SOC stabilisation influenced by climate regulated microbial composition and activity (Jackson et al., 

2017; Wang et al., 2022). Soil C storage potential in boreal forests is linked to a variety of soil parameters such as texture, clay 

content, acidity, cation availability, and environmental factors such as climate, topography, and parent material (Oades, 1988; 

Slessarev et al., 2022; Patrick, 2023). However, in these young soils, mineralogical controls, dominated by reactive Al 40 

availability (Patrick et al., 2022), are one of the strongest predictors of SOC (Rasmussen et al., 2018). 

Amplified climate change in high latitudes raises concerns about vulnerable boreal SOC stocks as the current and future 

size and distribution of this reservoir under various climate scenarios are poorly constrained, introducing uncertainty in models 

relying upon such estimates (Crowther et al., 2016; Friedlingstein et al., 2014; Wang et al., 2022). Consequently, unravelling 

climate-SOC feedback loops is crucial to predict the SOC stock evolution under future climate scenarios (Friedlingstein et al., 45 

2014; Jackson et al., 2017). Additionally, evaluating this reservoir at global, regional, and local scales is key to mitigating 

climate change. Land use and resource extraction management can mitigate terrestrial CO2 loss into atmospheric or aquatic 

reservoirs (Wang, 2020). Such practices include modifying agricultural techniques to include low tillage practices and fertilizer 

amendments, or reforestation and harvesting plans that encourage SOC retention (Ameray et al., 2021; Hillier et al., 2012). 

Friedlingstein et al. (2014) analysed SOC estimates from 11 participants in the 5th Climate Model Intercomparison Project 50 

and found estimates ranged from 510 to greater than 3000 Pg, with wide error margins disproportionately affecting high latitude 

regions. This is because SOC is modelled globally using earth system models (ESMs), which synthesize results of smaller 

models to provide insight into environmental context, climatic conditions, and soil properties (Pierson et al., 2022). Podzol-

specific SOC storage mechanisms are often not incorporated into such models, and boreal regions are thus poorly modelled – 

likely a consequence of low sample density in high latitude areas (Pare et al., 2024).  For example, productivity attributes often 55 

dictate SOC predictions (Zhang et al, 2020), however these are unreliable at high latitudes where organic input is scant and 

undergoes protracted decomposition due to low temperatures and elevated acidity (Pare et al., 2024; Zhou et al., 2024). 

Additionally, in some cases soil texture properties have been improperly positively related to SOC storage; the CENTURY 

climate model (Parton, 1993) associates higher clay fractions with increased SOC stocks, obscuring the importance of other 

mineralogical controls (Patrick, 2023, Pare et al., 2024; Rasmussen et al., 2018; Zhang et al., 2020). Research suggests that a 60 

fine scale approach delivers higher accuracy and more realistic estimates over regional extents (Deluca & Boisvenue, 2012; 
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Jackson et al., 2017; McNicol et al., 2019; Pare et al., 2024; Pierson et al., 2022). For example, constraining models to the 

biome scale may normalize the effects of climate and illuminate SOC mechanisms that may otherwise be concealed (Patrick, 

2023).  

The C saturation of OMCs, the proportion of SOC in OMCs, and soil Al availability have been used to model soil C stocks 65 

in inaccessible, poorly sampled upland boreal forest soils on the Island of Newfoundland highlighting Al availability as a key 

predictor of SOC (Patrick 2023). Available Al refers to the proportion of total Al stored in reactive poorly crystalline minerals 

(PCMs) which form C-Al OMCs (Slessarev et al., 2022). The Al availability (Al%) is calculated via the chemical index of 

alteration (CIA) which compares the content of highly stationary Al oxides to more mobile Ca, Na, and K oxides (Nesbitt & 

Young, 1984).  Slope, depth of enriched horizon, and climate can be modelled to extrapolate saturation of OMCs and 70 

proportion of SOC within OMCs. However, soil Al% is not so easily estimated and is currently obtained through intensive 

field work and laboratory analyses. Assessing the controls influencing Al OMC precipitation is key to predicting SOC in these 

soils, and parent material (Patrick et al. 2022; Patrick 2023). Geological maps are often used as a proxy for parent material; 

however, this ignores the suitability of different lithologies to acquiesce more mineralogical material than others to soil forming 

processes and explains little about the persistence of effects of parent material (Lawley & Smith, 2008). Unsurprisingly, 75 

surficial geology has been found to be a consistently significant control of SOC at local to regional scales (Adhikari et al., 

2020). On the Island of Newfoundland, and in many boreal regions, parent material is dominantly glacial till, not bedrock, 

rendering it especially relevant to incorporate this dimension into SOC modelling. First mapping the till composition and using 

this to support a sampling design to capture a range of Al% in soils across a variety of slopes and climatic conditions would 

provide a means to explore this parent material - Al OMC connection (Patrick 2023). 80 

The aim of this paper is to create a high-resolution geospatial model predicting the distribution of Al rich weatherable 

minerals in glacial till in Newfoundland. This is a critical step toward attaining accurate regional estimates of boreal forest soil 

SOC stocks across the Island of Newfoundland. We model Al% spatially as a function of covariates believed to influence Al 

geochemistry. Because till geochemistry is controlled by geological parent material, and because Al is a relatively immobile 

element, we hypothesise that bedrock geology will be the strongest predictor for Al%. Two models are trialled in this study: a 85 

highly specific spatial model using both environmental covariates and geographic location information, and a more general 

aspatial model relying solely on environmental covariates. We hypothesise that the spatial model may be useful in areas that 

have been extensively sampled and the aspatial version may have a higher capacity to extrapolate predictions to areas with 

fewer samples. Predictive maps of Al and calibrated spatial estimates of their uncertainty are produced as objectives of this 

project. Calibration of predictive uncertainty is crucial for delivering accurate estimates of model confidence that can be used 90 

directly in future SOC modelling. These objectives will contribute to the establishment of a continuous spatial SOC stock 

estimate for the Island of Newfoundland. 
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2 Methods 

2.1 Till dataset  

Publicly available till geochemistry data was sourced from the Geological Survey of Newfoundland and Labrador (GSNL; 95 

GSNL, 2024). This dataset was developed from till surveys conducted by the GSNL between 1985 and 2023 and spans much 

of the island (see figure 1). The inconsistent sample distribution can be attributed to sampling primarily being conducted 

according to National Topographic System map sheets. Samples were collected 40-60 cm deep on average and were large 

enough to obtain ~0.50 kg of till matrix, with larger clasts discarded (GSNL, 2024). Samples were dried and sieved using 

either a <180 µm or <63 µm sieve. Samples underwent gravimetric analysis and the remaining solid was digested in 15 ml of 100 

concentrated hydrofluoric acid, 5 ml of concentrated hydrochloric acid, and 5 ml of 50 volume percent HClO4. Further addition 

of concentrated 10% HCl was added if dissolution was not achieved. Geochemical composition of the solution was determined 

by the GSNL using inductively coupled plasma emission spectroscopy (ICP-OES). Results are given in wt% for elements of 

interest which were Na, Ca, K, and Al.  

 105 

Figure 1 Distribution of till geochemistry samples from the Geological Survey of Newfoundland and Labrador across Newfoundland 
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2.2 Covariates 

Covariates were selected to represent geological setting (surficial geology, regional geology), landscape 110 

characteristics (slope, ruggedness, elevation), and environmental context (climate region, distance from ocean). Additionally, 

a second model was developed that included layers representing the distance to each bedrock unit to provide spatial context. 

This ensures the model will consider the relationship of till geochemistry to the immediate bedrock unit, and within the greater 

geological setting (Fig.2). 

 115 

 

Figure 2 Project workflow for aluminum availability (Al%) models 1 and 2 and their respective standard deviations (SD) 

2.3 Preprocessing 

Till samples with Al, Na, Ca, and K values below the detection limit were removed, as were those with extremely 

low arbitrary values, which were identified as artefacts of the ICP OES analysis. Elemental composition was reported in terms 120 

of wt% oxide. To assess the degree of mineral weathering, the chemical index of alteration (CIA) (Nesbitt & Young, 1984) 

was calculated and compared to initial Al concentration values following Eq. (1): 

CIA =  
Al2O3

Al2O3 + CaO + K2O + NaO 
 X 100. (1) 

The Al% was then derived using Eq. (2): 
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Al% =
100 − CIA

100
   X   Al2O3   X   100,  (2) 

where Al% is expressed as a weight percent of oxides. 

A set of environmental covariate rasters were developed to model Al% spatially (Table 1). GSNL data layers were 125 

all converted to rasters with a resolution of 20 m in ArcGIS Pro across the full extent of the Island of Newfoundland. 

Categorical variables were coded numerically for modelling (bedrock geology unit 1-46; surficial geology units 1-9; climate 

zones 1-7). The “Near” tool in ArcGIS Pro was used to obtain the distance from the coastline to the centre of each raster cell, 

represented as a point layer, which was rasterized to match the resolution and extent of the other layers. Mean monthly 

snowfall, evapotranspiration, and air temperature were acquired from the FLDAS Noah Land Surface Model at 0.1° resolution 130 

for the period 01/01/1982 to 30/04/2024 (McNally et al, 2018). The mean annual precipitation layer was derived from the 

WorldClim layer obtained from the ArcGIS Living Atlas at 3 km resolution (Fick & Hijmans, 2017). The data were masked 

to the study area, converted to vector format, and joined to one single 20 m grid-like polygon layer with an extent matching 

the raster layers. Values were interpolated in areas missing data using nearest neighbours within 10 km. This was done in 

preparation for use of the “Multivariate Clustering” tool in ArcGIS Pro, which was then used to identify seven climate zones 135 

using the mean annual precipitation and mean monthly snowfall, evapotranspiration, and air temperature values from the grid-

like layer. The map of the climate zones was then converted to a raster. The NLDEM (GovNL, 2023) was used for elevation 

values. Although the NLDEM has a higher resolution, it comprises rounded integer values making the calculation of terrain 

attributes from this data source unsuitable. Therefore, slope and roughness were calculated from the Canada high resolution 

DEM (Government of Canada, 2024) in R using the MultiscaleDTM package (Ilich et al., 2023).  140 

Table 1 Characteristics and sources of the geospatial data layers used for model development. N/A indicates that these are not 

applicable to a given layer. 

Layer Original Resolution Transformation Source 

Till Geochemistry Dataset N/A N/A GSNL, 2024 

Regional Surficial Geology 1:250,000 Rasterize (20 m)a GSNL, 2024 

Regional Bedrock Geology 1:1,000,000 Rasterize (20 m)a GSNL, 2024 
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Distance to Bedrock Unit 1:1,000,000 Rasterize (20 m)a 

Calculate Euclidean Distanceb 

Modified from 

GSNL, 2024 

Annual Precipitation 

Annual Snowfall 

Annual Temperature 

Annual Evapotranspiration 

3 km 

0.10 degree 

0.10 degree 

0.10 degree 

Multivariate Clustering, 

Rasterize (20 m)a 

Fick & Hijmans, 

2017 

McNally et al., 2018 

Distance From Ocean 20 m Calculate Euclidean Distanceb N/A 

Elevation 5 m Resample (20 m)b GovNL, 2023 

Slope 

Ruggedness 

16 m Resample (20 m)b 

Derived from 

Government of 

Canada, 2024 

    
aresampling method: nearest neighbor, bresampling method: bilinear 

Additional data layers were produced representing spatial and geological context of points. The Euclidean Distance 

tool in ArcGIS Pro was used to create layers indicating the nearest distance to each of the GSNL Regional Bedrock Geology 145 

units. This yielded an additional 37 raster layers that were used only in Model 2 (the spatial version). 

2.4 Modelling 

Till geochemistry data and all rasters were loaded into RStudio using the terra package (Hijmans, 2025). The rasters 

were stacked, and the values were extracted at all till sample locations and added to the till geochemistry data frame. Incomplete 

observations were removed, producing a dataset of 17,328 samples. The Regional Surficial Geology variable was reclassified 150 

to “drift poor” in instances of a till sample falling on bedrock 

A Random Forest model was constructed to predict the Al% observed in the till samples using the environmental 

geospatial covariates. The Random Forest algorithm is effective at limiting overfitting, integrating both categorical and 

numerical data simultaneously, and parsing complex relationships between covariates and response variables, which are 

desirable characteristics for modelling SOC at a regional scale (Heung et al., 2014; Breiman, 2001). Random Forest is a 155 

machine learning approach that uses an ensemble of decision trees to make predictions. Decision trees are grown from 

randomly selected “bootstrap” samples of the dataset, which each comprise approximately two thirds of the total sample size 

as a function of sampling with replacement. Decision trees split data observations (i.e., Al%) into increasingly homogenous 
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groups – at each split assigning a variable (m) best explaining the division (Breiman, 2001). This m is selected from a randomly 

generated portion (mtry) of all total variables (M). Predictions are made based on an average of the ensemble, meaning the 160 

variables which best explain the Al content are used to make a prediction for each tree, and the average of these forms the final 

prediction. The samples that were not drawn for each decision tree (i.e., the “out-of-bag” samples) are used to estimate the 

model accuracy. This built-in validation avoids splitting the dataset into “train” and “validation” partitions during model 

training. Additionally, 10-fold cross validation was performed to test the model predictions. Finally, Random Forest contains 

functionality to evaluate relationships between predictor and response variables (i.e., between Al% and environmental 165 

variables).    

Two models were developed to predict values of Al% across the island of Newfoundland. The Random Forest hyper-

parameters for Model 1 were M = 7 (total variables), mtry = 4 (number of variables to draw at each split), and ntree = 1000 

(number of trees to grow).  Model 2 (the spatial model) used the same covariates as Model 1 but replaced the bedrock geology 

variable with the 37 individual distance to bedrock geology variables, enabling the model to leverage spatial trends in the 170 

geochemistry data. Hyper-parameters for Model 2 were M = 44, mtry = 13, and ntree = 2000. The R2 and RMSE were 

calculated to evaluate each model via out-of-bag cross-validation. The resulting predictions and the predicted standard 

deviations 𝛿 of each ensemble model were output as raster layers to visualize spatially the distribution of Al% and model 

uncertainty, respectively. 

2.5 Spatial model uncertainty  175 

Following initial modelling and predictions the calibrated uncertainty of the models was derived and mapped spatially 

to convey confidence in Al predictions. Calibration refers to using the out-of-bag model error to scale 𝛿  to more realistic 

values. This is a necessary step to ensure that predicted 𝛿 reflects known model error, increasing confidence in these 

predictions. To accomplish calibration of the model uncertainty, the data was split into a test and training set comprising of 

10% and 90% of the data respectively, with the training data used to generate calibration values and test data withheld to 180 

validate the optimized calibration values. Uncalibrated estimates of uncertainty were extracted from the out-of-bag standard 

deviation of the predictions of all trees of the Random Forest ensemble. To ascertain whether these estimates of uncertainty 

required calibration, graphical visual analysis of the training data was first performed (Palmer et al., 2022). The training set 

was used to generate predictions for both the spatial and aspatial models, and the 𝛿 of these predictions and the RMSE of 

residuals were calculated. If the model prediction 𝛿  accurately represents the uncertainty of predictions, the ratio of the 185 

residuals to the 𝛿 (the r statistic) should be normally distributed with a standard deviation of 1 (Palmer et al., 2022). The r 

statistic was calculated and plotted as a histogram for both models. While this emphasizes the relationship between 𝛿 and 

RMSE, it does not conclude whether larger RMSE values correlate with larger 𝛿 values (Palmer et al., 2022). To evaluate the 

linear relationship between model 𝛿 and cross-validated error, the predictions were divided into 15 equal frequency bins by 𝛿, 
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and the RMSE of residuals from each bin is calculated. The RMSE and 𝛿 are plotted against an identity function and checked 190 

for linearity. Preliminary results of both graphical analyses of the training data indicate that while the model uncalibrated 

standard deviation predictions 𝛿𝑈𝐶 estimates are fair, they may be improved with calibration. 

The Random Forest model prediction uncertainty was thus calibrated according to Palmer et al. (2022), which 

assumes that the error of predictions – or, residuals 𝑅(𝑥) from the out-of-bag data 𝐷𝑂𝑂𝐵  – are linearly related to 𝛿 UC for any 

given point, or 𝛿 Cal = a 𝛿 UC (x) + b. Calibration values were obtained by optimizing Eq. (3) using the Nelder-Mead algorithm 195 

in R: 

𝑎, 𝑏 = argmin𝑎′ ,𝑏′ ∑ ln(2𝜋) + ln((𝑎′𝛿𝑈𝐶(𝑥) + 𝑏′)2) +  
𝑅(𝑥)2

(𝑎′𝛿𝑈𝐶(𝑥) + 𝑏′)2

𝑥,𝑦∈𝐷𝑂𝑂𝐵

. 
(3) 

This minimizes the negative log likelihood that residuals 𝑅(𝑥) are normally distributed with 𝑚𝑒𝑎𝑛 = 0, and 𝑆𝐷 = 𝑎𝛿𝑈𝐶 + 𝑏 

to find optimized values of a and b (slope and intercept) that are used to calibrate 𝛿𝑈𝐶 (uncalibrated standard deviation) via 

linear model. To validate these results the 𝛿C of the test data were then calculated by scaling 𝛿UC by a and b using Eq. (4): 

 200 

𝛿𝐶𝑎𝑙 = 𝑎𝛿𝑈𝐶 + 𝑏.          (4) 

These were graphically and statistically validated using the same methods detailed above. Following this, the calibration factors 

were applied to the entire predicted 𝛿 data and mapped spatially. 

3 Results  

3.1 Mapped predictions and uncertainty 

Both models predicted high values of Al% in several places throughout the island, notably the Mount Peyton (central 205 

northeast), Avalon (most easterly), and Deer Lake (south central west) areas (Fig. 3 a, b). Highs also extend into the 

southwestern portion of the island, near Port Aux Basques. Low values were predicted in south central Newfoundland, over 

known weathered sedimentary packages. These patterns were predicted consistently by both models and are not surprising 

given the geological context. While both models predicted a high Al% near Gros Morne (central western coast), the spatial 

Model 2 predicted high values extending into the Great Northern Peninsula and generally predicted higher values than the 210 

aspatial Model 1 in the southwestern area of the island. 

The prediction uncertainty 𝛿 was highest closer to the ocean and with increasing distance from samples – especially 

on the Great Northern Peninsula (Fig. 3 c, d) where samples are sparse or non-existent (Fig. 1). While this pattern was observed 

in both outputs, it was more prominent in the spatial model. The aspatial model showed 𝛿 spread relatively evenly throughout 

the island, with lower values in areas close to samples and areas near the coast or distant from samples showing higher values. 215 

Unsurprisingly, bedrock units with few samples also showed a high 𝛿.   
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Figure 3 Aluminum availability (Al%) predictions and corresponding calibrated uncertainty predictions given as Al% 

(SD) across the island of Newfoundland with aspatial (a, c) and spatial (b, d) models.  
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3.2 Uncertainty calibration 220 

Calibrated uncertainty of both models conforms closely to the identify function and the standard normal distribution. 

Scatterplots or the r statistic clarified that for both models, uncalibrated points lie beneath the identity function, indicating that 

both models overestimated 𝛿. They also indicated a positive slope between calibrated and uncalibrated values, demonstrating 

positive correlation between the size of residuals and the size of 𝛿 estimates. Deviations from this pattern exist – though 

primarily in poorly sampled bins (figs. 4 e and f). In both cases, calibration improved the fit of data to both the normal 225 

distribution and the identity function. After calibration, normality and accuracy of the r statistic was improved, with standard 

deviations calibrated from 0.46 and 0.42 to 1.02 and 1.00, and the RMSE of the 𝛿 compared to the out-of-bag errors decreased 

from 0.317 and 0.264 to 0.208 and 0.166 for the aspatial and spatial models respectively – a decrease of approximately 34% 

and 47%. 

 The uncertainty calibration was most reliable in areas of moderate uncertainty. Figures 4 e and f show the highest 230 

uncertainty bin deviating significantly from the identity function, indicating that samples with a calibrated 𝛿 of greater than 

approximately 0.22 and 0.25 for the aspatial and spatial models respectively are underestimated. These points represent 

approximately 7% of samples from both models. Application of the calibration factors to the 𝛿 rasters translated to 19 % and 

40 % of 𝛿 being underpredicted across Newfoundland aspatially and spatially respectively (fig. 5). These underpredicted areas 

coincide entirely with areas of low confidence due to a paucity of samples. This is to be expected; calibrating uncertainty 235 

addresses systemic error within model predictions, not error associated with issues in sample distribution. Figures 4 a, b, e, 

and f clearly demonstrate that overall, the uncertainty calibration corrects the consistent underprediction of 𝛿 by both models. 
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Figure 4 Distribution of the R statistic (a,b), distribution of sample 𝜹 (c,d), and residuals vs 𝜹 plots of both raw data 

and binned data (e, f)  for aspatial (a, c, e) and spatial models (b, d, f).  240 
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 245 

Figure 5 Map of 𝜹 calibration accuracy across Newfoundland for aspatial (a) and spatial (b) models. 

3.3 Variable importance 

Cross-validation demonstrated that Al% in glacial till could be modelled accurately using environmental variables, 

and with lower uncertainty with the addition of spatial context. The aspatial and spatial models attained R2 values of 0.59 and 

0.71, and RMSE values of 0.34 and 0.29 Al wt% respectively. These results suggest that the spatial model explained >10% 250 

more of the variance within sample data than the aspatial model, corresponding to a prediction uncertainty which was lower, 

on average, by ~0.12 Al wt%.  

The most influential variables for the aspatial model were bedrock units, distance from the ocean, elevation, and unit 

size (see table 2). Climate zone, slope, ruggedness, and surficial deposit type had the least control on Al%. Distance to the 

ocean was not expected to exert this much influence, and could represent spatial autocorrelation between samples, which 255 

motivated the second spatial model (see Methods section). The importance % score of the bedrock variables suggests that 

while environmental variables can be used to model Al%, the till samples relationship to bedrock and to one another are the 

most important prediction factors. 
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Table 2 Aspatial and spatial model variables of importance given as a % of total variance explained.    

4 Discussion 260 

4.1 Utility of the approach 

Results illustrate the value of mapping and modelling reactive Al using both environmental covariates and spatial 

context. The resulting map addresses the need to incorporate Al% into SOC modelling in boreal forest mineral soils and to 

achieve this on a regional scale as informed by Patrick (2022) and recommended by Patrick (2023). This approach has utility 

in areas where existing soil samples are sparse, but geological information is abundant. Till sampling is widespread due to its 265 

applications in mineral exploration, and Al, Ca, Na, and K contents are commonly measured. For example, the GSNL till 

geochemistry dataset yielded over 17,000 points while the National Soil Network yielded 231 samples in Newfoundland, only 

65 of which recorded Al values. Further, when pedogenesis originates from glacial till, soil forms a direct and often 

indistinguishable boundary with the till. Till samples thus provide an excellent alternative to bedrock maps for soil parent 

material. 270 

Aspatial Model  Spatial Model  

Variable Importance (%) Variable Importance (%) 

Surficial Geology 4.08 Surficial Geology 4.02 

Climate 4.35 Climate 0.22 

Ruggedness 7.76 Ruggedness 1.36 

Slope 7.77 Slope 1.18 

Unit Size 13.68 Unit Size 1.94 

Elevation 15.97 Elevation 1.83 

Distance to Ocean 18.23 Distance to Ocean 2.16 

Bedrock  28.14 Bedrock  86.96 
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4.2 Novelty of this work  

While previous mapping efforts have addressed the distribution of reactive Al in soils (Ren et al., 2024), this is the 

first attempt to map it in soil parent material. Support for modelling till geochemistry through existing datasets is likely more 

common than reactive Al in soil, as demonstrated in Newfoundland, with potential for providing a key factor supporting SOC 

modelling across more regions. Few studies investigate till geochemistry from a predictive geochemical standpoint, and those 275 

that do focus on economically viable trace elements such as rare earth elements (e.g. Casey et al., 2024). The results developed 

from this model can be used directly in future SOC models in Newfoundland and provides an important demonstration relevant 

to the development of SOC modelling in other boreal regions. 

The uncertainty calibration is an uncommon yet important component to this project. Addressing uncertainty in SOC 

modelling has been identified as essential (Mishra et al., 2013); however, while many digital soil mapping studies produce 280 

spatial predictions (Pouladi et el., 2023) few provide spatial estimates of uncertainty, and even fewer provide calibrated 

uncertainty estimates. The calibration step may be critical for accurately reporting model uncertainty; here, calibration 

improved uncertainty estimates by over 30% in both cases. These calibrated estimates of uncertainty are critical for 

operationalizing these results to accurately constrain estimates of SOC stocks. An accurate spatial representation of uncertainty 

indicates regions of the study area that are predicted with lower confidence, which could be a) integrated into subsequent 285 

models or calculations of SOC stock for the island of Newfoundland, or b) used to guide future sampling to improve spatial 

estimates of Al%.  

 

4.3 Limitations 

Several constraints limit these models. While our results indicate bedrock geology is the largest control on Al%, 290 

generally, there is a lack of understanding as to what variables, or interactions between variables, exactly control Al weathering 

within glacial till. For example, biotic factors, which have been shown to influence soil Al% at coarser scales (Ren et al., 

2024), were not explored for the purpose of this study. Further, the model used geological context to leverage spatial 

autocorrelation within the samples, mimicking a geostatistical approach. While this improved model performance, it renders 

partial dependence plots for the spatial model difficult to interpret, and the individual variables difficult to rank. Finally, 295 

because the work was focused strongly on spatial predictive accuracy, multicollinearity was left largely unaddressed, making 

it possible that variable importance was split across multiple correlated predictor variables. Such limitations mean that this 

modelling approach is less useful for discerning strong predictors for reactive Al content in glacial till but rather is a useful 

approach for obtaining a spatial prediction for reactive Al in soil parent material. This represents a first order component for 

predictive modelling of boreal forest SOC. Next steps, however, should focus on assessing predictors of the relationship 300 

between reactive Al in parent material and the overlying boreal forest mineral soil including biotic topographic, and climatic 

factors and their interactions (Brantley et al., 2017; Maher, 2010, Patrick 2023). 
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4.4 Utility of the spatial and aspatial models  

The patterns of uncertainty across the spatial and aspatial models indicate that the spatial model may be more useful 

in previously sampled areas, while the aspatial model may deliver higher certainty in areas with scarce samples. While the 305 

overall accuracy of the aspatial model is lower, uncertainty is distributed more evenly across space than the spatial model. As 

seen in figs. 4 and 5 the calibration accuracy is slightly higher in the spatial model than the aspatial model. It may be possible 

to aggregate both models for regional scale mapping, while for finer scale mapping the model with higher local performance 

will be preferred. 

4.5 Future work 310 

Soil geochemistry is controlled largely by parent material – in this case till – and this in turn controls the ability of 

soils formed to store C. For example, reactive Al content of soil is a key factor controlling SOC content of boreal forest podzols 

in the study region (Patrick et al. 2022).  The exact nature of the relationship between till and soil geochemistry is not fully 

understood, however, topography and climate likely play key interacting roles. To inform this relationship, soil and till should 

be sampled simultaneously at sites informed by this predictive model. Specifically, sampling where there is forecasted high or 315 

very low Al, as these extremes may best illustrate the relationships between soil Al% and till Al%. Sampling should be 

conducted on similar slopes to ensure that the relationship between till and soil is being captured without influence from terrain 

characteristics, where higher slope areas experience less vertical and more lateral flow resulting in a shallower horizon of SOC 

enrichment (Patrick, 2023). As depth of horizon is strongly correlated to other soil characteristics governing SOC storage and 

this may cause variations in SOC content not attributable to parent material alone (Patrick, 2023). Sampling on high and low 320 

slopes should then also proceed to assess controls of terrain on SOC storage.  

The GSNL continually updates their till sample geochemistry database and new samples should be incorporated as 

they become available. Till samples from western Newfoundland, particularly the Great Northern Peninsula, will be especially 

valuable. Additionally, independent glacial till sampling should be prioritized in high uncertainty areas to increase the 

robustness of these models. 325 

Given the important role that parent material plays in regulating SOC (Slessarev et al.; Patrick et al. 2022) increased 

attention must be given to improving parent material composition estimates for SOC modelling. This includes further 

investigation into key parameters controlling Al weathering and thus reactive Al in parent material. The results of the 

calibration in this study demonstrate the advantages of uncertainty quantification. Future SOC modelling should incorporate 

this dimension, as should any future mapping of parent material, as it is crucial to producing meaningful model predictions. In 330 

the case of modelling SOC, the more reliable the uncertainty the clearer the utility of the predictions for future model 

development or application for mitigation efforts. 
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5 Conclusion  

Using both a spatial and aspatial approach, reactive Al% was successfully modelled and mapped in soil parent 

material across the Island of Newfoundland for the first time at a high resolution. Calibrated uncertainty was also estimated, 335 

providing spatial estimates of model confidence throughout the study area. There is broad utility in predicting parent material 

geochemistry because it is known to influence soil properties and it draws on a sample base much wider, in many cases, than 

available soil samples. While future research may expand the sample distribution, and explore relationship between glacial till 

and soil geochemistry, this work provides a critical component for a future mechanistic SOC model tailored to the soils of 

Newfoundland and Labrador. This will enable further investigation of the performance of previous modelling across various 340 

landscapes, topographies, and soil Al% delivering valuable insight into the spatial distribution of boreal forest SOC across the 

island. By enabling continuous predictions of SOC and better estimates of the terrestrial carbon reservoir in Newfoundland, 

this future work will provide a template for such research in other boreal regions. 

 

 345 
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