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Abstract 17 

East Africa has recently experienced a series of devastating tropical cyclone landfalls characterised by hundreds 18 

of fatalities, millions of displaced people and substantial economic damage. Forecasting the impact of these 19 

tropical cyclones can, in theory, better motivate anticipatory action compared to only forecasting the hazard. This 20 

paper describes an approach to forecasting the number of people directly exposed to flooding from tropical 21 

cyclones and documents experience gained communicating these forecasts to practitioners via emergency 22 

bulletins.  23 

Forecasting flood exposure requires a complex cascade of meteorological, hydrological, hydraulic and population 24 

models. Interpretation of forecasts was difficult, even for the scientific experts developing the systems, due to 25 

uncertainties brought in at each stage of the modelling cascade. Thus, producing interpretable forecast messaging 26 

was challenging and often required extensive discussion between forecasters with expertise on different elements 27 

of the system. This paper uses practical experience gained from several tropical cyclone events to highlight 28 

essential requirements for interpreting and disseminating tropical cyclone flood impact forecasts.  We also analyse 29 

how forecasts evolved with lead-time and compare them to observed flooding in the case of Tropical Cyclone 30 

Freddy. Overall, we aim to synthesise our experience into actionable learning that might inform future use of 31 

forecasting in humanitarian response.   32 

Exposure estimates were most sensitive to storm track location, even when exposure was aggregated to districts. 33 

Uncertainty from track location remained substantial even in the days before landfall, meaning a recipient of these 34 

forecasts needs to understand and interpret the distribution of exposure. For the second landfall of Tropical 35 

Cyclone Freddy, nationwide exposure estimates were remarkably similar between remotely sensed flood extents 36 

and the best estimate from the forecast system. However, this overall similarity results from the averaging of 37 

substantial uncertainty at the district scale. 38 

39 

40 
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1 Introduction  41 

Flood disasters are pervasive and entrenched in our society. Tropical cyclones can be especially devastating due 42 

to their multi-hazard nature and potential to generate exceptional flood magnitudes.  In Africa, a combination of 43 

high vulnerability to flooding and lack of pre-emptive action can exacerbate disaster risk. For example, in 2019 44 

Tropical Cyclone Idai caused more than 600 fatalities in Mozambique and left over 1.8 million people in need of 45 

humanitarian assistance (UNOCHA, 2019). Prevention of flooding is usually not feasible, however accurate and 46 

timely impact-based forecasts of tropical cyclone flooding have been called for to support early warning and 47 

action to save lives and livelihoods (Nauman, 2021). 48 

Forecasting tropical cyclone track, rainfall, windspeed and river flows has received significant attention (Lu et al., 49 

2024). Several global centres (e.g. European Centre for Medium Range Weather Forecast, National Centres for 50 

Atmospheric Research) issue weather forecasts on which severe weather bulletins can be based and ingested by 51 

national agencies with mandated responsibilities for warning the public. For example, in the Southwest Indian 52 

Ocean Météo France in La Réunion is designated as the Regional Specialised Meteorological Centre for tropical 53 

cyclone forecasting by the World Meteorological Organisation. In terms of people exposed to flooding, severe 54 

weather bulletins sometimes forecast the number of people indirectly affected by severe weather or heavy rainfall, 55 

often summing the total population living under the tropical cyclone track. However, More nuanced estimates of 56 

exposure, such as the number of people directly flooded, are often not provided because the data underlying the 57 

forecasts does not support such predictions. When exposure estimates are provided, for example by the World 58 

Food Program Advanced Disaster Analysis and Mapping (ADAM) platform (https://gis.wfp.org/adam/), 59 

ambiguity over exactly what is included is common. Speight et al. (2024) highlight a need for additional data and 60 

expertise to support the interpretation of global flood and exposure models, clear documentation to support 61 

decision makers faced with multiple sources of information, and the development of user-relevant metrics to 62 

assess forecast skill.  63 

A lack of pre-emptive forecast-based action is often cited as a reason for poor outcomes for those impacted by the 64 

flooding. While there are many reasons for this, including insufficient capacity to act, there is currently limited 65 

capability to make large-scale (e.g. covering the whole tropical cyclone) yet locally-relevant exposure forecasts 66 

of people directly affected by flooding (e.g. those whose houses will flood) in Africa. Unlike most other natural 67 

hazards, resolution well below 100m is necessary because flood hazard changes materially over a few decimetres 68 

and people will avoid settling in hazardous locations if they can (Smith et al., 2019). Recent advances in global 69 

flood hazard mapping can theoretically provide inundation depth estimates with sufficient resolution (~30 m) to 70 

estimate community level flood exposure when combined with high-resolution population data (Hawker et al., 71 

2024; Wing et al., 2024). However, errors can be substantial at such fine resolutions and early large-scale flood 72 

models (often at 1 km resolution) faced a credibility challenge due to simulating divergent estimates of flood 73 

extent (Trigg et al., 2016). Improvements to these models, notably the underlying terrain data (Hawker et al., 74 

2022) mean they might, for the first time, be able to support district level hazard and exposure forecasts. However, 75 

these forecasts will be complicated by substantial uncertainties, meaning interpretation and use of these data 76 

requires significant care.   77 

This study evaluates tropical cyclone forecasts that underpin a pilot emergency bulletin service provided to the 78 

UK Foreign, Commonwealth and Development Office (FCDO). This service was designed to provide on-demand 79 

bulletins that synthesise weather, hydrological, coastal surge and flood inundation information into a short report 80 
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format accessible to practitioners in FCDO and other partners. The service aimed to provide early warning support 81 

and advisories to FCDO to inform its decision-making on when to act, what actions to take and where to target. 82 

The bulletins and advisories aim to provide an overview of potential flood situations and to provide timely and 83 

accurate early warnings and flood forecasting services.   84 

The approach taken is outlined by a set of standard operating procedures (SOP) as shown in Figure 1. The SOP 85 

begin with a trigger and activation process where a decision is made to initiate the bulletin production process. 86 

This is followed by a mixture of technical analysis of forecast data (more information provided in the Methods 87 

section), expert interpretation of results and synthesis into a 2-3 page bulletin that can be shared as a PDF or 88 

printed. A feedback process and post-event review is also included. This diagram reflects the partner organisations 89 

involved in creating the bulletin, however most of the technical data sets and analysis could be exchanged for 90 

equivalents available to other organisations. The forecast system covers potential flooding from the fluvial 91 

response to rainfall and along the coast from tropical cyclone-induced surge.  92 

Previous research has investigated the performance of tropical cyclone track and intensity forecasts (Emmerton 93 

et al., 2020) and there has also been work examining the bulletin production process, end user needs and 94 

communication of such bulletins (Emerton et al., 2020; Speight et al., 2024). However, there is a lack of 95 

information on how forecasts of people directly affected (i.e. population exposure), as represented by boxes 4a to 96 

7 in the SOP diagram (Figure 1), should be interpreted, and there is little evidence available to support the use and 97 

dissemination of such forecast analysis.  98 

To address this information gap, we analyse the degradation of the inundation and population exposure forecasts 99 

with increasing forecast lead time and aim to provide insights that might help when balancing the demand for 100 

local-scale exposure information with uncertainty. Forecasts for Tropical Cyclone Freddy in March 2023 were 101 

chosen for a deeper analysis of inundation forecasts due to the availability of suitable satellite data on flood extents 102 

for validation. The forecast covered both fluvial and coastal flooding. However, the surge was forecast to be 103 

approximately 1m for Tropical Cyclone Freddy, which, when combined with the tide, only just exceeded the 104 

highest astronomical tide. As a result, the coastal flooding was expected to be localised rather than widespread, 105 

which has subsequently been supported by post-event observations. Therefore, the forecast validation henceforth 106 

concentrates on the forecast of fluvial flooding associated with Tropical Cyclone Freddy. 107 

Our results are arranged into two sections. Firstly, an assessment of forecast lead times where we ask:  108 

• How does forecast population exposure typically change with lead time for recent landfalling tropical 109 

cyclones in East Africa? 110 

• What implications does this have for the identification of population exposure hotspots, particularly with 111 

respect to the degree of forecast spatial aggregation? 112 

Secondly, we evaluate inundation and exposure forecasts for tropical cyclone Freddy given remotely sensed flood 113 

extents obtained from the operational UNOSAT and Copernicus services, where we ask: 114 

• How similar are the population exposure and flood inundation forecasts between data sets? 115 

• To what extent is this comparison problematic given uncertainties in peak flood timing and event 116 

duration? 117 

• Are there obvious limitations of the forecasting approach that should be communicated to the end user? 118 

The bulletins were shared with humanitarian partners and in-country organisations. Feedback from these was 119 

collated and used to summarise the usefulness and uniqueness of the inundation information. Ongoing challenges 120 
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and limitations associated with the current technical capability are highlighted in the discussion. The aim of this 121 

work is not to qualify total uncertainty, but rather to i) share experience of using the data in a quasi-operational 122 

context and ii) highlight some of the issues faced in practice that an end user should be aware of. 123 

 124 
Figure 1: FCDO Pilot flood early warning standard operating procedures (October 2024 version) 125 

2 Methods 126 

We analysed forecasts of directly affected population (number of people flooded) and inundation extent from 127 

fluvial flooding for the five most recent landfalling tropical cyclones in East Africa and a total of seven landfalls. 128 

These are summarised in Table 1. Our method to forecast directly affected population (hereafter ‘exposure’) was 129 

based on four data sets that cascade into each other following steps 4a, 5a, 6a and 7 in Figure 1. Specifically: 130 

2.1 European Centre for Medium Range Weather Forecast (ECMWF) weather forecasts (rainfall and 131 

storm track) 132 

Weather forecasts were obtained from model cycle 47r3 of the ECMWF ensemble prediction system Owens, 133 

2018; ECMWF, 2021). This system issues four weather forecasts per day, although only the forecasts produced 134 

at 00 UTC are input into the hydrological forecasting model. The ensemble forecasting system consists of a control 135 

member and 50 perturbed members that provide meteorological boundary conditions for the Global Flood 136 

Awareness System (GloFAS).  137 

2.2 Global Flood Awareness System (GloFAS) forecasts (streamflow and streamflow return period)  138 

GLoFAS versions 3.2 (for the 2022 events) and 3.4 (for the 2023 events) were used to provide forecasts of river 139 

streamflow. GloFAS is one component of the European Commission’s Copernicus Emergency Management 140 

Service – Early Warning Service for Floods (CEMS-EWS Floods). GloFAS forecasts are published daily and are 141 
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used here for their accessibility, global coverage and because they anecdotally tend to be the most well-known 142 

system amongst humanitarian responders using the bulletins generated. Locally calibrated streamflow forecasting 143 

systems could likely outperform GloFAS in terms of river discharge prediction, especially if historical river gauge 144 

observations are available. 145 

GloFAS is designed to simulate streamflow on large rivers globally using ensemble meteorological forecasts from 146 

ECMWF, which are input to the LISFLOOD open source hydrological model (van der Knijff et al., 2010), 147 

developed by the Joint Research Centre (JRC) of the European Commission. Note that the LISFLOOD hydrological 148 

model should not be confused with the LISFLOOD-FP flood inundation model used for inundation simulation in 149 

the next section.  150 

Streamflow forecasts for 51-ensemble members were provided at 24 hour timesteps up to a maximum lead time 151 

of 30 days in every ~10 km grid cell where the upstream drainage area was ≥1000 km2. Since Tropical Cyclone 152 

Freddy, a major upgrade to GloFAS (version 4.0) was released on the 23rd July 2023, this included reducing the 153 

spatial resolution 3 arcminutes (~5 km at the equator), more details are given in Matthews et al. (2025).   154 

2.3 Fathom flood hazard maps (flood depth and extent by return period) 155 

Flood depths and extents were obtained from the Fathom Global Flood Map version 3 (Wing et al., 2024). These 156 

data provide global flood hazard information at ~30m spatial resolution for 10 return periods from 5 to 1000 years. 157 

Flood inundation is simulated by the LISFLOOD-FP hydrodynamic model (Neal et al., 2012), taking as inputs 158 

elevation data from FABDEM (Hawker et al., 2022) and river discharges from a global flood frequency analysis 159 

(Smith et al., 2015). River locations are defined by the MERIT HYDRO river topology (Yamazaki et al., 2019), 160 

where river bathymetry is estimated using the methods of Neal et al. (2021). An overview of the modelling 161 

framework and data is provided by Wing et al. (2024) and Sampson et al. (2015), with additional validation 162 

provided by Hawker et al. (2024).  163 

2.4 Surge forecast modelling 164 

Coastal sea levels are modelled using the TELEMAC-2D hydrodynamic model (Hervouet, 2007) forced by wind 165 

and atmospheric pressure fields generated from tropical cyclone advisories issued by the designated Regional 166 

Specialised Meteorological Centre, in this case Meteo France on La Reunion. For Tropical Cyclone Freddy, the 167 

surge model covered the Mozambique channel and included tide as well as the cyclone-generated surge to provide 168 

projections of total water level. The surge modelling method is described in Grey et al. (2022) and Grey et al. 169 

(2024). Time and spatially varying water levels from TELEMAC-2D are then applied as boundary conditions to 170 

a LISFLOOD-FP model set up equivalent to those used in the Fathom Global Flood Map (Wing et al. 2024) to 171 

predict the extents of coastal inundation.WorldPop population data (population counts)  172 

Population counts were based on WorldPop constrained data at 3 arc-second resolution (~100m), with population 173 

counts projected to the year 2020 (Bondarenko et al., 2020; Stevens et al., 2015). This version of WorldPop 174 

employs a random forest method to allocate census data from administrative units to specific building locations, 175 

utilising a range of spatial covariates. WorldPop constrained was chosen primarily for its resolution relative to 176 

other national and global population data sets available in the region and its constraint of population to buildings 177 

(Bondarenko et al., 2020). Both these factors are necessary to avoid flood exposure over-prediction bias of up to 178 

40% which can occur when people are imprecisely located along the edge of floodplains (Smith et al., 2019). 179 
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However, there are known problems associated with these data for humanitarian applications. In Mozambique, 180 

the census data on which the population projections are based is dated from 2007 and WorldPop is known to 181 

underrepresent informal settlements (Thomson et al., 2021). Furthermore, the data do not account for in-country 182 

displacement, notably from Tropical Cyclone Idai and conflict in the country’s northern districts where estimates 183 

of internal displacement exceeded 470,000 people in Mozambique (IDMC, 2019; Mester et al., 2023)   184 

2.5 Forecast generation 185 

Below is a concise outline of how the data sets are used and combined in the analysis chain. Our forecasts start 186 

with the 51-member ensemble weather forecasts from the ECMWF Integrated Forecast System (IFS)  (Owens, 187 

2018), which provides input to the Global Flood Awareness System (GloFAS). GloFAS versions 3.2 and 3.4 188 

provided 30-day duration streamflow forecasts on a ~10km gridded river network for each of the 51 weather 189 

forecasts.  The streamflow forecasts were converted into an estimate of the return period using parameters derived 190 

from Gumbel distributions fitted at every grid cell to annual maximum streamflow values extracted from version 191 

3.1 of the GloFAS hydrological re-analysis (Zsoter et al., 2021)..  192 

To calculate the number of people directly affected (exposed), we construct flood inundation forecasts and 193 

intersect these with high-resolution population data from WorldPop. Flood inundation can be simulated by 194 

hydrodynamic models. However, these are computationally expensive to run in real time for country wide 195 

domains. Therefore, we use a library of flood inundation simulations at 1 arc second resolution (~30m) from the 196 

Fathom Flood Map S3 (Wing et al., 2024) for different magnitudes of flood (10 return periods in total from 1 in 197 

10 to 1 in 1000 years). The method is conceptually similar to that adopted for operational rapid flood risk 198 

assessment in Europe (Dottori et al., 2017). An example of the hazard mapping data is provided by Figure 2, 199 

which plots flood depth for the 1 in 500 year return period in blue intersected with population in red. This particular 200 

map was produced as part of a forecast on 10/03/2023 for the city of Quilemane in Mozambique, which is close 201 

to the second landfall of Tropical Cyclone Freddy. To construct a flood footprint for each of the 51 GloFAS 202 

forecasts, the flood return period simulated by GloFAS was downscaled onto the higher resolution Fathom flood 203 

map river network. Finally, each flood footprint is overlain on WorldPop gridded population density data to 204 

identify people flooded, with total direct flooded population summed at the district level using geopolitical 205 

boundaries. Georeferenced packages of administrative boundaries for Mozambique and surrounding countries 206 

were downloaded from GeoBoundaries.org. Figure 3 illustrates this for the 25th, 50th and 75th percentiles of the 207 

ensemble forecast for the region impacted by the second landfall of Tropical Cyclone Freddy.  208 

 209 

Table 1: Summary of recent tropical cyclones include in this study. 210 

Event name Date Landfall location Countries for which Exposure 

calculated 

Batsarai 06/02/2022 Nosy Varika, Madagascar Madagascar 

Emnati 23/02/2022 Vatomandry, Madagascar Madagascar 

Gombe 11/03/2022 Nampula, Mozambique Mozambique, Malawi 

 

Freddy 

21/2/2023 Mananjary, Madagascar Madagascar 

24/2/2023 Vilankulos, Mozambique Mozambique 
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11/3/2023 Quilemane, Mozambique Mozambique, Malawi 

 211 

Figure 2: Maps illustrating flood hazard layers for the 1 in 500 year return period around Quelimane, Mozambique. 212 

   213 

Figure 3: Maps of population exposure in Mozambique at district level for a tropical cyclone Freddy forecast, 214 
illustrating the 25th, 50th and 75th percentiles of the ensemble forecast exposure estimates. 215 

3 Results 216 

3.1 Assessment of forecast lead time  217 

Our first analysis focuses on the evolution of the forecast population flooded (exposure) and the location of the 218 

exposure, when aggregated to the district administrative unit level, with lead time (note that districts are of 219 

different sizes depending on the country). The results of this analysis are plotted in Figure 4, where direct exposure 220 

to flooding is plotted each day from up to five days before landfall (sometimes only four days if no flooding is 221 

forecast) to one day after landfall. We stop one day after landfall under the assumption that satellite imagery of 222 

the flooding is more likely to be used post-event. The top row of bar plots indicates the total population flooded 223 

(exposure) for each of the 51 ensemble members. Almost all forecasts include some ensemble members with zero 224 

or near-zero flooding, except after landfall, where reanalysis rainfall data starts to dominate the forecast peaks and 225 

reduce the forecast spread. When interpreting this reduction in uncertainty, it is important to be aware that although 226 

the reanalysis rainfall is likely to be more accurate than the forecasted rainfall, the uncertainty reduction after 227 
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landfall is also due to the loss of ensemble spread in the rainfall inputs. The exposure distribution also tends to 228 

include outliers on the high side, with exposure as much as 10 times greater than the ensemble median often 229 

forecast by a few members. These outliers are typically driven by ensemble members that cause flooding over 230 

areas of high population, rather than being ensemble members with exceptionally intense rainfalls. Track location 231 

is therefore critical for exposure estimates even when aggregated to the district level. Reassuringly, for most 232 

tropical cyclones, the ensemble spread narrows as the lead time decreases, with the distribution of exposure 233 

forecast at or after landfall sitting within the spread of earlier forecasts. The exception is the second landfall of 234 

Tropical Cyclone Freddy, where the forecast only concentrates sufficiently one day prior to landfall.  235 

Except for the second landfall of Tropical Cyclone Freddy, the median exposure tends to remain in the same order 236 

of magnitude across the lead times analysed here. In our experience, early use of the forecast exposure 3-5 days 237 

before landfall tends to be too uncertain in absolute numbers and location to be of much practical use, and a user 238 

of these forecasts needs an understanding of ensemble forecast uncertainty to interpret the results. Nevertheless, 239 

the forecasts tend not to be misinformative and thus appear useful to support anticipatory action, especially for 240 

no/limited regret actions, with the strong caveat that we expect substantial additional uncertainties from the 241 

inundation simulation and population data that are not captured by the ensemble forecasts and will persist 242 

regardless of forecast return period and lead-time.       243 

Feedback from practitioners, mostly based at national and international organisations in this case, often highlights 244 

how identifying the most exposed locations (typically at district level) is particularly useful. Therefore, we are 245 

interested in how consistent the most exposed locations are with forecast lead time. The lower plots on Figure 4 246 

show the population exposed by district (ensemble mean), highlighting the top five most exposed districts one 247 

day after landfall with a unique colour that is consistent with lead time. The sum of exposure in all other districts 248 

is then added to the bar in light blue. Thus, growth in the size of the blue bar with lead time indicates a reduction 249 

in focus on the five most exposed districts after landfall. Before interpreting these plots, it is worth considering a 250 

few aspects of the data. In these plots, the ensemble mean is used to indicate how exposed a district is, and this 251 

number is usually dominated by: a) the number of ensemble members that forecast flooding in that district; and 252 

b) the population living on the floodplain. We also see that the ensemble mean exposure typically increases and 253 

focuses on a few districts at shorter lead times. This was expected because all our events are landfalling tropical 254 

cyclones, meaning that the ensemble spread is decreasing and focusing over the land. We expect the opposite 255 

trend from tropical cyclones that have a near-miss landfall, but we do not include them in our analysis. As 256 

expected, the proportion of the exposure outside of the top five most exposed districts tends to increase with lead 257 

time due to the greater ensemble spread. Perhaps unsurprisingly, the extent to which the top five most exposed 258 

districts can be identified at longer lead times depends on the size of the districts. Districts in Mozambique and 259 

Malawi tend to be larger than those in Madagascar, meaning the predictions aggregated at the district level appear 260 

more stable. In Mozambique and Malawi, the top five most exposed districts usually account for over 50% of the 261 

exposure in the forecast one day after landfall, suggesting that the footprint of the cyclone’s most intense impact 262 

doesn’t tend to extend significantly beyond five districts. It is also worth noting that urban areas exposed to 263 

flooding tend to dominate and a different set of metrics would be needed to assess exposure in rural communities. 264 

For example, in the Fathom flood hazard data, the population exposed to flooding in urban areas along the 265 

Limpopo river (e.g. Chockwe, Xai-Xai) at almost any return period exceeds the population exposed to the greatest 266 

return period in sparsely populated districts directly north.  267 
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 268 

Figure 4: Ensemble spread of exposure forecasts with lead time for five land falling tropical cyclones in Mozambique, 269 
Malawi and Madagascar (top plot) and ensemble mean exposure disaggregated by district to the five most exposed 270 
districts as forecast one day after landfall (lower plot). The top 5 most exposed districts are identified by differently 271 
coloured stacked bars, with all other districts plotted on top as a single colour (lighter blue) 272 

 273 

Focusing on the case of Tropical Cyclone Freddy from five to two days before its first landfall in Mozambique 274 

can help illustrate the observations above. Figure 5 plots observed (RSMC analysis) and forecasted (ECMWF) 275 

track position of Freddy and the probability of precipitation accumulations in the next five days exceeding 200 276 

mm according to the ECMWF ensemble forecast. Plots relate to the first landfall of Freddy on the a) 22nd b) 23rd 277 

c) 30th February and for the second landfall of Freddy on the d) 9th e) 10th and f) 13th March 2023. These days 278 

correspond to when bulletin updates were issued by the team. 279 

The low probabilities shown on the 22nd in Figure 5a are the result of uncertainty in the location of the heavy 280 

rainfall. This figure should be interpreted as showing the area (shown by the shading) within which heavy rainfall 281 

between 200-400mm (and up to 800-1000mm in places) is possible. This uncertainty is evident in the exposure 282 

forecasts in Figure 4, which range from close to zero to almost 200k people flooded. Especially high exposures, 283 

for example, three days before landfall, were caused by some ensemble members forecasting heavy rainfall south 284 

of the Limpopo River to areas of the Incomati River that had flooded earlier in the month and the Maputo area 285 

(capital city of Mozambique). These low-probability but high-impact forecasts were a significant concern due to 286 

potential impacts on important national infrastructure. We speculate that risk characterisation storylines and worst 287 

case narratives may be useful or desired by end users to capture low probability but potentially catastrophic 288 

impacts. However, in this case, focusing on the worst case scenarios would have completely missed the impacted 289 

location. 290 

From 1-2 days before landfall, heavy rainfall as far south as the Maputo area was no longer being forecast, 291 

substantially reducing the worst case exposure estimates. Forecast exposure for Freddy’s first landfall was usually 292 

dominated by flooding along the Limpopo river (close to the forecast control member track), including population 293 
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centres around Chókwè where a ~1 in 20 year return period flood was forecast by some ensemble members. By 294 

the day after landfall (Figure 5c) the heaviest rainfall strengthens but shifts northwards into a region of sparser 295 

population where few settlements are on floodplains.  296 

Focusing on the second landfall of Freddy, substantial uncertainty in the forecast track results in little exposure 297 

being forecast 3-5 days before landfall. However, by the 9th March (2 days before landfall) the forecast is more 298 

organised. Figure 5d illustrates the ECMWF forecast on this day and indicates that Tropical Cyclone Freddy is 299 

expected to bring heavy rainfall to Zambezia, Tete and Manica districts, and is expected to move inland to also 300 

affect northern Sofala district and southern Malawi (details of these locations are covered in the next section). 301 

Cumulative rainfall totals between 150-300mm are expected in these areas, whilst totals between 500-800mm are 302 

possible in some areas, but their location is uncertain. These uncertainties are reflected in the forecast exposure 303 

two days before landfall, which subsequently reduces and focuses on greater exposure one day prior to landfall 304 

(Figure 5e). The mean location of the forecast tracks did not change much from two days out, meaning the top 305 

five most exposed locations remain reasonably consistent (Figure 4).  306 

 307 

 308 

Figure 5: Observed (RSMC analysis) and forecasted (ECMWF) track position of Freddy and the probability of 309 
precipitation accumulations in the next 5 days exceeding 200 mm according to the ECMWF ensemble forecast. Plots 310 
relate to the first landfall of Freddy on the a) 22nd b) 23rd c) 30th February and for the second landfall of Freddy on the 311 
d) 9th e) 10th and f) 13th March 2023.  312 

3.2 Comparison of inundation forecasts with remotely sensed flood extents 313 

This section provides some indicative information on relative forecast skill that might be useful for an end user of 314 

the forecast data, and discusses some of the limitations and challenges of the evaluation. Inundation and exposure 315 

forecasts made for the second landfall of Tropical Cyclone Freddy were compared to open-source post-event 316 

remote sensing, which is widely used during post-disaster response. When obtaining remotely sensed data, we 317 

only use flood extents provided via Copernicus and UNOSAT as part of their disaster response. In total, eight 318 
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remotely sensed images are considered (see Table 2), captured over the period 14th-17th of March 2023, with most 319 

locations imaged twice over this period. Some later observations are also available (listed at the end of Table 2) 320 

via these services, however we do not consider them because the flooding has receded from earlier scenes. We 321 

assume all remotely sensed flood extents are equal and do not assess their accuracy. However, we note that the 322 

images are unlikely to be coincident with peak flooding and, as Synthetic Aperture Radar (SAR) derived products, 323 

they will not detect flooding in urban and vegetated areas (Shen et al., 2019). The derived flood extents are mapped 324 

in Figures S1 to S28 in the Supplementary Data section, with most locations mapped multiple times, as this 325 

captured more flooding on larger rivers where flood wave propagation could take several days. Exposure data for 326 

both the forecasts and remotely sensed data are aggregated to the district level for the analysis, with the districts 327 

plotted in Figure 6. Some flooding that is potentially pluvial in origin (e.g. not from a river going out of bank) can 328 

be seen around Quelimane on the 14th. However, in general the remote sensing is likely to have missed substantial 329 

pluvial and flash flooding on smaller rivers, some of which may be simulated by the Fathom inundation model if 330 

the catchment is larger than approximately 50km2. Therefore, we believe it is reasonable to assume the remote 331 

sensing is a conservative estimate of the actual maximum flood extents and we present this work as a comparison 332 

rather than a validation of either method due to the expectations that an exact match in exposure is not expected. 333 

We note that forecast skill is likely to change substantially depending on the geography of the region being 334 

impacted, meaning the results below are not transferable between locations and should be interpreted as merely 335 

indicative of forecast skill. 336 

Table 2: Summary of remotely sensed data used for validation  337 

Source ID Location Data Time UTC Sensor Inundation 

maps 

UNOSAT 3528 Sofala and 

Zambezia 

Provinces 

14/03/2023 3:10 RADARSAT1 

 

S1-S4 

UNOSAT 3529 Southern 

Malawi 

14/03/2023 3:10 RADARSAT1  S5-S8 

Copernicus EMSR654 Quelimane 

Release 1 

14/03/2023 14:47  COSMO-

SkyMed2 

S9-S12 

Copernicus EMSR654 Mutarara 

Release 1 

15/03/2023 3:53 COSMO-

SkyMed2 

S13-S15 

Copernicus EMSR654 Mutarara 

Monitoring 1 

16/03/2023 3:09 RADARSAT3 - 

UNOSAT 3529 Southern 

Malawi 

17/03/2023 3:03 Sentinel 14 S16-S20 

UNOSAT 3528 Sofala and 

Zambezia 

Provinces 

17/03/2023 3:03 Sentinel 14 S21-S24 

Copernicus EMSR654 Quelimane 

Monitoring 1 

17/03/2023 14:53 COSMO-

SkyMed2 

S25-S27 
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Copernicus EMSR654 Mutarara 

Monitoring 1 

16/03/2023 3:05 RADARSAT3 

Additional data was published for the following events, however all either only showed reduced flooding from 

the earlier imagery, or were superseded by a further update that is covered in more detail. Specifically: 

UNOSAT 3543 Southern Region, Malawi. Situation at 21/03/2023 

UNOSAT 3541 Sofala and Zambezia Provinces. Situation at 21/03/2023 at 07:55 UTC 

Copernicus EMSR654 Quelimane Monitoring 2. Situation at 22/03/2023 at 14:47 UTC 

Copernicus EMSR654 Mutarara Monitoring 2. Situation at 17/03/2023 at 03:09 UTC 

1. RADARSAT Constellation Mission Imagery © Government of Canada (2023) 338 

2. COSMO-SkyMed© ASI (2023), distributed by e-GEOS S.p.A.339 

3. RADARSAT 2 Data and products © Mac Donald, Dettwiler and Associates Ltd.340 

4. Sentinel 1 - Contains modified Copernicus Sentinel data341 

342 

343 
344 

345 

346 

Figure 6: Map of the districts in Mozambique considered in this section. Open data sourced from GeoBoundaries and 

©OpenStreetMap. 

Population exposure, given the remote sensing data, was calculated from the same WorldPop layer used to forecast 

exposure. Population exposure to each image is summarised in supplementary tables S1 to S8 for each district 

within the images, along with the total population in each district according to WorldPop. Table 3 summarises the 347 
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population exposure for each district where exposure is above 1000 people, using the maximum of the remotely 348 

sensed flood extents where multiple images are available. The forecast model comparison against each image is 349 

discussed in more detail in the supplementary validation section, and we draw on this more detailed discussion 350 

when making some conclusions.     351 

Given the substantial uncertainty in the forecast return period, we compare the inundation and exposure 352 

predictions for eight return periods between 1 in 5 year and 1 in 1000 year (see Supplementary Tables S1-S8). 353 

However, we also highlight the best estimate from the forecast ensemble (median return period) and a reasonable 354 

worst case (highest return period from the ensemble) and report these exposures in Table 3. We have not computed 355 

fit statistics between the remotely sensed flood extents and the model flood extents, which often compare the area 356 

of agreement between two flood extent data sources to areas of over- and under-prediction using metrics such as 357 

the F-statistic and critical success index (Landwehr et al., 2024). A visual analysis of the difference between the 358 

data sets suggests such an analysis would be complicated to interpret because apparent over-prediction by the 359 

model often occurs over low-lying areas close to the rivers where vegetation is likely obscuring the remotely 360 

sensed flood extents and there is little or no population. Instead, the analysis will qualitatively discuss the 361 

inundation extent and use population exposure as the primary quantitative measure of agreement between the data 362 

sets, which is likely of more interest in the early stages of a disaster than inundation extent. The timing of the 363 

inundation arrival or peak has not been considered in our forecasts because we do not have a good way to evaluate 364 

flood arrival time, although there is evidence from the multiple images that flood extents are dynamic over the 365 

observation period and, in some cases, increase between images. Suggesting that the remotely sensed images may 366 

miss some flooding due to temporal sampling. 367 

Overall exposure estimates are remarkably similar between the remotely sensed flood extents and the best estimate 368 

from the forecast, with 126k people flooded in the remote sensing and 171k flooded by the forecast model best 369 

estimate (Total exposure at the end of Table 3). This 26% difference is even smaller at 21% when only districts 370 

with over 1000 people flooded are considered (in general, we might expect small-scale flooding to be more 371 

difficult to simulate with the inundation model and more sensitive to GloFAS return period errors). However, this 372 

overall similarity averages substantially greater differences at the district scale. The three most exposed districts 373 

have differences below 30%, however the 4th most exposed district (Phalombe in Malawi) is not captured by the 374 

best estimate and the reasonable worst case scenario presented in Table 3. GloFAS does not forecast flooding this 375 

far north in any ensemble member. However, the flood hazard layers can simulate the observed flooding (See 376 

Supplementary figure S5 and table S2) and would have returned exposure had GloFAS forecast the flooding. 377 

Exposure is greater in the forecast for the fifth most exposed district (Nsanje) where exposure is relatively sensitive 378 

to return period compared to other locations (See Tables S2 and S8), and a 1 in 5 year return period forecast would 379 

have returned values similar to the remote sensing. Note that the remote sensing may also underestimate in urban 380 

and vegetated areas because the water surface is obscured from the sensor by surface artefacts (e.g. vegetation 381 

and buildings) (Shen et al., 2019). Underprediction by the forecast model is also seen, for example in Mulanje, 382 

where greater return periods than the best estimate are a closer match to the remote sensing.  383 

 384 

 385 

 386 
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Table 3: Summary of exposure estimates from remotely sensed data and GloFAS forecast on the day of landfall by 387 
district. From left to right showing the district name, best estimate (BE) return period from GloFAS, reasonable worst 388 
case scenario (RWC) from GloFAS, Population exposure to remote sensing data (taking the maximum over all images), 389 
and forecast population exposure given GloFAS return period and Fathom flood hazard layer. Forecast return period 390 
is not reported if below 1 in 5 year. 391 

District Name 

Return period 

estimated from 

GloFAS 

Max 

exposure 

from 

observed 

extents 

Population exposure from combined 

GloFAS return period and flood hazard 

layer 

 BE RWC BE Diff % RWC Diff % 

Mutarara  1in200 1in500 19353 26773 -27% 28073 -31% 

Morrumbala 1in200 1in500 16380 15787 3.8% 18663 -12% 

Nicoadala 1in500 1in1000 15361 15391 -0.19% 18462 -16% 

Phalombe   14938 0  0  

Nsanje 1in200 1in500 8625 18303 -53% 20075 -57% 

Namacurra - Namacurra 1in500 1in1000 6830 4406 55% 4947 38% 

Mulanje 1in20 1in50 5599 919 509% 1427 292% 

Inhassunge 1in500 1in1000 4922 733 571% 807 509% 

Milange - Rio Shire 1in20 1in50 4860 1117 334% 1625 199% 

Cidade De Quelimane 1in500 1in1000 4243 33439 -87% 36871 -88% 

Chikwawa 1in20 1in50 4144 25727 -83% 31613 -86% 

Maquival 1in500 1in1000 3952 614 543% 770 413% 

Zomba   3703 0  0  

Maganja Da Costa 1in200 1in500 3190 4987 -36% 6698 -52% 

Chinde   1950 0  0  

Namacurra - Rio Lucungo 1in200 1in500 1714 3375 -49% 4484 -61% 

Mopeia  1in500 1in1000 1522 3069 -50% 3304 -53% 

Total   121286 154640 -21% 177819 -31% 

Other (<1000 exposed)1   4926 16837 -241% 17558 -256% 

Total 126213 171477 -26% 195377 -35% 

1. Other (exposure below 1000) are: Mopeia - Zambezi Region, Caia - Zambezi Region, Caia - Not Zambezi, 392 

Molumbo - Zambezi Region, Chiradzulu, Thyolo, Luabo, Mutarara - Zambezi Region, Mocubela, Doa - Zambezi 393 

Region, Chemba - Zambezi Region, Marromeu - Zambezi Region, Cheringoma - Inland Reg, Blantyre, Doa - Not 394 

Zambezi, Muanza - Coastal Region, Pebane, Mocuba - Rio Licungo, Cheringoma - Coastal Re, Derre 395 

4 Discussion and conclusions  396 

Here we attempt to synthesise the results above into a set of plain language statements about the exposure forecasts 397 

that aim to be a useful starting point for interpreting the outputs in a practical setting. This is organised by initially 398 

presenting some general observations before breaking down using our five research questions. 399 

Firstly, it is misleading not to consider the ensemble - uncertainty dominates the messaging in all forecasts even 400 

after landfall. Low probability but high impact ensemble members are seen in most forecasts, along with ensemble 401 
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members that indicate little or no flooding of people. Despite the importance of uncertainty, a key limitation of 402 

the methods used here is that the ensemble only considers uncertainty in the rainfall from the ECMWF forecast 403 

ensemble. Other sources of uncertainty, especially in the population data, hydrological modelling and inundation 404 

extents, are likely to be important and may generate biases irrespective of lead time and the forecast. 405 

The first half of the results set out to describe how the forecast exposure typically changed with lead time for 406 

recent landfalling tropical cyclones in East Africa, and the implications of this for the identification of exposure 407 

hotspots, particularly with respect to the degree of forecast spatial aggregation.  408 

How does forecast exposure typically change with lead time for recent landfalling tropical cyclones in East 409 

Africa? 410 

The number of people forecast to be flooded and their location could change substantially with lead time. 411 

Therefore, the number of people exposed and the locations of the exposure should probably not be disseminated 412 

to untrained users for forecasts with lead times greater than 2 days. However, the information might be useful to 413 

expert forecasters if considered in the context of past forecasts. With the number of forecasts analysed here, it is 414 

not possible to qualitatively analyse forecast skill, however most of the forecasts we analysed were informative 415 

in that range of forecast exposures bracketed the day after landfall forecast exposure. The exception is the second 416 

landfall of Freddy, where the exposure grows rapidly as the forecast date moves closer to landfall, with early 417 

forecasts (2-5 days ahead) substantially underestimating exposure. Forecasters should consider the possibility that 418 

exposure forecasts could be misinformative. This discussion was often undertaken by the forecast team during a 419 

daily telecon (Steps 2 and 3 in Figure 1) and relied on expert judgement from the meteorological forecasters and 420 

often some comparison with other forecast centres. For example, if the UK Met Office or US Global Forecasting 421 

System had different track predictions, the possibility of forecast bias or substantial error often delayed the 422 

decision to issue a bulletin until there was greater confidence.     423 

What implications does lead time have for the identification of exposure hotspots, particularly with respect to the 424 

degree of forecast spatial aggregation? 425 

The decision to make a forecast of the most impacted locations was intrinsically linked to the degree of 426 

aggregation in specifying that location, e.g. it’s possible to specify the most exposed locations but there needed 427 

to be a suitable levels of spatial aggregation for this to be reliable. Districts in Mozambique and Malawi were 428 

large enough to identify the majority of the most exposed districts 1-2 days before landfall for the events we have 429 

analysed. However, the smaller districts in Madagascar meant that the aggregated exposures tended to change 430 

substantially right up to landfall. Drilling down further to individual towns and cities will add further uncertainty, 431 

however as a few urban areas tended to dominate the exposure estimates the exposure forecast for individual cities 432 

often looks very similar to the district level exposure estimates in terms of most exposed locations. We found that 433 

a degree of expert judgement and interaction with the stakeholders was needed to decide on the level of forecast 434 

aggregation, and insights from meteorologists regarding the storm track were also crucial. Exposure hotspots were 435 

dominated by urban areas on floodplains, which could be identified by the hazard mapping in advance of making 436 

forecasts, as a precursor to responding to an event.  437 

The second half of our results compared exposure and inundation forecasts to estimates from open-source remote 438 

sensing data, discussed some challenges with comparing the data sources and highlighted some principal 439 

limitations of the forecasting approach. Overall, our comparison between the remote sensing and forecast 440 
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inundation shows a hugely complex set of results, with a more complete description of that complexity provided 441 

in the supplement.  442 

How similar are the exposure and inundation forecasts between data sets? 443 

The forecast model can both over- and under-predict the observed flooding given by remote sensing at the district 444 

scale. However, the overall spatially aggregated exposure estimates are surprisingly similar. Forecast exposure 445 

mapping could perform well against remote sensing, but substantial uncertainty over forecast return period (likely 446 

in GloFAS and the inundation model) means that the return period forecast was rarely an accurate match to the 447 

remote sensing. However, the remotely sensed exposure usually sat within the range of the return periods 448 

simulated by the hazard model. Attempting to forecast return period and associated exposure was therefore 449 

spuriously precise for the event we analysed. However identifying the most exposed districts and the range of 450 

exposures that might occur in those was able to yield exposure information that was consistent with the post 451 

landfall remote sensing, although our analysis of lead time suggests that this was only possible 1-2 days before 452 

landfall for the event we have analysed.  453 

To what extent is this comparison problematic given uncertainties in peak flood timing and event duration? 454 

Making a like-for-like comparison of the inundation modelling and remote sensing was highly problematic in this 455 

context because the inundation event is not simulated dynamically. Remote sensing shortly after landfall showed 456 

evidence of flooding in areas the flood model considers as pluvial flooding (technically catchments with <6 hours 457 

time to concentration or < 50km2) and we also expect these images to include locations where the flooding has 458 

already occurred and receded, and locations yet to flood given the large scale nature of the analysis. Remote 459 

sensing is widely used for post landfall flood detection, however our results suggest that a combined approach 460 

considering both forecast and observed inundation extents might be useful. This would aim to fill gaps in the 461 

remotely sensed data, especially in urban and vegetated areas, and where flooding has receded on smaller reaches. 462 

Similarly, the return periods estimated from the inundation model and GloFAS were highly uncertain and 463 

matching of the inundation model data to remote sensing might substantially reduce uncertainty or rule out some 464 

ensemble members.  465 

Are there obvious limitations of the forecasting approach that should be communicated to the end user? 466 

Our inundation forecasting method can break down at confluences of large rivers where the water level response 467 

to the tropical cyclone is less extreme than that on smaller tributaries, the Zambezi being particularly obvious in 468 

this case. Independent simulations of the river flooding on the main river and its tributaries, or a fully dynamic 469 

simulation of river flows from each ensemble member that captures river-river compounding effects, are needed. 470 

A simple hazard map lookup system, as used here, should be expected to perform poorly where there is substantial 471 

compounding between a large river and its tributaries, regardless of the skill of GloFAS on individual rivers. One 472 

solution would be to implement a dynamic model run of the inundation model. However, this is difficult because 473 

dynamic simulations would need to be run for each (or many) ensemble members to capture the forecast 474 

uncertainty from GloFAS. This may i) prove to be computationally expensive if 30m resolution is maintained, 475 

and ii) be difficult to implement operationally because robust code is needed to run in real time along with reliable 476 

access to computing resources.  477 

Practical considerations are especially relevant when the forecasting method is considered in a humanitarian 478 

context. The fluvial forecasting approach used here requires no real-time computing and, if well organised, could 479 

be designed to run on a standard desktop machine. If population exposure at districts is the key output, a lookup 480 
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table approach could even be used with the GloFAS web portal. Taking a dynamic approach to the simulations 481 

likely requires an operational forecasting centre to adopt and maintain the inundation modelling component. We 482 

know of no operational global inundation model that forecasts with the resolution used here at this time.  483 
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