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Abstract:

New observations obtained in 2021 and 2022 are presented and used to investigate the
trend of the carbonate system (including pH; and aragonite saturation state, €2,,) in the southern
sector of the Mozambique Channel. Using historical and new data in April-May we observed an
acceleration of the acidification ranging from -0.012 decade™ in 1963-1995 to -0.027 (+0.003) decade”
'in 1995-2022. Result from a neural network (FFNN) model for all seasons also suggests faster pH
trend in recent decades, -0.011 decade ™ over 1985-1995 and -0.018 decade ™ over 1995-2022. In May
2022 we estimated ,, of 3.49, about 0.3 lower than observed in May 1963 (Q2,, = 3.86). The lowest
Q.. value of 3.23 was evaluated from the FFNN model in September 2023 that corresponds to the
hypothetical critical threshold value (3.25) for coral reefs. In 2025 a marine heat wave was observed
in this region (sea surface temperature up to 30°C) and data from a BGC-Argo float indicate that sea
surface pH was the lowest in January 2025 (pH; = 7.95) whereas Q,, was the lowest in Mach 2025
(Qar = 3.2). A projection of the C; concentrations based on observed anthropogenic CO, in subsurface
water and future anthropogenic CO, emissions scenario, suggests that a risky level for corals (QQ,, < 3)
could be reached as soon as year 2034.

Keywords: Ocean Acidification, Decadal Trend, Mozambique Channel
1 Introduction:

The ocean plays a major role in reducing the impact of climate change by absorbing more than 90%
of the excess heat in the climate system (Cheng et al., 2025; Forster et al 2025) and about 25% of
human released CO, (Friedlingstein et al., 2025). The oceanic CO, uptake also changes the chemistry
of seawater reducing its buffering capacity (Revelle and Suess, 1957) and leading to a process known
as ocean acidification (OA) with potential impacts on marine organisms and ecosystems (Fabry et al.,
2008; Doney et al., 2009, 2020; Gattuso et al, 2015; Schonberg et al, 2017; Cornwall et al, 2021).
Global ocean models or Earth System Models predict that, due to future anthropogenic CO,
emissions and global warming, the sea surface pH could decrease by 0.4 and aragonite saturation
state (Qar) could be as low as 3 in the tropics by 2100 (Hoegh-Guldberg et al, 2007; Kwiatkowski et
al, 2020; Jiang et al, 2023; Findlay et al, 2025). However, current global ocean models cannot fully
replicate observations and not yet simulating all processes that govern ocean acidification (e.g.
seasonal cycles of C; and Ay, accumulation of C,, etc...). Long-term observations of the carbonate
system are needed to compare and validate model results (Tilbrook et al, 2019).

The first estimate of the decadal pH change based on CO, fugacity (fCO,) observations in the
global ocean (using SOCAT data, Bakker et al, 2014) suggests a decrease of pH ranging between -
0.003 decade™ (+0.005) in the North Pacific and -0.024 decade™ (+0.005) in the Indian Ocean over
1981-2011 (Lauvset et al, 2015). Reconstruction methods also based on SOCAT observations
evaluated a global ocean decrease of pH in surface waters of -0.0181 (+ 0.0001) decade™ (lida et al,
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2021), -0.0166 (+ 0.0010) decade™ (Ma et al, 2023) and -0.017 (+ 0.004) decade™ (Chau et al, 2024).
These studies also highlighted the regional differences of the pH and aragonite saturation state (Qar)
trends. This calls for dedicated studies at regional scale in order to better interpret the inter-annual
to multi-decadal changes of the oceanic carbonate system as the trends and associated uncertainties
depend on the data available. Compared to other basins, observations are sparse in the Indian Ocean
(Lauvset et al, 2015; Bakker et al, 2016, 2024). However, thanks to a new cruise conducted in 2019, it
has been shown that the Mozambique Channel experienced an acceleration with respect to ef the
acidification in recent years, a pH trend of -0.023 decade™ (+0.005) over 1995-2019 (Lo Monaco et
al, 2021). In a more recent analysis Chakraborty et al (2024) used several methods, including a high
resolution model dedicated to the Indian Ocean and found an acceleration of the pH trend of -0.011
(+0.00) decade™ in 1980-1989 to -0.019 (+0.004) decade™ in 2010-2019. Both studies concluded that
strengthening of acidification trend was mainly driven by ocean CO, uptake.

In this study, we present new data obtained in January 2021 and April-May 2022 in the
Mozambique Channel and used the results of a FFNN model (Chau et al, 2024) extended to 2023 to
explore the decadal trends of the carbonate system over 1963-2023. We also use these data to
validate a projection of the acidification in the near future. To highlight CO, source anomalies when
the ocean was exceptionally warm, results from a BGC-Argo float in the Mozambique Channel in
2024-2025 are also presented.

2 Data selection and methods

2.1 Data selection

To explore the long-term change of the carbonate system in this region, we selected the fCO,
SOCAT data, version v2024 (Bakker et al, 2016, 2024). With recent cruises conducted on-board the
ship Marion-Dufresne in January 2021 (OISO-31) and April-May 2022 (RESILIENCE) this includes 10
cruises in the Mozambique Channel (Table 1 and Figure 1). Some of these cruises were previously
described to analyze the distribution air-sea CO, fluxes and pH changes in the Mozambique Basin and
the African coastal zone (Metzl et al, 2025b). Here we focus on the data obtained in the southern
Mozambique Channel. To complete the shipboard data after 2022 we also used data from a BGC-
Argo float (WMO ID 7902123) that was launched onboard R/V Sonne in the Mozambique Channel in
late 2024. During some cruises (2004, 2019 and 2021) continuous underway A; and C; measurements
were also performed (data available in Metzl et al, 2025a). These A; and C; data are used to compare
and validate results of the pH trends based on fCO, data.
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Table 1: List of cruises in the Mozambique Channel from SOCAT-v2024 (Bakker et al, 2024).

EXPOCODE Month Year Reference or Principal Investigator
31AR19630216 5 1963 Keeling and Waterman (1968)
316N19950611 6 1995 Key, R.

33R019990211 2 1999 Wanninkhof, R.

49NZ20031209 12 2003 Murata, A.

35MF20040106(a) 2004 Metzl (2009)

1
06BE20140710 7 2014 Steinhoff, T., Koertzinger, A
33R020180423 4 2018 Wanninkhof, R., Pierrot, D.
35MV20190405 (a) 4 2019 Lo Monaco et al. (2021)
35MV20210113 (a) 1 2021 Metzl et al. (2025b)
35MV20220420 4 2022 Metzl et al. (2025b)

(a) For these cruises underway A; C; data available at https://doi.org/10.17882/102337

Figure 1: Left: Tracks of cruises in the Mozambique Channel in the SOCAT data-base, version v2024
(Bakker et al., 2016; 2024). This includes recent OISO-31 and RESILIENCE cruises in 2021 and 2022.
Color code is for Year. Black circles identified the coral reefs locations. Right: Tracks of cruises near the
coral reefs area. Figures produced with ODV (Schlitzer, 2018).
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2.2 Methods

The methods for surface underway fCO, and A; C; measurements were described in previous
studies (e.g. Lo Monaco et al, 2021). For fCO, measurements during OISO-11 (2004), CLIM-EPARSES
(2019), OISO-31 (2021) and RESILIENCE (2022) cruises, sea-surface water was continuously
equilibrated with a "thin film" type equilibrator thermostated with surface seawater (Poisson et al.,
1993) and xCO2 in the dried gas was measured with a non-dispersive infrared analyzer (NDIR,

Siemens Ultramat 6F). Standard gases for calibration (around 280 ppm, 350 ppm and 490 ppm) were
3
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measured every 6 hours. The sea surface temperature (SST) and equilibrium temperature were
measured using SBE21 and SBE38 probes (accuracy 0.002°C) respectively. During the RESILIENCE
cruise the difference of SST and equilibrium temperature was on average +0.088 +0.066 °C (n= 6416).
For all cruises, the sea surface salinity (measured with SBE21) was regularly checked with discrete
samples and has been corrected if some drift was observed. The fCO, in situ data were corrected for
warming using corrections proposed by Copin-Montégut (1988, 1989). Note that when incorporated
in the SOCAT data-base, the original fCO2 data are recomputed (Pfeil et al., 2013) using temperature
correction from Takahashi et al. (1993). Given the very small difference between equilibrium
temperature and sea surface temperature, the fCO, data from SOCAT used in this analysis (Bakker et
al., 2024) are almost identical (within 1 patm) to the original fCO, values.

During 3 cruises, in January 2004 (OISO-11), April 2019 (CLIM-EPARSES) and January 2021
(0ISO-31), A; and C; were measured continuously in surface water using a potentiometric titration
method (Edmond, 1970) in a closed cell. For calibration, we used the Certified Referenced Materials
provided by Pr. A. Dickson (SIO, University of California). Based on repeatability from duplicate
analyses of continuous sea surface sampling at the same location (when the ship was stopped) we
estimated the accuracy for both A; and C; better than 4 umol.kg'1 (Metzl et al, 2025a). The A; and C;
data for these cruises are available at the Seanoe platform (https://doi.org/10.17882/102337). These
data offered comparisons and validation for the calculations of the carbonate system properties
using fCO, data and A;/Salinity relationship.

2.3 Carbonate system calculation and A;/Salinity relationship

When two of the carbonate system properties are measured (here either fCO,, A; or C;) they
can be used to calculate other species and the saturation state of aragonite (Q2,,). Here we used the
CO2sys program (version CO2sys v2.5, Orr et al., 2018) with K1 and K2 dissociation constants from
Lueker et al. (2000) and KSO4 constant from Dickson (1990). The total boron concentration is
calculated according to Uppstrom (1974). When using fCO, data to derive pHy (pHy for Total Scale) or
C:, one needs A; concentrations that can be derived from salinity (e.g. Millero et al, 1998). Here we
used the A;/Salinity relationship adapted to the Mozambique Channel (Lo Monaco et al, 2021).

A (umol.kg-1) = 73.841 (+ 1.15) * SSS — 291.02 (+ 40.4) (n= 548, r’= 0.88) (Eq. 1)

2.4. CMEMS-LSCE-FFNN model

The fCO, data are not available each year and only for few seasons (Table 1). To complete the
observations we used the results from an ensemble of feed-forward neural network model (CMEMS-
LSCE-FFNN or FFNN for simplicity here, Chau et al., 2024). Based on the SOCAT gridded datasets this
model composes surface ocean carbonate system fields at 0.25 x 0.25 square degree resolution and
monthly scale. The reconstructed fCO, is used to derive monthly surface C;, pH; and aragonite and
calcite saturation states, as well as air-sea CO, fluxes. A full description of the model is presented in
Chau et al (2024) and the datasets including uncertainties are available under the DOI
https://doi.org/10.48670/moi-00047.

3 Results and discussion

3.1 A Repeated line in 2019 and 2022

In April 2019 and 2022 underway measurements were conducted for fCO,. The
measurements of A; and C; were also performed in 2019. The tracks of the cruises enabled to select
the data obtained along the same track and for the same season in the southern Channel in order to
compare the observations three years apart (Figure 2). Given the variability observed around Europa
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Island and the front identified at 22.5°S in April 2019 (Figure 2) the data were averaged in the band
23°-26°S. The mean values over the same latitudinal band (23-26°S) show significant differences
between 2019 and 2022 (Table 2). In 2022 the ocean was slightly colder and saltier. Consequently, A;
concentrations were also higher in 2022 but the salinity normalized A; (N-A; normalized at salinity
35) were the same with a difference of +1.1 pmol.kg™. As expected, due to the CO, uptake, the
oceanic fCO, and C; concentrations were higher in 2022 and pH; was lower. The increase of oceanic
fCO, over 3 years (+7.9 patm) was almost the same as in the atmosphere (+7.0 patm). At constant Ay,
salinity and temperature, the observed fCO, change would translate in an increase of +4.4 pmol.kg™
for C; when we observed an increase of +18 pmol.kg™ (Table 2). We interpret this difference as being
due to the regional circulation. In April 2019 southward currents would import low C; and A; whereas
in April 2022 northward currents would transport colder and saltier waters with higher C; and Ar.
This reversed circulation is confirmed with the ADCP data recorded during the cruises as well as from
the geostrophic currents (Metzl et al, 2022; Ternon et al, 2023).

For pHy, the decrease of -0.005 over three years, i.e. -0.0017 yr™, is surprisingly close to what
is generally observed at global scale and over several decades (-0.0017 +0.0004.yr”, Chau et al,
2024). Finally, we note that the difference between 2019 and 2022 measurements is much higher
than that obtained when comparing measured and calculated A; C; values (Table 2). This confirms
the use of fCO, data and adapted A;/S relationship to derive the carbonate system properties in this
region (Lo Monaco et al, 2021; Metzl et al, 2025b), and to explore the seasonal cycles and long-term
trends described in the next sections.

Table 2: Mean values of underway sea surface observations and their difference obtained along the
same track in 2019 and 2022 in the region 23-26°S (see Figure 2). Nb is the number of data. Standard-
deviations are in bracket. For 2019 (CLIM-EPARSES cruise), the results from underway AC;
measurements are listed allowing calculation of fCO, and pH based on the A;-C; pairs which permit
comparisons with those derived from fCO, measurements.

Cruise Period Nb SST SSS Ar C fCO, pHy Atm. xCO2

°C - umol.kg™ patm TS ppm
RESILIENCE fCO, 282 26.765 35.423 2324.6 2002.0 394.8 8.047 414.7
April 2022 (0.608) (0.048) (3.6) (5.0) (3.4) (0.003)

CLIM-EPARSES fCO, 294  27.497 35.288 2314.7 1984.0 386.9 8.053 407.5
April 2019 (0.341) (0.084) (6.2) (7.5) (4.9) (0.004)

CLIM-EPARSES A+-C; 70 27.401 35.272 2314.2 1986.1 389.7 8.050

April 2019 (0.390) (0.099) (6.7) (8.8) (7.4) (0.006)
Difference Method 2019 +0.096 +0.016 +0.5 -2.1 -2.9 +0.002
Difference 2022-2019 -0.732 +0.135 +10.0 +18.0 +7.9 -0.005 +7.2
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Figure 2: Distribution of measured fCO, (uatm), calculated C; (umol/kg) and calculated pHy (TS) along
a repeated track in April 2019 (blue) and April 2022 (red) in the southern Mozambique Channel. The
dashed red line is for atmospheric fCO, in 2022. The underway C; measurements in 2019 are also
shown (open circles) as well as pHr calculated using measured A; and Cr. Average values for the
latitudinal band 23-26°S are presented in Table 2.
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3.2 Seasonal variations

In the Mozambique Channel, where SST presents large seasonal variations (up to 4°C), fCO, is
mainly controlled by temperature like in the Indian subtropics (e.g. Metzl et al 1998; Takahashi et al,
2002; Bates et al, 2006). In this region, observations are not available for all seasons (Table 1) but the
seasonal range derived from the climatology (Fay et al, 2024) or the FFNN model (Chau et al, 2024) is
coherent compared to the data (Figure 3, Figure S1). The observations and the models indicate that
between January and July fCO, decreases by about 50 patm while pH; increases (0.03 to 0.04 units).
This is a large signal compared to the expected decadal change (about +20 patm.decade™ for fCO,
and -0.017.decade™ for pHy); therefore, to derive and interpret the trends, data have to be selected
for the same season. As opposed to fCO,, C; presents lower concentrations in February-April and
higher ones in July-August (Figure 4). When the mixed-layer depth (MLD) is shallow in December-
March the decrease of C; is probably linked to biological activity but this is not clearly quantified (Lo
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Monaco et al, 2021). The progressive C; increase of about +30 pmol.kg™ from March to August is
likely driven by vertical mixing when MLD is deeper in austral winter (Figure 4).

This seasonality was well observed from repeated measurements at stations located along
25°S in June 1995 and December 2003 (Figure S2). In June 1995 when the MLD reached 80 m, C;
concentrations were homogeneous within the MLD layer. The same was true for the anthropogenic
CO, concentrations (C,.;) here evaluated using the TrOCA method (Touratier et al. 2007). On the
opposite, in December 2003, when the MLD was shallower, C; presented a sharp increase within the
subsurface layer whereas C,,; concentrations were unrealistic in surface seawaters. Although from
1995 to 2003 the C; concentrations would increase by around +7 umol/kg due to the anthropogenic
CO, uptake in that region (Murata et al, 2020; Metzl et al, 2025b), N-C; (normalized C; at salinity 35)
in June 1995 were almost the same as in December 2003 coherent with the seasonal cycle derived
from the climatology (Figure 4).

The seasonal variations of fCO, and pH; in the Mozambique Channel appear thus linked to
both temperature and mixing process with competition between the two drivers (Figure S3). In
addition to the rising atmospheric CO,, these two processes probably also drive inter-annual, decadal
and long-term change of fCO, and pHy in the region as the Indian Ocean experienced a pronounced
warming (Cheng et al.,, 2025). Specifically, in the southern Mozambique Channel the SST has
increased by +0.11 + 0.009 °C per decade since the 1960s (Figure S4), a signal that should be taken
into account when interpreting the decadal trends of carbonate properties and CO, fluxes. In January
2025 the SST anomaly reached +1.6°C at 25°S in the Channel.

Figure 3: Seasonal cycle of (a) fCO, (uatm) and (b) pHr in the southern Mozambique Channel (24-
30°S). Average observations are presented for each cruise (colored circles). The full seasonal cycles
are shown for the monthly climatology (reference year 2010, Fay et al, 2024) and for the FFNN model
for years 2010 and 2022 with respective error bars.

430

—+—Clim
a0 L FFNN-2010
— +— FFNN-2022
= ®  Obs.Jan. 2004
0Obs. Jan. 2021

Obs. Apr. 2018
Obs. Apr. 2019

fCO, (patm)

Obs. Apr. 2022

Obs. May 2022

Obs. Jul. 2014
Obs. Dec. 2003

8,11

—t—Clim
8,10
FFNN-2010

809 — — FFNN-2022
8,08 o Obs
8,07 ® Obs. Jan. 2004

Obs. Jan. 2021

T 506 = <
4
Obs. Apr. 2018
8,05 — 5. Apr
-

cos 1 _ - Obs. Apr. 2019
. - Obs. Apr. 2022
£,03 [

8,02

8,01 (b) Obs. Dec. 2003

Obs. May 2022

Obs. Jul. 2014




340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

Figure 4: Seasonal cycle of Cr (umol.kg™) in the southern Mozambique Channel (24-30°S). Average
observations are presented for each cruise (colored circles). The full seasonal cycles are shown based
on the monthly climatology for a reference year 2010 (Fay et al, 2024) and the FFNN-LSCE model for
year 2010 (Chau et al, 2024). The mixed-layer depth (MLD in m, blue line) is averaged in this region
(from multi-year reprocessed monthly data, ARMOR3D L4, https://doi.org/10.48670/moi-00052, last
access 20/4/2025).
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3.3 Trends in the Southern Mozambique Channel (1963-2023)

In this region, the ocean is a permanent CO, sink leading to a gradual increase of C;
concentrations and decrease of pHy. The air-sea CO, flux derived from the FFNN model is on average
-0.249 (+0.063) molC.m™2.yr! (Figure 5) in the range of the climatology (-0.3 molC.m™.yr™, Fay et al,
2024). The FFNN model also suggests that the sink reinforced over 2016-2021 with a perceptible
faster increase of C; (Figure S5).

Figure 5: Time-series of air-sea CO; flux (black, negative for ocean sink) and C; concentration (red)
averaged in the southern Mozambique Channel (24-30°S) based on the FFNN-LSCE model over 1985-
2023. For Cy, the result is presented with a 36-month running mean. Also shown is the climatological
value of the flux for year 2010 in this region (red circle, Fay et al, 2024).
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3.3.1 Decadal trend from fCO, and A; C; data: January 2004 and 2021

We started the analysis of the decadal change by comparing observations obtained in
January 2004 and 2021 when data were available for both underway fCO,, A; and C; measurements.
The comparison is focused along the tracks occupied in the same region (27-29°S/40-43°E, Figure 6,
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Table 3). For both cruises the differences between measurements and calculations are in the range of
the errors in the CO2sys calculations (errors on measurements and constants Ky, K,, Orr et al., 2018).
For example, in January 2004 the pH; calculated with A; and C; measurements was 8.069 against
8.064 when using the fCO, data and the A;/S relationship. In 2021 the pH; were respectively 8.030
and 8.032 (Table 3). For C; the difference between calculated and measured C; was only 4.4 umol.kg"
in 2004 and -1.9 pumol.kg™ in 2021 when the observed increase over 17 years is around 28 pmol.kg’
!, We noticed that in 2021, the properties present a high variability along the track linked to the
presence of eddies. The C; and A; concentrations could vary by about 20 to 40 pmol.kg™ at meso-
scale but this has a small impact on calculated fCO, and pHy, and when properties are averaged along
the track (Table 3). For both periods the ocean fCO, was close to atmospheric CO,, i.e. near
equilibrium (fCO,°***"-fCO,*™ = AfCO, = -0.04 +3.11 patm in 2004 and 0.37 +10.04 patm in 2021).
Although there were some differences of pH; calculated from the two data-sets (underway fCO, or A;
C; data), the estimated pH; change of -0.032 or -0.040 over 17 years was large compared to the
uncertainty of the CO2sys calculation. This would correspond to a pHy trend varying between -0.0019
and -0.0023.yr™. This comparison of observations in January 2004 and 2021 supports the use of the
selected A;/S relationship for pH calculations based on all fCO, data available over 1963—-2023 in
order to explore the long-term trend described in the next section.

Table 3: Mean values of underway sea surface observations and their difference obtained in the
same region (27-29°S/40-43°E) in January 2004 and 2021. Nb is the number of data. Standard-
deviations are in bracket. The results are presented for both methods (underway fCO, or A+-C;
measurements) and fCO,, pH; calculated with A-C; pairs compared with those derived from fCO,
measurements. The last lines are the difference for 2021 minus 2004 and errors associated to the
measurements or calculations (*).

Cruise Method Nb SST SSS Ar C fCO, pHy Atm. xCO,
Period °C - umol.kg™ patm TS ppm
0OISO-11 fCO, 140 27.293 35.282 2314.2 1978.5 374.7 8.064 374.8
January 2004 (0.331) (0.050) (3.7) (6.7) (3.2) (0.002)

OISO-11 A+-C; 30 27.516 35.248 2315.4 1974.1 368.7 8.069

January 2004 (0.609) (0.042) (7.2) (9.8) (7.6) (0.007)

0IS0-31 fCO, 102 27.825 35.508 2330.9 2006.8 412.5 8.032 412.2
January 2021 (0.793) (0.118) (8.7) (14.1) (10.0) (0.008)

OISO-31 A-C 17 27.916 35.515 2326.9 2003.5 414.4 8.030

January 2021 (0.678) (0.139) (9.6) (18.7) (21.2) (0.017)

Difference 2021-2004

Underway fCO, 0.532 0.225 16.7 283 37.8 -0.032 374
Underway A-C; 0.400 0.267 11.5 29.4 45.7 -0.040
Error using fCO, 001 0.01 4 73% 2 0.014*
Error using A-C; 001 0.01 4 4 13.9* 0.007*
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Figure 6: Distribution of measured or calculated Cr (a, umol kg®), A; (b, umol kg™), fCO; (c, patm) and
pH; (d) along the same track in January 2004 (black symbols) and January 2021 (grey symbols).
Values derived from fCO, measurements are in filled symbols/lines, those from the A; C;
measurements in open symbols/dashed lines. In (c) the red lines represent the atmospheric CO, in
2004 and 2021. Average values and their differences are presented in Table 3.
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3.3.2 Multi-decadal trends from fCO, data (1963-2023)

For long-term trends, we used fCO, observations and observations-based reconstructions
averaged in the region 24-30°S (Table 4). As the observations are not available for all seasons, we
selected the period April-May to calculate the trends from the data (same season for the first and the
last cruises in 1963 and 2022) whereas the FFNN model offers information for all seasons. Back in the
1960s, the observations in 1963 indicate that the ocean was a CO, sink in May (Figure 7a), the value
of AfCO, = -32.2 patm being almost the same as observed in May 2022 (AfCO, = -32.5 pam). This
suggests a strong link between ocean and atmospheric fCO, (Figure S6).

For the first observational period, the changes between 1963 and 1995 indicated a pH;
decrease of -0.040. Over 32 years this pH; change was driven by the C; increase (effect on pHq= -
0.045), the Ay increase (effect on pHy= +0.012) and the warming of 0.95°C (effect on pH.= -0.015).
Between 1995 and 2022 the observed decrease accelerated to -0.0027 (£0.0003) yr' (Table 4). In
contrast, the neural network suggested smaller pH; trends. However, as in the observations, the
annual pH; change from the model was faster in recent decades (-0.0018 yr™ over 1995-2022 against
-0.0011 yr* over 1985-1995, Table 4). The model also suggested different trends depending on the
season. The pHy trend appeared indeed faster in July (when the ocean CO, sink is stronger) than in
January or April (Table 4).

The new data in 2021 and 2022 and the FFNN model extended to 2023 confirmed a previous
analysis in the Mozambique Channel (Lo Monaco et al, 2021) with a pH; trend of -0.0023 yr™
(£0.00048) over 1995-2019. Our new results in the southern Mozambique Channel are also in the
range of the pH; trends previously evaluated at basin scale in the Indian Ocean, -0.0027 yr™ (+0.0005)
over 1991-2011 (Lauvset et al, 2015). High resolution ocean models applied to the northern Indian
Ocean also suggest an acceleration of the acidification, with pH; trend reaching -0.0019 yr™ (+0.0004)
in 2010-2019 (Chakraborty et al, 2024), somehow lower than our estimate based on observations at
regional scale in the Mozambique Channel (-0.0027 yr* +0.0003 in 1995-2022, Table 4).
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Table 4: Trends of properties in the southern Mozambique Channel derived from observations and the FFNN
model. For observations, the trends are evaluated for April-May season only (based on few data-points
identified as red circles in Figure 7). For FFNN, trends are estimated for all seasons or only for January, April,
May and July. Standard-deviations are in bracket.

Method Period fCo, Cr A; pH:
-1 -1 -1
patm.yr umol.kg.yr TS.yr
Obs April-May  1963-1995 1.11 0.91 0.52 -0.0012
Obs April-May  1963-2022 1.84 0.69 0.08 -0.0020
(0.21) (0.20) (0.13) (0.0002)
Obs April-May  1995-2022 2.57 0.49 -0.34  -0.0027
(0.30) (0.52) (0.22) (0.0003)
FFNN annual 1985-2023 1.76 0.99 0.02 -0.0017
(0.05) (0.04) (0.02) (0.0001)
FFNN annual 1985-1995 1.15 1.03 0.00 -0.0011
(0.34) (0.29) (0.08) (0.0004)
FFNN annual 1995-2022 1.84 1.10 0.06 -0.0018
(0.09) (0.07) (0.03) (0.0001)
FFNN January  1985-2023 1.61 0.75 0.00 -0.0015
(0.03) (0.07) (0.05) (0.0000)
FFNN April 1985-2023 1.74 1.01 0.03 -0.0017
(0.03) (0.07) (0.07) (0.0000)
FFNN May 1985-2023 1.71 1.07 0.07 -0.0017
(0.03) (0.05) (0.05) (0.0000)
FFNN July 1985-2023 1.97 1.17 0.04 -0.0020
(0.04) (0.05) (0.02) (0.0000)

The aragonite saturation state (€2,,) was lower during austral summer (July-September). In
May 1963, we estimated an aragonite saturation state of 3.86 (Figure 7c). It dropped to 3.49 in May
2022, a value close to that observed in July 2014 (3.47). The lowest 2, value of 3.23 was identified in
September 2023 from the FFNN model. At that period, Q2,, was lower than 3.3 in the south of 20°S in
the Mozambique Channel (Figure S7). This is close to the hypothetical critical threshold of Q,, = 3.25,
i.e. arisky level for coral reefs in the ocean claimed by Hoegh-Guldberg et al., (2007). Note that there
are reefs know to thrive at Q,, <3.0 like at volcanic CO, seeps in Papua New Guinea (Q,, = 2.41, Strahl
et al 2015; see also review by Camp et al. 2018) but that their species composition and coral cover
are different than at ambient conditions (i.e. €2,>3.3 considering Hoegh-Gulberg et al 2007).
However, Strahl et al (2015) showed that calcification rate seems to vary among coral species,
suggesting take conclusions of Hoegh-Gulberg et al (2007) with caution. With an annual trend of -
0.010.yr™ for Q,, over 1985-2023, a value of 3.3 would be reached in 2060 in summer whereas it was
already observed in 2020 in winter with possible consequences on reef species composition and
functioning (Tribollet al 2009, 2019; Schonberg et al 2017; Camp et al. 2018; Eyre et al. 2018;
Cornwall et al 2021).

Although there are differences depending on the season and the method (in-situ
observations, extrapolation of sparse in-situ observations through a FFNN model) all results suggest
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an acceleration of the acidification in the last few years (Table 4, Figure 7) and a decrease of Q,, that
are mainly driven by the C; increase through continuous ocean CO, uptake (Ma et al, 2023). Given
the rapid change of atmospheric CO, in the recent years (up to +3.77 ppm.yr™ in 2024, Lan et al,
2025) how the carbonate system will change in the near future in this region and will impact corals
reefs that are abundant (from Europa to Mayotte in the Mozambique Chanel) and subject to global
warming, marine heat waves (e.g. Mawren et al, 2022; Alaguarda et al. 2022), ocean acidification,
higher frequency of tropical cyclones and anthropogenic pressures (overfishing for instance), remains
an important question.

Figure 7: Time-series of fCO, (a), pH; (b) and 2., (c) in the southern Mozambique Channel (24-30°S)
based on averaged observations (circles) and the FFNN-LSCE model over 1985-2023. In (a) the red line
represents the atmospheric CO,. Available observations are shown for all seasons but the trends
(Table 4) evaluated using only April-May data (red circles).
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3.4 Projection in the near future

A recent analysis found that the C,.; concentrations in subsurface water in the Mozambique
Basin were positively related to atmospheric CO, with a slope of +0.512 +0.050 umol kg™ patm™
(Metzl et al, 2025b, Figure S8). Here, we assume that this relationship is valid for the southern
Mozambique Channel. To reconstruct the past and future change of the carbonate system properties
we calculated the C; concentration over 1960-2100 by correcting C; for each year using the
relationship between C,.; and atmospheric CO..

CT(t) = CT(t'1)+ Cant(t)'cant(t'l) (EQ- 2)

For future atmospheric CO,, we used two SSP emissions scenarios (Shared Socioeconomic
Pathways, Meinshausen et al., 2020), a “high” emission scenario SSP5-8.5 and a stabilization scenario
SSP2-4.5 (Figure 8a). To explore the change of the aragonite saturation state, we applied this model
(Eq. 2) for August when Q,, is the lowest. Temperature and salinity were fixed from the climatology
in August (SST =22.685 °C; SSS = 35.303) and fCO,, pH; and Q,, were calculated each year with the C;
A; pairs using version CO2sys_v2.5 (Orr et al, 2018). The reconstructed C;, fCO,, pH; and Q,, for
August compared well with the observations (in July) and with the FFNN model in August (Figure 8;
Table S1, Figure S9) indicating that the simulation captured the decadal evolution of the properties.
For the future, differences between the two scenarios (SSP5-8.5 and SSP2-4.5) are pronounced after
2030 (Figure 8). For the high scenario the C; concentrations reaches 2060 umol.kg™ in 2040 and pH+
is as low as 8. In both scenarios, the carbonate ion concentrations dropped below 200 pmol.kg™ in
2028. As noted above, the aragonite saturation state based on observations was 3.47 in July 2014
(Figure 7c and blue symbol in Figure 8d) and the lowest Q, value of 3.23 occurred in August-
September 2023 (from the FFNN model, Figure 7c and 8d). The same is estimated in the projection
(Figure 7d), close to the critical threshold of Q,, = 3.25 for tropical coral reefs.

Figure 8: Time-series of (a) atmospheric and oceanic fCO,, (b) Cr concentrations, (c) pHr and (d) £, in
the southern Mozambique Channel based on a reconstruction for August for two scenario (SSP85,
black line, SSP45 grey lines). Averaged observations (all seasons, July in blue) and the FFNN-LSCE
model over 1985-2023 in August (orange) are also shown.
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As of January 2025, the atmospheric CO, is 426 ppm and 450 ppm should be reached in 2030
in the high scenario SSP5-8.5 (Figure 8a). In a global ocean model it has been suggested that at 450
ppm €, would be around 3 in the South Indian Ocean and the Mozambique Channel, against 4 for
pre-industrial Q,, (Figure 4 in Hoegh-Guldberg et al., 2007). In our simulation, at 450 ppm, Q,, is
equal to 3.13 against 3.8 based on observations in May 1963. Extrapolating our result back in time,
we estimated pH; at 8.18 and Q,, equal to 4 at 280 ppm, close to the pre-industrial value estimated
from dedicated reconstructions (Lo Monaco et al, 2021) or in global ocean models (Hoegh-Guldberg
et al. 2007; Jiang et al, 2023).

Our calculation suggests that for a high emission scenario a risky level for corals (Q2, < 3,
Hoegh-Guldberg et al., 2007) could be reached as soon as year 2034, i.e. in the next 10 years. This
calls for maintaining regular carbonate system observations in this region, if possible at all seasons, in
order to follow at best their evolution and the potential impact on the channel ecosystem and
especially coral reefs in the context of global warming and acidification that will dramatically persist
in the near future.

3.5 A large anomaly observed in 2025

As mentioned above, fCO, data are relatively sparse in the Mozambique Channel and should
be obtained for all seasons. To complete the shipboard observations, biogeochemical (BGC) Argo
floats have been developed and successfully used for 10 years for air-sea CO, flux estimates and/or
acidification especially in the Southern Ocean in the frame of the SOCCOM project (e.g. Sarmiento et
al, 2023; Mazloff et al, 2023; Metzl et al, 2025d). The floats record profiles down to 1000 or 2000 m
at a 10-day frequency. In November 2024, a BGC-Argo float (WMO ID 7902123) was launched in the
Mozambique Channel at 38.51°E/22.65°S (last profile used here recorded on 4th May 2025). The
fCO, and Qar from the pH; float data were calculated using CO2sys as for the shipboard data (section
2.3). Interestingly, the float recorded high temperature in January 2025 (up to 29.8°C, Figure 9a), a
signal probably linked to a MHW (Figure S10) that occurred at high frequency in this region (Mawren
et al, 2022). Sea surface temperature from reanalysis products suggests a temperature as high as
31°C in this region in January 2025 (Figure S10). Consequently, the sea surface fCO, derived from the
float pH; data reached values above 480 patm (Figure 9b). This leads to a strong CO, source anomaly,
in line with CO, fluxes anomalies associated to MHW in the South Indian subtropics (e.g. Li et al,
2024). The lowest pH; of 7.95 was recorded on 11% January 2025, i.e. lower than the pH; derived
from the FFNN model (Figure 7b). The aragonite saturation state derived from the BGC-Argo data
reached 3.2 in March 2025, the same as that which we estimate in 2025 from the simulation (Figure
8d). The observations from the BGC-Argo offer important information to complement the shipboard
data and should be used along with SOCAT data to test constraint data-based products.
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Figure 9: Time-series of (a) SST and pHy, and (b) fCO, and £2,, in the southern Mozambique Channel
based on BGC-Argo data (WMQ07902123) in November 2024 to May 2025 (location of data in the
insert map). Data from https.//www.mbari.org/products/data-repository/, last access 9/5/2025.
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4. Summary and concluding remarks

New observations in 2021 and 2022 and historical fCO, data available since 1963 in the
Mozambique Channel were used to evaluate the decadal trends of the carbonate system in this
region. With adapted A;/S relationship for this region, we calculated C; concentrations, pH; and Q.
This calculation is first validated with in-situ A; and C; measurements obtained in January 2004, April
2019 and January 2021. Based on the data in January 2004 and 2021, we found a pH; decrease of -
0.032 (using fCO, data) and -0.040 (using A; C; data) over 17 years. Because the seasonality is large,
the decadal trends based on fCO, observations in 1963-2022 are evaluated for one season only
(April-May). A FFNN model that reconstructed the monthly fields of the carbonate system is also
used to investigate the trends for all seasons, but restricted to the period 1985-2023.

In this region where the ocean is a permanent CO, sink of -0.25 (+0.06) molC.m™2.yr™, fCO,
observations available in April-May translate an acceleration of the acidification ranging from -0.012
decade™ in 1963-1995 to -0.027 (+0.003) decade™ in 1995-2022. Result from the FFNN model for all
seasons suggest smaller pH; trends but, like in the observations, the decrease of pH; was faster in
recent decades, -0.011 decade™ over 1985-1995 and -0.018 decade™ over 1995-2022. The FFNN
model also suggests a faster trend in austral winter when the ocean CO, sink is stronger and when
the aragonite saturation state (€2,,) is low. In May 2022 we estimated Q,, = 3.49, about 0.3 lower
than observed in May 1963 (Q2,, = 3.86). The lowest Q,, value of 3.23 was evaluated from the FFNN
model in September 2023 that corresponds to the potential critical threshold value (3.25) for net reef
accretion (Hoegh-Gulberg et al 2007) and could conduct to net reef dissolution (Eyre et al. 2018;
Tribollet et al. 2019; Cornwall et al 2021).

A simple reconstruction and projection of the C; concentrations based on anthropogenic CO,
in subsurface water and emissions scenario, suggests that the aragonite saturation state could be as
low as 3 in the next 10 years. Following a previous work (Lo Monaco et al, 2021), the new data
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presented here clearly reveal the progressive acidification in the Mozambique Channel and its
acceleration in the recent decade with potential impacts on ecosystem including corals reefs areas
like at Europa and Bassa de India. In a context where there is no sign of a slowdown in anthropogenic
emissions, this already obvious acidification is alarming for the ocean health (Gattuso et al, 2015) and
potential feedback on the ocean carbon cycle in general (e.g. Barrett et al, 2025). Understanding and
qguantifying the future response of phytoplanktonic and reef species in the context of global warming
and acidification calls for adapted ocean biogeochemical models (Cornwall et al 2021) to take into
account dynamics of bioerosion processes (see Schonberg et al 2017). In the Mozambique Channel,
observations are still very sparse and the new observations presented here, including recent BGC-
Agro data, offer important information to validate regional and global biogeochemical models that
are not yet able to simulate correctly the seasonal cycle and decadal variability of the oceanic
carbonate system. We strongly claim for maintaining regular sampling of ocean carbonate system
parameters to reduce the model uncertainties and for adapted strategies at both scientific and
political actions in the future.
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