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Abstract. Aerosol–cloud interactions (ACI) remain the largest source of uncertainty in model 17 

estimates of anthropogenic radiative forcing, primarily because of deficiencies in representing 18 

aerosol–cloud microphysical processes that lead to inconsistent cloud liquid water path (LWP) 19 

responses to aerosol perturbations between observations and models. To investigate this 20 

discrepancy, we conducted a series of large-eddy scale simulations driven by realistic 21 

meteorology over the Eastern North Atlantic, and evaluated LWP susceptibility, precipitation 22 

processes, and boundary layer thermodynamics using satellite and ground-based observations. 23 

Simulated LWP responses show a strong dependence on cloud state. Non-precipitating thin 24 

clouds exhibit a modest LWP decrease with increasing cloud droplet number concentration (𝑁𝑑), 25 

consistent in sign but weaker in magnitude than satellite estimates, reflecting enhanced turbulent 26 

mixing and evaporation. The largest model-observation discrepancy occurs in non-precipitating 27 

thick clouds, where simulated LWP susceptibilities are strongly positive (+0.32) while 28 

observations indicate large negative values (−0.69). This discrepancy stems from excessive 29 

precipitation driven by underestimated entrainment, overly active accretion, and overly broad 30 

drop-size distributions in polluted conditions. While our high-resolution setup mitigates the 31 

excessive drizzling common in coarser models and captures key regime transitions, these biases 32 

persist—highlighting that improved parameterization of cloud-top processes, precipitation, and 33 

aerosol effects are needed beyond simply increasing model resolution. 34 

Additionally, misrepresented moisture inversions in reanalysis introduce a moist bias in cloud-35 

top relative humidity, further amplifying positive LWP susceptibility. Our results also suggest 36 

that large negative 𝑁𝑑–LWP relationships in observations may reflect internal cloud processes 37 

rather than true ACI effects.  38 

 39 

 40 

  41 



2 

 

1. Introduction 42 

Marine boundary layer clouds exhibit substantial influence on Earth’s radiation balance 43 

due to their high albedo and extensive global coverage. Aerosols modulate cloud albedo through 44 

changing cloud droplet number concentration (𝑁𝑑), cloud liquid water path (LWP), and cloud 45 

fraction. The estimated radiative cooling from aerosols partially offset the warming from 46 

greenhouse gas emission (Slingo 1990). However, aerosol-cloud interaction (ACI) remains the 47 

most uncertain component of anthropogenic radiative forcing (Foster et al., 2021). In particular, 48 

liquid-phase cloud adjustments in LWP, cloud fraction, and cloud lifetime present the largest 49 

uncertainties in determining the net radiative forcing of ACIs, especially under varying large-50 

scale conditions (Han et al., 2002; Small et al., 2009). 51 

Among these uncertainties, the LWP response to aerosol perturbations has drawn 52 

particular attention due to its large spread in both observations and numerical model simulations. 53 

Theoretically, increasing aerosols would reduce droplet size and suppress precipitation, thereby 54 

increasing LWP and cloud lifetime (Albrecht, 1989). However, smaller droplets might also 55 

enhance evaporation and entrainment, leading to a reduced LWP in non-precipitating clouds 56 

(Ackerman et al., 2004; Xue and Feingold, 2006; Bretherton et al., 2007). This competition 57 

between processes leads to a bifurcated LWP response that varies with aerosol concentration, 58 

cloud type, and background meteorology. 59 

In recent years, numerous satellite studies have reported an overall decrease of LWP with 60 

increasing 𝑁𝑑 for non-precipitating clouds in polluted environments and an increase in LWP for 61 

precipitating clouds (e.g., Gryspeerdt et al. 2019, 2021; Toll et al., 2019; Zhang et al., 2022, 62 

2023; Qiu et al., 2024; Yuan et al., 2023; 2025). In contrast, current global climate models 63 

(GCM) mostly simulate a positive LWP response to aerosol perturbation regardless the cloud 64 

conditions, which leads to an over-estimation of the aerosol-induced radiative forcing that is 65 

dominated by ACI (e.g., Ghan et al., 2016; Michibata et al., 2016; Mülmenstädt et al., 2024). 66 

This discrepancy could stem from the poorly resolved cloud processes in GCM due to its coarse 67 

horizontal resolution (~100 km). Recent development in computing have enable the global 68 

convection-permitting models (GCPMs) with kilometer-scale grid spacing, serving as an 69 

invaluable complement to the traditional climate models (e.g. Satoh et al., 2019; Stevens et al., 70 

2019; Caldwell et al., 2021; Donahue et al., 2024). Notably, Sato et al. (2018) employed a 71 

GCPM and simulated a negative LWP response, attributing it primarily to better resolved 72 

evaporation and condensation processes from aerosol perturbations. Yet, other CPM studies with 73 

finer resolution than Sato et al. (2018) mostly simulate an increase in LWP with aerosol 74 

perturbations (e.g., Fons et al., 2024; Christensen et al, 2024), largely due to uncertainties in 75 

microphysics schemes, particularly regarding the treatment of precipitation (White et al., 2017).  76 

Since most current GCPMs and GCMs adopt two-moment microphysics schemes, it is 77 

important to evaluate the precipitation parameterization in these schemes with observational 78 

constraints, in addition to the influence of precipitation process on the simulated ACI. 79 

Meanwhile, Terai et al. (2020) found that the lack of decrease in LWP in kilometer-scale models 80 

could be due to the lack of resolving the sub-kilometer processes that are most relevant to ACI 81 

processes. For example, they found that when increasing model resolution from 4 km to 250m, 82 

the fraction of precipitating clouds largely decreases, especially for thick clouds, and the LWP 83 

response becomes negative for non-precipitating clouds. Therefore, it is critical to assess the 84 

benefit of increasing model resolution to near large-eddy simulation (LES) scale in representing 85 

precipitation, as well as the evaporation-entrainment feedback responsible for LWP reduction 86 
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without altering the structure of the microphysics parameterization and ultimately reconcile the 87 

LWP adjustment observed by satellite with those estimated by GCM and GCPM. 88 

With model resolutions ranging from 25 m to 200 m, numerous LES studies have utilized 89 

idealized meteorological conditions and have provided valuable process-level understanding on 90 

the mechanisms governing cloud responses to aerosol perturbations (e.g., Xue and Feingold, 91 

2006; Xue et al., 2008; Bretherton 2007; Seifert et al., 2015; Glassimire et al., 2019; Hoffman et 92 

al., 2020; Chen et al., 2024; Zhang et al., 2024). However, ACI and cloud processes using 93 

idealized simulations cannot be directly evaluated or constrained by observations, limiting their 94 

ability to explain the divergent LWP response between the two. Additionally, many LES studies 95 

are conducted with limited domain size, which cannot resolve mesoscale organization and 96 

variability of cloud and precipitation, both of which have been shown to significantly affect 97 

retrieved 𝑁𝑑-LWP relationships (e.g., Zhou and Feingold; 2023; Kokkola et al., 2025; Tian et al., 98 

2025). Finally, both aerosol and cloud fields are strongly modulated by synoptic conditions (e.g., 99 

Engström and Ekman, 2010, Zheng et al. 2011, Zheng et al. 2025). LES studies focused on a 100 

small number of cases fail to capture the influence of cloud regimes and synoptic variabilities on 101 

ACI, both of which determine the magnitude and sign of cloud responses to aerosol 102 

perturbations.  103 

The Eastern North Atlantic (ENA) region is uniquely suited to address this issue due to 104 

its location at the transition between midlatitude and subtropical regimes, experiencing various 105 

synoptic conditions and cloud regimes (e.g., Remillard & Tselioudis, 2015; Zheng et al., 2025). 106 

In addition, the ENA region and the availability of long-term, high-quality ground-based 107 

observations from the DOE Atmospheric Radiation Measurement (ARM) program make it 108 

possible for process-level evaluation with the comprehensive observations. Marine boundary 109 

layer (MBL) clouds in this region are frequently drizzling and sensitive to aerosol and 110 

meteorological perturbations, making them ideal for studying aerosol-cloud-precipitation 111 

interactions (Wood et al., 2015). 112 

The goal of this study is to evaluate key ACI processes, such as precipitation suppression 113 

and evaporation-entrainment feedback, as well as precipitation treatment in a two-moment 114 

scheme, through simulations approaching LES scales. To address limitations in previous LES 115 

studies, we perform a series of simulations using a nested-domain configuration to seamlessly 116 

simulate the realistic circulations across different synoptic regimes, with the innermost domain 117 

spanning 1°×1°, consistent with typical GCM grid spacing and the spatial scale used in satellite 118 

observations to quantify 𝑁𝑑-LWP relationships (introduced in Sect. 2). To investigate the 119 

variation of ACI across different synoptic conditions, we simulated an ensemble of realistic 120 

MBL cloud cases across three synoptic regimes, each characterized by northerly surface flow 121 

over the ENA site. The classification of synoptic regimes is based on our previous study (Zheng 122 

et al., 2025), in which seven major synoptic regimes were identified using both surface and mid-123 

level meteorological data. To enable a process-level evaluation of the parameterization of the 124 

warm rain process, we leverage ground-based radar measurement from the DOE ARM ENA site 125 

and apply a newly developed radar simulator for direct model-observation comparison. 126 

 127 
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2. Data and Methodology 128 

2.1 Datasets 129 

This study adopts both satellite and ground-based observations to assess the simulated 130 

cloud, precipitation processes, and ACI processes. For satellite observations, we used cloud 131 

retrievals derived from the Spinning Enhanced Visible InfraRed Imager (SEVIRI) on the 132 

geostationary satellite Meteosat-10 and Meteosat-11 over the ENA region. The cloud retrievals 133 

are based on the methods developed by the Clouds and the Earth’s Radiant Energy System 134 

(CERES) project using the Satellite ClOud and Radiation Property retrieval System (SatCORPS) 135 

algorithms (Minnis et al., 2011, 2021; Painemal et al., 2021). The SEVIRI Meteosat cloud 136 

retrieval products are pixel-level cloud retrievals produced by NASA LaRC SatCORPS group, 137 

specifically tailored to support the ARM program over the ARM ground-based observation sites. 138 

For Meteosat-10 and Meteosat-11 cloud retrievals, they have a spatial resolution of 4-km and 3-139 

km at nadir and an hourly and half-hourly temporal resolution, respectively.  140 

 In this study, we used the cloud mask, cloud effective radius (𝑟𝑒), cloud optical depth 141 

(𝜏), LWP, cloud phase, and cloud top height variables in the SEVIRI Meteosat cloud retrieval 142 

product (Minnis et al., 2011, 2021). We focus on warm boundary layer clouds with cloud top 143 

below 3km and a liquid cloud phase. The 𝑟𝑒 and 𝜏 retrievals are based on the shortwave-infrared 144 

split window technique during the daytime. Cloud LWP is derived from 𝑟𝑒 and 𝜏 using the 145 

equation: 𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
, where 𝑄𝑒𝑥𝑡  represents the extinction efficiency and assumed constant of 146 

2.0. Cloud mask algorithm is consistent with the CERES Ed-4 algorithm, as described in Trepte 147 

et al. (2019), where cloudy and clear pixels are distinguished based on the calculated TOA 148 

clear-sky radiance. Cloud top height is derived from the retrieved cloud effective and top 149 

temperature, together with the boundary-layer temperature profiles and lapse rate, as described 150 

in Sun-Mack et al. (2014). Cloud 𝑁𝑑 is retrieved based on the adiabatic assumptions for warm 151 

boundary layer clouds, based on the following equation:  152 

 153 

  𝑁𝑑 =
√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2  (1) 154 

In Equation (1), 𝑘 represents the ratio between the volume mean radius and 𝑟𝑒, and it is 155 

assumed to be constant of 0.8 for stratocumulus, 𝑓𝑎𝑑 is the adiabatic fraction, 𝑐𝑤 is the 156 

condensation rate, 𝑄𝑒𝑥𝑡 is the extinction coefficient, and 𝜌𝑤 is the density of liquid water 157 

(Grosvenor et al., 2018). 158 

To facilitate a consistent comparison, the satellite retrievals are adjusted to the same 159 

domain size as the simulation (e.g., 1° × 1°) and the pixel-level cloud retrievals are smoothed to 160 

25-km resolution to reduce impact from cloud heterogeneity and small-scale covariability on the 161 

estimated cloud susceptibility (e.g. Arola et al. 2022; Zhou and Feingold, 2023). In the context of 162 

ACI: cloud susceptibility quantifies how sensitive a cloud property responds to change in aerosol 163 

concentration or 𝑁𝑑. To constrain the spatial-temporal variation in meteorological conditions and 164 

cloud properties, cloud susceptibility is estimated as the regression slope between 𝑁𝑑 and cloud 165 

properties within the 1° × 1° domain at each time step of satellite observations. In this study, we 166 

quantify LWP and cloud fraction (CF) susceptibilities. Because of the non-linear relations 167 

between LWP and 𝑁𝑑, the LWP susceptibility is quantified in logarithm scale as 168 

𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) (e.g., Gryspeerdt et al. 2019; Qiu et al., 2024), whereas CF susceptibility is 169 

quantified as 𝑑𝐶𝐹/𝑑𝑙𝑛(𝑁𝑑) (e.g., Kaufman et al. 2005; Chen et al., 2022; Qiu et al., 2024). Due 170 
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to the dependence of cloud responses on cloud regimes (e.g., Chen et al., 2014; Zhang et al., 171 

2022; Qiu et al., 2024), the estimated cloud susceptibilities are displayed in the 𝑁𝑑-LWP 172 

parameter space as the classification of cloud states.  173 

 In addition to the satellite retrievals, we adopt the ground-based observation at the ARM 174 

ENA site. Specifically, we use the ground-based cloud radar and lidar observations for process-175 

level evaluation of modeled precipitation processes. In this study, the radar reflectivity (𝑍𝑒) and 176 

cloud boundaries are from the Active Remote Sensing of Clouds (ARSCL) value added product 177 

(Clothiaux et al., 2001). To remove noise in the data, we smoothed the 4s reflectivity profiles 178 

into 1-minute.  Cloud top height is derived as the upper most range gate height with radar 179 

reflectivity greater than the sensitivity threshold of the Ka-band zenith radar (-40 dBZ) combined 180 

with the hydrometer layer top data in the ARSCL. Cloud base height is from the best-estimate 181 

cloud base height variable in the ARSCL product. Thermodynamic profiles are derived from the 182 

radiosonde data, which is launched at the ENA site twice daily at 0000 UTC and 1200 UTC. 183 

The ground-based 𝑟𝑒 and 𝜏 retrievals are based on the parameterization developed in 184 

Dong et al. (1998), where 𝑟𝑒 is retrieved from a radiative transfer model as described in Dong et 185 

al. (1997) and parameterized as a function of cloud LWP, shortwave transmission ratio, and 186 

cosine of solar zenith angle. Cloud LWP is retrieved from the brightness temperature measured 187 

by the three-channel microwave radiometer (MWR3C) at 23.8, 30, and 90 GHz (Cadeddu et al., 188 

2013). The shortwave transmission ratio is calculated from the unshaded pyranometer from the 189 

QCRAD product (Long and Shi, 2006), defined as the ratio between cloudy and clear-sky 190 

shortwave irradiance.  191 

Meteorological and thermodynamic variables are extracted from the European Center for 192 

Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis data and used as the forcing for 193 

the simulation. ERA5 is the fifth generation of the ECMWF reanalysis, replacing the ERA-194 

Interim reanalysis. ERA5 provides the best-estimate of the global atmosphere, land surface, and 195 

ocean waves with a horizontal resolution of 31 km and an hourly output throughout (Hersbach et 196 

al., 2020). Atmospheric variables are available on 137 vertical levels, ranging from 1000 hPa 197 

(near surface) to 1 Pa (~80km).  198 

2.2 WRF Model 199 

We used the Weather Research and Forecasting (WRF) model version 4.4.2 (Skamarock 200 

et al., 2021) for our simulations. In a companion study, Lee et al. (2025) used the WRF model at 201 

near LES scale with interactive chemistry and aerosol schemes (WRF-Chem) and investigated 202 

ACI and its feedback on both clouds and aerosols in the ENA region. As the WRF-Chem 203 

simulations are 5-10 times more computationally expensive, the present study adopted the same 204 

dynamical and physical configuration and conducted more experiments with prescribed aerosol 205 

concentrations and realistic meteorology.  206 

We employed four one-way nested domains in the model, with the domain size of 207 

27° × 27°, 9° × 9°, 3° × 3°, and 1° × 1°, and spatial resolution of 5km, 1.67 km, 0.56 km, and 208 

190m, respectively, for d01, d02, d03, and d04 domain. The innermost domain (d04) exhibit a 209 

domain size close to most GCM grid spacing and is consistent with the spatial scale for 210 

quantification of cloud susceptibility in satellite study (e.g., Zhang et la., 2022, 2023; Qiu et al., 211 

2024). The spatial resolution of 190m is much higher than the CPMs and close to the LES scale. 212 

All the analyses and evaluations in this study are based on output from the innermost domain 213 

(d04). There are 75 vertical levels in the model with a model top of ~20 km, the grid spacing is 214 

log-stretched with higher resolution of ~50 m near the surface and increases to ~150 m at the 215 
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height of ~1500m . As mentioned above, the initial and lateral boundary conditions for the outer 216 

domain are taken from the ERA5 reanalysis data. 217 

The simulations are performed using the Rapid Radiative Transfer Model for Global 218 

Climate Models (RRTMG; Mlawer et al., 1997), and the Noah land surface model (Chen and 219 

Dudhia 2001). The Mellor–Yamada–Janjic (MYJ; Mellor and Yamada, 1982) planetary 220 

boundary layer (PBL) scheme and the shallow cumulus schemes (Hong and Jiang, 2018) are 221 

utilized for the outer domain (d01 and d02) only. Simulations in this study employ a two-222 

moment Morrison microphysics scheme, which has been widely implemented in both CPMs and 223 

GCMs (Morrison et al., 2005; Morrison and Gettleman, 2008; Golaz et al., 2022). In the 224 

Morrison two-moment microphysics scheme, the DSD (𝜙) is defined as:  225 

 𝜙(𝐷) = 𝑁0𝐷𝜇𝑒−𝜆𝐷,  (2) 226 

 𝜂 = 0.0005714𝑁𝑑 + 0.2714,  (3) 227 

 𝜇 =
1 

𝜂2 − 1,  (4) 228 

 𝜆 = [
𝜋𝜌𝑁𝑐𝛤(𝜇+4)

6𝑞𝑐𝛤(𝜇+1)
]1/3,  (5) 229 

where D is the diameter, 𝑁0 is the intercept parameter, 𝜇 is the shape parameter, λ is the 230 

slope parameter, 𝜂 is the dispersion parameter which governs the width of the DSD (Morrison 231 

and Gettleman, 2008). 232 

Instead of prescribing a constant cloud droplet number concentration, total aerosol 233 

number concentrations are prescribed as a constant throughout the domain with no explicit 234 

vertical variation or transport in all simulations. Aerosol activation follows the parameterization 235 

of Abdul-Razzak & Ghan (2000), with fixed assumptions for size distribution, chemical 236 

composition, aerosol type, and mixing state. The activated fraction mainly depends on the local 237 

supersaturation and updraft speed. The fixed aerosol field neglects spatial and temporal 238 

variability driven by emissions, long-range transport, wet scavenging, and CCN reactivation 239 

from evaporated raindrops. These missing processes can sustain higher CCN concentrations, 240 

suppress precipitation, and potentially exaggerate positive LWP responses. 241 

Despite this simplification, our companion WRF-Chem study (Lee et al., 2025) shows 242 

that, even with full aerosol microphysics, wet scavenging, and aerosol reactivation, the simulated 243 

LWP responses remain broadly consistent with the results presented here, especially the positive 244 

susceptibility in precipitating clouds. This agreement suggests that the key findings of this work 245 

are robust, although the prescribed-aerosol assumption may still contribute to some of the 246 

quantitative discrepancies discussed in Section 3. 247 

For each case, we run the model for 36 hours (except for the consecutive case on 21 July 248 

2016, where the model was run for 60 hours), starting at 12:00 UTC of the previous day and the 249 

first 12 hours are used as model spin-up period. The time resolution of the model is 30 seconds 250 

in the outer domain for advection and physics calculation and is 1 second for the innermost 251 

domain. Model variables are output instantaneously for every 10 minutes for the innermost 252 

domain, similar as in satellite observation of snapshots.  253 

To access the cloud responses to aerosol perturbations, we conduct three sets of 254 

simulations with different prescribed aerosol number concentration of N=100, 500, and 1000 255 

𝑐𝑚−3 for all 11 cases. Cloud susceptibility is quantified as the change in domain-mean cloud 256 

properties within the innermost domain at the same output time, comparing polluted and clean 257 

simulations (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. N=500). With constant 258 

and uniform aerosol concentration, the 𝑁𝑑-LWP relations resulting from internal cloud processes 259 

are able to be quantified within each experiment at the same output time.  To minimize 𝑁𝑑-LWP 260 
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relations from cloud heterogeneity and small-scale covariability and to be consistent with the 261 

quantification of cloud susceptibility in satellite observations, the pixel level model outputs are 262 

smoothed to 25-km resolution and 𝑁𝑑-LWP relations are quantified as 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) 263 

using the smoothed data.  264 

To directly compare the WRF simulations with ground-based observations, we used the 265 

Cloud Resolving Model Radar Simulator (CR-SIM; Oue et al. 2020). It is a forward-modeling 266 

framework which uses consistent microphysics assumptions as in the atmospheric model (i.e., 267 

the two-moment Morrison scheme in this study) and emulates radar and lidar observables. Some 268 

common radar and lidar variables include: the radar reflectivity factor at horizontal and vertical 269 

polarization, depolarization ratio, Doppler velocity, spectrum width, lidar backscatter, attenuated 270 

backscatter, lidar extinction coefficient, and so on. In this study, we analyzed the simulated radar 271 

reflectivity factor to characterize cloud and precipitation properties.  272 

To distinguish different precipitation modes and the microphysical growth processes that 273 

transition clouds from non-precipitating to drizzling and raining, we investigate the vertical 274 

transition from cloud to precipitation using the Contoured Frequency of Optical Depth Diagram 275 

(CFODD) method (Suzuki et al., 2010) from both observations and model simulations. The 276 

CFODD analysis calculates the frequency of radar reflectivity profiles as a function of in-cloud 277 

optical depth (𝜏𝑑), where 𝜏𝑑 is calculated based on an adiabatic-condensation growth model and 278 

it starts at zero at cloud top and increases downward. One benefit of the CFODD analysis is that 279 

the slope of reflectivity directly relates to the droplet collection efficiency, where the slope of 280 

reflectivity in the common geometric height depends on cloud water content (Suzuki et al., 281 

2010).  282 

2.3 Case Studies 283 

With the focus of MBL clouds in this study, cases are selected when both satellite and 284 

ground-based observations define MBL clouds in the ENA region. For cloud type classification 285 

in ground-based observations, we used the same method as in Zheng et al. (2025), where clouds 286 

are classified into seven types based on the boundaries and duration of each cloud object. In this 287 

study, we include both cumulus and stratocumulus clouds. Days are excluded when only shallow 288 

cumulus clouds are detected to filter out clouds that are below the detectable resolution of the 289 

Meteosat observations and to minimize uncertainties in the cloud microphysical retrievals from 290 

the ground-based observations. We further exclude days with more than three layers of cloud in 291 

the boundary layer to minimize uncertainty in cloud retrievals. Classification of cloud type in 292 

Meteosat observations uses a similar method as the ground-based observations. Cloud objects are 293 

defined as connected cloudy pixels, where low clouds are defined as clouds with 90th percentile 294 

of cloud top height below 3km. Low clouds are further classified as stratiform clouds and 295 

cumulus or broken stratiform clouds using an area threshold of 10,000 km2 (Qiu and Williams, 296 

2020). 297 

We focus on summer months (June, July, August) in the ENA region, when this region is 298 

often dominated by the Bermuda high-pressure systems and MBL clouds have the highest 299 

occurrence frequency (e.g., Li et al., 2011; Mechem et al., 2018; Dong et al., 2014, 2023). 300 

Previous studies found that the ARM measurements at the ENA site –located near the northern 301 

shore of the Graciosa Island, the northernmost island in the Azores archipelago – can be 302 

influenced by local emissions and island effects during southerly wind conditions. These impacts 303 

include modification to the aerosol and CCN concentrations, boundary layer turbulence, and the 304 

cloud field (e.g., Ghate et al, 2021, 2023). To minimize these influences, we focus on the three 305 
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synoptic regimes identified in Zheng et al. (2025) when the ENA site is influenced by northerly 306 

surface wind: the high-ridge regime (characterized by a mid-tropospheric ridge and surface high-307 

pressure system), the post-trough regime, and the weak trough regime (Table S1, Figure S1).  308 

With the case selection criteria discussed above, there are a total 11 cases for the WRF 309 

simulations, covering different cloud states and synoptic conditions. The general characteristics 310 

of the 11 cases are listed in Table S1. The synoptic pattern for each case from ERA5 is shown in 311 

Figure S1, the cloud fields observed from Meteosat are shown in Figure S2. WRF simulated 312 

cloud fields in the N=100 and N=1000 experiments are shown in Figure S3, S4. To better 313 

illustrate the large-scale cloud organization and compared with Meteosat observations, the 314 

simulated LWP in domain 2 are shown. As seen in Figures S2-4, our WRF simulations well 315 

capture the frontal systems and synoptic pattern of cloud fields across different cases. 316 

3 Results: 317 

3.1 Case Study: Impacts of Aerosols on PBL Thermodynamics and Cloud Evolution 318 

Previous studies have demonstrated the distinct cloud responses to aerosol perturbations 319 

between precipitating and non-precipitating regimes in both model simulations and observations 320 

(e.g., Chen et al., 2014; Sato et al., 2018; Gryspeerdt et al., 2019; Fons et al., 2024; Qiu et al., 321 

2024). To explore these differences, we analyze two representative cases in our simulations: one 322 

dominated by precipitating clouds and another by non-precipitating clouds, to highlight the 323 

distinct interactions among aerosols, clouds, and PBL thermodynamics in the presence and 324 

absence of precipitation. 325 

On 21 July 2016, the ENA site was presented by precipitating stratocumulus clouds from 326 

00:00 UTC to 13:00 UTC, as seen from radar reflectivity profiles in Figure S5b. The clouds 327 

dissipated from 12- 18 UTC and redeveloped after 18 UTC (Figure 1a, black line). The sounding 328 

observations show a moist and well-mixed boundary layer, with relative humidity (RH) near 329 

saturation above cloud top (Figure S6). Our simulation captures the structure of the boundary 330 

layer, with a moist layer above the cloud, and the cloud-top RH close to sounding observations 331 

(99% and 96%, Figure S6c). Due to biases in the ERA5 reanalysis in representing the 332 

temperature inversion, the boundary layer top in the model is ~500m lower than in sounding data 333 

(Figure S6). Consequently, the simulated cloud tops are ~300–500 m lower than both satellite 334 

and ground-based radar observations (Figure 1b, Figure S6).  335 
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 336 
Figure 1. Time series of domain-averaged cloud properties from satellite observations and model 337 

simulation on 21 July 2016. (a) Cloud coverage, (b) cloud top height, (c) cloud liquid water path, 338 

and (d) rain-water path for N=100 (blue lines) and N=1000 (orange lines) experiments.  339 

 340 

In the N=100 simulation, WRF model reproduces the overcast and precipitating 341 

stratocumulus clouds, with a domain mean cloud cover varies between 0.90 to 0.94 from 00-13 342 

UTC, which is slightly below that from Meteosat of 0.97 to 1.0 (Figure 1a, blue and black lines). 343 

However, unlike observations, the simulated clouds do not dissipate after 14 UTC; both cloud 344 

cover and LWP remain nearly constant throughout the day (Figures 1a, d, blue lines).  With 345 

increased aerosol concentration (N=1000), the simulated precipitation is suppressed (Figure 1e), 346 

and the cloud layer remains overcast while deepening, accompanied by rising cloud tops and 347 

increasing LWP (Figure 1b, c, orange lines). This cloud response arises from aerosol-induced 348 

precipitation suppression and the corresponding changes in boundary layer processes, as 349 

illustrated in Figure 2. The turbulent kinetic energy (TKE) is calculated as 
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅), 350 

with a unit of 𝑚2𝑠−2, and buoyancy flux is calculated as 𝑔/𝜃0𝑤′𝜃𝑣
′̅̅ ̅̅ ̅̅ , with a unit of 𝑚2𝑠−3. 351 
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 352 
Figure 2. Time series of domain-averaged thermodynamic profiles on 21 July 2016, for (a) 353 

relative humidity, (b) turbulent kinetic energy (TKE) (unit: 𝑚2𝑠−2), (c) buoyancy flux (unit: 354 

𝑚2𝑠−3) in N=100 simulations, (d) changes in relative humidity profiles, (e) changes in TKE, (f) 355 

changes in buoyancy flux between N=100 and N=1000 simulations. The black contours are 356 

cloud water mixing ratio (unit: g/kg) in (a)-(c) N=100 and (d)-(f) N=1000 simulations.   357 

 358 

In the simulations, increases in aerosol concentrations lead to higher 𝑁𝑑 and smaller drop 359 

size. As the two-moment Morrison scheme does not consider the cloud drop size in the 360 

parameterization of evaporation, aerosol impacts on clouds and boundary layer occur through the 361 

influence of precipitation on PBL structure. Specifically, aerosols suppress precipitation by 362 

reducing autoconversion with increasing 𝑁𝑑, decreasing sedimentation rate and terminal velocity 363 

from smaller droplets. The formation of drizzle release latent heat and reduce both entrainment 364 

and the production of turbulent kinetic energy (TKE) by buoyancy; while the evaporation of 365 

drizzle below cloud cool and moisten the sub-cloud layer that decrease buoyancy and TKE 366 

(Stevens et al., 1998). As a result, the reduced precipitation increases both TKE and buoyancy 367 

flux in the cloud layer and below cloud (Figure 2e, f).  The enhanced turbulence and buoyancy 368 

support vertical development of clouds, raising cloud tops and expanding the cloud layer upward 369 

(Figures 1b and 2), while also increasing RH near the cloud top (Figure 2d).  370 

On the second day (22 July 2016), the precipitating stratocumulus clouds transition into 371 

non-precipitating thin stratus over the ENA site (Figure S7). The clouds were predominately 372 

overcast from 00-09 UTC and dissipated after 10 UTC, with the domain-mean cloud coverage 373 

decreasing from 0.8-0.9 to 0.1-0.2 (Figure 3a, black line). As shown in Figure S8, the boundary 374 

layer was moist and well-mixed, capped by a sharp temperature inversion, and moisture 375 

decreases rapidly above the inversion. WRF model reproduces the general thermodynamic 376 

structure, including the inversion and moisture decline above the PBL. However, due to biases in 377 

ERA5 thermodynamic profiles, the simulated PBL top is about 700m lower than observed 378 

(Figure S8). Additionally, WRF model fails to capture the rapid decrease of moisture above 379 

cloud top, resulting in a more humid layer above cloud with cloud-top RH of 87% in the model, 380 

compared to 62% in sounding observation (Figure S8c).   381 
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 382 

 383 
Figure 3. Time series of domain-averaged cloud properties from observations and model 384 

simulation on 22 July 2016. (a) Cloud coverage, (b) cloud top height, (c) cloud liquid water path, 385 

and (d) rain-water path for N=100 (blue lines) and N=1000 (orange lines) experiments. 386 

 387 

In the N=100 simulation, the simulated stratocumulus cloud generates light precipitation 388 

from 00-06 UTC, then it transitions to a non-precipitating thin cloud layer after 06 UTC (Figure 389 

3d, blue line). However, the cloud does not dissipate in the model. Domain-mean cloud cover 390 

remains between 0.85 to 0.95 throughout the day, and the simulated LWP is nearly twice that 391 

retrieved from Meteosat (Figure 3a and 3c, blue lines). When aerosol concentrations are 392 

increased to N=1000, clouds dissipate from 14-20 UTC, with a decreasing domain-mean cloud 393 

cover and becoming more consistent with observations (Figure 3a, orange line). Meanwhile, 394 

cloud tops rise slightly with increasing aerosol. The cloud dissipation reflects a net effect of 395 

aerosol induced changes in condensation, evaporation, turbulence, and buoyancy, as shown in 396 

Figure 4.  397 

During the early phase (00–06 UTC), increased aerosol loading suppresses drizzle, 398 

leading to an increase in LWP and a decrease in RWP (Figure 3c, d). Similar as the first case, the 399 

suppressed precipitation enhances turbulence and increases TKE in and below cloud (Figure 4e), 400 

lift the cloud top, and lead to an increase in RH near cloud top (Figure 4d). Meanwhile, the free 401 
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tropospheric air above cloud top is relatively drier compared to the first case (Figure 4a). The 402 

increased turbulence and raised cloud top entrain dry air into the cloud and enhances 403 

evaporation. After 6 UTC, as clouds become non-precipitating in the N=100 experiment, the 404 

decrease of cloud water from evaporation starts to dominate the increase from precipitation 405 

suppression and lead to a net decrease in LWP. Reduced buoyancy weakens the upward transport 406 

of moisture and energy from the sub-cloud layer, further contributing to cloud dissipation. As a 407 

result, both cloud cover and LWP decrease with increasing aerosol. (Figure 3a, c).  408 

 409 
Figure 4. Time series of domain-averaged thermodynamic profiles on 22 July 2016, for (a) 410 

relative humidity, (b) turbulent kinetic energy (TKE) (unit: 𝑚2𝑠−2), (c) buoyancy flux (unit: 411 

𝑚2𝑠−3) in N=100 simulations, (d) changes in relative humidity profiles, (e) changes in TKE, (f) 412 

changes in buoyancy flux between N=100 and N=1000 simulations. The black contours are 413 

cloud water mixing ratio (unit: g/kg) in (a)-(c) N=100 and (d)-(f) N=1000 simulations.   414 

 415 

The absence of afternoon cloud dissipation in WRF simulations are likely associated with 416 

model biases in the thermodynamic structure inherited from ERA5. For example, on 21 July 2016, 417 

ARM sounding observations show a pronounced decrease in specific humidity and relative 418 

humidity above the PBL between 14 and 20 UTC (figures not shown). This sharp drying leads to 419 

cloud erosion in the observations. However, WRF simulations or ERA5 reanalysis produces only a 420 

gradual reduction in moisture from 00 to 20 UTC (Figure 2a), maintaining a moist layer above cloud 421 

top and prevent cloud breakup.  On 22 July 2016, the model reproduces the moisture gradient above 422 

PBL with a warm and dry layer above, the lifted cloud top in the N=1000 simulation entrain dry air 423 

into cloud system and dissipate clouds in the afternoon (Figure 3a). On days when ERA5 accurately 424 

capture the observed moisture decrease above PBL (e.g., 25 and 28 July 2016), the model 425 

reproduces both the dissipation and evening redevelopment of clouds seen in Meteosat data 426 

(figures not shown). This indicates that the diurnal evolution of MBL clouds is highly sensitive 427 

to the representation of diurnal variation in moisture as well as the moisture gradients near the 428 

inversion. 429 

The prescribed, vertically uniform aerosol concentration further reinforces cloud 430 

persistence by maintaining elevated CCN levels and suppressing drizzle formation. The lack of 431 
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precipitation scavenging prevents cloud-base evaporative cooling and inhibits decoupling, both 432 

of which would otherwise promote afternoon cloud breakup. The implications of thermodynamic 433 

biases (e.g. the moist layer above cloud top and the underestimated PBL height) for the estimated 434 

ACI are discussed in detail in Section 3.3.2 435 

In a nutshell, precipitating and non-precipitating clouds react differently to aerosol 436 

perturbations in our simulations. For precipitating clouds, aerosols increase LWP through 437 

precipitation suppression and support vertical development of cloud through the impact of 438 

precipitation on PBL dynamic and thermodynamics. For the non-precipitating case, PBL air is 439 

drier compared to the first case, the enhanced turbulence and entrainment of dry air above leads 440 

to evaporation and reduced buoyancy. The reduced buoyancy stabilizes PBL and decays the 441 

cloud layer.  442 

3.2 Evaluation of LWP Susceptibility Across Cloud States and Synoptic Conditions  443 

The two cases in Section 3.1 demonstrate the impact of different cloud states and PBL 444 

thermodynamics on cloud responses to aerosol perturbations. In order to evaluate the ACI 445 

process across all simulated cloud states, we composite the cloud fields from all 11 cases and all 446 

three aerosol concentrations (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. 447 

N=500) to estimate the mean LWP response, and compare it with satellite retrievals, as shown in 448 

Figure 5. More specifically, LWP susceptibility in WRF simulations is defined as the change in 449 

domain mean cloud properties as 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) between polluted and clean simulations 450 

for each 10-minutely model output. To be consistent with satellite retrievals, we focus on 451 

daytime with solar zenith angle less than 65°. Lastly, we use the LWP-𝑁𝑑 parameter space to 452 

represent different cloud states. (Qiu et al., 2024).  453 

Based on the relationships between 𝑟𝑒, LWP, and 𝑁𝑑 in the satellite retrievals (e.g., 454 

𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
,  𝑁𝑑 =

√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2), 𝑟𝑒 =15 isolines is marked in the LWP-𝑁𝑑 parameter 455 

space as an commonly used indicator of precipitation likelihood in the satellite retrieval (e.g., 456 

Gryspeerdt et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu et al., 2024). Based on the 457 

distinct LWP, cloud albedo and CF susceptibilities between cloud states, MBL clouds are 458 

classified into three states: the precipitating clouds (𝑟𝑒 >15 𝜇𝑚), the non-precipitating thick 459 

clouds (𝑟𝑒 <15 𝜇𝑚, LWP> 75 𝑔𝑚−2), and the non-precipitating thin clouds (𝑟𝑒 <15 𝜇𝑚, LWP< 460 

75 𝑔𝑚−2) (Qiu et al., 2024). To be consistent with observational reference, the WRF simulated 461 

cloud states are classified using the same definition.  Similar to warm MBL clouds in 462 

observations (e.g. Qiu et al., 2024), LWP responses to aerosol perturbation in model simulations 463 

show clear dependence on cloud state (Figure 5a).  464 
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 465 
Figure 5. Mean liquid water path (LWP) susceptibility from (a) (b) WRF simulations and (c) (d) 466 

Meteosat cloud retrievals during the daytime. (a) (c) cloud LWP susceptibility 𝑑𝑙𝑛(𝐿𝑊𝑃)/467 

𝑑𝑙𝑛(𝑁𝑑), (b) (d) frequency of occurrence of sample in each bin. The dashed lines indicate 𝑟𝑒 =15 468 

𝜇𝑚, 𝑟𝑒 =10 𝜇𝑚, and LWP= 75 𝑔𝑚−2, as 𝑟𝑒 thresholds for precipitation (precipitating clouds 469 

located to the left of the line), and for thick clouds (with LWP > 75 𝑔𝑚−2), respectively. Black-470 

outlined bins denote cases where the WRF and Meteosat LWP susceptibilities differ significantly 471 

(p < 0.05) based on a Welch’s t-test. 472 

 473 

For precipitating clouds (𝑟𝑒 >15 𝜇𝑚), LWP slightly increases with 𝑁𝑑 , with a mean 474 

susceptibility of +0.15. The increase of LWP agrees with the precipitation suppression 475 

mechanism. Meanwhile, there are only 4% of clouds in model simulations locate to the left of the 476 

𝑟𝑒 =15 𝜇𝑚 isotherm with small 𝑁𝑑, even with aerosol concentration set to 100 𝑐𝑚−3(Figure 5b).  477 

The non-precipitating thick clouds (𝑟𝑒 <15 𝜇𝑚, LWP> 75 𝑔𝑚−2) is the dominant cloud state in 478 

model simulation, with a total frequency of occurrence of 49%. Different from the evaporation-479 

entrainment feedback mechanism, LWP largely increases in the model with increasing aerosols, 480 

with a mean susceptibility of +0.32. For non-precipitating thin clouds (𝑟𝑒 <15 𝜇𝑚, LWP< 75 481 

𝑔𝑚−2), LWP decreases with aerosol perturbations with a mean of −0.14, which is consistent 482 

with the second case shown in the previous section.  483 



15 

 

To evaluate model performance, we estimated LWP susceptibility from satellite retrievals 484 

within the same domain and for the same 11 cases as the model simulations (Figures 5 c, d). 485 

Specifically, LWP susceptibility was quantified as the regression slope between LWP and 𝑁𝑑 486 

within the 1° × 1° domain at each time step of satellite observations. For precipitating clouds, 487 

LWP slightly decreases with increasing 𝑁𝑑 in satellite data, consistent with the four-year 488 

climatological mean feature in the ENA region reported in our previous study (Qiu et al., 2024). 489 

This decrease of LWP with increasing 𝑁𝑑 is likely associated with the depletion of LWP through 490 

sedimentation–evaporation–entrainment feedbacks, which outweigh the increase of LWP from 491 

precipitation suppression. In contrast, in model simulations, the lack of realistic evaporation-492 

entrainment feedback results in LWP increasing primarily through precipitation suppression. The 493 

simulated LWP susceptibilities are significantly different with satellite observations at 95% 494 

confidence level for most precipitating clouds (Figure 5a).  495 

For non-precipitating thin clouds, the simulated decrease in LWP with increasing aerosol 496 

concentration agrees in sign with satellite observations. However, the magnitude of this decrease 497 

is weaker, and the simulated susceptibilities remain significantly different from satellite 498 

estimates at 95% confidence level for most bins (Figure 5a, c). This model behavior contrast 499 

with most GCM and coarse CPM studies, which often simulate an increase of LWP for non-500 

precipitating clouds (e.g., Fons et al., 2024; Christensen et al, 2024; Mülmenstädt et al., 2024;). 501 

The improved representation in our high-resolution simulations arise from better-resolve PBL 502 

turbulence and thermodynamics, which enhance the entrainment of dry air, accelerates 503 

evaporation, reduces buoyancy, and promotes dissipation of the cloud system.  504 

In contrast, for non-precipitating thick clouds, the model and observations diverge 505 

substantially. In satellite observations, LWP decreases most strongly for this cloud state, with a 506 

mean LWP susceptibility of −0.69 (Figure 5c). This observational estimate is consistent with the 507 

climatological mean derived from four years of Meteosat data over the ENA region (Qiu et al., 508 

2024). In the model, however, LWP increases most strongly with increasing 𝑁𝑑 for this cloud 509 

state. Moreover, compared with satellite retrievals, model simulates substantially larger 510 

population of polluted thick clouds characterized by high 𝑁𝑑 and LWP. For example, non-511 

precipitating thick clouds are the dominant cloud state in the model, accounting for 49% of total 512 

cloud occurrence (Figure 5b), whereas they are the least frequent in observations, at only 15.7% 513 

(Figure 5d). Meanwhile, only 4% of simulated clouds fall into the precipitating cloud regime 514 

with 𝑁𝑑 < 50, compared to a 22.2% in the satellite observations  515 

The overall overestimation of 𝑁𝑑 likely arises from the prescribed aerosol concentration 516 

in the model configuration, combined with the absence of precipitation scavenging. For 517 

reference, the mean aerosol concentration over the ENA region during summer is approximately 518 

400 𝑐𝑚−3 (e.g., Zhang et al., 2021; Wang et al., 2021; Zheng et al., 2024). The model’s 519 

overestimation of LWP may stem from its excessively positive LWP susceptibility in thick 520 

clouds. As shown in Figure S9, simulated LWP in the N=100 experiment agrees reasonably well 521 

with the Meteosat retrievals, with a mean value about 10% lower than observed. However, in the 522 

N=500 and N=1000 simulations, the strong positive LWP susceptibility leads to increases in 523 

LWP for clouds with LWP> 75 𝑔𝑚−2, resulting in mean values 30% and 40% higher than 524 

Meteosat retrievals, respectively.  525 

To further examine whether these discrepancies depend on large-scale meteorological 526 

conditions, we assessed LWP susceptibility across different synoptic regimes. Because only one 527 

case is available for the “weak-trough” regime (Table S1), our comparison focuses on the “high-528 

ridge” and the “post-trough” regimes (Figure S10). The “high-ridge” regime shows a higher 529 



16 

 

occurrence of non-precipitating thin clouds than the “post-trough” regime, with total frequencies 530 

of 49% and 40%, respectively (Figures S10b, d). This more frequent non-precipitating thin cloud 531 

in the model is consistent with our previous study based on six years of ground-based 532 

observations at the ARM ENA site, which revealed that the “high-ridge” regime favors single-533 

layer stratocumulus clouds with shallower cloud depth and smaller LWP compared to the “post-534 

trough” regime (Zheng et al., 2025).  535 

In addition, non-precipitating thin clouds in the “high-ridge” regime exhibit more 536 

negative LWP susceptibilities than clouds with similar LWP and 𝑁𝑑 in the “post-trough” regime. 537 

This difference in LWP susceptibility is associated with the colder and drier air above clouds 538 

under subsidence in the “high-ridge” regime, which facilitates cloud dissipation, as also 539 

demonstrated in the case study. Furthermore, non-precipitating or lightly drizzling thick clouds 540 

in both synoptic regimes manifest strong positive LWP susceptibilities, suggesting that the 541 

model-observation discrepancy for this cloud state persist regardless of synoptic conditions and 542 

therefore warrants further investigation. In summary, the mean LWP susceptibility from our 543 

simulations were evaluated against satellite retrievals in the LWP-𝑁𝑑 parameter space across 544 

different cloud states and synoptic conditions for a comprehensive comparison. The simulations 545 

reproduce the observed decrease in LWP for non-precipitating thin clouds, although with weaker 546 

magnitudes. For precipitating clouds, the model predicts a slight increase in LWP instead of the 547 

weak decrease seen in satellite observations, reflecting the limited representation of evaporation-548 

entrainment feedback in the model. Large discrepancies remain for non-precipitating or lightly 549 

drizzling thick clouds, where the model simulates too many polluted thick clouds and yields an 550 

opposite (positive) LWP response compared to the strongly negative satellite signal.  551 

In addition, the model-observation discrepancy persists across all synoptic regimes, 552 

suggesting that they originate from the model’s representation of cloud microphysics, 553 

precipitation, and aerosol-cloud coupling rather than from large-scale meteorological variability. 554 

The consistency of these modeled LWP response, in agreement with previous LES studies of 555 

similar cloud regimes (e.g., Wang et al., 2020; Lee et al., 2025), further motives the central focus 556 

of the next section: diagnosing the physical mechanisms driving these biases. We show that three 557 

leading factors dominate the discrepancy: excessive precipitation production in thick clouds, a 558 

moist bias above cloud top, and satellite retrieved 𝑁𝑑-LWP relationships contaminated by 559 

internal cloud processes.  560 

3.3 Causes of Satellite–Model Discrepancies in LWP Susceptibility 561 

The satellite–model differences highlighted above point to systematic biases in how the 562 

model represents cloud microphysics, precipitation processes, and entrainment pathways. In this 563 

section, we diagnose the physical mechanisms driving these discrepancies, beginning with the 564 

model’s precipitation efficiency. 565 

3.3.1 Precipitation Efficiency  566 

A long-standing challenge in numerical models is the tendency to produce precipitation 567 

too frequently and too lightly (Sun et al., 2006; Stephens et al., 2010). To assess the modeled 568 

precipitation efficiency with observation, Figure 6 shows the mean cloud properties from 569 

Meteosat observations, and from WRF simulations for the 11 cases combining all three aerosol 570 

concentrations (N=100, 500, and 1000). As satellite retrieves  𝑟𝑒 near cloud top, we used 𝑟𝑒 at 571 

~100 m below cloud top in the simulation, which approximate 𝜏 = 2 from cloud top for marine 572 
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stratocumulus. The modeled pixel-level precipitation fraction is calculated as the area fraction of 573 

cloudy pixels with the column maximum radar reflectivity (𝑍 𝑚𝑎𝑥) greater than −15 dBZ at 574 

each model output time (Haynes et al., 2009; Suzuki et al., 2015; Jing et al., 2017). Modeled 575 

radar reflectivity is from the radar simulator (CR-SIM), as discussed in the methodology. The 576 

precipitation fraction in Meteosat is calculated as the area fraction of clouds with 𝑟𝑒 > 15 𝜇𝑚. 577 

Qiu et al. (2024) evaluated different effective radius thresholds and rain rate thresholds in 578 

satellite retrievals using precipitation masks derived from ground-based radar reflectivity at the 579 

ENA site, and concluded that the 𝑟𝑒 > 15 𝜇𝑚 threshold showed the best agreement with 580 

observations. 581 

 582 
Figure 6. Mean cloud properties from (a), (b) Meteosat retrievals and (c), (d) WRF simulations 583 

during the daytime. (a), (c) effective radius, (b), (d) pixel-level precipitation fraction. The dashed 584 

lines indicate 𝑟𝑒 =15 𝜇𝑚, 𝑟𝑒 =10 𝜇𝑚, and LWP= 75 𝑔𝑚−2, as 𝑟𝑒 thresholds for precipitation 585 

(precipitating clouds located to the left of the line), and for thick clouds (with LWP > 75 𝑔𝑚−2), 586 

respectively. 587 

As shown in Figures 6a, c, the modeled 𝑟𝑒 is ~1-3 𝜇𝑚 smaller than satellite retrievals for 588 

a similar cloud condition. Additionally, compared to observation, model generates precipitation 589 

too often at smaller drop size with 𝑟𝑒 > 10 𝜇𝑚 and at higher 𝑁𝑑 concentration (Figures 6b, d, 590 

𝑟𝑒 =10 𝜇𝑚 dashed line). The large discrepancy in LWP susceptibility for thick clouds between 591 

the 10 and 15 𝜇𝑚 isolines is likely linked to model bias in precipitation efficiency. To further 592 

investigate the model bias of excessive rain at smaller drop size and the positive LWP responses 593 



18 

 

to aerosol perturbations, we compared the modeled radar reflectivity profiles from the radar 594 

simulator with ARM observations using the CFODD framework. Based on the relationship 595 

between 𝑍𝑒 and the droplet collection efficiency (𝐸𝑐), the vertical slope of 𝑍𝑒 as a function of in-596 

cloud optical depth (𝜏𝑑) is directly linked to 𝐸𝑐 , a steeper slope indicates a larger 𝐸𝑐  (Suzuki et 597 

al., 2010). 598 

 599 
Figure 7. Frequency of radar reflectivity as a function of in-cloud optical depth (𝜏𝑑) for ARM 600 

ground-based observations during the daytime. Different rows are for different ranges of optical 601 

depth (𝜏): (a)-(c) clouds with 𝜏 < 10, (d)-(f) clouds with 10< 𝜏 < 20, (g)-(i) clouds with 𝜏 > 20. 602 

Different columns are for different ranges of effective radius (𝑟𝑒). The left, middle, and right 603 

columns are for 15 − 20 𝜇𝑚, 10 − 15 𝜇𝑚, and  5 − 10 𝜇𝑚, respectively. The black dashed lines 604 

in each panel denote −15 dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The 605 

percentage of sample (P) for each subgroup is denoted in the figure, with a total sample of 606 

91,737.  607 
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Ground-based radar reflectivity profiles and cloud retrievals at the ARM ENA site are 608 

used as the ground truth. To reduce noise, radar reflectivity profiles and cloud boundary data are 609 

smoothed to a 1-minute resolution. To increase the sample size, we analyzed the climate-mean 610 

radar reflectivity profiles of stratocumulus and cumulus clouds observed during the summer 611 

months (June to August) from 2016 to 2021, comprising a total of 91,737 profiles. Radar 612 

reflectivity profiles derived from the selected 11 cases exhibit consistent characteristics (figure 613 

not shown). To better distinguish microphysical processes such as autoconversion and accretion 614 

from dynamical processes such as updraft, clouds are further categorized by both 𝑟𝑒 and τ ranges. 615 

MBL clouds are classified as non-precipitating clouds, drizzle, and rain using a reflectivity 616 

threshold of 𝑍 𝑒 < -15 dBZ, -15 dBZ < 𝑍 𝑒< 0 dBZ, and 𝑍 𝑒 > 0 dBZ, respectively, as denoted 617 

by black dashed lines in Figures 7 (Haynes et al., 2009; Suzuki et al., 2015; Jing et al., 2017). 618 

Applying the same cloud state classification as in the satellite observations (e.g., 𝑟𝑒 >619 

15 𝜇𝑚 for precipitating clouds and LWP > 75 𝑔𝑚−2 for thick clouds), the total frequency of 620 

occurrence of precipitating, non-precipitating thin, and non-precipitating thick clouds are 30.7%, 621 

46.3%, and 23.0%, based on six-year of ARM observations. These frequencies are consistent 622 

with those derived from satellite data for the 11 cases (22.2%, 55.6%, and 22.2%, respectively; 623 

Figure 5d). Therefore, the selected cases in this study are representative of the typical 624 

distribution of MBL cloud types in the ENA region during summer.  625 

As shown in the first column of Figure 7, in clean environment with re > 15 μm, the 626 

observed MBL clouds start to drizzle with 𝑍 𝑒 > −15 dBZ even in the thinnest category (Figure 627 

7a), of which the cloud top is mostly non-precipitating (𝑍𝑒 < −25 dBZ). Cloud drops rapidly 628 

grow from cloud top downward and initiate drizzle at ~ 4-6 optical depth into the cloud. 629 

However, most observed MBL clouds, even for the thickest category (Figure 7g), remain 630 

drizzling rather than raining as most of the radar reflectivity is lower than 0 dBZ.  631 

Figures 7b, e, h represent clouds with observed 𝑟𝑒 of 10 − 15 𝜇𝑚, indicating an increase 632 

in 𝑁𝑑 compared with clouds with similar 𝜏 and 𝑟𝑒 > 15 um (Figures 7a, d, g). Precipitation in 633 

these clouds is suppressed as the 𝑍𝑒 is mostly less than –15 dBZ in thin clouds (𝜏 < 10, Figures 634 

7b). Thick clouds produce drizzle at ~𝜏𝑑 > 20 and 𝑍𝑒 slightly decrease at cloud base, likely due 635 

to mixing and evaporation (Figure 7h). When 𝑟𝑒 decreases to below 10 𝜇𝑚 (Figures 7c, f, i), 𝑍𝑒 636 

further reduces to around –20 to –30 dBZ throughout the cloud layer, indicating that precipitation 637 

is further suppressed. The precipitation suppression effect is shown not only by the peak 638 

frequency of 𝑍𝑒, but also the slope of 𝑍𝑒, which indicates the droplet collection efficiency as 639 

discussed above. As seen in Figure 7, for clouds with similar thickness, the slope of 𝑍𝑒 decreases 640 

with decreasing 𝑟𝑒, which reflects a weaker collision coalescence and accretion processes with 641 

higher 𝑁𝑑 and smaller cloud drops. 642 

In thick clouds with 𝑟𝑒 < 10 𝜇𝑚 (Figure 7i), most radar reflectivity remains below –25 643 

dBZ in the lower cloud layer, while reflectivity slightly increases toward cloud top in the region 644 

corresponding to ~10-20 optical depth into the cloud. Reflectivity then decreases again toward 645 

cloud top. This vertical pattern is consistent with the structure of marine clouds reported in 646 

Suzuki et al. (2010). The observed decrease of reflectivity near cloud top may be attributed to 647 

entrainment and evaporation, or to the accretion process involving large droplets falling 648 

downward, as indicated by localized reflectivity peaks exceeding -15 dBZ (Figure 7i). 649 

Meanwhile, in clouds with small drop sizes, cloud deepening or dynamical processes have little 650 

effect on precipitation based on observations.  651 
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 652 
Figure 8. Frequency of radar reflectivity as a function of in-cloud optical depth (𝜏𝑑) for WRF 653 

N=100 simulation. Different rows are for different ranges of optical depth (𝜏): (a)-(c) clouds with 654 

𝜏 < 10, (d)-(f) clouds with 10< 𝜏 < 20, (g)-(i) clouds with 𝜏 > 20. Different columns are for 655 

different ranges of effective radius (𝑟𝑒). The left, middle, and right columns are for 15 − 20 𝜇𝑚, 656 

10 − 15 𝜇𝑚, and  5 − 10 𝜇𝑚, respectively. The black dashed lines in each panel denote −15 657 

dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The percentage of sample (P) for 658 

each subgroup is denoted in the figure.  659 

 660 

Compared to the “ground truth”, our model simulations reasonably identify the non-661 

precipitating regime in clouds with 𝑟𝑒 < 10 𝜇𝑚 and 𝜏 < 20, when cloud drops are too small for 662 

efficient collision coalescence (Figures 8c, f). Additionally, drizzle initiates at the same 𝑟𝑒 and 𝜏 663 

ranges as in observations: for example, the maximum frequency of 𝑍𝑒 exceeds −15 dBZ in thin 664 

clouds with 𝑟𝑒 > 15 𝜇𝑚 and 𝜏 < 10 (Figure 8a) or in thick clouds with 𝑟𝑒 = 10 − 15 𝜇𝑚 and 𝜏 =665 
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10 − 20 (Figure 8e). This result is different from GCM or GCPM where models hardly simulate 666 

any non-precipitating clouds, or drizzle initiate too early in the cloud (e.g. 5-10 optical depth; 667 

Jing et al. 2017, 2019; Michibata and Suzuki, 2020). The better resolved non-precipitating 668 

regime as well as the transition from non-precipitating cloud to drizzle process in our simulations 669 

reveal the importance of model resolution to better simulate precipitation.  670 

On the other hand, model overestimates precipitation in both intensity and the frequency 671 

of occurrence in optical thick with 𝜏 > 20, the simulations produce rain with peak 𝑍𝑒 exceeding 0 672 

dBZ in all size ranges, even in clouds with 𝑟𝑒 < 10 𝜇𝑚 (Figure 8 g-i). Furthermore, precipitation 673 

initiates too early near cloud top: all precipitating clouds in the model start to drizzle or even rain 674 

at cloud top (Figures 8a, d, e, g, h, i). Based on the features shown in the CFODD analysis, the 675 

overestimation of precipitation could be attributed to the following four aspects in the 676 

parameterization.   677 

First, the overestimation of reflectivity at cloud top indicates that autoconversion is 678 

activated too early in clouds near the top. With the same aerosol concentration, clouds with less 679 

activated 𝑁𝑑 exhibit larger 𝑟𝑒 (Figure 6c). As the autoconversion rate scaled non-linearly with 𝑁𝑑 680 

(e.g. 
𝜕𝑞𝑐

𝜕𝑡
= 1350𝑞𝑐

2.47𝑁𝑑
−1.79), clouds with larger drop size (e.g. ~15–20 𝜇𝑚) have smaller 𝑁𝑑, 681 

and therefore exhibit larger autoconversion rate. Second, the overestimation of reflectivity near 682 

cloud top could be due to underestimation of entrainment rate or evaporation rate from the moist 683 

layer above. As seen in Figure 8, the simulated 𝑍𝑒 does not decrease towards cloud top or cloud 684 

base as in the observations, which indicates an underestimation of entrainment and evaporation. 685 

Third, the overproduction of rain in the model indicates an overestimation of the accretion 686 

process. In the Morrison scheme, accretion is parameterized as a function of cloud water and 687 

rainwater content; thus, when autoconversion is triggered too early, accretion also initiates too 688 

early. This bias is amplified in thick clouds, which have greater liquid water content and longer 689 

path for droplet collection (Figures 8 g-i). For thick clouds with small drop size (Figure 8i), they 690 

remain non-precipitating at the cloud top, indicating that autoconversion is appropriately 691 

suppressed by small drop size. However, these clouds still produce rain, suggesting an 692 

overestimation of accretion. Lastly, the excessive rain production in thick clouds also point to an 693 

overly broad parameterized drop size distribution (DSD), which lead to an early initiation of 694 

autoconversion at cloud top and rain formation in clouds with large 𝑟𝑒. 695 

Overall, in N=100 simulation (Figure 8), most modeled MBL clouds are optically thin (𝜏 696 

< 20) and exhibit medium (𝑟𝑒 = 10 − 15 𝜇𝑚, 49.8%) or large droplet sizes (𝑟𝑒 = 15 − 20 𝜇𝑚, 697 

25.8%). Compared to observations, model produces more clouds with larger drop size, while 698 

observations show a majority with 𝑟𝑒 < 10 𝜇𝑚 (53.3%; Figure 7, third column). Meanwhile, 699 

although the aerosol concentration is prescribed, the model predicts 𝑁𝑑 through aerosol 700 

activation and microphysical processes, resulting in variabilities in 𝑁𝑑. For clouds with given 701 

optical depth, a decrease in 𝑟𝑒 indicates an increase in 𝑁𝑑. This increase in 𝑁𝑑 is associated with 702 

both lower peak of 𝑍𝑒 and a reduced vertical 𝑍𝑒 gradients in the CFODD, suggesting aerosol-703 

induced precipitation suppression. Lastly, cloud dynamics plays a stronger role in the simulation 704 

than in observations. For example, thicker clouds in the model show higher peak 𝑍𝑒 values and 705 

broader 𝑍𝑒 distribution than thinner clouds with same 𝑟𝑒, whereas this enhancement is less 706 

evident in ARM observations. 707 
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 708 
Figure 9. Frequency of radar reflectivity as a function of in-cloud optical depth (𝜏𝑑) for WRF 709 

N=500 simulation. Different rows are for different ranges of optical depth (𝜏): (a)-(c) clouds with 710 

𝜏 < 10, (d)-(f) clouds with 10< 𝜏 < 20, (g)-(i) clouds with 𝜏 > 20. Different columns are for 711 

different ranges of effective radius (𝑟𝑒). The left, middle, and right columns are for 15 − 20 𝜇𝑚, 712 

10 − 15 𝜇𝑚, and  5 − 10 𝜇𝑚, respectively. The black dashed lines in each panel denote −15 713 

dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The percentage of sample (P) for 714 

each subgroup is denoted in the figure.  715 

 716 

Comparing simulations with different prescribed aerosol concentrations, we observe that 717 

with increasing aerosols and decreasing drop size, precipitation is suppressed. This is evidenced 718 

by the shift of frequency of occurrence of precipitating clouds, along with reduced peak 𝑍𝑒 and 719 

shallower gradient of 𝑍𝑒. For example, the most common cloud type shifts from thin clouds with 720 
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moderate 𝑟𝑒 in the N=100 simulation (Figures 8b, e) to thicker clouds with smaller 𝑟𝑒 in the 721 

N=500 run (Figures 9h, i), revealing a typical cloud response to precipitation suppression. 722 

Meanwhile, the percentage of clouds with 𝑟𝑒 = 15 − 20 𝜇𝑚 decreases significantly from 31.9% 723 

in N=100 to 6.1% in N=500 simulations. As a result, the droplet size distribution in N=500 724 

simulation aligns better with ARM observations, although clouds are still thicker in model. For 725 

clouds with similar 𝑟𝑒 and 𝜏, both the peak 𝑍𝑒 and its vertical gradient decrease with increasing 726 

aerosol concentrations due to the reduced autoconversion with higher 𝑁𝑑. In particular, thick 727 

clouds with medium 𝑟𝑒 (𝑟𝑒 = 10 − 15 𝜇𝑚, 𝜏 >20, Figure 9h) transition from raining to drizzling 728 

in the N=500 simulation, aligning more closely with observations.  729 

For clouds with 𝑟𝑒 > 15 𝜇𝑚, rain becomes stronger compared to the N=100 simulation, 730 

even in the thinnest cloud (Figures 9 a, d, g vs. Figures 8 a, d, g). While the enhancement of 731 

precipitation with increasing aerosol concentration may initially seem counter-intuitive, it can be 732 

explained by the parameterization of DSD in the model. For clouds with similar 𝜏, increasing 𝑟𝑒 733 

is associated with higher LWP and 𝑞𝑐, but lower 𝑁𝑑. Based on Equation (5), the slope parameter 734 

𝜆 decreases with increasing 𝑟𝑒, resulting in a broader DSD with a flatter slope. Additionally, the 735 

dispersion parameter 𝜂 is proportional to 𝑁𝑑  so that polluted clouds in N=500 simulation also 736 

exhibit broader DSDs. As a result, even under suppressed autoconversion due to higher 𝑁𝑑, the 737 

extended tail of the broader DSD initiates autoconversion, enhances accretion from higher fall 738 

speed, and ultimately enhances precipitation in the N=500 simulation. Note that this type of 739 

cloud occurs much less frequently in the N=500 simulation (6.1%) than in the N=100 simulation 740 

(31.9%).  741 

When continuously increasing aerosol concentration from N=500 to N=1000 (Figure 9 742 

vs. Figure 10), the CFODD of reflectivity changes little, indicating a saturation of the 743 

precipitation suppression effect and the broadening of DSD. More clouds shift to the non-744 

precipitating thick clouds subgroup with 𝑟𝑒 < 10 𝜇𝑚 and 𝜏 >20 (44.6%, Figure 10i).  745 

In summary, we evaluated the vertical development of precipitation in the model using 746 

ARM radar reflectivity profiles. Our simulations realistically reproduce the non-precipitating 747 

regime and the transition to drizzling clouds at similar 𝑟𝑒 and 𝜏 ranges as ARM observations. 748 

Meanwhile, model overestimates precipitation for optically thick clouds and clouds with 𝑟𝑒 >749 

15 𝜇𝑚. This overestimation could be attributed to the early initiation of the autoconversion 750 

process, which leads to an early onset of rain near the cloud top. The excessive accretion rates, 751 

along with underestimation of entrainment and evaporation, lead to an overproduction of rain in 752 

the model, especially in thick clouds with larger water content and longer droplet collection path. 753 

Additionally, the parameterized DSD is too broad in the model, especially for polluted clouds 754 

with large 𝑁𝑑 and large 𝑟𝑒.  755 

As the model reasonably captures the properties of non-precipitating thin clouds in 756 

agreement with ARM observations, the simulated LWP susceptibility aligns well with satellite-757 

based estimates. In contrast, the overestimation of precipitation in thick clouds leads to a 758 

predominantly positive LWP susceptibility in the model due to the precipitation suppression 759 

effect. However, satellite observations indicate that these clouds are typically non-precipitating, 760 

where entrainment drying dominates, resulting in a negative LWP susceptibility. This highlights 761 

the need to improve the parameterization of precipitation processes: particularly autoconversion, 762 

accretion, and DSD representation, in order to better simulate ACI across all cloud regimes. 763 
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  764 
Figure 10. Frequency of radar reflectivity as a function of in-cloud optical depth (𝜏𝑑) for WRF 765 

N=1000 simulation. Different rows are for different ranges of optical depth (𝜏): (a)-(c) clouds 766 

with 𝜏 < 10, (d)-(f) clouds with 10< 𝜏 < 20, (g)-(i) clouds with 𝜏 > 20. Different columns are for 767 

different ranges of effective radius (𝑟𝑒). The left, middle, and right columns are for 15 − 20 𝜇𝑚, 768 

10 − 15 𝜇𝑚, and  5 − 10 𝜇𝑚, respectively. The black dashed lines in each panel denote −15 769 

dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The percentage of sample (P) for 770 

each subgroup is denoted in the figure.  771 

 772 

While our analysis focuses on the two-moment Morrison scheme, Christensen et al. 773 

(2024) found that the choice of microphysics and PBL schemes accounts for only about 30 % of 774 

the variability in simulated ACI, much smaller than the variability across meteorological 775 

conditions and cloud states. Since this study encompasses 11 cases spanning diverse synoptic 776 

regimes and cloud types, the overall conclusions are unlikely to change substantially with 777 
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alternative two-moment bulk microphysics schemes. Nonetheless, future investigations using 778 

multiple microphysics schemes would be valuable for quantifying the robustness of the 779 

precipitation parameterization and its role in ACI uncertainty. 780 

3.3.2 Model Bias in Capturing Inversions   781 

As discussed in case study in Section 3.1, ERA5 profiles fail to accurately represent the 782 

location and strength of inversions over the ENA region. These biases lead to an underestimated 783 

boundary layer height and an overestimated RH above cloud top in the simulations. Figure 11 784 

compares the probability density function (PDF) of cloud-top RH between ARM sounding 785 

observations and WRF simulations across all 11 cases for N=1000 simulation. Different aerosol 786 

concentrations (e.g., N=100, N=500) show consistent results (not shown). In ARM observations, 787 

cloud-top height is derived from the radar reflectivity profile, as described in the method section; 788 

while in WRF simulations, cloud top is defined as the highest model level where the cloud water 789 

mixing ratio exceeds 0.001 g/kg. The RH is sampled at ~100m above cloud top in both data. We 790 

further compare the cloud-top heights in WRF simulations defined using cloud water mixing 791 

ratio and radar reflectivity profiles with 𝑍𝑒 > -40 dBZ from the radar simulator. The two 792 

approaches yield nearly identical results, with a mean difference of less than 40m (figure not 793 

shown).  794 

 795 
Figure 11. PDF of cloud top relative humidity (RH) for WRF simulations (blue line) and ARM 796 

sounding observations (black line). 797 

 798 

To ensure a meaningful comparison between WRF output and ground-based 799 

observations, cloud-top RH from WRF is averaged over a 10km × 10km grid box centered at the 800 

ARM ENA site for each sounding time, given the ~1.2-1.4 km mean cloud-top height for MBL 801 

clouds and ~7 m/s prevailing wind speed at ENA during summer (Wood et al., 2015; Wu et al., 802 

2020). As seen in Figure 11, WRF simulations exhibit a systematic wet bias in cloud-top RH, 803 

with the mean values 7.9% higher than those from observations and with no RH values below 804 

71%.  805 

Figure 12 shows the mean relationship between clout top RH and cloud susceptibilities 806 

calculated based on domain mean values for all three simulations (e.g. N=1000 vs. N=100, 807 
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N=500 vs. N=100, and N=1000 vs. N=500). The cloud top RH is the domain mean RH value at 808 

~100m above cloud top for all simulations. As seen in Figure 12a, we find a positive correlation 809 

between cloud-top RH and LWP susceptibility in the simulations, which is consistent with cloud 810 

responses shown in case study where a dry layer above cloud promotes evaporation and decrease 811 

LWP. Additionally, these positive relationships are consistent among different aerosol 812 

concentrations (e.g., N=1000 vs. N=100 or N=500 vs. N=100; figures not shown). Meanwhile, as 813 

seen in Figure 12, cloud top moisture has a more evident impact on cloud LWP than cloud cover. 814 

Relations between cloud top moisture and cloud susceptibilities found in our simulations are 815 

consistent with that in satellite observations around the globe (e.g. Toll et al., 2019; Yuan et al., 816 

2023), except that LWP susceptibility is mostly negative while CF susceptibility is mostly 817 

positive in satellite data.  818 

 819 

Figure 12. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud top relative 820 

humidity in WRF simulations during the daytime. The solid blue line shows the median value of 821 

each RH bins and the shaded area shows the lower and upper 25th percentiles.  822 

 823 

Based on the relationship between cloud susceptibility and cloud-top RH, the over-824 

estimated cloud-top RH of 8% may lead to an overestimation of 0.04 and 0.005 in LWP and CF 825 

susceptibility, respectively. Meanwhile, the under-estimated cloud-top height of 480m could 826 

result in an under-estimation of LWP and CF susceptibility of 0.18 and 0.02, respectively 827 

(figures not shown). Future modeling studies over the ENA region need to improve the initial 828 

and boundary conditions, e.g., through data assimilations. 829 

To further illustrate the influence of cloud-top evaporation on LWP and CF adjustment 830 

rate, we analyzed the relationship between cloud susceptibilities and change in the cloud-layer 831 

buoyancy flux. As shown in the case study, buoyancy flux increases with aerosol perturbation in 832 

precipitating clouds due to precipitation suppression, whereas it decreases in non-precipitating 833 

clouds due to enhanced entrainment driven evaporation. Thus, changes in buoyancy flux serves 834 

as a proxy for both cloud-top evaporation and precipitation suppression effects.  835 

   836 
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 837 
Figure 13. Dependence of (a) LWP susceptibility and (b) CF susceptibility on changes in buoyancy 838 

flux in the cloud layer in WRF simulations during the daytime. The solid blue line shows the 839 

median value of each buoyancy flux bins and the shaded area shows the lower and upper 25th 840 

percentiles. 841 

 842 

In Figure 13, changes in cloud-layer buoyancy flux is calculated as the difference in 843 

domain-mean values between polluted and clean experiments (e.g., N=1000 vs. N=100, N=500 844 

vs. N=100, and N=1000 vs. N=500), averaged in the cloud layer defined by the domain-mean 845 

cloud water mixing ratio. As shown in Figure 13, two distinct regimes emerge: when cloud-layer 846 

buoyancy flux substantially decrease with increasing aerosols, both LWP and CF decrease; when 847 

changes in buoyancy flux is small negative or positive, LWP and CF susceptibilities are 848 

generally positive or near zero. These results, together with those in Figure 12, support the 849 

conclusion that the reduction in LWP and CF in the model is primarily driven by cloud-top 850 

evaporation associated with enhanced entrainment. The absence of negative LWP responses in 851 

earlier modeling studies may be attributed to inadequate resolution of the interactions among 852 

boundary layer turbulence, entrainment, and cloud-top evaporation. 853 

3.3.3 LWP Adjustment from Internal Cloud Processes and Precipitation Heterogeneity  854 

In addition to model biases in representing precipitation processes and PBL thermodynamic 855 

profiles, one leading factor contributing to the discrepancy in ACI estimates lies in how ACI is 856 

diagnosed in numerical studies versus observations. In model simulations, ACI can be isolated 857 

using controlled experiments by varying aerosol concentrations while holding meteorology 858 

constant. In satellite-based analysis, however, the retrieved ACI signal inevitably includes not 859 

only aerosol-induced cloud responses but also 𝑁𝑑–LWP covariability arising from internal cloud 860 

processes, even under strict spatial and temporal sampling constraints. Diagnosing these internal 861 

cloud processes in satellite observations is difficult because key governing variables, such as 862 

cloud-base updraft speed, TKE, entrainment rate are not directly measured or retrieved. In 863 

contrast, model simulations allow us to quantify the 𝑁𝑑–LWP relationships driven by internal 864 

cloud processes by examining their spatial covariation under homogeneous aerosol conditions. 865 
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To ensure consistency with satellite methodology and suppress small-scale cloud heterogeneity, 866 

pixel-level model outputs are aggregated to a 25 km × 25 km grid.  867 

 868 
Figure 14. (a) LWP-𝑁𝑑 relations stem from internal cloud processes (b) LWP-𝑁𝑑 relations driven 869 

by cloud base updraft speed in WRF simulations during the daytime.  870 

 871 

Figure 14a shows the resulting 𝑁𝑑–LWP relationships across all cases and all aerosol 872 

concentrations, revealing opposing signs between different cloud regimes: a strong positive 873 

correlation for non-precipitating clouds and a strong negative correlation for precipitating clouds. 874 

To understand this contrast, we examine whether both 𝑁𝑑 and LWP co-vary with a third 875 

parameter indicative of internal dynamics. Cloud-base updraft speed emerges as a physical 876 

meaningful driver: the ratio of 
𝑑𝑙𝑛(𝐿𝑊𝑃)

𝑑𝑙𝑛(𝑈𝑝𝑑𝑟𝑎𝑓𝑡)
 to 

𝑑𝑙𝑛(𝑁𝑑)

𝑑𝑙𝑛(𝑈𝑝𝑑𝑟𝑎𝑓𝑡)
 in Figure 14b closely mirrors the 𝑁𝑑–877 

LWP relations in Figure 14a. This indicates that cloud base updraft speed largely governs the 878 

opposing responses. In non-precipitating clouds, stronger updrafts enhance supersaturation, 879 

activation, and condensation, increasing both 𝑁𝑑 and LWP, and resulting in a positive 𝑁𝑑–LWP 880 

relationship. In precipitating clouds, stronger updrafts increase LWP and rain rate, but 881 

precipitation formation reduces 𝑁𝑑 via coalescence and collection, leading to a negative relation. 882 

Furthermore, mesoscale variability in precipitation structure can further modulate the 883 

𝑁𝑑–LWP relationship in precipitating clouds. To test this hypothesis, precipitating cases 884 

(domain-mean precipitation fraction > 0.1) are further divided into heterogeneous and 885 

homogeneous categories based on the spatial standard deviation of precipitation fraction using 886 

the upper and lower 50th percentile, respectively (Figure 15). Precipitation fraction is defined as 887 

the areal fraction of cloud pixels with the column maximum reflectivity greater than –15 dBZ 888 

(Figure 6).  889 

In heterogeneous convective precipitation (Figure 15a), strong and spatially variable 890 

latent heating release enhances buoyancy within clouds, while rain evaporation and downdrafts 891 

generate cold pools. Both processes act to intensify updrafts, which in turn promote rapid droplet 892 

growth and increase the cloud's capacity to retain liquid water, leading to higher LWP and 893 

precipitation. Meanwhile, stronger coalescence and precipitation scavenging reduce 𝑁𝑑. Such 894 

opposite changes in LWP and Nd amplify the negative 𝑁𝑑–LWP relationship (Figure 15c). In 895 

homogeneous stratiform precipitation, latent heating is more spatially uniform and stratification 896 

inhibits localized buoyancy-driven updrafts. Weaker coalescence and less efficient scavenging 897 

lead to a less negative 𝑁𝑑–LWP relationship (Figure 15d). 898 
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 899 
Figure 15. Same as Figure 14, but for scenes with (a) heterogeneous and (b) homogeneous 900 

precipitation fraction. (c) and (d) show the difference between (a) and (b) with Figure 14a. 901 

 902 

In summary, even though clouds with LWP > 75 g/m² and 𝑟𝑒 < 15 µm are typically 903 

classified as non-precipitating thick clouds in observational ACI studies, pixel-level data real that 904 

20–35% of these clouds produce precipitation (Figure 6a). The strongly negative LWP 905 

susceptibilities inferred from satellite data for non-precipitating thick clouds may partly arise 906 

from internal cloud processes driven by updraft speed and mesoscale precipitation structure, 907 

rather than from aerosol–cloud interactions alone. providing a plausible explanation for the 908 

model–observation discrepancy. Meanwhile, non-precipitating thin clouds with LWP < 75 g/m² 909 

and 𝑟𝑒 < 15 µm exhibit low pixel-level precipitation fractions (typically < 0.1, Figure 6a), and the 910 

positive 𝑁𝑑–LWP relationships arising from internal cloud processes may bias satellite-derived 911 

LWP susceptibility toward more positive values, further expanding the model-observation gap. 912 

The opposing signs of 𝑁𝑑–LWP relationships in Figures 14a and 5c for non-precipitating thin 913 

clouds highlight the need for additional process-level analysis in future study.  914 

4. Conclusions and Discussions 915 

Previous studies found that model simulations and observations often reveal opposing 916 

results in LWP responses to aerosol perturbations for MBL clouds. For example, satellite-based 917 
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assessments indicate a decrease of cloud LWP with aerosol perturbations, especially in polluted 918 

conditions for non-precipitating clouds (e.g., Gryspeerdt et al. 2019; Toll et al., 2019; Zhang et 919 

al., 2022, 2023; Qiu et al., 2024; Yuan et al., 2023; 2025). On the other hand, most GCMs and 920 

CPMs simulate an increase of LWP with increasing aerosols (e.g., Ghan et al., 2016; Michibata 921 

et al., 2016; Mülmenstädt et al., 2024; Fons et al., 2024; Christensen et al, 2024). Previous 922 

studies found that increasing model resolution to sub-kilometer can improve the representation of 923 

precipitation process and model performance in ACI by resolving the small-scale process most 924 

relevant to ACI (e.g., Terai et al., 2020). It remains unclear how well models perform at close to 925 

LES scale in representing the ACI feedback when using realistic meteorological conditions and 926 

large case ensembles across various cloud states and synoptic regimes.  927 

To address these gaps, our study makes three key advances: (1) we conduct a series of 928 

realistic near-LES-scale case studies that enable direct comparison with ground-based and 929 

satellite observations to reconcile observed–modeled discrepancies; (2) we examine a large 930 

ensemble of MBL cloud cases spanning a range of cloud states and synoptic conditions to 931 

capture the diversity of ACI responses; and (3) we use the same two-moment microphysics 932 

scheme implemented in several GCMs and CPMs, making our findings directly relevant for 933 

improving microphysical parameterizations in climate models. 934 

The simulated MBL clouds generally match the satellite observation in domain mean 935 

cloud coverage and mesoscale organization (Figures 1, 3, S2-S4), while the model may struggle 936 

to capture the diurnal evolution of clouds, especially the dissipation of clouds in the afternoon. 937 

Model overestimate cloud LWP, especially in the polluted runs and underestimated cloud top 938 

height compared to satellite retrievals. To show the dependence of cloud responses on cloud 939 

state, LWP susceptibilities are displayed in the 𝑁𝑑-LWP parameter space (Figure 5). For non-940 

precipitating thin clouds, our simulations show a consistently negative but weaker LWP 941 

susceptibility compared to satellite observations, with a mean of−0.13. The negative LWP 942 

susceptibility likely result from the better resolved turbulence, condensation/evaporation 943 

processes and their feedback on PBL thermodynamics. More specifically, increases in aerosols 944 

enhance turbulence and TKE in the cloud layer. With the dry air above, the entrained dry air 945 

intensifies evaporation, reduces buoyancy flux in the cloud layer and leads to dissipations of 946 

clouds (Figure 4, 13).  947 

For precipitating clouds, our model predicts a slight increase in LWP with the mean 948 

susceptibility of +0.15, which is consistent with the precipitation suppression hypothesis and the 949 

climatological mean cloud response for heavily precipitating clouds (e.g., Qiu et al., 2024). For 950 

non-precipitating thick clouds, model simulations and satellite observations show the largest 951 

disagreement with opposite LWP susceptibilities of +0.32 vs. −0.69, respectively. Meanwhile, 952 

the non-precipitating thick clouds are the dominant cloud state in the model, with a total 953 

frequency of 49%, compared to a 15.7% frequency of occurrence in satellite observations. The 954 

overestimation of 𝑁𝑑 arise from the overestimated aerosol concentration in the configuration, 955 

combined with the absence of precipitation scavenging in the model. The overestimation of LWP 956 

is due to the positive LWP susceptibility in thick clouds where LWP in N=100 simulation show 957 

good agreement with satellite retrievals (Figure S9) 958 

 Our analyses indicate that such discrepancy could mainly result from the overestimation 959 

of precipitation for thick clouds: where MBL clouds in simulations produce precipitation at 960 

much smaller cloud drop size (e.g., 𝑟𝑒 > 10 𝜇𝑚) and in more polluted conditions compared to 961 

satellite observations (Figure 6). Based on ARM radar observations, our simulations reasonably 962 

capture the non-precipitating regime and the transition from non-precipitating to drizzling clouds 963 
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within the same 𝑟𝑒 and 𝜏 range as observed (Figures 7, 8). Our simulation result appears to better 964 

represent marine clouds than GCM or GCPM, which often initiate drizzle or rain at cloud top 965 

and rarely simulate non-precipitating clouds (e.g., Jing et al. 2017, 2019; Michibata and Suzuki, 966 

2020). However, several biases remain. In non-precipitating clouds, the model shows near-967 

constant 𝑍𝑒 profile with height, whereas observations show a decrease near cloud top, suggesting 968 

an underestimation of entrainment and evaporation (Figure 8). In thicker clouds (τ > 20), drizzle 969 

often initiates too early at cloud top (𝑍𝑒> –15 dBZ), indicating excessive autoconversion. This 970 

early onset allows raindrops to grow too large through prolonged collection in deeper clouds, 971 

resulting in overestimated rain rates (𝑍𝑒 > 0 dBZ), whereas observations show only drizzle 972 

(Figure 8). Additionally, stronger rain in polluted cases with large 𝑟𝑒 points to an overly broad 973 

DSD, as the dispersion parameter η in the Morrison scheme increases with 𝑁𝑑, and the DSD 974 

slope flattens with larger 𝑟𝑒 (Figures 9, 10). The overestimation of precipitation for thick clouds 975 

results in an increase in LWP from precipitation suppression in the simulation.  976 

The overestimation of LWP susceptibility may also stem from biases in ERA5 and WRF 977 

profiles in representing the location and strength of moisture inversions (Figures S6, S8), leading 978 

to shallower PBL and a moist bias above the clouds in the simulations (Figure 11). Consistent 979 

with observations, model simulations show a positive correlation between LWP susceptibility 980 

and cloud-top RH, suggesting that the wet bias in cloud-top RH contributes to the positive bias in 981 

LWP susceptibility (Figure 12).   982 

Lastly, we find that part of the discrepancy in quantified ACI may stem from 𝑁𝑑-LWP 983 

relationships driven by internal cloud processes that are mixed with the ACI signals in satellite 984 

observations. Using model simulations with homogenous aerosol concentrations, we isolate these 985 

internally driven 𝑁𝑑-LWP relationships. Our results reveal large opposing signals between 986 

precipitating clouds (large negative relationships) and non-precipitating clouds (large positive 987 

relationships), primarily governed by cloud base updraft speed (Figures 14) and modulated by 988 

mesoscale cloud and precipitation organization (Figure 15). Therefore, the strongly negative 989 

LWP susceptibility observed in thick clouds in satellite data could reflect internal cloud 990 

dynamics rather than true ACI.  991 

This study shows that while the discrepancy in ACI assessments between observations 992 

and models can be reduced by increasing model resolution for precipitating and non-precipitation 993 

thin clouds, the positive bias in the LWP susceptibility for non-precipitating thick clouds 994 

persists. This bias is attributed to parameterization deficiencies in the microphysics scheme and 995 

model biases in lower tropospheric thermodynamics over the ENA region. These findings may 996 

motivate improvements in precipitation parameterizations and encourage their process-level 997 

evaluation against observations. 998 

 999 

Data availability:  1000 

The WRF model used, version 4.2.2, is freely available from the developers’ website (https://github.com/wrf-1001 

model/WRF/releases, WRF, 2022). SEVIRI Meteosat cloud retrieval products, produced by NASA LaRC 1002 

SatCORPS group, are available from the Atmospheric Radiation Measurement (ARM) Data Discovery website at 1003 

https://adc.arm.gov/discovery/, Minnis Cloud Products Using Visst Algorithm. The ARM ground-based radar and 1004 

lidar observations (KAZRARSCL), LWP retrievals, and balloon sounding observations are available from ARM 1005 

Data Discovery. 1006 
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