Responses to reviewer comments

In this response letter, we provide a point-by-point response to each comment. The
original comments are in h/ue italic font, and our response are in black font. Changes
made in the manuscript are listed in quotes with line numbers of the tracked changes
version.

Reviewer #1 :

General comments :

The authors employ high-resolution near-LES WRF simulations to investigate aerosol-
cloud interactions (ACI) in marine boundary layer (MBL) clouds over the Eastern
North Atlantic (ENA). The study is methodologically rigorous, leveraging satellite
retrievals, ground-based ARM observations, and process-level diagnostics (e.g.,
CFODD analysis). The conclusions highlight persistent model-observation
discrepancies in LWP susceptibility, particularly for non-precipitating thick clouds,
and propose mechanistic explanations tied to precipitation efficiency and entrainment
biases. The paper is well-organized and addresses a critical gap in ACI understanding.
However, several scientific and methodological issues require clarification to ensure
robustness.

Major comments:

- Section 3.1 evaluates two representative cases by Meteosat, however, the Meteosat
data shows dissipation and reformation processes that the model didn’t capture. |
expected the authors to focus on the discrepancy and discuss the reason for this
mismatch, but I couldn’t find any direct discussion on this. In some paragraphs, the
authors point out model bias in LWP susceptibility to aerosols, which is good, but still,
the model bias in Section 3.1 needs explanations.

Thanks for your question. The lack of cloud dissipation and diurnal variation in
marine boundary layer (MBL) clouds in the WRF model is likely associated with the biases
in the thermodynamic profiles inherited from ERAS. As seen in Figures R1 left figure, on 21
July 2016, ARM sounding observations indicate a sharp decrease in moisture above the
PBL between 14 and 20 UTC, leading to the dissipation of clouds after 14 UTC (Figure 1a).
In contrast, both ERAS and WRF simulation show a gradual decrease in specific humidity
and relative humidity above the PBL from 0 to 20 UTC, resulting in a much moister layer
above clouds in the model (Figures R1 middle and right). Consequently, clouds did not
dissipate in the afternoon in the simulation.

On 25 July 2016, the ARM sounding observations similarly exhibit a pronounced
decrease in specific humidity and relative humidity above the PBL between 14 and 24 UTC
(Figure R2). In this case, the WRF simulation accurately capture the observed feature,
reproducing a sharp decrease in moisture above the PBL from 14 to 24 UTC. As a result,
clouds in the N=100 and N=1000 simulations dissipate from 14 to 24 UTC, consistent with
satellite observation (Figure R3). This pattern also holds for other cases in the high-ridge
regime, such as 22 and 28 July 2016, where the accuracy of the simulated PBL moisture
variation determined whether the model captured the observed diurnal evolution of clouds
(figures not shown). These cases demonstrate that the diurnal cycle of cloudiness is highly
sensitive to the representation of diurnal variation in moisture as well as the moisture
gradients near the inversion.

The fixed, vertically uniform aerosol concentration further contributes to the
persistence of clouds by maintaining unrealistically high CCN concentrations
throughout the day and suppressing precipitation. The lack of precipitation scavenging
also reduces evaporative cooling and weakens cloud—PBL decoupling, inhibiting
afternoon cloud breakup.

We added these discussions to the second last paragraph in Section 3.1:



“The absence of afternoon cloud dissipation in WRF simulations are likely associated with
model biases in the thermodynamic structure inherited from ERAS. For example, on 21 July
2016, ARM sounding observations show a pronounced decrease in specific humidity and
relative humidity above the PBL between 14 and 20 UTC (figures not shown). This
sharp drying leads to cloud erosion in the observations. However, WRF simulations or
ERAS reanalysis produces only a gradual reduction in moisture from 00 to 20 UTC (Figure
2a), maintaining a moist layer above cloud top and prevent cloud breakup. On 22 July 2016,
the model reproduces the moisture gradient above PBL with a warm and dry layer above,
the lifted cloud top in the N=1000 simulation entrain dry air into cloud system and dissipate
clouds in the afternoon (Figure 3a). On days when ERAS accurately capture the observed
moisture decrease above PBL (e.g., 25 and 28 July 2016), the model reproduces both the
dissipation and evening redevelopment of clouds seen in Meteosat data (figures not
shown). This indicates that the diurnal evolution of MBL clouds is highly sensitive to
the representation of diurnal variation in moisture as well as the moisture gradients near
the inversion.

The prescribed, vertically uniform aerosol concentration further reinforces cloud
persistence by maintaining elevated CCN levels and suppressing drizzle formation. The
lack of precipitation scavenging prevents cloud-base evaporative cooling and inhibits
decoupling, both of which would otherwise promote afternoon cloud breakup. The
implications of thermodynamic and aerosol-related biases for the estimated ACI are
discussed in detail in Section 3.3.2. (Lines 436-455)”
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Figure R3. Time series of domain-averaged cloud properties from observations and
model simulation on 25 July 2016. (a) Cloud coverage, (b) cloud top height, (c¢) cloud
liquid water path, and (d) rain-water path for N=100 (blue lines) and N=1000 (orange
lines) experiments.

- Paragraph in Lines 395: the authors use 15 microns as the threshold to differentiate
precipitating clouds and non-precipitating clouds. Since the authors have very good
representative cases with one precipitating and another not, why not separate the two
scenarios by cases? I believe the authors know the threshold is a bit tricky because
other values (12 microns or 13 microns) have been used in previous literature, and so
far, we don’t have an agreement on which number is best.

Thanks for the suggestion. We didn’t separate the non-precipitating and precipitating
scenarios by cases because most cases have clouds transitioned from one to another
during the simulation period. Instead, we classify cloud state at each time step. We use
the 15-micron threshold in the model to be consistent with the precipitation threshold
used in the satellite observations. As the main goal of this study is to explain the
discrepancy between the observed and simulated LWP susceptibility, we use the same
classification of precipitation in the model as in the satellite observation to make
consistent comparison. In Figure 6d, we evaluated the 15-micron threshold in the model
using the column maximum radar reflectivity (Z max) greater than —15 dBZ at each
model output time. As shown in Figure 6d, model generates precipitation too often at
smaller drop size with 7, > 10 um and at higher N; concentration. The over-estimation
of precipitation in the model is the leading cause of the positive bias in LWP
susceptibility.

We agree that the threshold of 15-micron could be tricky and different threshold values
have been used in previous studies. In our previous satellite observational study, we



evaluated different effective radius thresholds and rain rate thresholds in satellite
retrievals using precipitation masks derived from ground-based radar reflectivity at the
ENA site, and we found that the 7, > 15 um threshold showed the best agreement with
ground-based observations (Qiu et al., 2024). To address this comment, and a similar
comment from the other reviewer, we add the definitions of different cloud states:

“Based on the relationships between r,, LWP, and N; in the satellite retrievals (e.g.,

LWP = 2Lt N, = Rk (fad—cwrs)l/z), 1, =15 isolines is marked in the LWP-N,
3Qext 21k “QextPwTe

parameter space as an commonly used indicator of precipitation likelihood in the
satellite retrieval (e.g., Gryspeerdt et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu
et al., 2024). Based on the distinct LWP, cloud albedo and CF susceptibilities, MBL
clouds are classified into three states: the precipitating clouds (7, >15 um), the non-
precipitating thick clouds (7, <15 um, LWP> 75 gm™2), and the non-precipitating thin
clouds (7, <15 um, LWP< 75 gm™?2) (Qiu et al., 2024). To be consistent with
observational reference, the WRF simulated cloud states are classified using the same
definition. (Lines 479-487)”

- LWP Susceptibility Discrepancy (Lines 417-419)

The model shows a positive LWP response (+0.32) for non-precipitating thick clouds,
while observations show a strong negative response (-0.69). What is the primary driver
of this discrepancy?

Thanks for your question. We added more explanation in the summary paragraph of
section 3.2 to address this comment:

“Large discrepancies remain for non-precipitating or lightly drizzling thick
clouds, where the model simulates too many polluted thick clouds and yields an opposite
(positive) LWP response compared to the strongly negative satellite signal.

In addition, the model-observation discrepancy persists across all synoptic
regimes, suggesting that they originate from the model’s representation of cloud
microphysics, precipitation, and aerosol-cloud coupling rather than from large-scale
meteorological variability. The robustness of these modeled LWP response, consistent
with previous LES studies of similar cloud regimes (e.g., Wang et al., 2020; Lee et al.,
2025), further motives the central focus of the next section: diagnosing the physical
mechanisms driving these biases. We show that three leading factors dominate the
discrepancy: excessive precipitation production in thick clouds, a moist bias above cloud
top, and satellite retrieved N;-LWP relationships contaminated by internal cloud
processes. (Lines 592-608)”

- Model Biases and Initial Conditions (Lines 356-360, 642-664)

The study identifies biases in ERAS5 reanalysis (e.g., underestimated PBL height,
overestimated cloud-top RH) as a significant source of discrepancy. However, the
extent to which these biases propagate into the WRF simulations and affect ACI
estimates is not fully quantified. Sensitivity tests using alternative reanalysis datasets
or perturbed initial conditions could help isolate the impact of these biases. If
perturbed simulations or using different reanalysis datasets add too much work, at
least discussion on this point is necessary.

Thanks for the insightful question and suggestion. As seen in Figure 11, the cloud-top
RH in WRF simulations is ~ 8% higher than ARM observation. Based on the
relationships between cloud-top RH against LWP and CF susceptibilities, the 8% wet
bias may lead to an overestimation of 0.04 and 0.005 in LWP and CF susceptibility,
respectively (Figure R4). Similarly, LWP and CF susceptibilities positively correlate
with cloud top height (Figure R5). As seen in Figure R6, due to the under-estimation of
PBL height in ERAS reanalysis and WRF simulations, the simulated cloud top is ~480
m lower than Meteosat retrievals. This under-estimation may lead to an ender-
estimation of LWP and CF susceptibility of 0.18 and 0.02, respectively. To conclude,



the under-estimation of cloud-top height in WRF simulations may exhibit larger impact
on LWP susceptibility than the overestimation of clout-top RH, due to the larger bias in
cloud-top height between simulations and observations. We have added the following
discussions to the manuscript.

“Based on the relationship between cloud susceptibility and cloud-top RH, the over-
estimated cloud-top RH may lead to an overestimation of 0.04 and 0.005 in LWP and
CF susceptibility, respectively. Meanwhile, the under-estimated cloud-top height of
480 m could result in an under-estimation of LWP and CF susceptibility of 0.18 and
0.02, respectively (figures not shown). Future modeling studies over the ENA region
need to improve the initial and boundary conditions, e.g., through data assimilations.
(Lines 890-895)”
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Figure R4. Dependence of (a) LWP susceptibility (b) CF susceptibility on cloud-top
relative humidity in WRF simulations during the daytime. The solid blue line shows the
median value of each RH bins and the shaded area shows the lower and upper 25"
percentiles.
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Figure R5. Dependence of (a) LWP susceptibility (b) CF susceptibility on cloud-top
height in WRF simulations during the daytime. The solid blue line shows the median
value of each RH bins and the shaded area shows the lower and upper 25" percentiles.
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Figure R6. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud top
height in WRF simulations during the daytime. The solid blue line shows the median
value of each RH bins and the shaded area shows the lower and upper 25" percentiles.

- Precipitation Parameterization (Lines 540-560, 621-628)

The overestimation of precipitation in thick clouds is attributed to autoconversion,
accretion, and DSD issues. While the analysis is thorough, the study could benefit from
testing alternative microphysics schemes (e.g., P3, Thompson) to assess the robustness
of the conclusions. At lease, I suggest to add discussions on the choice of microphysical
schemes and parameters.

Thank you for the insightful question. We added a paragraph on discussion of
microphysics scheme at the end of Section 3.3.1:

“While our analysis focuses on the two-moment Morrison scheme, Christensen
et al. (2024) found that the choice of microphysics and PBL schemes accounts for only
about 30 % of the variability in simulated ACI, much smaller than the variability across
meteorological conditions and cloud states. Since this study encompasses 11 cases
spanning diverse synoptic regimes and cloud types, the overall conclusions are unlikely
to change substantially with alternative two-moment bulk microphysics schemes.
Nonetheless, future investigations using multiple microphysics schemes would be
valuable for quantifying the robustness of the precipitation parameterization and its role
in ACI uncertainty. (Lines 837-844)”

- Internal Cloud Processes vs. ACI (Lines 684-737)

The discussion on internal cloud processes (e.g., updraft-driven -LWP relationships) &
insightful but could be strengthened by explicitly separating these effects from true ACI
in the observational analysis. For example, using conditional sampling (e.g., stratifying
by updraft strength) might help disentangle these contributions.

Thanks for the suggestion. In satellite observations, it is a bit challenging to disentangle
the N;-LWP relationships contributed by internal cloud processes from the true ACI,
and we don’t have direct measurements or retrievals of the cloud base updraft speed or
other direct measurement indicating internal cloud processes. To compensate for this
limitation in observations, we used model outputs to quantify the N;-LWP relationships
contributed by internal cloud processes in section 3.3.3. We added a sentence to clarify
this: “Diagnosing these internal cloud processes in satellite observations is difficult
because key governing variables, such as cloud-base updraft speed, TKE, entrainment
rate are not directly measured or retrieved. In contrast, model simulations allow us to
quantify the N;—LWP relationships driven by internal cloud processes by examining



their spatial covariation under homogeneous aerosol conditions at each timestep. (Lines

930-933)”

- Case Selection and Representativeness (Lines 232-264)
The 11 cases span different synoptic regimes, but the rationale for selecting these
specific cases (e.g., why not include southerly wind conditions?) is not fully explained.

A further discussion on the implications of these synoptic differences would be

beneficial.

Thanks for the question. Previous studies using ARM observations at the ENA site
found that aerosol, CCN, cloud properties, and PBL properties are influenced by local
emission from the Graciosa Island during southerly wind conditions (e.g., Ghate et al,
2021, 2023). As our study used radar reflectivity profiles at the ARM ENA site to
evaluate simulated precipitation processes, we focus on times when the site is dominant

by northerly wind from the ocean to minimize influence from the island.

Thanks for the suggestion on adding a discussion on the influence of different synoptic
regimes on LWP susceptibility. As we only have one case in the “weak-trough” regime
(Table S1), we compared the LWP susceptibility and the occurrence frequency of
different cloud states between the “high-ridge” and “post-trough” regimes, as shown in

Figures R7.
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Figure R7. Mean liquid water path (LWP) susceptibility from WRF simulations for (a)

(b) the high-ridge regime and (c) (d) the post-trough regime. (a) (c) cloud LWP
susceptibility din(LWP)/dIn(N,), (b) (d) frequency of occurrence of sample in each

bin.



In our previous study using six-year ground-based observations at the ARM ENA site,
Zheng et al. (2025) found that the “high-ridge” regime has significantly more single-
layer stratocumulus clouds, thinner cloud depth, smaller LWP, and smaller surface rain
rate compared to the “post-trough” regime. Consistent with our previous study, there are
more non-precipitating thin clouds in the high-ridge regime compared to the post-trough
regime, with the total frequency of occurrence of 49% and 40%, respectively (Figures
R7b and d). For cloud susceptibility, the non-precipitating thin clouds in the high-ridge
regime exhibit more negative LWP susceptibility compared to clouds with similar LWP
and Nd in the post-trough regime, likely due to the cold dry air above clouds with the
subsidence in the high-ridge regime. Additionally, the non-precipitating or slightly
drizzling thick clouds in both regimes exhibit strong positive LWP susceptibilities,
indicating that the model-observation discrepancy for this cloud state is consistent with
different synoptic conditions and warrant further investigations in the next section.

We have added Figure R7 to the supplementary information and added the discussion
on influence of synoptic regimes on LWP susceptibility to the manuscript:

“To further examine whether these discrepancies depend on large-scale meteorological
conditions, we assessed LWP susceptibility across different synoptic regimes. Because
only one case is available for the “weak-trough” regime (Table S1), our comparison
focuses on the “high-ridge” and the “post-trough” regimes (Figure S10). The “high-ridge”
regime shows a higher occurrence of non-precipitating thin clouds than the “post-trough”
regime, with total frequencies of 49% and 40%, respectively (Figures S10b, d, t). This
more frequent non-precipitating thin cloud in the model is consistent with our previous
study based on six years of ground-based observations at the ARM ENA site, which
revealed that the “high-ridge” regime favors single-layer stratocumulus clouds with
shallower cloud depth and smaller LWP compared to the “post-trough” regime (Zheng et
al., 2025).

In addition, non-precipitating thin clouds in the “high-ridge” regime exhibit more negative
LWP susceptibilities than clouds with similar LWP and N; in the “post-trough” regime.
This difference in LWP susceptibility is associated with the colder and drier air above
clouds under subsidence in the “high-ridge” regime, which enhances cloud dissipation, as
also demonstrated in the case study. Overall, non-precipitating or lightly drizzling thick
clouds in both synoptic regimes still manifest strong positive LWP susceptibilities,
suggesting that the model-observation discrepancy for this cloud state persist regardless
of synoptic conditions and therefore warrants further investigation. (Lines 566-583)”

- Radar Simulator Validation (Lines 214-220, 451-454)

The use of CR-SIM for radar reflectivity comparison is commendable, but the study
does not explicitly validate the simulator against ARM observations for the specific
cases analyzed. Including a direct comparison (e.g., scatter plots, statistical metrics)
would bolster confidence in the model-observation discrepancies.

Thank you for the valuable suggestion. Figure R8 shows the ARM radar reflectivity
profiles for the 11 selected cases. As seen in Figure R8, the radar reflectivity profiles
exhibit consistent characteristics as six-year data shown in Figure 7. The only difference
is that clouds with 7, = 5 — 10 um and 7 > 20 start drizzling at cloud base for the
selected cases (Figure R81). Therefore, the difference between CR-SIM radar simulator
and ARM observations can be attributed to model biases rather than to the
representativeness of cases.

We added the following discussion: “To increase the sample size, we analyzed the
climate-mean radar reflectivity profiles of stratocumulus and cumulus clouds observed
during the summer months (June to August) from 2016 to 2021, comprising a total of
91,737 profiles. Radar reflectivity profiles derived from the selected 11 cases exhibit
consistent characteristics (figure not shown). (Lines 662-666)”
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Figure R8. Frequency of radar reflectivity as a function of in-cloud optical depth (z) for
ARM ground-based observations during the daytime for the selected 11 cases. Different
rows are for different ranges of optical depth (7): (a)-(c) clouds with T < 10, (d)-(f)
clouds with 10< 7 <20, (g)-(i) clouds with T > 20. Different columns are for different
ranges of effective radius (7). The left, middle, and right columns are for 15 — 20 um,
10 — 15 pm, and 5 — 10 um, respectively. The black dashed lines in each panel denote
—15 dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The percentage of
sample (P) for each subgroup is denoted in the figure, with a total sample of 4648.

Minor comments:

- Clarify Terminology (Lines 395-400)

The term "susceptibility" is used interchangeably for LWP and CF responses. Consider
defining these terms more explicitly early in the manuscript (e.g., in the Abstract or
Introduction).

Thanks for the suggestion. We have added the definitions of susceptibility and method
used to quantify LWP and CF susceptibilities to the method section. “In the context of
ACI: cloud susceptibility quantifies how sensitive a cloud property responds to change
in aerosol concentration or N,;. To constrain the spatial-temporal variation in
meteorological conditions and cloud properties, cloud susceptibility is estimated as the
regression slope between N; and cloud properties within the 1° X 1° domain at each
time step of satellite observations. In this study, we quantify both LWP and cloud
fraction (CF) susceptibilities to N; perturbations. Because of the non-linear relations
between LWP and N, the LWP susceptibility is quantified in logarithm scale as:



din(LWP)/dIn(Ny) (e.g., Gryspeerdt et al. 2019; Qiu et al., 2024) and CF
susceptibility is quantified as: dCF /dIn(N,) (e.g., Kaufman et al. 2005; Chen et al.,
2022; Qiu et al., 2024). (Lines 169-177)”

- Equation (1) (Lines 387-394)

The derivation of Na from re is not fully explained. Briefly clarify the
assumptions (e.g., adiabaticity, k value) or cite a reference for the equation.
Following your suggestion, we moved this paragraph to the method section and added
the derivations and assumptions for 7, and N, retrievals to the manuscript:

“In this study, we used the cloud mask, cloud effective radius (7;), cloud optical depth
(1), cloud liquid water path (LWP), cloud phase, and cloud top height variables in the
SEVIRI Meteosat cloud retrieval product (Minnis et al., 2011, 2021). We focus on warm
boundary layer clouds with cloud top below 3km and a liquid cloud phase. The 7, and ©

retrievals are based on the shortwave-infrared split window technique during the
47T

daytime. Cloud LWP is derived from 7, and 7 using the equation: LWP = , where

ext
Q.x: represents the extinction efficiency and assumed constant of 2.0. Cloud mask

algorithm is consistent with the CERES Ed-4 algorithm, as described in Trepte et al.
(2019), where cloudy and clear pixels are distinguished based on the calculated TOA
clear-sky radiance. Cloud top height is derived from the retrieved cloud effective and top
temperature, together with the boundary-layer temperature profiles and lapse rate, as
described in Sun-Mack et al. (2014). Cloud N, is retrieved based on the adiabatic
assumptions for warm boundary layer clouds, based on the following equation:

V5 . fadCwT 1/2 1
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In Equation (1), k represents the ratio between the volume mean radius and 7, and it is

assumed to be constant of 0.8 for stratocumulus, f,, is the adiabatic fraction, c,, is the
condensation rate, Q,,; is the extinction coefficient, and p,, is the density of liquid water
(Grosvenor et al., 2018). (Lines 148-165)”

d:

- Statistical Significance (Lines 406-417)

The differences in LWP susceptibility between model and observations are discussed,
but statistical significance tests (e.g., t-tests, confidence intervals) are not reported.
Adding these would strengthen the conclusions.

Thanks for the helpful suggestion. Figure R9 shows the p values for the Welch t-test
between Meteosat observations and WRF simulations for each bin. We further marked
bins with p<0.05 with black outlines as shown in Figure R10. For most MBL clouds, the
simulated LWP susceptibilities are significantly different than the satellite observations.
For non-precipitating thin clouds, our simulations reproduce the decrease of LWP with
weaker magnitude. Yet, the LWP susceptibilities are significantly different from satellite
observations for most bins.

To address this comment, we updated Figure 5 and added related discussions in the
manuscript. “For non-precipitating thin clouds, the simulated decrease in LWP with
increasing aerosol concentration agrees in sign with satellite observations. However, the
magnitude of this decrease is weaker, and the simulated susceptibilities remain
significantly different from satellite estimates at 95% confidence level for most bins
(Figure 5a, c¢). (Lines 529-533)”



i
i
h / 0.18
1 ,f
250+ ! /
; / 0.16
! /
! s 0.14
200 /
-~ 0.12
£ E
3150 010®
T a
~ 0.08
100 0.06
0.04
50+
0.02
P
< 0.00

150 200 250
Ng(cm™3)

Figure R9 P value for the Welch t-test between Meteosat observations and WRF
simulations for each bin.
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Figure R10. Mean liquid water path (LWP) susceptibility from (a) (b) WRF simulations
and (c) (d) Meteosat cloud retrievals during the daytime. (a) (c) cloud LWP
susceptibility din(LWP)/dIn(N,), (b) (d) frequency of occurrence of sample in each
bin. The dashed lines indicate 7, =15 um, r, =10 um, and LWP="75 gm™2, asr,
thresholds for precipitation (precipitating clouds located to the left of the line), and for
thick clouds (with LWP > 75 gm™2), respectively. Black-outlined bins denote cases
where the WRF and Meteosat LWP susceptibilities differ significantly (p < 0.05) based

on a Welch’s t-test.
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- CFODD Interpretation (Lines 494-523)



The CFODD analysis is insightful, but the physical interpretation of reflectivity slopes
(e.g., why steeper slopes indicate stronger accretion) could be briefly elaborated in the
text.

Thanks for the question and suggestion. Based on the definition of droplet collection
efficiency (E,) for a continuous collection model, and the assumption of the relationship
between radar reflectivity (Z,) and cloud drop size, we can derive the relation between
Z,and E, as

dzZ, a
— ~=-FE.dt
Z, 6 ¢

where « is a constant and is associated with what variable is conserved in the process, 74
is in-cloud optical depth. For a complete derivation, please refer to Suzuki et al. (2010)
study. Therefore, the slope of the reflectivity changes as a function of 7, in the CFODD
analysis contains information about the droplet collection efficiency E.. To address this
comment, we added the text to the manuscript:

“Based on the relationship between Z, and the droplet collection efficiency (E.),
the vertical slope of Z, as a function of in-cloud optical depth (z,) is directly linked to
E., a steeper slope indicates a larger E, (Suzuki et al., 2010). (Lines 648-650)”

- Aerosol Prescription (Lines 199-200)

The assumption of fixed aerosol concentrations (no vertical/horizontal variability) may
oversimplify real-world conditions. Acknowledge this limitation and discuss its
potential impact on ACI estimates.

Thanks for the suggestion. Yes, the uniform aerosol concentration assumption over-
simplifies the spatial and temporal heterogeneity from local emission and long-range
transport, the relative location between aerosol plumes and cloud, as well as processes
such as wet scavenging, and the reactivation of CCN from evaporated rain drops. In a
companion study, we employed the WRF model with the interactive chemistry and
aerosol schemes and investigated ACI and its feedback on both clouds and aerosols
using same model configuration and cases (but less) as this study (Lee et al., 2025). In
Lee et al. (2025), we found a consistent positive LWP response for precipitating clouds
as this study (Figure 11 in Lee et al., 2025). As we assumed a higher ratio of the Aitken
mode aerosols (80% for the Aitken mode and 20% for the accumulation mode) in that
study, and activated CCN and N; concentrations are much lower in Lee et al. (2025)
than in this study. In addition, with the comprehensive aerosol module in WRF-Chem,
we found signals of increased reactivation of CCN from evaporated raindrop due to
larger aerosols in the accumulation mode.

We added the following discussion to the method section acknowledging the
limitation and potential impact: “The fixed aerosol field neglects spatial and temporal
variability driven by emissions, long-range transport, wet scavenging, and CCN
reactivation from evaporated raindrops. These missing processes can sustain higher
CCN concentrations, suppress precipitation, and potentially exaggerate positive LWP
responses.

Despite this simplification, our companion WRF-Chem study (Lee et al., 2025)
shows that, even with full aerosol microphysics, wet scavenging, and aerosol
reactivation, the simulated LWP responses remain broadly consistent with the results
presented here, especially the positive susceptibility in precipitating clouds. This
agreement suggests that the key findings of this work are robust, although the
prescribed-aerosol assumption may still contribute to some of the quantitative
discrepancies discussed in Section 3. (Lines 250-260)”

- Diurnal Cycle (Lines 764-765)
The model's struggle to capture afternoon cloud dissipation is noted but not explored.
A brief discussion of potential causes (e.g., radiation biases, entrainment rates) would

be helpful.



We added the discussion on the potential causes for the model missing the diurnal
variation in clouds. Please refer to major comment #1 for details.



Reviewer #2:

General comments :

This manuscript identified model bias on LWP responses to aerosol perturbations and
potential causes behind such bias using near-LES simulations and multiple
observations over the Eastern North Atlantic region. By comparing the modelled LWP
susceptibility with satellite observations, they found that modelled LWP susceptibility
from non-precipitating, thick clouds have the largest discrepancy compared to the
observations, while the LWP susceptibilities from precipitating and non-precipitating
thin clouds show relatively good agreements with observations. It is suggested that the
model overestimates precipitation for thick clouds including excessive autoconversion
and accretion, and underestimates entrainment and evaporation, which are the main
reasons for the LWP susceptibility discrepancy in these non-precipitating thick clouds.
They also found that the modelled cloud susceptibilities are sensitive to cloud top
humidity, and the bias of cloud top humidity in the model can be another reason for the
LWP susceptibility discrepancy.

The findings in this manuscript are insightful and important for improving
representation of aerosol-cloud interactions in the models. The topic and research
questions are also relevant within the scope of ACP. However, I have several major
comments outlined below for the improvement of this manuscript, and I recommend
resubmission after the following comments are addressed.

Recommendation: major revisions

Major comments:

- I am concerned about the ability of the model to simulate LWP for the selected
cases. In Figure 5, the model simulates non-precipitating, thick clouds with high LWP
much more frequently than the Meteosat observed. These non-precipitating, thick
clouds are key to the later-on analysis and conclusions. Comparison of LWP between
model and observation is only for two cases, and Figure S2-S4 only provide a
qualitative comparison of cloud fields. I suggest a more quantitative model-
observation comparison for the selected cases, and a more detailed description and
explanation on the LWP bias (currently there is only one sentence at Line 422 stating
the potential reason of lack precipitating scavenging feedback on aerosol and Nd) and
how this bias affects your conclusions. Although constant aerosol number
concentrations are used for simulations, it will be helpful to have the Nd comparison
as well.

Thank you for the constructive comment. In Figure R1, we include a quantitative
comparison between model and observed LWP and Nd. As seen in Figure R1a, the
simulated LWP in the N=100 simulation agrees well with the Meteosat observation,
with a mean value about 10% lower than Meteosat. However, since most of the thick
clouds with LWP greater than 75 g/cm?2 exhibit a positive LWP susceptibility (Figure
5a), the LWP in the N=500 and N=1000 simulations increases relative to that in the
N=100 simulation.



(a) Domain Mean LWP from Meteosat and WRF

(b) Domain Mean Nd from Meteosat and WRF
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Figure R1 Scatter plot of domain-averaged cloud properties from Meteosat observations
and WRF model simulation. Different colors represent different simulations (N=100,
blue, N=500, green, N=1000, orange). (a) cloud liquid water path (LWP), (b) cloud
droplet number concentration (Ny).

The overestimations of N, are due to the overestimated prescribed aerosol
concentration in model setting combined with the lack of precipitating scavenging effect
on aerosols in these simulations. Based on field campaign measurement, the mean total
aerosol concentration (N,) and N in the ENA region in summer are ~400 cm™3 and 80
cm™3 respectively (Zhang et al., 2021; Wang et al., 2021; Wang et al., 2022; Zheng et
al., 2024). Since the purpose of this study is to quantify aerosol-cloud interactions and
cloud susceptibility in model simulations, the prescribed aerosol concentrations are
designed as N=100, N=500, and N=1000 to sufficient variation in N,. The simulated Nd
in these simulations are lower and higher than Meteosat retrieved N, (Figure R1b). We
have added the model-satellite comparison of LWP to the supplement, and added the
following text to the manuscript:

“The overall overestimation of N, likely arises from the prescribed aerosol
concentration used in the model configuration, combined with the absence of
precipitation scavenging. For reference, the mean aerosol concentration over the ENA
region during summer is approximately 400 cm ™3 (e.g., Zhang et al., 2021; Wang et al.,
2021; Wang et al., 2022; Zheng et al., 2024). The model’s overestimation of LWP may
stem from its excessively positive LWP susceptibility in thick clouds. As shown in
Figure S9, simulated LWP in the N=100 simulation agrees reasonably well with the
Meteosat retrieval, with a mean value about 10% lower than observed. However, in the
N=500 and N=1000 simulations, the strong positive LWP susceptibility leads to
increases in LWP for clouds with LWP> 75 gm™2, resulting in mean values 30% and
40% higher than Meteosat retrievals, respectively. (Lines 556-565)”

- The “Data and methodology” section needs more details. For observational data,
what are the specific products or variables used from satellite? What are the
uncertainties of your observations and how good are they? How did you calculate Nd
from Meteosat, what is the assumptions and uncertainties of the selected method on
your cases?

For WRF model, how are the key warm cloud processes treated in your model, what are
the parameterizations and what are the limitations of these treatments for your cases?
What is the limitation of using a constant total aerosol number concentration
throughout the domain for your model-observation comparison on LWP susceptibility?
What is the default value you selected for aerosol number concentrations for your cases
and are they the same for all cases? How did you quantify the Nd-LWP relationships
driven by internal cloud processes and by cloud base updraft speed?



Thanks for the questions and detailed suggestions. To address this comment, we
have added the following text to the manuscript:

“The SEVIRI Meteosat cloud retrieval products are pixel-level cloud retrievals
produced by NASA LaRC SatCORPS group, specifically tailored to support the ARM
program over the ARM ground-based observation sites. (Lines 142-143)”

“In this study, we used the cloud mask, cloud effective radius (7,), cloud optical depth
(1), cloud liquid water path (LWP), cloud phase, and cloud top height variables in the
product. We focus on warm boundary layer clouds with cloud top below 3km and a
liquid cloud phase. The 7, and 7 retrievals are based on the shortwave-infrared split

window technique during the daytime. Cloud LWP is derived from 7, and 7 using the
41T

equation: LWP = 3

, where “Q,,; represents the extinction efficiency and assumed
ext

constant of 2.0. Cloud mask algorithm is consistent with the CERES Ed-4 algorithm, as
described in Trepte et al. (2019), where cloudy and clear pixels are distinguished based
on the calculated TOA clear-sky radiance. Cloud top height is derived from the
retrieved cloud effective and top temperature, together with the boundary-layer
temperature profiles and lapse rate, as described in Sun-Mack et al. (2014). Cloud Ny is
retrieved based on the adiabatic assumptions for warm boundary layer clouds, as
described in Grosvenor et al. (2018) based on the following equation:
V5 . fadCwT
d= ﬁ(Qex:ipw're5 2 (1)

In Equation (1), k represents the ratio between the volume mean radius and 7,
faa 1s the adiabatic fraction, ¢, is the condensation rate, Q,,; is the extinction
coefficient, and p,, is the density of liquid water (Grosvenor et al., 2018). (Lines 148-
165)”

“We employed four one-way nested domains in the model, with the domain size
of 27° X 27°,9° x 9°,3° X 3°, and 1° X 1°, and spatial resolution of Skm, 1.67 km,
0.56 km, and 190m, respectively, for d01, d02, d03, and d04 domain. The innermost
domain (d04) exhibit a domain size close to most GCM grid spacing and is consistent
with the spatial scale for quantification of cloud susceptibility in satellite study (e.g.,
Zhang et la., 2022, 2023; Qiu et al., 2024). The spatial resolution of 190 is much higher
than the CPMs and close to the LES scale. All the analyses and evaluations in this study
are based on output from the innermost domain (d04). (Lines 216-224)

“To access the cloud responses to aerosol perturbations, we conduct three sets of
simulations with different prescribed aerosol number concentration of N=100, 500, and
1000 cm™3 for all 11 cases. Cloud susceptibility is quantified as the change in domain-
mean cloud properties within the innermost domain at the same output time, comparing
polluted and clean conditions (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000
vs. N=500). With constant and uniform aerosol concentration, the N;-LWP relations
resulting from internal cloud processes are able to be quantified within each experiment
at the same output time. To minimize N;-LWP relations from cloud heterogeneity and
small-scale covariability and to be consistent with the quantification of cloud
susceptibility in satellite observations, the pixel level model outputs are smoothed to 25-
km resolution and N;-LWP relations are quantified as din(LWP)/dIn(N,) using the
smoothed data. (Lines 269-279)”

- Naming of model simulations are unclear and sometimes confusing throughout the
manuscript. Currently they are described with “polluted” and “clean” in comparison.
This can be misleading when you switch to another set (e.g., N=500 can be “clean”
compared to N=1000 but can be “polluted” compared to N=100). In addition, “clean”
is also used for describing observations (Line 497) and there is also a description of



“ultra-clean™ (Line 560) for the N=100 simulation. I suggest a consistent name for

each model configuration in the manuscript for clarity.

Thank you for the clarification and suggestion. We have changed the naming of different
simulations as N=100, N=500, and N=1000 throughout the manuscript.

- How do different synoptic regimes affect the LWP susceptibility? You mentioned to
investigate the variation of ACI across different synoptic conditions in the Introduction

(Lines 117-120) and therefore chose these 11 cases, however little results and analysis

are shown in this manuscript on this question.
Thank you for the question and constructive suggestion. We compared the LWP

susceptibility and the occurrence frequency of different cloud states between the “high-
ridge” and “post-trough” regimes (Figures R2), only one case is available in the “weak-

trough” regime (Table S1).
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Figure R2. Mean liquid water path (LWP) susceptibility from WRF simulations for (a)
(b) the high-ridge regime and (c) (d) the post-trough regime. (a) (c) cloud LWP
susceptibility din(LWP)/dIn(N,), (b) (d) frequency of occurrence of sample in each

In our previous study using six-year ground-based observations at the ARM ENA

bin.

site, Zheng et al. (2025) found that the “high-ridge” regime has significantly more single-

layer stratocumulus clouds, thinner cloud depth, smaller LWP, and smaller surface rain
rate compared to the “post-trough” regime. Consistently, more non-precipitating thin

clouds occur in the high-ridge regime compared to the post-trough regime, with the total
frequency of occurrence of 49% and 40%, respectively in the simulations (Figures R2b



and d). For cloud susceptibility, the non-precipitating thin clouds in the high-ridge
regime exhibit more negative LWP susceptibility compared to clouds with similar LWP
and Nd in the post-trough regime, likely due to the cold dry air above clouds with the
subsidence in the high-ridge regime. Additionally, the non-precipitating or slightly
drizzling thick clouds in both regimes exhibit strong positive LWP susceptibilities,
indicating that the model-observation discrepancy for this cloud state is consistent with
different synoptic conditions and warrant further investigations in the next section.

To address this comment, we have added Figure R2 to the supplementary material and
the following text to the manuscript:

“To further examine whether these discrepancies depend on large-scale
meteorological conditions, we assessed LWP susceptibility across different synoptic
regimes. Because only one case is available for the “weak-trough” regime (Table S1),
our comparison focuses on the “high-ridge” and the “post-trough” regimes (Figure S10).
The “high-ridge” regime shows a higher occurrence of non-precipitating thin clouds
than the “post-trough” regime, with total frequencies of 49% and 40%, respectively
(Figures S10b, d). This more frequent non-precipitating thin cloud in the model is
consistent with our previous study based on six years of ground-based observations at
the ARM ENA site, which revealed that the “high-ridge” regime favors single-layer
stratocumulus clouds with shallower cloud depth and smaller LWP compared to the
“post-trough” regime (Zheng et al., 2025).

In addition, non-precipitating thin clouds in the “high-ridge” regime exhibit more
negative LWP susceptibilities than clouds with similar LWP and N, in the “post-trough”
regime. This difference in LWP susceptibility is associated with the colder and drier air
above clouds under subsidence in the “high-ridge” regime, which facilitates cloud
dissipation, as also demonstrated in the case study. Furthermore, non-precipitating or
lightly drizzling thick clouds in both synoptic regimes manifest strong positive LWP
susceptibilities, suggesting that the model-observation discrepancy for this cloud state
persist regardless of synoptic conditions and therefore warrants further investigation.
(Lines 566-583)*

Many captions in this manuscript are not complete and refer to captions in another
figure. I suggest to include full captions for all the figures and be clear about the data
used in the figure.

Thanks for the suggestion. The captions of the figures have been edited accordingly.

- In Section 3.3.1 Precipitation Efficiency, there are many comparisons between model
and ground-based observations for cloud with different Re and optical depth.
However, the current Figures 7-10 are for observations, N=100, N=500, N=1000 and
each has 9 subplots categorized by Re and optical depth, making the whole section
sometimes hard to follow. It might be helpful to reorganize these figures and perhaps
paragraphs as well, so that observation and all model results are in the same figure for
comparison. For example, Figure 7 can just contain clouds with optical depth less than
10 and the column now becomes observation, N=100, N=500, and N=1000. Or
separate the figures by non-precipitating, drizzle and rain.

Thanks for this insightful suggestion. We agree that Section 3.3.1 includes a lot of
information of clouds from both observations and model outputs while clouds were
further categorized by re and optical depth. This complexity sometimes makes the
discussion difficult to follow. After attempting to reorganize the figures as you
suggested, we found that this organization would split the discussion of model
parameterization issues into three separate parts. For example, in the figure of clouds
with 7 < 10, the issue of overestimation of precipitation at cloud top for thin clouds is



reviewed and discussed. But the issue of overestimation of rain in thick clouds were not
discussed until the figure of clouds with T > 20. Compared to the suggested
arrangement, the current arrangement has the advantages of 1) combining the
discussion of model issues and improvements together. 2) all the cloud characteristics
shown in observations were combined together and discussed first, then they were
compared to model simulations. As a result, we have decided to keep the current
organization.

Minor comments:

’

- Line 1: I don’t think “reconciling” is accurate for the title of this manuscript. |
think key processes and reasons behind the inconsistent LWP susceptibility are
identified in this manuscript, but this issue is not resolved here and requires model
improvement.

Thanks for the suggestion. We agree with the reviewer that the word “reconcile” is not
accurate enough. The title has been updated to “Understanding the causes of Satellite—
Model Discrepancies in Aerosol-Cloud Interactions Using Near-LES Simulations of
Marine Boundary Layer Clouds”

12

- Lines 18-19: “largely due to” — I don’t think incorrect LWP responses to aerosol
perturbations is the reason but a main issue. The reasons can be poor representation of
aerosol and cloud processes.

Thanks for the suggestion. This sentence has been updated to “Aerosol—cloud
interactions (ACI) remain the largest source of uncertainty in model estimates of
anthropogenic radiative forcing, primarily because of deficiencies in representing
aerosol—cloud microphysical processes that lead to inconsistent cloud liquid water path
(LWP) responses to aerosol perturbations between observations and models.”

- Line 25: “a modest LWP decrease’ to an increase in N(.
Edited.

- Line 26: “In contrast” to? It feels coming from nowhere. If you would like to
suggest that non-precipitating thin clouds have consistent LWP susceptibilities from
model and observation, but not for non-precipitating thick clouds, then you need to
state this clearly.

These sentences have been edited to “Non-precipitating thin clouds exhibit a modest
LWP decrease with increasing N, (mean susceptibility = —0.13), consistent in sign but
weaker in magnitude than satellite estimates due to enhanced turbulent mixing and
evaporation. Meanwhile, the largest model-observation discrepancy occurs in non-
precipitating thick clouds, where simulated LWP susceptibilities are strongly positive
while observations indicate large negative values (4+0.32 vs. —0.69).”

- Line 108: please define the abbreviation of “MBL”.
Done.

- Lines 128-133: What are the specific cloud retrievals and what are the uncertainties
of each cloud retrieval? In addition, you have the method of calculating Nd from
satellite mentioned at Line 386-392, but I think it will be better to move to this
section. It is also useful to include version numbers of satellite product here and in
the Data availability section.



Thanks. Cloud retrieval method for each variable used in the SEVIRI Meteosat cloud
retrieval product has been added. We moved the equations for calculating N, to here.
Please refer to our reply to major comment #2.

- Line 138: How was the satellite retrieval smoothed to 25-km resolution?

The pixel-level satellite retrievals with a spatial resolution of 3km for Meteosatl1 and
4km for Meteosat10 are averaged in each 25km X 25km box to get the 25-km smoothed
value. The 25-km cloud fraction is defined as the fraction of cloud pixels to the sum of
cloudy and clear pixels in each box. As suggested by Feingold et al. (2022), N, is retrieved
at pixel level and then smoothed to 25 km.

- Line 155: “0000 UTC”
Modified.

- Lines 163-169: ERAS5 data is not observational data but reanalysis data, therefore I
don’t think this should be described here under the observational data subsection. It
can be put in a separate subsection, or you can change the name of this subsection to
something like “Datasets” and separate into satellite data, ground-based data and
reanalysis data.

Thanks for the suggestion, the subtitle of this section has been edited to “Datasets”

- Lines 180-182: What are the spatial resolution of the other two nested domains?

The spatial resolution of d02 and d03 domains are 1.67 km and 0.56 km, respectively. The
following text has been added to the manuscript:

“We employed four one-way nested domains in the model, with the domain size of
27° % 27°,9° % 9° 3°x 3° and 1° X 1°, and spatial resolution of Skm, 1.67 km, 0.56 km,
and 190m, respectively, for d01, d02, d03, and d04 domain. The innermost domain (d04)
exhibit a domain size close to most GCM grid spacing and is consistent with the spatial
scale for quantification of cloud susceptibility in satellite study (e.g., Zhang et la., 2022,
2023; Qiu et al., 2024).”

- Line 186: How often is the lateral boundary condition updated?
The lateral boundary conditions are updated every three hours.

- Lines 189-191: How are boundary layer and clouds treated in the innermost domain?
In the innermost domain, with the spatial resolution of 190m (close to LES resolution),
the boundary layer processes and shallow cumulus clouds are resolved. We turned on the
PBL scheme and shallow cumulus scheme in the dO1 and d02 domains, where the
Mellor—Yamada—Janjic (MYJ; Mellor and Yamada, 1982) PBL scheme and the shallow
cumulus schemes (Hong and Jiang, 2018) are utilized. In d03 and d04 domains, these
processes are resolved.

- Figure 1: How does Meteosat retrieve cloud coverage and is the modelled cloud
cover comparable to the Meteosat-retrieved cloud coverage? How is cloud top height
defined in model output and how does Meteosat retrieve cloud top height? I suggest
adding time series of Nd here. In addition, how does N=500 simulation look like?

The Meteosat cloud coverage is defined as the fraction of cloudy pixels to the
summation of cloudy and clear pixels. The cloud mask algorithm used in Meteosat cloud
retrieval product is consistent with the CERES Ed4 cloud mask algorithm described in
Trepte et al. (2019), where cloudy and clear pixels are distinguished based on the
calculated TOA clear-sky radiance for different surface conditions, time, viewing and
illumination conditions. The cloud coverage in WRF simulation is similarly a spatial
fraction of cloud in the domain, where cloudy and clear of each pixel is estimated based
on relative humidity and cloud water mixing ratio. As a result, the comparison of



domain cloud coverage between Meteosat and WRF model is a consistent evaluation of
model performance.

The cloud top height retrieval in Meteosat product is based on the cloud top
temperature along with the temperature profiles and lapse rate, with an error range of
0.04 and 0.1 km over ice-free water during daytime and night time, respectively (e.g.,
Sun-Mack et al., 2014; Minnis et al., 2021). Cloud top height in model output is based
on the “CTOPHT” variable in the model, which is estimated as the highest model level
where the cloud water mixing ratio exceed a threshold. The time series of Nd has been
added to Figures 1 and 3 and the corresponding discussion has been added to the text.
To address this comment, the Meteosat cloud mask and cloud top height retrieval
algorithms were added to the data and methodology section. Please refer to the previous
major comment #2 for the added text.

- Lines 291-292: I don’t think the cloud coverage from N=100 simulation closely
matches the observed cloud coverage, but underestimates the cloud cover. It will be
helpful to add some numbers here as well, rather than just quantitative descriptions.
Thanks. This sentence has been edited as “In the N=100 simulation, WRF model
reproduces the overcast and precipitating stratocumulus clouds, with a domain mean
cloud cover varies between 0.90 to 0.94 from 00-13 UTC, which is slightly below that
from Meteosat of 0.97 to 1.0 (Figure 1a, blue and black lines)”.

- Figure 3: Please use a full caption here rather than referring to another figure’s
caption. Similar to the comments for Figure 1, I suggest adding time series of Nd here
as well.

Done.

- Lines 292-294: Can you suggest the reasons behind the model failed to simulate the
dissipation of clouds? And how may this bias affect the modelled LWP susceptibility?
Thanks for your question. The lack of cloud dissipation and diurnal variation in marine
boundary layer (MBL) clouds in the WRF model is likely associated with the biases in the
thermodynamic profiles inherited from ERAS. As seen in Figures R1 left figure, on 21 July
2016, ARM sounding observations indicate a sharp decrease in moisture above the PBL
between 14 and 20 UTC, leading to the dissipation of clouds after 14 UTC (Figure 1a). In
contrast, both ERAS and WRF simulation show a gradual decrease in specific humidity and
relative humidity above the PBL from 0 to 20 UTC, resulting in a much moister layer above
clouds in the model (Figures R3 middle and right). Consequently, clouds did not dissipate in
the afternoon in the simulation.

On 25 July 2016, the ARM sounding observations similarly exhibit a pronounced
decrease in specific humidity and relative humidity above the PBL between 14 and 24 UTC
(Figure R4). In this case, the WRF simulation accurately capture the observed feature,
reproducing a sharp decrease in moisture above the PBL from 14 to 24 UTC. As a result,
clouds in the N=100 and N=1000 simulations dissipate from 14 to 24 UTC, consistent with
satellite observation (Figure RS5). This pattern also holds for other cases in the high-ridge
regime, such as 22 and 28 July 2016, where the accuracy of the simulated PBL moisture
variation determined whether the model captured the observed diurnal evolution of clouds
(figures not shown). These cases demonstrate that the diurnal cycle of cloudiness is highly
sensitive to the representation of diurnal variation in moisture as well as the moisture
gradients near the inversion.

The fixed, vertically uniform aerosol concentration further contributes to the
persistence of clouds by maintaining unrealistically high CCN concentrations
throughout the day and suppressing precipitation. The lack of precipitation scavenging
also reduces evaporative cooling and weakens cloud—PBL decoupling, inhibiting
afternoon cloud breakup.

We added these discussions to the second last paragraph in Section 3.1:



“The absence of afternoon cloud dissipation in WRF simulations are likely associated with
model biases in the thermodynamic structure inherited from ERAS. For example, on 21 July
2016, ARM sounding observations show a pronounced decrease in specific humidity and
relative humidity above the PBL between 14 and 20 UTC (figures not shown). This
sharp drying leads to cloud erosion in the observations. However, WRF simulations or
ERAS reanalysis produces only a gradual reduction in moisture from 00 to 20 UTC (Figure
2a), maintaining a moist layer above cloud top and prevent cloud breakup. On 22 July 2016,
the model reproduces the moisture gradient above PBL with a warm and dry layer above,
the lifted cloud top in the N=1000 simulation entrain dry air into cloud system and dissipate
clouds in the afternoon (Figure 3a). On days when ERAS accurately capture the observed
moisture decrease above PBL (e.g., 25 and 28 July 2016), the model reproduces both the
dissipation and evening redevelopment of clouds seen in Meteosat data (figures not
shown). This indicates that the diurnal evolution of MBL clouds is highly sensitive to
the representation of diurnal variation in moisture as well as the moisture gradients near
the inversion.

The prescribed, vertically uniform aerosol concentration further reinforces cloud
persistence by maintaining elevated CCN levels and suppressing drizzle formation. The
lack of precipitation scavenging prevents cloud-base evaporative cooling and inhibits
decoupling, both of which would otherwise promote afternoon cloud breakup. The
implications of thermodynamic and aerosol-related biases for the estimated ACI are
discussed in detail in Section 3.3.2. (Lines 436-455)”
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Figure R3 Time series of thermodynamic profiles on 21 July 2016, for (a) potential
temperature (unit: K) (b) specific humidity (unit g/kg), (c) relative humidity in (left)
ARM interpolated sounding, (middle) ERAS reanalysis, and (right) in WRF N=100
simulation.
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Figure R4 Time series of thermodynamic profiles on 25 July 2016, for (a) potential
temperature (unit: K) (b) specific humidity (unit g/kg), (c) relative humidity in (left)
ARM interpolated sounding, (middle) ERAS reanalysis, and (right) in WRF N=100
simulation.
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Figure RS. Time series of domain-averaged cloud properties from observations and
model simulation on 25 July 2016. (a) Cloud coverage, (b) cloud top height, (¢) cloud
liquid water path, and (d) rain-water path for N=100 (blue lines) and N=1000 (orange
lines) experiments.

RWP(gm

- Figure 4: Please use a full caption here.
Done

- Figure 5: “WRF simulations” are these from all polluted versus clean simulations or
Jjust one of the sets? Are Re on these plots from the model or from satellite? Please
make sure the axes are same for the model and observation plots. Currently they are
different and make it difficult to compare with.

Figure 5 has been updated with same axis ranges for all subplots. Cloud susceptibility
from WRF simulations are estimated based on all three aerosol concentrations between
clean and polluted experiments (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000
vs. N=500) to estimate the mean LWP response. In Figure 5, the r, =15 um, r, =10 um
isolines are estimated based on the relationships between 7, and LWP and 7, and N; in

. . 5 :
the satellite retrievals: LWP = ——¢= and N, = 5 (L2a%T y1/2 14 Fioure 6c, we show
ext 21k “QextPwTe

the WRF simulated mean re in the LWP-N,; space.

To address this comment, we added the following explanations on the LWP-N,
space and 7, isolines in the manuscript:
“Based on the relationships between 7,, LWP, and N, in the satellite retrievals (e.g.,
LWP = 34(;:;, N, = %(%)l/z ), . =15 isolines is marked in the LWP-N,
parameter space as an commonly used indicator of precipitation likelihood in the
satellite retrieval (e.g., Gryspeerdt et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu
et al., 2024). Based on the distinct LWP, cloud albedo and CF susceptibilities, MBL
clouds are classified into three states: the precipitating clouds (7, >15 um), the non-
precipitating thick clouds (7, <15 um, LWP> 75 gm™?), and the non-precipitating thin
clouds (1, <15 um, LWP< 75 gm™2) (Qiu et al., 2024). To be consistent with satellite




observations, clouds in WRF simulations are classified using the same definition. (Lines
479-488)”

- Line 382: How does the Meteosat LWP susceptibility calculated?
We added the following text to the data and methodology section to clarify the calculation
of LWP and CF susceptibilities in Meteosat data: “In the context of ACI: cloud
susceptibility quantifies how sensitive a cloud property responds to change in aerosol
concentration or N;. To constrain the spatial-temporal variation in meteorological
conditions and cloud properties, cloud susceptibility is estimated as the regression slope
between N, and cloud properties within the 1° X 1° domain at each time step of satellite
observations. Because of the non-linear relations between LWP and N;, the LWP
susceptibility is quantified in logarithm scale as din(LWP)/dIn(N,) (e.g., Gryspeerdt et
al. 2019; Qiu et al., 2024), whereas cloud fraction (CF) susceptibility is quantified as
dCF /dIn(Ny) (e.g., Kaufman et al. 2005; Chen et al., 2022; Qiu et al., 2024).”

We also added the calculation of LWP susceptibility in Meteosat observation in
Figure 5: “To evaluate model simulation, LWP susceptibility from satellite retrievals is
estimated within the same domain as the model configuration for the same 11 cases
(Figures 5 c, d). More specifically, LWP susceptibility is estimated as the regression slope
between LWP and N; within the 1°X 1° domain at each time step of satellite
observations. For precipitating clouds, LWP slightly decreases with aerosol perturbations
in satellite data (Figure 5c). ”

- Line 386: What does it mean by “to be consistent with satellite observations”?
This paragraph has been edited, please see the previous comment.

- Line 395: I think it will be useful to add a sentence here on how you define different
types of clouds: precipitating versus non-precipitating, thick versus thin.

Thanks for the suggestions. The definitions of different cloud states have been added
to the manuscript, please see the previous comment.

- Lines 407-410: Your satellite observations for precipitating clouds are different
from your simulations and previous study with long-term data. Can you suggest why?
Is this because of the limitations of satellite data? Does this affect your model-satellite
comparison for other clouds?
Thanks for the question. This sentence in the paper was not accurate enough. Our
satellite LWP susceptibility based on the selected 11 cases agrees well with the LWP
susceptibility base on four years of satellite observations in our previous study (Qiu et
al., 2024; Figure 2).
As seen in Figure R6a, the LWP susceptibility is positive for precipitating thick
clouds in ultra clean conditions with N; <30 cm™3 and LWP > 125 gm™~2. For most
of the precipitating clouds, their LWP susceptibility is negative, which is consistent
with the LWP susceptibility in this study for clouds with similar properties. The slight
decrease in LWP for precipitating clouds is likely due to the depletion of LWP from
the sedimentation—evaporation—entrainment feedback.

We have edited this sentence in the paper as follow: “For precipitating clouds,
LWP slightly decreases with aerosol perturbations in satellite data, which is consistent
with the LWP susceptibility derived from four years of data in the ENA region in our
previous study (Qiu et al., 2024). This decrease of LWP with increasing N is likely
associated with the depletion of LWP through sedimentation—evaporation—
entrainment feedbacks, which outweigh the increase of LWP from precipitation
suppression. In contrast, in model simulations, the lack of realistic evaporation-
entrainment feedback results in LWP increasing primarily through precipitation
suppression. The simulated LWP susceptibilities are significantly different with



satellite observations at 95% confidence level for most precipitating clouds (Figure
5a). (Lines 520-528)”
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Figure R6. Mean cloud susceptibilities for different N; and LWP bins during the
daytime. (a) cloud LWP susceptibility ( din(LWP)/dIn(N;)), (b) cloud albedo
susceptibility (da./dIn(Ny;)), (c) cloud fraction susceptibility (dCF/dIin(Ny)), (d)
cloud shortwave susceptibility (—dSWTug’ 4/dIn(Ng)) weighted by the frequency of
occurrence of samples of each bin, and (e) frequency of occurrence of samples in each
bin. The dashed lines in (a)-(e) indicate 7, =15 um and LWP= 75 gm™2, as thresholds
for precipitation (precipitating clouds located to the left of the line) and thick clouds
(with LWP > 75 gm™2). The defined three clouds states are noted in (a). (Figure was

adapted from Qiu et al., 2024)

- Line 429-430: I don’t think Figure 5 show that the model results agree with Meteosat
observations for an increase in LWP in precipitating clouds (Meteosat suggest a

decrease).

Yes, I agree with you that this sentence was not accurate, and it has been edited.

- Line 434-435: If the modelled LWP response is showing large discrepancy compared
to observations, this is not indicating the robustness of the results. Please explain in
detail on the reasons why you suggest that the model results are robust.

Thanks for the clarification. This sentence has been modified. The agreements with
previous model results indicate consistency instead of robustness of our model results.

- Figure 6: It is confusing here that the re dashed lines across different re contour

colors in (a) and (c). Please be clear about how each effective radius is calculated or
derived in (a), (c) and the dash line.
Thank you for pointing out this unclear point. In satellite observations, both LWP and
Ny are retrieved as a function of function of 7e and 7 . In Figure 6a, the re dashed lines
are based on the relationships between 7e, LWP, and Ny in the satellite retrievals (e.g.,

0.25



_ 4TeT _ \/g fadeT 1/2
Lwp = 3Qex N, (Qextpwre)

-, NVa = 5 ), and are used as indications of precipitation in

the figure. As a result, the 7e dash lines agree with the 7e contour in Figure 6a. To use
the same classification of precipitation in the model as the satellite observations, in
Figure 6c¢, the re dashed lines are based on the same relationships between 7e, LWP, and
Ny in the satellite retrievals, while the re contour is from model output. As model
underestimate re compared with satellite observations, the dash lines cross different
contour colors as in Figure 6a.

- Lines 493-495: Frequencies from satellite data only sum to 90.6%, what and where
are the rest 9.4%? In addition, can you explain more on why the selected cases are
representative just based on the frequencies?

Thanks for pointing out the mistake in the frequency of satellite data. We have
corrected the mistake in the calculation of frequency, the occurrence frequency for
different cloud states have been updated to 22.2%, 55.6%, and 22.2%, respectively.
The occurrence frequency of precipitating, non-precipitating thin and non-
precipitating thick clouds based on the selected cases align well with the occurrence
frequency of cloud states in ARM data based on six-year of observations, with non-
precipitating thin clouds the dominate cloud type and thick clouds the least frequent
cloud type, suggesting that the selected cases are representative of the typical
distribution of MBL cloud types in the ENA region in summer.

- Line 497 and others: what does “clean condition” mean here? You use “clean”
to describe both simulations and Re condition in your figures in this section, which
is confusing during reading.

Thanks for the suggestion and clarification. The clean condition here indicates under
clean environment in the observations when cloud r, is greater than 15 pm. The
naming of model simulations has been edited to N=100, N=500, and N=1000 in the
manuscript instead of using clean and polluted.

’

- Lines 506-507: “likely due to mixing and evaporation” — can you be more specific
on this?

As seen in Figure 7h, the maximum frequency of radar reflectivity shows a decrease of
signal towards cloud base, which is likely due to the mixing and entrainment from cloud

base which lead to the evaporation of cloud and rain drops.

- Figures 8-10: Please use full captions for these figures.
- Done

Lines 558-559: I can see that DSD is compared by using percentages of Re categorizes,
but it may be helpful and clearer to compare full DSD from different model simulations
and observations for clouds with different optical depths.

Thanks for the suggestion. As we don’t have the observed DSD data from filed
campaign for most of our cases, I compare the DSD in one of our case with the
measured DSD in Yeom et al. (2022) study based on the ACE-ENA campaign data on a
different day.



WRF simulated drop size distribution, 2016-07-21
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Figure R7: Cloud drop size distribution from WRF simulation on 21 July 2016.
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As shown in Figure R7, the DSD from N=1000 simulation is wider than that
from N=100 simulation. This result is consistent with the parametrization of DSD in the
Morrison scheme, where the dispersion parameter is proportional to Na. As seen from
Figures R7 and R8, the simulated DSD is wider than observation, especially for the

N=1000 simulation.
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The DSD of the model parameterization is one of our hypotheses to explain the
excessive rain production in clouds with 7, > 15 um. Our results between different
simulations show consistent characteristics with the DSD parameterization in the
Morrison scheme, which support this hypothesis. For example, the overestimation of
rain is more and more sever in the N=500 and N=1000 simulations comparing with the
N=100 simulation for clouds with r, > 15 um. However, as most of our cases don’t
have direct field campaign data, it is difficult to validate the DSD in the model.

- Lines 591-599: The description of DSD in the model is better to be put in the Data
and Methodology section along with the descriptions of other treatments of warm
cloud processes.

Thanks, this part has been moved to the method section.

- Lines 636-638: The cloud tops are defined differently in ARM observations and in the
model. Since you have the model radar simulator, why not using the same definition here
based on the radar reflectivity profile for observed and modelled cloud tops?
Following your suggestion, we calculated the domain mean cloud top height in WRF
simulation based on the radar reflectivity profiles from the radar simulator and use the
same reflectivity threshold to retrieve cloud top height as in ARM observation
(reflectivity > -40 dBZ). Figure R9 compares the PDF between the cloud top height
retrieved using reflectivity > -40 dBZ with that retrieved using cloud water mixing ratio >
0.001 g/kg for all 11 cases and all three aerosol concentrations. As seen in Figure R9,
the retrieved cloud-top height is consistent between the two methods, with a difference
in mean value of less than 40m. Therefore, the large discrepancy in cloud top RH
between WRF simulations and ARM observations are not due to the different cloud top
retrieval methods.

We have added the related discussion to the paper: “We further compare the
cloud-top heights in WRF simulations defined using cloud water mixing ratio and radar
reflectivity profiles with Z, >-40 dBZ. The two approaches yield nearly identical results,
with a mean difference of less than 40m (figure not shown). (Lines 855-858)”
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Figure R9. PDF of WRF simulated cloud top height retrieved using cloud water mixing
ratio threshold (blue line) and using cloud radar reflectivity threshold (red line).

- Lines 644-648: I recommend the authors on considering the spatial representation
issue and it will be helpful to describe how the temporal representation issue is
treated, e.g., what are the model output time for comparing cloud top RH with the
sounding observations?

Thanks for the question. The spatial and temporal representation issues is resolved by
calculating the model output over a 10km X 10km grid box centered at the ARM ENA



site for each sounding time. Given the ~1.2-1.4 km mean cloud-top height for MBL
clouds at ENA during summer, and the balloon sounding rise at ~1 m/s speed, it takes
~1200s-1400s to reach the cloud top. With the prevailing wind speed of 7 m/s, the
balloon travels ~8 to 10km horizontally. Therefore, we averaged the WRF pixel-level
output over a 10km X 10km grid box centered at the ARM ENA site for each sounding
time (usually at 12:00 UTC and 0:00 UTC each day).

- Figure 12: What is the shaded area for?

The solid blue line is the median value for each RH bin and the shaded area shows the
lower and upper 25" percentiles of cloud susceptibility in each cloud top RH bin. This
information has been added to figure captions of Figures 12 and 13.

- Line 656: “in the simulations - are these for all simulations with all aerosol
number concentration or specific ones? Does the dependence of these cloud
susceptibilities on cloud top relative humidity change when using different sets of
simulations (e.g., between N=1000 vs. N=100 and N=1000 vs. N=500)?

Thanks for the clarification question. Yes, Figure 12 shows the mean relationships
between cloud top RH and cloud susceptibilities calculated based on all simulations
(e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. N=500). The cloud-top
RH is also based on all simulations using cloud-top heights in N=100, N=500, and
N=1000 simulations. Figures R10 and 11 show these relationships between N=100 and
N=500, N=100 vs. N=1000, respectively. As seen in these figures, the positive
relationships between cloud-top RH and cloud susceptibility are consistent across
different aerosol concentrations.

To address this comment, we have added the following text to the manuscript:

“Figure 12 shows the mean relationship between clout-top RH and cloud
susceptibilities calculated based on domain mean values for all three simulations (e.g.
N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. N=500). The cloud top RH is
the domain mean RH value at ~100m above cloud top for all simulations. As seen in
Figure 12a, we find a positive correlation between cloud-top RH and LWP
susceptibility in the simulations, which is consistent with cloud responses shown in
case study where a dry layer above cloud promotes evaporation and decrease LWP.
Additionally, these positive relationships are consistent among different aerosol
concentrations (e.g., N=1000 vs. N=100 or N=500 vs. N=100; figures not shown).
(Lines 870-878)”
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Figure R10. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud
top relative humidity in WRF simulations between N=100 vs. N=500. The solid blue



line shows the median value of each RH bins and the shaded area shows the lower and
upper 25™ percentiles.
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Figure R11. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud

top relative humidity in WRF simulations between N=100 vs. N=1000. The solid blue
line shows the median value of each RH bins and the shaded area shows the lower and
upper 25" percentiles.

- Figure 13: It will be helpful to have vertical lines where buoyancy flux difference
equals to 0 as well on the plot. Similar to the comment on Figure 12, what is the
shaded area for?

Figure 13 and the figure caption have been updated.

Figure 14: Are these from simulations with all different aerosol concentrations?
Yes, results shown in Figure 14 are based on the 11 cases and all three aerosol
concentrations.

- Figure 15: Please use a full caption.

- Done.

- Lines 745-754: I think several references are missing here in this first paragraph
when mentioning the findings from previous studies.

Thanks. The references have been added to the manuscript.

- Lines 762-763: I suggest adding the LWP bias here rather than using

“generally match”.

Thanks. This sentence has been updated to “The simulated MBL clouds generally
match the satellite observation in domain mean cloud coverage and mesoscale
organization (Figures 1, 3, S2-S4), while the model may struggle to capture the
diurnal evolution of clouds, especially the dissipation of clouds in the afternoon.
Model overestimate cloud LWP, especially in the polluted runs and
underestimated cloud top height compared to satellite retrievals.”

- Lines 778: Are there any other potential reasons for the LWP bias and what'’s the
reason that you suggest the lack of precipitation scavenging feedback on aerosols is
likely the cause here?

The overestimations of N; are due to the overestimated prescribed aerosol
concentration in model setting combined with the lack of precipitating scavenging
effect in WRF model. The overestimation of LWP is likely due to the positive LWP
susceptibility for thick clouds, as shown in Figure R1a. This sentence has been updated
to “Meanwhile, the non-precipitating thick clouds are the dominant cloud state in the
model, with a total frequency of 49%, compared to a 15.7% frequency of occurrence
in satellite observations. The overestimation of N, arise from the overestimated



aerosol concentration in the configuration, combined with the absence of precipitation
scavenging in the model. The overestimation of LWP is due to the positive LWP
susceptibility in thick clouds where LWP in N=100 simulation show good agreement
with satellite retrievals (Figure S9). (Lines 1034-1038)”
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