
Responses to reviewer comments  

In this response letter, we provide a point-by-point response to each comment. The 

original comments are in blue italic font, and our response are in black font. Changes 

made in the manuscript are listed in quotes with line numbers of the tracked changes 

version.  

 

Reviewer #1: 

General comments： 

The authors employ high-resolution near-LES WRF simulations to investigate aerosol-

cloud interactions (ACI) in marine boundary layer (MBL) clouds over the Eastern 

North Atlantic (ENA). The study is methodologically rigorous, leveraging satellite 

retrievals, ground-based ARM observations, and process-level diagnostics (e.g., 

CFODD analysis). The conclusions highlight persistent model-observation 

discrepancies in LWP susceptibility, particularly for non-precipitating thick clouds, 

and propose mechanistic explanations tied to precipitation efficiency and entrainment 

biases. The paper is well-organized and addresses a critical gap in ACI understanding. 

However, several scientific and methodological issues require clarification to ensure 

robustness. 

 

Major comments: 

- Section 3.1 evaluates two representative cases by Meteosat; however, the Meteosat 

data shows dissipation and reformation processes that the model didn’t capture. I 

expected the authors to focus on the discrepancy and discuss the reason for this 

mismatch, but I couldn’t find any direct discussion on this. In some paragraphs, the 

authors point out model bias in LWP susceptibility to aerosols, which is good, but still, 

the model bias in Section 3.1 needs explanations. 

Thanks for your question. The lack of cloud dissipation and diurnal variation in 

marine boundary layer (MBL) clouds in the WRF model is likely associated with the biases 

in the thermodynamic profiles inherited from ERA5. As seen in Figures R1 left figure, on 21 

July 2016, ARM sounding observations indicate a sharp decrease in moisture above the 

PBL between 14 and 20 UTC, leading to the dissipation of clouds after 14 UTC (Figure 1a). 

In contrast, both ERA5 and WRF simulation show a gradual decrease in specific humidity 

and relative humidity above the PBL from 0 to 20 UTC, resulting in a much moister layer 

above clouds in the model (Figures R1 middle and right). Consequently, clouds did not 

dissipate in the afternoon in the simulation.   

On 25 July 2016, the ARM sounding observations similarly exhibit a pronounced 

decrease in specific humidity and relative humidity above the PBL between 14 and 24 UTC 

(Figure R2). In this case, the WRF simulation accurately capture the observed feature, 

reproducing a sharp decrease in moisture above the PBL from 14 to 24 UTC. As a result, 

clouds in the N=100 and N=1000 simulations dissipate from 14 to 24 UTC, consistent with 

satellite observation (Figure R3). This pattern also holds for other cases in the high-ridge 

regime, such as 22 and 28 July 2016, where the accuracy of the simulated PBL moisture 

variation determined whether the model captured the observed diurnal evolution of clouds 

(figures not shown). These cases demonstrate that the diurnal cycle of cloudiness is highly 

sensitive to the representation of diurnal variation in moisture as well as the moisture 

gradients near the inversion. 

The fixed, vertically uniform aerosol concentration further contributes to the 

persistence of clouds by maintaining unrealistically high CCN concentrations 

throughout the day and suppressing precipitation. The lack of precipitation scavenging 

also reduces evaporative cooling and weakens cloud–PBL decoupling, inhibiting 

afternoon cloud breakup. 

We added these discussions to the second last paragraph in Section 3.1:  

 



“The absence of afternoon cloud dissipation in WRF simulations are likely associated with 

model biases in the thermodynamic structure inherited from ERA5. For example, on 21 July 

2016, ARM sounding observations show a pronounced decrease in specific humidity and 

relative humidity above the PBL between 14 and 20 UTC (figures not shown). This 

sharp drying leads to cloud erosion in the observations. However, WRF simulations or 

ERA5 reanalysis produces only a gradual reduction in moisture from 00 to 20 UTC (Figure 

2a), maintaining a moist layer above cloud top and prevent cloud breakup.  On 22 July 2016, 

the model reproduces the moisture gradient above PBL with a warm and dry layer above, 

the lifted cloud top in the N=1000 simulation entrain dry air into cloud system and dissipate 

clouds in the afternoon (Figure 3a). On days when ERA5 accurately capture the observed 

moisture decrease above PBL (e.g., 25 and 28 July 2016), the model reproduces both the 

dissipation and evening redevelopment of clouds seen in Meteosat data (figures not 

shown). This indicates that the diurnal evolution of MBL clouds is highly sensitive to 

the representation of diurnal variation in moisture as well as the moisture gradients near 

the inversion. 

The prescribed, vertically uniform aerosol concentration further reinforces cloud 

persistence by maintaining elevated CCN levels and suppressing drizzle formation. The 

lack of precipitation scavenging prevents cloud-base evaporative cooling and inhibits 

decoupling, both of which would otherwise promote afternoon cloud breakup. The 

implications of thermodynamic and aerosol-related biases for the estimated ACI are 

discussed in detail in Section 3.3.2. (Lines 436-455)” 

-  
Figure R1 Time series of thermodynamic profiles on 21 July 2016, for (a) potential 

temperature (unit: K) (b) specific humidity (unit g/kg), (c) relative humidity in (left) 

ARM interpolated sounding, (middle) ERA5 reanalysis, and (right) in WRF N=100 

simulation.  

 

-  
Figure R2 Same as Figure R1 but for the case on 25 July 2016.  

 

-  



-  
Figure R3. Time series of domain-averaged cloud properties from observations and 

model simulation on 25 July 2016. (a) Cloud coverage, (b) cloud top height, (c) cloud 

liquid water path, and (d) rain-water path for N=100 (blue lines) and N=1000 (orange 

lines) experiments.  

 

- Paragraph in Lines 395: the authors use 15 microns as the threshold to differentiate 

precipitating clouds and non-precipitating clouds. Since the authors have very good 

representative cases with one precipitating and another not, why not separate the two 

scenarios by cases? I believe the authors know the threshold is a bit tricky because 

other values (12 microns or 13 microns) have been used in previous literature, and so 

far, we don’t have an agreement on which number is best. 

Thanks for the suggestion. We didn’t separate the non-precipitating and precipitating 

scenarios by cases because most cases have clouds transitioned from one to another 

during the simulation period. Instead, we classify cloud state at each time step. We use 

the 15-micron threshold in the model to be consistent with the precipitation threshold 

used in the satellite observations. As the main goal of this study is to explain the 

discrepancy between the observed and simulated LWP susceptibility, we use the same 

classification of precipitation in the model as in the satellite observation to make 

consistent comparison. In Figure 6d, we evaluated the 15-micron threshold in the model 

using the column maximum radar reflectivity (𝑍 𝑚𝑎𝑥) greater than −15 dBZ at each 

model output time. As shown in Figure 6d, model generates precipitation too often at 

smaller drop size with 𝑟𝑒 > 10 𝜇𝑚 and at higher 𝑁𝑑 concentration. The over-estimation 

of precipitation in the model is the leading cause of the positive bias in LWP 

susceptibility.  

We agree that the threshold of 15-micron could be tricky and different threshold values 

have been used in previous studies. In our previous satellite observational study, we 



evaluated different effective radius thresholds and rain rate thresholds in satellite 

retrievals using precipitation masks derived from ground-based radar reflectivity at the 

ENA site, and we found that the 𝑟𝑒 > 15 𝜇𝑚 threshold showed the best agreement with 

ground-based observations (Qiu et al., 2024). To address this comment, and a similar 

comment from the other reviewer, we add the definitions of different cloud states:  

 

“Based on the relationships between 𝑟𝑒, LWP, and 𝑁𝑑 in the satellite retrievals (e.g., 

𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
,  𝑁𝑑 =

√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2), 𝑟𝑒 =15 isolines is marked in the LWP-𝑁𝑑 

parameter space as an commonly used indicator of precipitation likelihood in the 

satellite retrieval (e.g., Gryspeerdt et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu 

et al., 2024). Based on the distinct LWP, cloud albedo and CF susceptibilities, MBL 

clouds are classified into three states: the precipitating clouds (𝑟𝑒 >15 𝜇𝑚), the non-

precipitating thick clouds (𝑟𝑒 <15 𝜇𝑚, LWP> 75 𝑔𝑚−2), and the non-precipitating thin 

clouds (𝑟𝑒 <15 𝜇𝑚, LWP< 75 𝑔𝑚−2) (Qiu et al., 2024). To be consistent with 

observational reference, the WRF simulated cloud states are classified using the same 

definition. (Lines 479-487)” 

 

- LWP Susceptibility Discrepancy (Lines 417–419) 

The model shows a positive LWP response (+0.32) for non-precipitating thick clouds, 

while observations show a strong negative response (-0.69). What is the primary driver 

of this discrepancy? 

Thanks for your question. We added more explanation in the summary paragraph of 

section 3.2 to address this comment:  

“Large discrepancies remain for non-precipitating or lightly drizzling thick 

clouds, where the model simulates too many polluted thick clouds and yields an opposite 

(positive) LWP response compared to the strongly negative satellite signal.  

In addition, the model-observation discrepancy persists across all synoptic 

regimes, suggesting that they originate from the model’s representation of cloud 

microphysics, precipitation, and aerosol-cloud coupling rather than from large-scale 

meteorological variability. The robustness of these modeled LWP response, consistent 

with previous LES studies of similar cloud regimes (e.g., Wang et al., 2020; Lee et al., 

2025), further motives the central focus of the next section: diagnosing the physical 

mechanisms driving these biases. We show that three leading factors dominate the 

discrepancy: excessive precipitation production in thick clouds, a moist bias above cloud 

top, and satellite retrieved 𝑁𝑑-LWP relationships contaminated by internal cloud 

processes. (Lines 592-608)” 

 

- Model Biases and Initial Conditions (Lines 356-360, 642-664) 

The study identifies biases in ERA5 reanalysis (e.g., underestimated PBL height, 

overestimated cloud-top RH) as a significant source of discrepancy. However, the 

extent to which these biases propagate into the WRF simulations and affect ACI 

estimates is not fully quantified. Sensitivity tests using alternative reanalysis datasets 

or perturbed initial conditions could help isolate the impact of these biases. If 

perturbed simulations or using different reanalysis datasets add too much work, at 

least discussion on this point is necessary. 

Thanks for the insightful question and suggestion. As seen in Figure 11, the cloud-top 

RH in WRF simulations is ~ 8% higher than ARM observation. Based on the 

relationships between cloud-top RH against LWP and CF susceptibilities, the 8% wet 

bias may lead to an overestimation of 0.04 and 0.005 in LWP and CF susceptibility, 

respectively (Figure R4). Similarly, LWP and CF susceptibilities positively correlate 

with cloud top height (Figure R5). As seen in Figure R6, due to the under-estimation of 

PBL height in ERA5 reanalysis and WRF simulations, the simulated cloud top is ~480 

m lower than Meteosat retrievals. This under-estimation may lead to an ender-

estimation of LWP and CF susceptibility of 0.18 and 0.02, respectively. To conclude, 



the under-estimation of cloud-top height in WRF simulations may exhibit larger impact 

on LWP susceptibility than the overestimation of clout-top RH, due to the larger bias in 

cloud-top height between simulations and observations. We have added the following 

discussions to the manuscript.  

 

 “Based on the relationship between cloud susceptibility and cloud-top RH, the over-

estimated cloud-top RH may lead to an overestimation of 0.04 and 0.005 in LWP and 

CF susceptibility, respectively. Meanwhile, the under-estimated cloud-top height of 

480 m could result in an under-estimation of LWP and CF susceptibility of 0.18 and 

0.02, respectively (figures not shown). Future modeling studies over the ENA region 

need to improve the initial and boundary conditions, e.g., through data assimilations. 

(Lines 890-895)” 

 
Figure R4. Dependence of (a) LWP susceptibility (b) CF susceptibility on cloud-top 

relative humidity in WRF simulations during the daytime. The solid blue line shows the 

median value of each RH bins and the shaded area shows the lower and upper 25th 

percentiles.  

 

 
Figure R5. Dependence of (a) LWP susceptibility (b) CF susceptibility on cloud-top 

height in WRF simulations during the daytime. The solid blue line shows the median 

value of each RH bins and the shaded area shows the lower and upper 25th percentiles.  



 
Figure R6. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud top 

height in WRF simulations during the daytime. The solid blue line shows the median 

value of each RH bins and the shaded area shows the lower and upper 25th percentiles.  

 

- Precipitation Parameterization (Lines 540-560, 621-628) 

The overestimation of precipitation in thick clouds is attributed to autoconversion, 

accretion, and DSD issues. While the analysis is thorough, the study could benefit from 

testing alternative microphysics schemes (e.g., P3, Thompson) to assess the robustness 

of the conclusions. At lease, I suggest to add discussions on the choice of microphysical 

schemes and parameters. 

Thank you for the insightful question. We added a paragraph on discussion of 

microphysics scheme at the end of Section 3.3.1:  

 

“While our analysis focuses on the two-moment Morrison scheme, Christensen 

et al. (2024) found that the choice of microphysics and PBL schemes accounts for only 

about 30 % of the variability in simulated ACI, much smaller than the variability across 

meteorological conditions and cloud states. Since this study encompasses 11 cases 

spanning diverse synoptic regimes and cloud types, the overall conclusions are unlikely 

to change substantially with alternative two-moment bulk microphysics schemes. 

Nonetheless, future investigations using multiple microphysics schemes would be 

valuable for quantifying the robustness of the precipitation parameterization and its role 

in ACI uncertainty. (Lines 837-844)” 

 

- Internal Cloud Processes vs. ACI (Lines 684-737) 

The discussion on internal cloud processes (e.g., updraft-driven -LWP relationships) is 

insightful but could be strengthened by explicitly separating these effects from true ACI 

in the observational analysis. For example, using conditional sampling (e.g., stratifying 

by updraft strength) might help disentangle these contributions. 

Thanks for the suggestion. In satellite observations, it is a bit challenging to disentangle 

the 𝑁𝑑-LWP relationships contributed by internal cloud processes from the true ACI, 

and we don’t have direct measurements or retrievals of the cloud base updraft speed or 

other direct measurement indicating internal cloud processes. To compensate for this 

limitation in observations, we used model outputs to quantify the 𝑁𝑑-LWP relationships 

contributed by internal cloud processes in section 3.3.3. We added a sentence to clarify 

this: “Diagnosing these internal cloud processes in satellite observations is difficult 

because key governing variables, such as cloud-base updraft speed, TKE, entrainment 

rate are not directly measured or retrieved. In contrast, model simulations allow us to 

quantify the 𝑁𝑑–LWP relationships driven by internal cloud processes by examining 



their spatial covariation under homogeneous aerosol conditions at each timestep. (Lines 

930-933)” 

 

- Case Selection and Representativeness (Lines 232-264) 

The 11 cases span different synoptic regimes, but the rationale for selecting these 

specific cases (e.g., why not include southerly wind conditions?) is not fully explained. 

A further discussion on the implications of these synoptic differences would be 

beneficial. 

Thanks for the question. Previous studies using ARM observations at the ENA site 

found that aerosol, CCN, cloud properties, and PBL properties are influenced by local 

emission from the Graciosa Island during southerly wind conditions (e.g., Ghate et al, 

2021, 2023). As our study used radar reflectivity profiles at the ARM ENA site to 

evaluate simulated precipitation processes, we focus on times when the site is dominant 

by northerly wind from the ocean to minimize influence from the island.  

Thanks for the suggestion on adding a discussion on the influence of different synoptic 

regimes on LWP susceptibility. As we only have one case in the “weak-trough” regime 

(Table S1), we compared the LWP susceptibility and the occurrence frequency of 

different cloud states between the “high-ridge” and “post-trough” regimes, as shown in 

Figures R7.   

 

 
Figure R7. Mean liquid water path (LWP) susceptibility from WRF simulations for (a) 

(b) the high-ridge regime and (c) (d) the post-trough regime. (a) (c) cloud LWP 

susceptibility 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑), (b) (d) frequency of occurrence of sample in each 

bin. 



In our previous study using six-year ground-based observations at the ARM ENA site, 

Zheng et al. (2025) found that the “high-ridge” regime has significantly more single-

layer stratocumulus clouds, thinner cloud depth, smaller LWP, and smaller surface rain 

rate compared to the “post-trough” regime. Consistent with our previous study, there are 

more non-precipitating thin clouds in the high-ridge regime compared to the post-trough 

regime, with the total frequency of occurrence of 49% and 40%, respectively (Figures 

R7b and d). For cloud susceptibility, the non-precipitating thin clouds in the high-ridge 

regime exhibit more negative LWP susceptibility compared to clouds with similar LWP 

and Nd in the post-trough regime, likely due to the cold dry air above clouds with the 

subsidence in the high-ridge regime. Additionally, the non-precipitating or slightly 

drizzling thick clouds in both regimes exhibit strong positive LWP susceptibilities, 

indicating that the model-observation discrepancy for this cloud state is consistent with 

different synoptic conditions and warrant further investigations in the next section.    

We have added Figure R7 to the supplementary information and added the discussion 

on influence of synoptic regimes on LWP susceptibility to the manuscript: 

“To further examine whether these discrepancies depend on large-scale meteorological 

conditions, we assessed LWP susceptibility across different synoptic regimes. Because 

only one case is available for the “weak-trough” regime (Table S1), our comparison 

focuses on the “high-ridge” and the “post-trough” regimes (Figure S10). The “high-ridge” 

regime shows a higher occurrence of non-precipitating thin clouds than the “post-trough” 

regime, with total frequencies of 49% and 40%, respectively (Figures S10b, d, t). This 

more frequent non-precipitating thin cloud in the model is consistent with our previous 

study based on six years of ground-based observations at the ARM ENA site, which 

revealed that the “high-ridge” regime favors single-layer stratocumulus clouds with 

shallower cloud depth and smaller LWP compared to the “post-trough” regime (Zheng et 

al., 2025).  

In addition, non-precipitating thin clouds in the “high-ridge” regime exhibit more negative 

LWP susceptibilities than clouds with similar LWP and 𝑁𝑑 in the “post-trough” regime. 

This difference in LWP susceptibility is associated with the colder and drier air above 

clouds under subsidence in the “high-ridge” regime, which enhances cloud dissipation, as 

also demonstrated in the case study. Overall, non-precipitating or lightly drizzling thick 

clouds in both synoptic regimes still manifest strong positive LWP susceptibilities, 

suggesting that the model-observation discrepancy for this cloud state persist regardless 

of synoptic conditions and therefore warrants further investigation. (Lines 566-583)” 

 

- Radar Simulator Validation (Lines 214-220, 451-454) 

The use of CR-SIM for radar reflectivity comparison is commendable, but the study 

does not explicitly validate the simulator against ARM observations for the specific 

cases analyzed. Including a direct comparison (e.g., scatter plots, statistical metrics) 

would bolster confidence in the model-observation discrepancies. 

Thank you for the valuable suggestion. Figure R8 shows the ARM radar reflectivity 

profiles for the 11 selected cases. As seen in Figure R8, the radar reflectivity profiles 

exhibit consistent characteristics as six-year data shown in Figure 7. The only difference 

is that clouds with 𝑟𝑒 = 5 − 10 𝜇𝑚 and 𝜏 > 20 start drizzling at cloud base for the 

selected cases (Figure R8i). Therefore, the difference between CR-SIM radar simulator 

and ARM observations can be attributed to model biases rather than to the 

representativeness of cases.  

 

We added the following discussion: “To increase the sample size, we analyzed the 

climate-mean radar reflectivity profiles of stratocumulus and cumulus clouds observed 

during the summer months (June to August) from 2016 to 2021, comprising a total of 

91,737 profiles. Radar reflectivity profiles derived from the selected 11 cases exhibit 

consistent characteristics (figure not shown). (Lines 662-666)” 



 
Figure R8. Frequency of radar reflectivity as a function of in-cloud optical depth (𝜏𝑑) for 

ARM ground-based observations during the daytime for the selected 11 cases. Different 

rows are for different ranges of optical depth (𝜏): (a)-(c) clouds with 𝜏 < 10, (d)-(f) 

clouds with 10< 𝜏 < 20, (g)-(i) clouds with 𝜏 > 20. Different columns are for different 

ranges of effective radius (𝑟𝑒). The left, middle, and right columns are for 15 − 20 𝜇𝑚, 

10 − 15 𝜇𝑚, and  5 − 10 𝜇𝑚, respectively. The black dashed lines in each panel denote 

−15 dBZ and 0 dBZ, as thresholds of drizzle and rain, respectively. The percentage of 

sample (P) for each subgroup is denoted in the figure, with a total sample of 4648.  

 

Minor comments: 

- Clarify Terminology (Lines 395-400) 

The term "susceptibility" is used interchangeably for LWP and CF responses. Consider 

defining these terms more explicitly early in the manuscript (e.g., in the Abstract or 

Introduction). 

Thanks for the suggestion. We have added the definitions of susceptibility and method 

used to quantify LWP and CF susceptibilities to the method section. “In the context of 

ACI: cloud susceptibility quantifies how sensitive a cloud property responds to change 

in aerosol concentration or 𝑁𝑑. To constrain the spatial-temporal variation in 

meteorological conditions and cloud properties, cloud susceptibility is estimated as the 

regression slope between 𝑁𝑑 and cloud properties within the 1° × 1° domain at each 

time step of satellite observations. In this study, we quantify both LWP and cloud 

fraction (CF) susceptibilities to 𝑁𝑑 perturbations. Because of the non-linear relations 

between LWP and 𝑁𝑑, the LWP susceptibility is quantified in logarithm scale as: 



𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) (e.g., Gryspeerdt et al. 2019; Qiu et al., 2024) and CF 

susceptibility is quantified as: 𝑑𝐶𝐹/𝑑𝑙𝑛(𝑁𝑑) (e.g., Kaufman et al. 2005; Chen et al., 

2022; Qiu et al., 2024). (Lines 169-177)” 

 

- Equation (1) (Lines 387-394) 

The derivation of Nd from re is not fully explained. Briefly clarify the 

assumptions (e.g., adiabaticity, k value) or cite a reference for the equation. 

Following your suggestion, we moved this paragraph to the method section and added 

the derivations and assumptions for 𝑟𝑒 and 𝑁𝑑 retrievals to the manuscript:  

 

“In this study, we used the cloud mask, cloud effective radius (𝑟𝑒), cloud optical depth 

(𝜏), cloud liquid water path (LWP), cloud phase, and cloud top height variables in the 

SEVIRI Meteosat cloud retrieval product (Minnis et al., 2011, 2021). We focus on warm 

boundary layer clouds with cloud top below 3km and a liquid cloud phase. The 𝑟𝑒 and 𝜏 

retrievals are based on the shortwave-infrared split window technique during the 

daytime. Cloud LWP is derived from 𝑟𝑒 and 𝜏 using the equation: 𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
, where 

𝑄𝑒𝑥𝑡  represents the extinction efficiency and assumed constant of 2.0. Cloud mask 

algorithm is consistent with the CERES Ed-4 algorithm, as described in Trepte et al. 

(2019), where cloudy and clear pixels are distinguished based on the calculated TOA 

clear-sky radiance. Cloud top height is derived from the retrieved cloud effective and top 

temperature, together with the boundary-layer temperature profiles and lapse rate, as 

described in Sun-Mack et al. (2014). Cloud 𝑁𝑑 is retrieved based on the adiabatic 

assumptions for warm boundary layer clouds, based on the following equation:  

 

  𝑁𝑑 =
√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2  (1) 

In Equation (1), 𝑘 represents the ratio between the volume mean radius and 𝑟𝑒, and it is 

assumed to be constant of 0.8 for stratocumulus, 𝑓𝑎𝑑 is the adiabatic fraction, 𝑐𝑤 is the 

condensation rate, 𝑄𝑒𝑥𝑡 is the extinction coefficient, and 𝜌𝑤 is the density of liquid water 

(Grosvenor et al., 2018). (Lines 148-165)” 

 

- Statistical Significance (Lines 406-417) 

The differences in LWP susceptibility between model and observations are discussed, 

but statistical significance tests (e.g., t-tests, confidence intervals) are not reported. 

Adding these would strengthen the conclusions. 

Thanks for the helpful suggestion. Figure R9 shows the p values for the Welch t-test 

between Meteosat observations and WRF simulations for each bin. We further marked 

bins with p<0.05 with black outlines as shown in Figure R10. For most MBL clouds, the 

simulated LWP susceptibilities are significantly different than the satellite observations. 

For non-precipitating thin clouds, our simulations reproduce the decrease of LWP with 

weaker magnitude. Yet, the LWP susceptibilities are significantly different from satellite 

observations for most bins.  

To address this comment, we updated Figure 5 and added related discussions in the 

manuscript. “For non-precipitating thin clouds, the simulated decrease in LWP with 

increasing aerosol concentration agrees in sign with satellite observations. However, the 

magnitude of this decrease is weaker, and the simulated susceptibilities remain 

significantly different from satellite estimates at 95% confidence level for most bins 

(Figure 5a, c). (Lines 529-533)” 



 
Figure R9 P value for the Welch t-test between Meteosat observations and WRF 

simulations for each bin.  

 
Figure R10. Mean liquid water path (LWP) susceptibility from (a) (b) WRF simulations 

and (c) (d) Meteosat cloud retrievals during the daytime. (a) (c) cloud LWP 

susceptibility 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑), (b) (d) frequency of occurrence of sample in each 

bin. The dashed lines indicate 𝑟𝑒 =15 𝜇𝑚, 𝑟𝑒 =10 𝜇𝑚, and LWP= 75 𝑔𝑚−2, as 𝑟𝑒 

thresholds for precipitation (precipitating clouds located to the left of the line), and for 

thick clouds (with LWP > 75 𝑔𝑚−2), respectively. Black-outlined bins denote cases 

where the WRF and Meteosat LWP susceptibilities differ significantly (p < 0.05) based 

on a Welch’s t-test. 

 

- CFODD Interpretation (Lines 494-523) 



The CFODD analysis is insightful, but the physical interpretation of reflectivity slopes 

(e.g., why steeper slopes indicate stronger accretion) could be briefly elaborated in the 

text. 

Thanks for the question and suggestion. Based on the definition of droplet collection 

efficiency (𝐸𝑐) for a continuous collection model, and the assumption of the relationship 

between radar reflectivity (𝑍𝑒) and cloud drop size, we can derive the relation between 

𝑍𝑒 and 𝐸𝑐  as  
𝑑𝑍𝑒

𝑍𝑒
≈

𝛼

6
𝐸𝑐𝑑𝜏𝑑, 

where 𝛼 is a constant and is associated with what variable is conserved in the process, 𝜏𝑑 

is in-cloud optical depth. For a complete derivation, please refer to Suzuki et al. (2010) 

study. Therefore, the slope of the reflectivity changes as a function of 𝜏𝑑 in the CFODD 

analysis contains information about the droplet collection efficiency 𝐸𝑐 . To address this 

comment, we added the text to the manuscript: 

“Based on the relationship between 𝑍𝑒 and the droplet collection efficiency (𝐸𝑐), 

the vertical slope of 𝑍𝑒 as a function of in-cloud optical depth (𝜏𝑑) is directly linked to 

𝐸𝑐 , a steeper slope indicates a larger 𝐸𝑐  (Suzuki et al., 2010). (Lines 648-650)”   

 

- Aerosol Prescription (Lines 199-200) 

The assumption of fixed aerosol concentrations (no vertical/horizontal variability) may 

oversimplify real-world conditions. Acknowledge this limitation and discuss its 

potential impact on ACI estimates. 

Thanks for the suggestion. Yes, the uniform aerosol concentration assumption over-

simplifies the spatial and temporal heterogeneity from local emission and long-range 

transport, the relative location between aerosol plumes and cloud, as well as processes 

such as wet scavenging, and the reactivation of CCN from evaporated rain drops. In a 

companion study, we employed the WRF model with the interactive chemistry and 

aerosol schemes and investigated ACI and its feedback on both clouds and aerosols 

using same model configuration and cases (but less) as this study (Lee et al., 2025). In 

Lee et al. (2025), we found a consistent positive LWP response for precipitating clouds 

as this study (Figure 11 in Lee et al., 2025). As we assumed a higher ratio of the Aitken 

mode aerosols (80% for the Aitken mode and 20% for the accumulation mode) in that 

study, and activated CCN and 𝑁𝑑 concentrations are much lower in Lee et al. (2025) 

than in this study. In addition, with the comprehensive aerosol module in WRF-Chem, 

we found signals of increased reactivation of CCN from evaporated raindrop due to 

larger aerosols in the accumulation mode.  

We added the following discussion to the method section acknowledging the 

limitation and potential impact: “The fixed aerosol field neglects spatial and temporal 

variability driven by emissions, long-range transport, wet scavenging, and CCN 

reactivation from evaporated raindrops. These missing processes can sustain higher 

CCN concentrations, suppress precipitation, and potentially exaggerate positive LWP 

responses. 

Despite this simplification, our companion WRF-Chem study (Lee et al., 2025) 

shows that, even with full aerosol microphysics, wet scavenging, and aerosol 

reactivation, the simulated LWP responses remain broadly consistent with the results 

presented here, especially the positive susceptibility in precipitating clouds. This 

agreement suggests that the key findings of this work are robust, although the 

prescribed-aerosol assumption may still contribute to some of the quantitative 

discrepancies discussed in Section 3. (Lines 250-260)”  

 

- Diurnal Cycle (Lines 764-765) 

The model's struggle to capture afternoon cloud dissipation is noted but not explored. 

A brief discussion of potential causes (e.g., radiation biases, entrainment rates) would 

be helpful. 



We added the discussion on the potential causes for the model missing the diurnal 

variation in clouds. Please refer to major comment #1 for details.   

 

  



Reviewer #2: 

General comments： 
This manuscript identified model bias on LWP responses to aerosol perturbations and 

potential causes behind such bias using near-LES simulations and multiple 

observations over the Eastern North Atlantic region. By comparing the modelled LWP 

susceptibility with satellite observations, they found that modelled LWP susceptibility 

from non-precipitating, thick clouds have the largest discrepancy compared to the 

observations, while the LWP susceptibilities from precipitating and non-precipitating 

thin clouds show relatively good agreements with observations. It is suggested that the 

model overestimates precipitation for thick clouds including excessive autoconversion 

and accretion, and underestimates entrainment and evaporation, which are the main 

reasons for the LWP susceptibility discrepancy in these non-precipitating thick clouds. 

They also found that the modelled cloud susceptibilities are sensitive to cloud top 

humidity, and the bias of cloud top humidity in the model can be another reason for the 

LWP susceptibility discrepancy. 

The findings in this manuscript are insightful and important for improving 

representation of aerosol-cloud interactions in the models. The topic and research 

questions are also relevant within the scope of ACP. However, I have several major 

comments outlined below for the improvement of this manuscript, and I recommend 

resubmission after the following comments are addressed. 

 

Recommendation: major revisions 

 

Major comments: 

- I am concerned about the ability of the model to simulate LWP for the selected 

cases. In Figure 5, the model simulates non-precipitating, thick clouds with high LWP 

much more frequently than the Meteosat observed. These non-precipitating, thick 

clouds are key to the later-on analysis and conclusions. Comparison of LWP between 

model and observation is only for two cases, and Figure S2-S4 only provide a 

qualitative comparison of cloud fields. I suggest a more quantitative model-

observation comparison for the selected cases, and a more detailed description and 

explanation on the LWP bias (currently there is only one sentence at Line 422 stating 

the potential reason of lack precipitating scavenging feedback on aerosol and Nd) and 

how this bias affects your conclusions. Although constant aerosol number 

concentrations are used for simulations, it will be helpful to have the Nd comparison 

as well. 
 

Thank you for the constructive comment. In Figure R1, we include a quantitative 

comparison between model and observed LWP and Nd. As seen in Figure R1a, the 

simulated LWP in the N=100 simulation agrees well with the Meteosat observation, 

with a mean value about 10% lower than Meteosat. However, since most of the thick 

clouds with LWP greater than 75 g/cm2 exhibit a positive LWP susceptibility (Figure 

5a), the LWP in the N=500 and N=1000 simulations increases relative to that in the 

N=100 simulation.  



 
Figure R1 Scatter plot of domain-averaged cloud properties from Meteosat observations 

and WRF model simulation. Different colors represent different simulations (N=100, 

blue, N=500, green, N=1000, orange). (a) cloud liquid water path (LWP), (b) cloud 

droplet number concentration (𝑁𝑑).  

 

 The overestimations of 𝑁𝑑 are due to the overestimated prescribed aerosol 

concentration in model setting combined with the lack of precipitating scavenging effect 

on aerosols in these simulations. Based on field campaign measurement, the mean total 

aerosol concentration (𝑁𝑎) and 𝑁𝑑 in the ENA region in summer are ~400 𝑐𝑚−3  and 80 

𝑐𝑚−3  respectively (Zhang et al., 2021; Wang et al., 2021; Wang et al., 2022; Zheng et 

al., 2024). Since the purpose of this study is to quantify aerosol-cloud interactions and 

cloud susceptibility in model simulations, the prescribed aerosol concentrations are 

designed as N=100, N=500, and N=1000 to sufficient variation in 𝑁𝑎. The simulated Nd 

in these simulations are lower and higher than Meteosat retrieved 𝑁𝑑 (Figure R1b). We 

have added the model-satellite comparison of LWP to the supplement, and added the 

following text to the manuscript: 

 

“The overall overestimation of 𝑁𝑑 likely arises from the prescribed aerosol 

concentration used in the model configuration, combined with the absence of 

precipitation scavenging. For reference, the mean aerosol concentration over the ENA 

region during summer is approximately 400 𝑐𝑚−3 (e.g., Zhang et al., 2021; Wang et al., 

2021; Wang et al., 2022; Zheng et al., 2024). The model’s overestimation of LWP may 

stem from its excessively positive LWP susceptibility in thick clouds. As shown in 

Figure S9, simulated LWP in the N=100 simulation agrees reasonably well with the 

Meteosat retrieval, with a mean value about 10% lower than observed. However, in the 

N=500 and N=1000 simulations, the strong positive LWP susceptibility leads to 

increases in LWP for clouds with LWP> 75 𝑔𝑚−2, resulting in mean values 30% and 

40% higher than Meteosat retrievals, respectively. (Lines 556-565)” 

 

- The “Data and methodology” section needs more details. For observational data, 

what are the specific products or variables used from satellite? What are the 

uncertainties of your observations and how good are they? How did you calculate Nd 

from Meteosat, what is the assumptions and uncertainties of the selected method on 

your cases? 

For WRF model, how are the key warm cloud processes treated in your model, what are 

the parameterizations and what are the limitations of these treatments for your cases? 

What is the limitation of using a constant total aerosol number concentration 

throughout the domain for your model-observation comparison on LWP susceptibility? 

What is the default value you selected for aerosol number concentrations for your cases 

and are they the same for all cases? How did you quantify the Nd-LWP relationships 

driven by internal cloud processes and by cloud base updraft speed? 



 Thanks for the questions and detailed suggestions. To address this comment, we 

have added the following text to the manuscript:  

“The SEVIRI Meteosat cloud retrieval products are pixel-level cloud retrievals 

produced by NASA LaRC SatCORPS group, specifically tailored to support the ARM 

program over the ARM ground-based observation sites. (Lines 142-143)” 

“In this study, we used the cloud mask, cloud effective radius (𝑟𝑒), cloud optical depth 

(𝜏), cloud liquid water path (LWP), cloud phase, and cloud top height variables in the 

product. We focus on warm boundary layer clouds with cloud top below 3km and a 

liquid cloud phase. The 𝑟𝑒 and 𝜏 retrievals are based on the shortwave-infrared split 

window technique during the daytime. Cloud LWP is derived from 𝑟𝑒 and 𝜏 using the 

equation: 𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
, where “𝑄𝑒𝑥𝑡  represents the extinction efficiency and assumed 

constant of 2.0. Cloud mask algorithm is consistent with the CERES Ed-4 algorithm, as 

described in Trepte et al. (2019), where cloudy and clear pixels are distinguished based 

on the calculated TOA clear-sky radiance. Cloud top height is derived from the 

retrieved cloud effective and top temperature, together with the boundary-layer 

temperature profiles and lapse rate, as described in Sun-Mack et al. (2014). Cloud 𝑁𝑑 is 

retrieved based on the adiabatic assumptions for warm boundary layer clouds, as 

described in Grosvenor et al. (2018) based on the following equation:  

  𝑁𝑑 =
√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2  (1) 

In Equation (1), 𝑘 represents the ratio between the volume mean radius and 𝑟𝑒, 

𝑓𝑎𝑑 is the adiabatic fraction, 𝑐𝑤 is the condensation rate, 𝑄𝑒𝑥𝑡 is the extinction 

coefficient, and 𝜌𝑤 is the density of liquid water (Grosvenor et al., 2018). (Lines 148-

165)” 

 

“We employed four one-way nested domains in the model, with the domain size 

of 27° × 27°, 9° × 9°, 3° × 3°, and 1° × 1°, and spatial resolution of 5km, 1.67 km, 

0.56 km, and 190m, respectively, for d01, d02, d03, and d04 domain. The innermost 

domain (d04) exhibit a domain size close to most GCM grid spacing and is consistent 

with the spatial scale for quantification of cloud susceptibility in satellite study (e.g., 

Zhang et la., 2022, 2023; Qiu et al., 2024). The spatial resolution of 190 is much higher 

than the CPMs and close to the LES scale. All the analyses and evaluations in this study 

are based on output from the innermost domain (d04). (Lines 216-224) ” 

 

“To access the cloud responses to aerosol perturbations, we conduct three sets of 

simulations with different prescribed aerosol number concentration of N=100, 500, and 

1000 𝑐𝑚−3 for all 11 cases. Cloud susceptibility is quantified as the change in domain-

mean cloud properties within the innermost domain at the same output time, comparing 

polluted and clean conditions (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 

vs. N=500). With constant and uniform aerosol concentration, the 𝑁𝑑-LWP relations 

resulting from internal cloud processes are able to be quantified within each experiment 

at the same output time.  To minimize 𝑁𝑑-LWP relations from cloud heterogeneity and 

small-scale covariability and to be consistent with the quantification of cloud 

susceptibility in satellite observations, the pixel level model outputs are smoothed to 25-

km resolution and 𝑁𝑑-LWP relations are quantified as 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) using the 

smoothed data. (Lines 269-279)” 

- Naming of model simulations are unclear and sometimes confusing throughout the 

manuscript. Currently they are described with “polluted” and “clean” in comparison. 

This can be misleading when you switch to another set (e.g., N=500 can be “clean” 

compared to N=1000 but can be “polluted” compared to N=100). In addition, “clean” 

is also used for describing observations (Line 497) and there is also a description of 



“ultra-clean” (Line 560) for the N=100 simulation. I suggest a consistent name for 

each model configuration in the manuscript for clarity. 

Thank you for the clarification and suggestion. We have changed the naming of different 

simulations as N=100, N=500, and N=1000 throughout the manuscript.  

- How do different synoptic regimes affect the LWP susceptibility? You mentioned to 

investigate the variation of ACI across different synoptic conditions in the Introduction 

(Lines 117-120) and therefore chose these 11 cases, however little results and analysis 

are shown in this manuscript on this question. 

Thank you for the question and constructive suggestion. We compared the LWP 

susceptibility and the occurrence frequency of different cloud states between the “high-

ridge” and “post-trough” regimes (Figures R2), only one case is available in the “weak-

trough” regime (Table S1).   

 

Figure R2. Mean liquid water path (LWP) susceptibility from WRF simulations for (a) 

(b) the high-ridge regime and (c) (d) the post-trough regime. (a) (c) cloud LWP 

susceptibility 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑), (b) (d) frequency of occurrence of sample in each 

bin.  

In our previous study using six-year ground-based observations at the ARM ENA 

site, Zheng et al. (2025) found that the “high-ridge” regime has significantly more single-

layer stratocumulus clouds, thinner cloud depth, smaller LWP, and smaller surface rain 

rate compared to the “post-trough” regime. Consistently, more non-precipitating thin 

clouds occur in the high-ridge regime compared to the post-trough regime, with the total 

frequency of occurrence of 49% and 40%, respectively in the simulations (Figures R2b 



and d). For cloud susceptibility, the non-precipitating thin clouds in the high-ridge 

regime exhibit more negative LWP susceptibility compared to clouds with similar LWP 

and Nd in the post-trough regime, likely due to the cold dry air above clouds with the 

subsidence in the high-ridge regime. Additionally, the non-precipitating or slightly 

drizzling thick clouds in both regimes exhibit strong positive LWP susceptibilities, 

indicating that the model-observation discrepancy for this cloud state is consistent with 

different synoptic conditions and warrant further investigations in the next section.    

To address this comment, we have added Figure R2 to the supplementary material and 

the following text to the manuscript:  

 

“To further examine whether these discrepancies depend on large-scale 

meteorological conditions, we assessed LWP susceptibility across different synoptic 

regimes. Because only one case is available for the “weak-trough” regime (Table S1), 

our comparison focuses on the “high-ridge” and the “post-trough” regimes (Figure S10). 

The “high-ridge” regime shows a higher occurrence of non-precipitating thin clouds 

than the “post-trough” regime, with total frequencies of 49% and 40%, respectively 

(Figures S10b, d). This more frequent non-precipitating thin cloud in the model is 

consistent with our previous study based on six years of ground-based observations at 

the ARM ENA site, which revealed that the “high-ridge” regime favors single-layer 

stratocumulus clouds with shallower cloud depth and smaller LWP compared to the 

“post-trough” regime (Zheng et al., 2025).  

In addition, non-precipitating thin clouds in the “high-ridge” regime exhibit more 

negative LWP susceptibilities than clouds with similar LWP and 𝑁𝑑 in the “post-trough” 

regime. This difference in LWP susceptibility is associated with the colder and drier air 

above clouds under subsidence in the “high-ridge” regime, which facilitates cloud 

dissipation, as also demonstrated in the case study. Furthermore, non-precipitating or 

lightly drizzling thick clouds in both synoptic regimes manifest strong positive LWP 

susceptibilities, suggesting that the model-observation discrepancy for this cloud state 

persist regardless of synoptic conditions and therefore warrants further investigation. 

(Lines 566-583)“ 

Many captions in this manuscript are not complete and refer to captions in another 

figure. I suggest to include full captions for all the figures and be clear about the data 

used in the figure. 

Thanks for the suggestion. The captions of the figures have been edited accordingly.  

 

- In Section 3.3.1 Precipitation Efficiency, there are many comparisons between model 

and ground-based observations for cloud with different Re and optical depth. 

However, the current Figures 7-10 are for observations, N=100, N=500, N=1000 and 

each has 9 subplots categorized by Re and optical depth, making the whole section 

sometimes hard to follow. It might be helpful to reorganize these figures and perhaps 

paragraphs as well, so that observation and all model results are in the same figure for 

comparison. For example, Figure 7 can just contain clouds with optical depth less than 

10 and the column now becomes observation, N=100, N=500, and N=1000. Or 

separate the figures by non-precipitating, drizzle and rain. 

Thanks for this insightful suggestion. We agree that Section 3.3.1 includes a lot of 

information of clouds from both observations and model outputs while clouds were 

further categorized by re and optical depth. This complexity sometimes makes the 

discussion difficult to follow. After attempting to reorganize the figures as you 

suggested, we found that this organization would split the discussion of model 

parameterization issues into three separate parts. For example, in the figure of clouds 

with 𝜏 < 10, the issue of overestimation of precipitation at cloud top for thin clouds is 



reviewed and discussed. But the issue of overestimation of rain in thick clouds were not 

discussed until the figure of clouds with 𝜏 > 20. Compared to the suggested 

arrangement, the current arrangement has the advantages of 1) combining the 

discussion of model issues and improvements together. 2) all the cloud characteristics 

shown in observations were combined together and discussed first, then they were 

compared to model simulations. As a result, we have decided to keep the current 

organization.  

 

Minor comments: 

- Line 1: I don’t think “reconciling” is accurate for the title of this manuscript. I 

think key processes and reasons behind the inconsistent LWP susceptibility are 

identified in this manuscript, but this issue is not resolved here and requires model 

improvement. 

Thanks for the suggestion. We agree with the reviewer that the word “reconcile” is not 

accurate enough. The title has been updated to “Understanding the causes of Satellite–

Model Discrepancies in Aerosol–Cloud Interactions Using Near-LES Simulations of 

Marine Boundary Layer Clouds”  

 

- Lines 18-19: “largely due to” – I don’t think incorrect LWP responses to aerosol 

perturbations is the reason but a main issue. The reasons can be poor representation of 

aerosol and cloud processes. 

Thanks for the suggestion. This sentence has been updated to “Aerosol–cloud 

interactions (ACI) remain the largest source of uncertainty in model estimates of 

anthropogenic radiative forcing, primarily because of deficiencies in representing 

aerosol–cloud microphysical processes that lead to inconsistent cloud liquid water path 

(LWP) responses to aerosol perturbations between observations and models.” 

 
- Line 25: “a modest LWP decrease” to an increase in Nd. 

Edited. 

 

- Line 26: “In contrast” to? It feels coming from nowhere. If you would like to 

suggest that non-precipitating thin clouds have consistent LWP susceptibilities from 

model and observation, but not for non-precipitating thick clouds, then you need to 

state this clearly. 

These sentences have been edited to “Non-precipitating thin clouds exhibit a modest 

LWP decrease with increasing 𝑁𝑑 (mean susceptibility = −0.13), consistent in sign but 

weaker in magnitude than satellite estimates due to enhanced turbulent mixing and 

evaporation. Meanwhile, the largest model-observation discrepancy occurs in non-

precipitating thick clouds, where simulated LWP susceptibilities are strongly positive 

while observations indicate large negative values (+0.32 vs. −0.69).” 

 

- Line 108: please define the abbreviation of “MBL”. 

Done. 

 

- Lines 128-133: What are the specific cloud retrievals and what are the uncertainties 

of each cloud retrieval? In addition, you have the method of calculating Nd from 

satellite mentioned at Line 386-392, but I think it will be better to move to this 

section. It is also useful to include version numbers of satellite product here and in 

the Data availability section. 



Thanks. Cloud retrieval method for each variable used in the SEVIRI Meteosat cloud 

retrieval product has been added. We moved the equations for calculating 𝑁𝑑 to here. 

Please refer to our reply to major comment #2.  

 

- Line 138: How was the satellite retrieval smoothed to 25-km resolution? 

The pixel-level satellite retrievals with a spatial resolution of 3km for Meteosat11 and 

4km for Meteosat10 are averaged in each 25𝑘𝑚 × 25𝑘𝑚 box to get the 25-km smoothed 

value. The 25-km cloud fraction is defined as the fraction of cloud pixels to the sum of 

cloudy and clear pixels in each box. As suggested by Feingold et al. (2022), 𝑁𝑑 is retrieved 

at pixel level and then smoothed to 25 km.  

 

- Line 155: “0000 UTC” 

Modified. 

 

- Lines 163-169: ERA5 data is not observational data but reanalysis data, therefore I 

don’t think this should be described here under the observational data subsection. It 

can be put in a separate subsection, or you can change the name of this subsection to 

something like “Datasets” and separate into satellite data, ground-based data and 

reanalysis data. 

Thanks for the suggestion, the subtitle of this section has been edited to “Datasets” 

 

- Lines 180-182: What are the spatial resolution of the other two nested domains? 

The spatial resolution of d02 and d03 domains are 1.67 km and 0.56 km, respectively. The 

following text has been added to the manuscript:  

“We employed four one-way nested domains in the model, with the domain size of 

27° × 27°, 9° × 9°, 3° × 3°, and 1° × 1°, and spatial resolution of 5km, 1.67 km, 0.56 km, 

and 190m, respectively, for d01, d02, d03, and d04 domain. The innermost domain (d04) 

exhibit a domain size close to most GCM grid spacing and is consistent with the spatial 

scale for quantification of cloud susceptibility in satellite study (e.g., Zhang et la., 2022, 

2023; Qiu et al., 2024).” 

 

- Line 186: How often is the lateral boundary condition updated? 

The lateral boundary conditions are updated every three hours.  

 

- Lines 189-191: How are boundary layer and clouds treated in the innermost domain? 

In the innermost domain, with the spatial resolution of 190m (close to LES resolution), 

the boundary layer processes and shallow cumulus clouds are resolved. We turned on the 

PBL scheme and shallow cumulus scheme in the d01 and d02 domains, where the 

Mellor–Yamada–Janjic (MYJ; Mellor and Yamada, 1982) PBL scheme and the shallow 

cumulus schemes (Hong and Jiang, 2018) are utilized. In d03 and d04 domains, these 

processes are resolved.  

 

- Figure 1: How does Meteosat retrieve cloud coverage and is the modelled cloud 

cover comparable to the Meteosat-retrieved cloud coverage? How is cloud top height 

defined in model output and how does Meteosat retrieve cloud top height? I suggest 

adding time series of Nd here. In addition, how does N=500 simulation look like? 

The Meteosat cloud coverage is defined as the fraction of cloudy pixels to the 

summation of cloudy and clear pixels. The cloud mask algorithm used in Meteosat cloud 

retrieval product is consistent with the CERES Ed4 cloud mask algorithm described in 

Trepte et al. (2019), where cloudy and clear pixels are distinguished based on the 

calculated TOA clear-sky radiance for different surface conditions, time, viewing and 

illumination conditions. The cloud coverage in WRF simulation is similarly a spatial 

fraction of cloud in the domain, where cloudy and clear of each pixel is estimated based 

on relative humidity and cloud water mixing ratio. As a result, the comparison of 



domain cloud coverage between Meteosat and WRF model is a consistent evaluation of 

model performance.  

The cloud top height retrieval in Meteosat product is based on the cloud top 

temperature along with the temperature profiles and lapse rate, with an error range of 

0.04 and 0.1 km over ice-free water during daytime and night time, respectively (e.g., 

Sun-Mack et al., 2014; Minnis et al., 2021). Cloud top height in model output is based 

on the “CTOPHT” variable in the model, which is estimated as the highest model level 

where the cloud water mixing ratio exceed a threshold. The time series of Nd has been 

added to Figures 1 and 3 and the corresponding discussion has been added to the text. 

To address this comment, the Meteosat cloud mask and cloud top height retrieval 

algorithms were added to the data and methodology section. Please refer to the previous 

major comment #2 for the added text.  

 

- Lines 291-292: I don’t think the cloud coverage from N=100 simulation closely 

matches the observed cloud coverage, but underestimates the cloud cover. It will be 

helpful to add some numbers here as well, rather than just quantitative descriptions. 

Thanks. This sentence has been edited as “In the N=100 simulation, WRF model 

reproduces the overcast and precipitating stratocumulus clouds, with a domain mean 

cloud cover varies between 0.90 to 0.94 from 00-13 UTC, which is slightly below that 

from Meteosat of 0.97 to 1.0 (Figure 1a, blue and black lines)”.  

 

- Figure 3: Please use a full caption here rather than referring to another figure’s 

caption. Similar to the comments for Figure 1, I suggest adding time series of Nd here 

as well. 

Done. 

 

- Lines 292-294: Can you suggest the reasons behind the model failed to simulate the 

dissipation of clouds? And how may this bias affect the modelled LWP susceptibility? 

Thanks for your question. The lack of cloud dissipation and diurnal variation in marine 

boundary layer (MBL) clouds in the WRF model is likely associated with the biases in the 

thermodynamic profiles inherited from ERA5. As seen in Figures R1 left figure, on 21 July 

2016, ARM sounding observations indicate a sharp decrease in moisture above the PBL 

between 14 and 20 UTC, leading to the dissipation of clouds after 14 UTC (Figure 1a). In 

contrast, both ERA5 and WRF simulation show a gradual decrease in specific humidity and 

relative humidity above the PBL from 0 to 20 UTC, resulting in a much moister layer above 

clouds in the model (Figures R3 middle and right). Consequently, clouds did not dissipate in 

the afternoon in the simulation.   

 On 25 July 2016, the ARM sounding observations similarly exhibit a pronounced 

decrease in specific humidity and relative humidity above the PBL between 14 and 24 UTC 

(Figure R4). In this case, the WRF simulation accurately capture the observed feature, 

reproducing a sharp decrease in moisture above the PBL from 14 to 24 UTC. As a result, 

clouds in the N=100 and N=1000 simulations dissipate from 14 to 24 UTC, consistent with 

satellite observation (Figure R5). This pattern also holds for other cases in the high-ridge 

regime, such as 22 and 28 July 2016, where the accuracy of the simulated PBL moisture 

variation determined whether the model captured the observed diurnal evolution of clouds 

(figures not shown). These cases demonstrate that the diurnal cycle of cloudiness is highly 

sensitive to the representation of diurnal variation in moisture as well as the moisture 

gradients near the inversion. 

The fixed, vertically uniform aerosol concentration further contributes to the 

persistence of clouds by maintaining unrealistically high CCN concentrations 

throughout the day and suppressing precipitation. The lack of precipitation scavenging 

also reduces evaporative cooling and weakens cloud–PBL decoupling, inhibiting 

afternoon cloud breakup. 

We added these discussions to the second last paragraph in Section 3.1:  



 

“The absence of afternoon cloud dissipation in WRF simulations are likely associated with 

model biases in the thermodynamic structure inherited from ERA5. For example, on 21 July 

2016, ARM sounding observations show a pronounced decrease in specific humidity and 

relative humidity above the PBL between 14 and 20 UTC (figures not shown). This 

sharp drying leads to cloud erosion in the observations. However, WRF simulations or 

ERA5 reanalysis produces only a gradual reduction in moisture from 00 to 20 UTC (Figure 

2a), maintaining a moist layer above cloud top and prevent cloud breakup.  On 22 July 2016, 

the model reproduces the moisture gradient above PBL with a warm and dry layer above, 

the lifted cloud top in the N=1000 simulation entrain dry air into cloud system and dissipate 

clouds in the afternoon (Figure 3a). On days when ERA5 accurately capture the observed 

moisture decrease above PBL (e.g., 25 and 28 July 2016), the model reproduces both the 

dissipation and evening redevelopment of clouds seen in Meteosat data (figures not 

shown). This indicates that the diurnal evolution of MBL clouds is highly sensitive to 

the representation of diurnal variation in moisture as well as the moisture gradients near 

the inversion. 

 

The prescribed, vertically uniform aerosol concentration further reinforces cloud 

persistence by maintaining elevated CCN levels and suppressing drizzle formation. The 

lack of precipitation scavenging prevents cloud-base evaporative cooling and inhibits 

decoupling, both of which would otherwise promote afternoon cloud breakup. The 

implications of thermodynamic and aerosol-related biases for the estimated ACI are 

discussed in detail in Section 3.3.2. (Lines 436-455)” 

 

 
Figure R3 Time series of thermodynamic profiles on 21 July 2016, for (a) potential 

temperature (unit: K) (b) specific humidity (unit g/kg), (c) relative humidity in (left) 

ARM interpolated sounding, (middle) ERA5 reanalysis, and (right) in WRF N=100 

simulation.  

 

 



Figure R4 Time series of thermodynamic profiles on 25 July 2016, for (a) potential 

temperature (unit: K) (b) specific humidity (unit g/kg), (c) relative humidity in (left) 

ARM interpolated sounding, (middle) ERA5 reanalysis, and (right) in WRF N=100 

simulation.  

 
Figure R5. Time series of domain-averaged cloud properties from observations and 

model simulation on 25 July 2016. (a) Cloud coverage, (b) cloud top height, (c) cloud 

liquid water path, and (d) rain-water path for N=100 (blue lines) and N=1000 (orange 

lines) experiments.  

 

 

- Figure 4: Please use a full caption here. 

Done 

 

- Figure 5: “WRF simulations” are these from all polluted versus clean simulations or 

just one of the sets? Are Re on these plots from the model or from satellite? Please 

make sure the axes are same for the model and observation plots. Currently they are 

different and make it difficult to compare with. 

Figure 5 has been updated with same axis ranges for all subplots. Cloud susceptibility 

from WRF simulations are estimated based on all three aerosol concentrations between 

clean and polluted experiments (e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 

vs. N=500) to estimate the mean LWP response. In Figure 5, the 𝑟𝑒 =15 𝜇𝑚, 𝑟𝑒 =10 𝜇𝑚 

isolines are estimated based on the relationships between 𝑟𝑒 and LWP and 𝑟𝑒 and 𝑁𝑑 in 

the satellite retrievals: 𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
 and 𝑁𝑑 =

√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2. In Figure 6c, we show 

the WRF simulated mean re in the LWP-𝑁𝑑 space.  

To address this comment, we added the following explanations on the LWP-𝑁𝑑 

space and 𝑟𝑒 isolines in the manuscript: 

 “Based on the relationships between 𝑟𝑒, LWP, and 𝑁𝑑 in the satellite retrievals (e.g., 

𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
,  𝑁𝑑 =

√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2 ), 𝑟𝑒 = 15 isolines is marked in the LWP-𝑁𝑑 

parameter space as an commonly used indicator of precipitation likelihood in the 

satellite retrieval (e.g., Gryspeerdt et al., 2019; Toll et al., 2019; Zhang et al., 2022; Qiu 

et al., 2024). Based on the distinct LWP, cloud albedo and CF susceptibilities, MBL 

clouds are classified into three states: the precipitating clouds (𝑟𝑒 >15 𝜇𝑚), the non-

precipitating thick clouds (𝑟𝑒 <15 𝜇𝑚, LWP> 75 𝑔𝑚−2), and the non-precipitating thin 

clouds (𝑟𝑒 <15 𝜇𝑚, LWP< 75 𝑔𝑚−2) (Qiu et al., 2024). To be consistent with satellite 



observations, clouds in WRF simulations are classified using the same definition. (Lines 

479-488)” 

 

- Line 382: How does the Meteosat LWP susceptibility calculated? 

We added the following text to the data and methodology section to clarify the calculation 

of LWP and CF susceptibilities in Meteosat data: “In the context of ACI: cloud 

susceptibility quantifies how sensitive a cloud property responds to change in aerosol 

concentration or 𝑁𝑑 . To constrain the spatial-temporal variation in meteorological 

conditions and cloud properties, cloud susceptibility is estimated as the regression slope 

between 𝑁𝑑 and cloud properties within the 1° × 1° domain at each time step of satellite 

observations. Because of the non-linear relations between LWP and 𝑁𝑑 , the LWP 

susceptibility is quantified in logarithm scale as 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) (e.g., Gryspeerdt et 

al. 2019; Qiu et al., 2024), whereas cloud fraction (CF) susceptibility is quantified as 

𝑑𝐶𝐹/𝑑𝑙𝑛(𝑁𝑑) (e.g., Kaufman et al. 2005; Chen et al., 2022; Qiu et al., 2024).”  

We also added the calculation of LWP susceptibility in Meteosat observation in 

Figure 5: “To evaluate model simulation, LWP susceptibility from satellite retrievals is 

estimated within the same domain as the model configuration for the same 11 cases 

(Figures 5 c, d). More specifically, LWP susceptibility is estimated as the regression slope 

between LWP and 𝑁𝑑  within the 1° × 1°  domain at each time step of satellite 

observations. For precipitating clouds, LWP slightly decreases with aerosol perturbations 

in satellite data (Figure 5c). ”  

 

- Line 386: What does it mean by “to be consistent with satellite observations”? 

This paragraph has been edited, please see the previous comment.  

 

- Line 395: I think it will be useful to add a sentence here on how you define different 

types of clouds: precipitating versus non-precipitating, thick versus thin. 

Thanks for the suggestions. The definitions of different cloud states have been added 

to the manuscript, please see the previous comment.  

 

- Lines 407-410: Your satellite observations for precipitating clouds are different 

from your simulations and previous study with long-term data. Can you suggest why? 

Is this because of the limitations of satellite data? Does this affect your model-satellite 

comparison for other clouds? 

Thanks for the question. This sentence in the paper was not accurate enough. Our 

satellite LWP susceptibility based on the selected 11 cases agrees well with the LWP 

susceptibility base on four years of satellite observations in our previous study (Qiu et 

al., 2024; Figure 2).  

As seen in Figure R6a, the LWP susceptibility is positive for precipitating thick 

clouds in ultra clean conditions with 𝑁𝑑 < 30 𝑐𝑚−3 and LWP > 125 𝑔𝑚−2. For most 

of the precipitating clouds, their LWP susceptibility is negative, which is consistent 

with the LWP susceptibility in this study for clouds with similar properties. The slight 

decrease in LWP for precipitating clouds is likely due to the depletion of LWP from 

the sedimentation–evaporation–entrainment feedback.  

We have edited this sentence in the paper as follow: “For precipitating clouds, 

LWP slightly decreases with aerosol perturbations in satellite data, which is consistent 

with the LWP susceptibility derived from four years of data in the ENA region in our 

previous study (Qiu et al., 2024). This decrease of LWP with increasing 𝑁𝑑 is likely 

associated with the depletion of LWP through sedimentation–evaporation–

entrainment feedbacks, which outweigh the increase of LWP from precipitation 

suppression. In contrast, in model simulations, the lack of realistic evaporation-

entrainment feedback results in LWP increasing primarily through precipitation 

suppression. The simulated LWP susceptibilities are significantly different with 



satellite observations at 95% confidence level for most precipitating clouds (Figure 

5a). (Lines 520-528)” 

 
Figure R6. Mean cloud susceptibilities for different 𝑁𝑑  and LWP bins during the 

daytime. (a) cloud LWP susceptibility ( 𝑑𝑙𝑛(𝐿𝑊𝑃)/𝑑𝑙𝑛(𝑁𝑑) ), (b) cloud albedo 

susceptibility (𝑑𝛼𝑐/𝑑𝑙𝑛(𝑁𝑑)), (c) cloud fraction susceptibility (𝑑𝐶𝐹/𝑑𝑙𝑛(𝑁𝑑)), (d) 

cloud shortwave susceptibility (−𝑑𝑆𝑊𝑇𝑂𝐴
𝑢𝑝 /𝑑𝑙𝑛(𝑁𝑑))  weighted by the frequency of 

occurrence of samples of each bin, and (e) frequency of occurrence of samples in each 

bin. The dashed lines in (a)-(e) indicate 𝑟𝑒 =15 𝜇𝑚 and LWP= 75 𝑔𝑚−2, as thresholds 

for precipitation (precipitating clouds located to the left of the line) and thick clouds 

(with LWP > 75 𝑔𝑚−2). The defined three clouds states are noted in (a). (Figure was 

adapted from Qiu et al., 2024) 

 

- Line 429-430: I don’t think Figure 5 show that the model results agree with Meteosat 

observations for an increase in LWP in precipitating clouds (Meteosat suggest a 

decrease). 

Yes, I agree with you that this sentence was not accurate, and it has been edited.  

 

- Line 434-435: If the modelled LWP response is showing large discrepancy compared 

to observations, this is not indicating the robustness of the results. Please explain in 

detail on the reasons why you suggest that the model results are robust. 

Thanks for the clarification. This sentence has been modified. The agreements with 

previous model results indicate consistency instead of robustness of our model results.  

 

- Figure 6: It is confusing here that the re dashed lines across different re contour 

colors in (a) and (c). Please be clear about how each effective radius is calculated or 

derived in (a), (c) and the dash line. 

Thank you for pointing out this unclear point. In satellite observations, both LWP and 
𝑁𝑑 are retrieved as a function of function of 𝑟𝑒 and 𝜏 . In Figure 6a, the re dashed lines 

are based on the relationships between 𝑟𝑒, LWP, and 𝑁𝑑 in the satellite retrievals (e.g., 



𝐿𝑊𝑃 =
4𝑟𝑒𝜏

3𝑄𝑒𝑥𝑡
 , 𝑁𝑑 =

√5

2𝜋𝑘
(

𝑓𝑎𝑑𝑐𝑤𝜏

𝑄𝑒𝑥𝑡𝜌𝑤𝑟𝑒
5)1/2

 ), and are used as indications of precipitation in 

the figure. As a result, the 𝑟𝑒 dash lines agree with the 𝑟𝑒 contour in Figure 6a. To use 

the same classification of precipitation in the model as the satellite observations, in 

Figure 6c, the re dashed lines are based on the same relationships between 𝑟𝑒, LWP, and 
𝑁𝑑  in the satellite retrievals, while the re contour is from model output. As model 

underestimate re compared with satellite observations, the dash lines cross different 

contour colors as in Figure 6a. 

 

- Lines 493-495: Frequencies from satellite data only sum to 90.6%, what and where 

are the rest 9.4%? In addition, can you explain more on why the selected cases are 

representative just based on the frequencies? 

Thanks for pointing out the mistake in the frequency of satellite data. We have 

corrected the mistake in the calculation of frequency, the occurrence frequency for 

different cloud states have been updated to 22.2%, 55.6%, and 22.2%, respectively. 

The occurrence frequency of precipitating, non-precipitating thin and non-

precipitating thick clouds based on the selected cases align well with the occurrence 

frequency of cloud states in ARM data based on six-year of observations, with non-

precipitating thin clouds the dominate cloud type and thick clouds the least frequent 

cloud type, suggesting that the selected cases are representative of the typical 

distribution of MBL cloud types in the ENA region in summer.  

 

- Line 497 and others: what does “clean condition” mean here? You use “clean” 

to describe both simulations and Re condition in your figures in this section, which 

is confusing during reading. 

Thanks for the suggestion and clarification. The clean condition here indicates under 

clean environment in the observations when cloud re  is greater than 15 μm. The 

naming of model simulations has been edited to N=100, N=500, and N=1000 in the 

manuscript instead of using clean and polluted.   

 

- Lines 506-507: “likely due to mixing and evaporation” – can you be more specific 

on this? 

As seen in Figure 7h, the maximum frequency of radar reflectivity shows a decrease of 

signal towards cloud base, which is likely due to the mixing and entrainment from cloud 

base which lead to the evaporation of cloud and rain drops. 

  

- Figures 8-10: Please use full captions for these figures. 

- Done 

-  

Lines 558-559:  I can see that DSD is compared by using percentages of Re categorizes, 

but it may be helpful and clearer to compare full DSD from different model simulations 

and observations for clouds with different optical depths. 

Thanks for the suggestion. As we don’t have the observed DSD data from filed 

campaign for most of our cases, I compare the DSD in one of our case with the 

measured DSD in Yeom et al. (2022) study based on the ACE-ENA campaign data on a 

different day. 

  



 
Figure R7: Cloud drop size distribution from WRF simulation on 21 July 2016.  

 
Figure R8 Average drop size distribution of bin number concentration of undiluted 

(solid lines) and diluted (dash lines) section at each horizontal penetration for (a) P1 (b) 

P2 flight on 18 July 2017 during the ACE-ENA field campaign. (Figure adopted from 

Yeom et al., 2022)  

 

As shown in Figure R7, the DSD from N=1000 simulation is wider than that 

from N=100 simulation. This result is consistent with the parametrization of DSD in the 

Morrison scheme, where the dispersion parameter is proportional to 𝑁𝑑. As seen from 

Figures R7 and R8, the simulated DSD is wider than observation, especially for the 

N=1000 simulation.  



The DSD of the model parameterization is one of our hypotheses to explain the 

excessive rain production in clouds with 𝑟𝑒 > 15 𝜇𝑚. Our results between different 

simulations show consistent characteristics with the DSD parameterization in the 

Morrison scheme, which support this hypothesis. For example, the overestimation of 

rain is more and more sever in the N=500 and N=1000 simulations comparing with the 

N=100 simulation for clouds with 𝑟𝑒 > 15 𝜇𝑚. However, as most of our cases don’t 

have direct field campaign data, it is difficult to validate the DSD in the model.   

 

- Lines 591-599: The description of DSD in the model is better to be put in the Data 

and Methodology section along with the descriptions of other treatments of warm 

cloud processes. 

Thanks, this part has been moved to the method section.  

 

- Lines 636-638: The cloud tops are defined differently in ARM observations and in the 

model. Since you have the model radar simulator, why not using the same definition here 

based on the radar reflectivity profile for observed and modelled cloud tops? 

Following your suggestion, we calculated the domain mean cloud top height in WRF 

simulation based on the radar reflectivity profiles from the radar simulator and use the 

same reflectivity threshold to retrieve cloud top height as in ARM observation 

(reflectivity > -40 dBZ). Figure R9 compares the PDF between the cloud top height 

retrieved using reflectivity > -40 dBZ with that retrieved using cloud water mixing ratio > 

0.001 g/kg for all 11 cases and all three aerosol concentrations. As seen in Figure R9, 

the retrieved cloud-top height is consistent between the two methods, with a difference 

in mean value of less than 40m. Therefore, the large discrepancy in cloud top RH 

between WRF simulations and ARM observations are not due to the different cloud top 

retrieval methods.  

We have added the related discussion to the paper: “We further compare the 

cloud-top heights in WRF simulations defined using cloud water mixing ratio and radar 

reflectivity profiles with 𝑍𝑒 > -40 dBZ. The two approaches yield nearly identical results, 

with a mean difference of less than 40m (figure not shown). (Lines 855-858)” 

 
Figure R9. PDF of WRF simulated cloud top height retrieved using cloud water mixing 

ratio threshold (blue line) and using cloud radar reflectivity threshold (red line). 

 

- Lines 644-648: I recommend the authors on considering the spatial representation 

issue and it will be helpful to describe how the temporal representation issue is 

treated, e.g., what are the model output time for comparing cloud top RH with the 

sounding observations? 

Thanks for the question. The spatial and temporal representation issues is resolved by 

calculating the model output over a 10km × 10km grid box centered at the ARM ENA 



site for each sounding time. Given the ~1.2-1.4 km mean cloud-top height for MBL 

clouds at ENA during summer, and the balloon sounding rise at ~1m/s speed, it takes 

~1200s-1400s to reach the cloud top. With the prevailing wind speed of 7 m/s, the 

balloon travels ~8 to 10km horizontally. Therefore, we averaged the WRF pixel-level 

output over a 10km × 10km grid box centered at the ARM ENA site for each sounding 

time (usually at 12:00 UTC and 0:00 UTC each day).  

 

- Figure 12: What is the shaded area for? 

The solid blue line is the median value for each RH bin and the shaded area shows the 

lower and upper 25th percentiles of cloud susceptibility in each cloud top RH bin. This 

information has been added to figure captions of Figures 12 and 13.  

 

- Line 656: “in the simulations”- are these for all simulations with all aerosol 

number concentration or specific ones? Does the dependence of these cloud 

susceptibilities on cloud top relative humidity change when using different sets of 

simulations (e.g., between N=1000 vs. N=100 and N=1000 vs. N=500)? 

Thanks for the clarification question. Yes, Figure 12 shows the mean relationships 

between cloud top RH and cloud susceptibilities calculated based on all simulations 

(e.g. N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. N=500). The cloud-top 

RH is also based on all simulations using cloud-top heights in N=100, N=500, and 

N=1000 simulations. Figures R10 and 11 show these relationships between N=100 and 

N=500, N=100 vs. N=1000, respectively. As seen in these figures, the positive 

relationships between cloud-top RH and cloud susceptibility are consistent across 

different aerosol concentrations.   

To address this comment, we have added the following text to the manuscript:  

 

“Figure 12 shows the mean relationship between clout-top RH and cloud 

susceptibilities calculated based on domain mean values for all three simulations (e.g. 

N=1000 vs. N=100, N=500 vs. N=100, and N=1000 vs. N=500). The cloud top RH is 

the domain mean RH value at ~100m above cloud top for all simulations. As seen in 

Figure 12a, we find a positive correlation between cloud-top RH and LWP 

susceptibility in the simulations, which is consistent with cloud responses shown in 

case study where a dry layer above cloud promotes evaporation and decrease LWP. 

Additionally, these positive relationships are consistent among different aerosol 

concentrations (e.g., N=1000 vs. N=100 or N=500 vs. N=100; figures not shown). 

(Lines 870-878)” 

 
Figure R10. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud 

top relative humidity in WRF simulations between N=100 vs. N=500. The solid blue 



line shows the median value of each RH bins and the shaded area shows the lower and 

upper 25th percentiles.  

 
Figure R11. Dependence of (a) LWP susceptibility and (b) CF susceptibility on cloud 

top relative humidity in WRF simulations between N=100 vs. N=1000. The solid blue 

line shows the median value of each RH bins and the shaded area shows the lower and 

upper 25th percentiles.  

 

- Figure 13: It will be helpful to have vertical lines where buoyancy flux difference 

equals to 0 as well on the plot. Similar to the comment on Figure 12, what is the 

shaded area for? 

Figure 13 and the figure caption have been updated.   

 

Figure 14: Are these from simulations with all different aerosol concentrations? 

Yes, results shown in Figure 14 are based on the 11 cases and all three aerosol 

concentrations.  

- Figure 15: Please use a full caption. 

- Done. 

- Lines 745-754: I think several references are missing here in this first paragraph 

when mentioning the findings from previous studies. 

Thanks. The references have been added to the manuscript. 

- Lines 762-763: I suggest adding the LWP bias here rather than using 

“generally match”. 

Thanks. This sentence has been updated to “The simulated MBL clouds generally 

match the satellite observation in domain mean cloud coverage and mesoscale 

organization (Figures 1, 3, S2-S4), while the model may struggle to capture the 

diurnal evolution of clouds, especially the dissipation of clouds in the afternoon. 

Model overestimate cloud LWP, especially in the polluted runs and 

underestimated cloud top height compared to satellite retrievals.” 

- Lines 778: Are there any other potential reasons for the LWP bias and what’s the 

reason that you suggest the lack of precipitation scavenging feedback on aerosols is 

likely the cause here? 

The overestimations of 𝑁𝑑  are due to the overestimated prescribed aerosol 

concentration in model setting combined with the lack of precipitating scavenging 

effect in WRF model. The overestimation of LWP is likely due to the positive LWP 

susceptibility for thick clouds, as shown in Figure R1a. This sentence has been updated 

to “Meanwhile, the non-precipitating thick clouds are the dominant cloud state in the 

model, with a total frequency of 49%, compared to a 15.7% frequency of occurrence 

in satellite observations. The overestimation of 𝑁𝑑  arise from the overestimated 



aerosol concentration in the configuration, combined with the absence of precipitation 

scavenging in the model. The overestimation of LWP is due to the positive LWP 

susceptibility in thick clouds where LWP in N=100 simulation show good agreement 

with satellite retrievals (Figure S9). (Lines 1034-1038)” 
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