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Abstract. Applied glacio-hydrological modeling is crucial for the integrated water management strategies needed to effectively

mitigate climate change impacts on freshwater resources fed by high mountain areas. We demonstrate the application of

MATILDA-Online, an open-source toolkit for modeling glacier evolution and water resources in glacierized catchments. We

showcase it’s capabilities in data-scarce environments on a catchment in the Tian Shan Mountains in Kyrgyzstan, and outline a

four-step multi-objective calibration strategy that integrates glacier surface mass balance, snow water equivalent, and discharge5

observations. Projections indicate severe glacier mass loss by 2100, significant reductions in runoff, and a shift toward earlier

peak flow driven by snowmelt. The main sources of uncertainty in the catchment water balance are biases in precipitation data

and inconsistencies in glacier mass balance datasets, highlighting the importance of adequate monitoring. Despite limitations

in the model’s representation of spatial variability and dynamic processes, MATILDA provides easy access to sophisticated

modeling and can be a valuable tool for bridging the gap between advanced glacio-hydrological science and practical water10

resource management.

1 Introduction

The freshwater resources of almost a quarter of the world’s population are highly vulnerable to changes in the cryosphere of

high mountain headwaters (Hock et al., 2019; Viviroli et al., 2020; Immerzeel et al., 2020; Aggarwal et al., 2022). Glacio-

hydrological modeling is essential for implementing the integrated water management strategies needed to effectively miti-15

gate climate change impacts in these regions (Hock et al., 2019; van Tiel et al., 2020). In part 1 of this double publication

(Schuster et al., 2025c) we present the open source toolkit for Modeling glacier evolution and wATer resources In meso-scale

gLacierizeD cAtchments (MATILDA). It facilitates access to advanced modeling routines, datasets, and tools for profession-

als in the Global South, students, and researchers. In the present study, we apply the toolkit to assess climate impacts on the

freshwater resources in a glacierized catchment in Kyrgyzstan.20

Central Asia is one of the most vulnerable regions to water-related impacts of climate change. The majority of the region’s

population depends on water supplies from the Tian Shan Mountains (Hagg et al., 2007; Sorg et al., 2012). In the semi-arid to
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arid continental climate, glacier melt can account for 15 to 69 % of the annual runoff in the region’s river systems (Aizen et al.,

1995, 1996; Dickich and Hagg, 2004; Hagg et al., 2007). Central Asia is also particularly vulnerable to water-related political

tensions (De Stefano et al., 2017; Hock et al., 2019). The complex political geography of the region, coupled with the uneven25

distribution of renewable water resources, water consumption, and economic development (Chen et al., 2018; Zhang et al.,

2020), leads to recurrent international disputes over water allocation (Bernauer and Siegfried, 2012; Peña-Ramos et al., 2021).

These issues may be exacerbated by changes in the hydrological regimes associated with climate change (Bocchiola et al.,

2017; Chen et al., 2018; Hock et al., 2019). As a consequence of rising temperatures (Aizen et al., 1997), less precipitation

falls as snow (Chen et al., 2016; Yang et al., 2019; Li et al., 2020) and glacial melt rates increase (Bolch, 2007; Bolch et al.,30

2009). Consequently, Central Asia has lost over 25 % of its total glacier mass since 1961 (Farinotti et al., 2015). Some studies

predict that another 5̃0 % of today’s glacier area (Lutz et al., 2014) or mass (Farinotti et al., 2015) will disappear by 2050.

Others predict a less rapid, but still concerning, decline of at least 30 % in ice volume by 2100 (Miles et al., 2021).

The ongoing cryospheric changes are profoundly altering the regional hydrology by shifting the timing of peak flows to

earlier in the year and reducing summer runoff (Sorg et al., 2012; Kriegel et al., 2013; Chen et al., 2018; Barandun et al., 2020;35

Shannon et al., 2023; Siegfried et al., 2024). Increasing evaporative losses associated with rising temperatures aggravated

agricultural droughts throughout the region (Gerlitz et al., 2020; Jiang and Zhou, 2023). Since glaciers play a crucial role in

mitigating drought stress (Pohl et al., 2017; Pritchard, 2019; Van Tiel et al., 2021), drought frequency and intensity are expected

to further increase in the future (Hua et al., 2022; Wu et al., 2025). While the general trends are well understood at the global

and regional scale, the hydrological response to climate change varies significantly across Central Asia (Siegfried et al., 2024)40

and its implications for water availability and extremes at the local scale remain poorly constrained (Barandun et al., 2020;

Siegfried et al., 2024). Since these impacts are most relevant to local stakeholders, facilitating access to modern modeling tools

and datasets for impact assessments at finer spatial scales is key to reducing the local population’s vulnerability to water stress

(Gerlitz et al., 2020; Barandun et al., 2020).

MATILDA-Online (Schuster et al., 2025a) is designed to meet the needs of an accessible modeling tool in contexts of45

limited observations. In this study, we use it to investigate the impact of 21st-century climate change on the water balance

of a glacierized catchment in the Kyrgyz Tian Shan (see figure 1) and to evaluate the proposed data products in the light of

scarce observations. We also present a multi-objective calibration approach, assess model uncertainty, and discuss limitations.

This study lays the groundwork for improving localized climate impact assessment in glacierized catchments with limited

monitoring. It also emphasizes MATILDA-Online’s potential as a transferable tool for supporting data-driven water resource50

management, regardless of the study region.

2 Study Site

The Kyzylsuu valley in the Tian Shan mountains is located in the Issyk-Kul district of Kyrgyzstan (see figure 1). The valley’s

first glaciological and meteorological records date back to the 1950s (WGMS, 2022). However, the first weather station,

installed in 1957, was abandoned in the 1990s, and its records could not be accessed. A semi-automated weather station was55
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installed in 2007 and provided continuous observations from 2008 to 2017. The longest discharge record (1989-2020) comes

from a station located near the valley entrance, about 25 km from the confluence of the Kyzylsuu River with Lake Issyk-Kul. It

is mostly unaffected by irrigation diversions. On average, July has been the month of peak runoff in recent decades, when the

maxima of precipitation and temperature, and thus melt, coincide. Although 10.8 % of the Kyzylsuu catchment is covered by

glaciers, only the Kara-Batkak glacier (ID: RGI60-13.06359, RGI Consortium 2017) has long-term continuous mass balance60

observations (1957-1998 and since 2014, WGMS 2022). Table 1 summarizes the catchment’s characteristics upstream of the

gauging location.

3 Methods

MATILDA is forced with aggregated ERA5-Land reanalysis data (Muñoz Sabater et al., 2021) for calibration and an ensemble

of NEX-GDDP-CMIP6 data (Thrasher et al., 2022) in two Shared Socioeconomic Pathways (SSP2 and SSP5) for the projec-65

tions. Both climate forcing datasets and the digital elevation model were accessed via Google Earth Engine (GEE, Gorelick

et al. 2017). Table A1 provides an overview of all used data sources. Details on preprocessing and bias adjustement can be

found in Part 1 (Schuster et al., 2025c). Most of the processing chain for the present study, including the applied data, is docu-

mented in the MATILDA-Online Jupyter Book (https://matilda-online.github.io/jbook) and can be reproduced locally or in the

cloud. However, the resource-intensive tasks of statistical parameter optimization, sensitivity testing, and uncertainty analysis70

were computed using parallel processing on a high-performance cluster (HPC) running Rocky Linux 8.6. While the calibration

strategy needs to be tailored to the specific use case, study site, and technical capabilities of the user, the outlined procedure

can provide a template for other melt-dominated catchments.

3.1 Calibration

Snow and glacier melt are the most important stream runoff contributors in most high mountain catchments (Woo and Thorne,75

2006; Penna et al., 2014; Armstrong et al., 2018; Shannon et al., 2023). For an appropriate process representation in a concep-

tual model, it is crucial to integrate glacier surface mass balance (SMB) and snow data in addition to runoff (Duethmann et al.,

2014; Finger et al., 2015; Nemri and Kinnard, 2020; van Tiel et al., 2020). Consequently, a four-step hierarchical process-based

calibration approach was employed, integrating three calibration variables and multiple data sources.

3.1.1 Calibration Data80

The availability of snow, glacier, and discharge data determined the calibration period as 2000-2020. The discharge data

provided by the Kyrgyz HydroMet service was quality checked by the Central Asian Insitute for Applied Geosciences (CAIAG)

yielding 17 years of daily values for calibration.

Due to their large uncertainty bands, all available SMB records were considered (Fig. 2). MATILDA’s default SMB data

from Shean et al. (2020) (2000–2018) averaged -0.156±0.324 m w.e. a-1 over all 38 glaciers. For 2000–2020 Hugonnet et al.85

(2021) estimated -0.462±0.175 m w.e. a-1. Barandun et al. (2021) provided annual SMBs (-0.43 m w.e. a-1 for 2000–2018) for
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the 7 largest glaciers (79.5% of glacier area) based on a combination of transient snowlines, geodetic surveys, and modeling.

Miles et al. (2021) estimated -0.379 m w.e. a-1 from 2000–2016 for the same glaciers via remote sensing. The catchment’s

only in-situ observations are annual (1957–1998, 2014–2021) and seasonal (1976–1998, 2014–2021) SMB WGMS (2022)

for Kara-Batkak glacier (-0.704 m w.e. a-1 for 2014–2021). Because of their qualitative approach, Barandun et al. (2021) was90

selected as the reference, while allowing for tolerance to account for the variety of observations (see 2).

The snow routine was calibrated using the High Mountain Asia Daily Snow Reanalysis (HMASR) dataset by Liu et al.

(2021a) (Schuster et al., 2025c). The ensemble mean snow water equivalent (SWE) for 2000–2017 was reprojected to 16arcsec

and clipped to catchment outlines following Gascoin (2021). As suggested by Liu et al. (2021b), only pixels classified as

’seasonal snow’ were used, as this is where the method is most robust, due to the strong signal of disappearing snow in remote95

sensing data. While the excluded pixels largely correspond to glacierized areas, the differing resolutions of the datatsets (500m

rasters vs. vector glacier outlines) result in a minor area discrepancy. To match the reference area of the SWE values before

comparison, a scaling factor is applied to the simulated data during calibration.

The simulated and observed mean annual SMB are compared using the mean absolute error (MAEsmb). Both runoff (KGEr)

and SWE (KGEswe) calibration use the Kling-Gupta Efficiency coefficient (Gupta and Kling, 2011; Kling et al., 2012).100

3.1.2 Calibration Procedure

Steps 1-3 target water balance parameters in descending order of sensitivity. Step 4 calibrates all parameters that govern runoff

timing. Table 2 summarizes the algorithms and criteria for the individual steps. The sample sizes Nmax for all Latin Hypercube

Samplings (LHS, McKay et al. 1979) were determined as

Nmax = (k!)p−1, (1)105

where k is the number of divisions per parameter and p is the number of parameters (Houska et al., 2023).

Step 1 - Input Correction: Three HBV parameters adjust input data for precipitation, snowfall, and evaporation, respec-

tively, to account for observational errors. However, these adjustments may mask internal model uncertainties (Schuster et al.,

2025c). Therefore, snowfall and evaporation correction were disabled (SFCF=1, CET=0). To calibrate the most sensitive pa-

rameter PCORR, the remaining 19 parameters were split into two subsets: (1) parameters governing the water balance, and (2)110

those controlling runoff timing, with the latter fixed on defaults. The stratified random samples (LHS) were filtered by all three

objective functions (MAEsmb, KGEswe, and KGEr) and PCORR fixed on the posterior mean.

Step 2 - Snow Routine: The low-sensitivity parameters that impact the snow routine were set to the posterior means of step

1 (lrtemp, lrprec) or the default (CFR). The remaining snow parameters (TTsnow, TTdiff , CFMAXsnow) were calibrated via

LHS, filtered by KGEswe, and set to posterior means.115

Step 3 - Glacier Routine: The ice melt rate (CFMAXrel) was constrained with uniform, stratified random samples and a

target mean annual SMB as a compromise between different datasets (see 5.1.3). To account for the high source uncertainties,

CFMAXrel was constrained to the range where MAEsmb < 100 mm.

5

https://doi.org/10.5194/egusphere-2025-3462
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Step 4 - Soil, Response, and Routing: The remaining 11 parameters were calibrated using the Differential Evolution

Markov Chain algorithm DEMCz (ter Braak and Vrugt, 2008). This technique is more efficient than other Monte Carlo Markov120

Chain (MCMC) algorithms at finding global optima and does not require prior distribution information (Braak, 2006; ter Braak

and Vrugt, 2008; Turner et al., 2013). However, it requires one explicit objective function, and is sensitive to the settings

and likelihood function used (Houska et al., 2015). The KGE, as an informal likelihood function, can cause problems with

MCMC techniques due to negative values and high proposal acceptance rates (Mantovan and Todini, 2006; Stedinger et al.,

2008; Liu et al., 2022). To mitigate these problems, we employed the gamma-distribution-based KGE version proposed by Liu125

et al. (2022). Once all chains fulfilled the Gelman-Rubin convergence criterion (Gelman and Rubin, 1992), the sample set was

filtered using an MAEsmb threshold as well as seasonal (KGEr,s for Apr-Sep; KGEr,w for Oct-Mar) and total KGEr criteria.

3.2 Validation

Due to gaps of up to 2.5 years in the discharge data, validation focused on 2018–2020 using a split-sample approach. Relative

glacier area changes during calibration were estimated via Landsat 7 (25.08.2002) and Sentinel-2 (21.07.2022) scenes using130

the GEE Random Forest glacier mapping workflow of Ali et al. (2023).

We also compared our results with Chevallier et al. (2023), who simulated the Kyzylsuu catchment until 2060 using the

distributed HDSM model (Savéan et al., 2015). The study used the same reanalysis data, but bias-adjusted to additional stations,

for calibration and the CNRM-CM6-1 model for projections (Voldoire et al., 2019). Therefore, we extracted the CNRM-CM6-1

runs from our ensemble to compare simulated changes between 2011-2020 and 2051-2060 with the reference study. However,135

Chevallier et al. (2023) applied quantile mapping based on only six years (2015–2020) of station data, with unclear trend

preservation. Their snow routine was calibrated to remote sensing snow cover data and the glacier routine calibration focused

on Kara-Batkak glacier only while glacier evolution was neglected.

3.3 Uncertainty analysis

To assess evolving parameter uncertainty during calibration, 20’000 random samples were computed for five calibration stages:140

(a) all parameters open (21 parameters), (b) correction factors fixed (18), (c) after snow calibration (12), (d) after glacier

calibration (11), (e) all values of (d) where KGEr > 0.8 . The hydrograph ranges for (a–d) illustrate parameter uncertainty.

The uncertainty in glacier evolution due to calibration data inconsistencies was assessed by forcing the model with the full

range of ice melt rates supported by the literature. The lower bound was set using the highest SMB from Shean et al. (2020)

(-0.156 m w.e. a-1, 2000–2018), the upper bound using the SMB of Karabatkak Glacier from 2014–2020 (WGMS, 2022), as145

used by Chevallier et al. (2023) (-0.704 m w.e. a-1). The model was run with melt rates ranging from the upper to the lower

bound in 5 % increments under both SSP scenarios.
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4 Results

4.1 Reanalysis data

ERA5-Land air temperature agrees well with the local weather station data. However, precipitation is substantially overes-150

timated as reflected by the total summer precipitation (Apr–Sep). Where ERA5-Land estimated a total of 9590 mm from

2008–2017 in the Kyzylsuu catchment, only 4330 mm w.e. were observed – an overestimation of 108±62%. To some extent,

this can be attributed to the ’constant drizzle’ issue in climate models (He et al., 2019; Chiaravalloti et al., 2022) as highlighted

by the strong underestimation of days without precipitation (ERA5L: 4.2% vs. Obs: 72.2%).

4.2 Calibration155

Table 2 summarizes all calibration steps and final parameters. Each of the following steps refers to one column in the table.

Step 1 - Input Correction: To determine PCORR, the LHS results were filtered for MAEsmb < 100 mm and KGEswe >

0.7. The top 10% (0.46 < KGEr < 0.55) were selected. Posterior distributions were mostly Gaussian, with some skewness or

bimodality (see Figure A11). PCORR was fixed at the posterior mean of 0.58, as 68% of all values were within ±0.04.

Step 2 - Snow Routine: A scaling factor of 0.928 was applied to address the coarser resolution of the mask for seasonal160

snow (see 3.1.1). Samples with KGEswe > 0.8 (n=29) were retained. All parameters showed Gaussian distributions and were

fixed at posterior means.

Step 3 - Glacier Melt Rate: Excluding samples with MAEsmb > 100 mm constrained CFMAXrel to 1.20–1.53, corre-

sponding to 4.04–5.16 mm K-1 d-1.

Step 4 - Soil and Routing: DEMCz sampling converged after 85,400 iterations. The final selection (MAEsmb < 50 mm)165

yielded KGEr = 0.88, with seasonal values of 0.88 (KGEr,s) and 0.24 (KGEr,w).

4.3 Validation

The remote sensing analysis shows glacier area declined from 39.2 km2 (2002, Landsat 7) to 31.9 km2 (2022, Sentinel-2) – a

loss of 18.6%. The simulated area dropped from 31.8 km2 (2000) to 28.1 km2 (2020), or 11.7%. However, the Random Forest

approach estimates the inital glacier area to be 23.3 % (7.4 km2) larger then in the RGI6, which also refers to 2002 (see Figure170

A13). The full discharge time series and runoff contributions from 2000–2020 along with average annual cycles are shown in

Figure 3. Runoff validation yielded KGEr = 0.89 (NSE = 0.83, RMSE = 21.0 mm) during calibration and 0.88 (NSE = 0.84,

RMSE = 20.6 mm) during validation. Figure 4 compares the simulated average annual SWE cycle with observations, showing

KGEswe = 0.81 (MAE = 24.4 mm, RMSE = 36.0 mm) for calibration. No SWE data were available for the validation period.

Mean annual SMB during calibration was -0.44 m w.e. Simulated SMB is within uncertainty bands of the long-term remote175

sensing datasets (Shean et al., 2020; Miles et al., 2021; Hugonnet et al., 2021), though annual records vary.
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4.4 Projections

4.4.1 Bias Adjustment

Of the 34 CMIP6 ensemble models provided via GEE, three failed the consistency checks (Schuster et al., 2025c). A list of

the final ensemble members can be found in table A2. Figures A1 to A4 show the remaining models before and after bias180

adjustment. Both SSP scenarios show positive temperature trends, while precipitation remains relatively constant (see Figures

A5 and A6). The bias-adjusted data shows high agreement with the target data for temperature (R2 between 0.86 and 0.9) in

both scenarios, and moderate agreement for monthly precipitation (R2 between 0.35 and 0.6) as visualized in Figure A7 to A10

in the Appendix.

4.4.2 Climate Trends185

Figure 6 summarizes projected changes in the water balance. Tables A3 and A4 in the Appendix present ensemble means

and standard deviations for selected model outputs. All values hereafter refer to ensemble means. Trends are based on annual

aggregates whereas relative changes refer to means of the first and last decade of the century. Unless noted, all trends are

significant (p< 0.01). The annual mean temperature is projected to rise at 0.03 K a-1 for SSP2 and 0.06 K a-1 for SSP5,

increasing potential evaporation by 35% and 76%. Actual evaporation rises by 16% (35%). Precipitation declines slightly with190

a linear trend of -0.7 mm/a in both scenarios, while it’s seasonality remains stable, but with a systematic difference: CMIP6

models peak in June, while ERA5-Land peaks in July. The length and frequency of dry spells increase consistently, reaching

up to 121 days per year by 2090–2100 (trend: 0.8 d/a).

4.4.3 Trends in Water Balance

The glacier area is projected to shrink by 90% (SSP2) and 99.8% (SSP5) between 2000 to 2100. The contribution of ice melt195

to runoff initially rises from 7.8% to over 12% (13%) by mid-century. Subsequently, it drops to 1.8% (0%) by the period 2091-

2100. Total runoff declines by -1.6 mm/a (-1.9 mm/a), amounting to 18% (23%) less runoff over the final decade compared to

the first. The snow amount remains stable under SSP2 (not significant trend: -0.02 mm/a) but drops by 0.50 mm/a under SSP5.

The snowmelt fraction in ruoff rises in both scenarios from 41.1% (2000–2010) to 52.6% (SSP2) and 43.8% (SSP5) between

2090 and 2100. However, it declines after 2060 under SSP5. The melt season begins approx. one month earlier (SSP2: -20200

days, SSP5: -44 days) and extends from 151 to 180 (209) days. The peak runoff shifts from late July (DoY 212) to late May

(DoY 150, SSP2) or mid-May (DoY 136, SSP5).

4.5 Uncertainty

Figure 7 illustrates the evolving parameter uncertainty through model calibration. Because MATILDA is sensitive to external

correction factors (Schuster et al., 2025c), step 1 has the strongest impact. Calibrating the snow module further narrows the205

parameter space, while constraining the ice melt rate has minimal effect after all snow parameters are calibrated. After applying
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the KGEr filter in the final step, little parameter uncertainty remains, despite 11 open parameters. While this is true for the

calibration period, the ice melt rate strongly affects projections. Calibrating to the highest SMB estimate (Shean et al., 2020)

yields a melt rate of 2.11 mm K-1 d-1, while calibrating only to in-situ data of a single glacier returns 6.11 mm K-1 d-1. Figure

8 illustrates the wide range of outcomes for three related variables. For example, depending on SMB data used, glaciers may210

disappear by 2084 under SSP5 or retain over 5 km2 by 2100. Glacier runoff timing also varies significantly, and the peak runoff

may already have past.

5 Discussion

When considering MATILDA’s overall performance, two major sources of uncertainty must be taken into account: forcing data

and the modeling workflow. Several product-specific uncertainties are addressed in related publications and are therefore not215

discussed here. However, some known issues directly impact this case study.

5.1 Data

5.1.1 Reanalysis data

As confirmed by our analysis for the observation period, ERA5-Land is known to overestimate precipitation in high mountains

(Wu et al., 2023b). While seasonal patterns and peak timing are consistent, light rain and drizzle are often overestimated and220

extremes are underestimated (He et al., 2019; Chiaravalloti et al., 2022; Gomis-Cebolla et al., 2023). Although a precipitation

correction factor can address this issue in long-term water balance projections, it cannot adjust for shortcomings in the rep-

resentation of seasonal variations and extreme events. Other ERA5 uncertainties are well covered in existing literature (e.g.,

Hamm et al. 2020; Muñoz Sabater et al. 2021; Zhao and He 2022; Gomis-Cebolla et al. 2023). Regarding snow, however,

the used SWE data was derived using Merra-2 forcing (Gelaro et al., 2017) at 0.5◦ by 0.625◦ resolution for the snow model225

ensemble (Liu et al., 2021a), which differs from ERA5-Land. As the ensemble was calibrated with remote sensing snow cover

data, it served as a proxy for observations in this study. Differences from ERA5-Land precipitation were accounted for by

including SWE data in the calibration of PCORR.

5.1.2 Climate scenarios

As a relatively new dataset, NEX-GDDP-CMIP6 lacks comprehensive performance assessments at regional and local levels.230

Nevertheless, some studies show it can outperform native CMIP6 data (Dioha et al., 2024) and provide good temperature esti-

mates (Wu et al., 2023a), even in complex terrain (Zou et al., 2024). Precipitation trends in large catchments are also captured

well (Jiang et al., 2023), though limitations remain in representing fluctuations (Wu et al., 2023a) and spatial precipitation

patterns in mountains (Yuan et al., 2023). Aggregation may reduce some of these issues, but validation against observations

remains essential. Figures A1 to A10 in the Appendix illustrate model performance before and after bias adjustment. The bias235

adjustment (Schuster et al., 2025c) performs well for both variables, with stronger agreement for temperature. Monthly precip-
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itation distributions align with ERA5-Land, but totals above 250 mm show larger differences, partly due to known ERA5-Land

biases in extremes. The final 31 CMIP6 models show high agreement in precipitation trends, resulting in narrow ensemble

confidence intervals for total precipitation, snowmelt, and runoff. Qualitative ensemble selection (e.g. by specific process rep-

resentation) can further improve robustness.240

5.1.3 Observations

Runoff and SMB observations are subject to substantial uncertainty due to limited data quality and availability. Chevallier et al.

(2023) questioned the reliability of the same runoff dataset used here, citing unclear measurement methods and the limited

frequency of discharge observations. Historic SMB records often contain large gaps or were discontinued after 1990 (Hoelzle

et al., 2017). Further, even longer records of single glaciers can bias glacier modeling. In the study catchment, Kara-Batkak245

loses mass faster than the catchment average by up to 16.3 % (Shean et al., 2020; Barandun et al., 2021; Miles et al., 2021),

suggesting calibration on this single SMB time series may overestimate glacier melt. By contrast, remote sensing offers broad

glacier coverage but mostly long-term average estimates. Compared to Barandun et al. (2021), MATILDA’s default dataset

(Shean et al., 2020) shows more positive SMBs for all seven glaciers (∆ = 0.224 ± 0.141 m w.e.), with three exceeding uncer-

tainty bounds, indicating underestimated mass loss. Although this highlights the value of multiple data sources, even combined250

datasets allow for a wide range of glaciation scenarios (Figure 8), which is a key driver of projection uncertainty. Additionally,

most glacial datasets use 2000 as the reference year, limiting calibration despite the availability of longer discharge records.

5.2 Model Performance

5.2.1 Validation

Despite considerable uncertainties in all validation datasets, MATILDA performs well across most objectives. During vali-255

dation, runoff closely matches observations, though peak flows are less accurately captured than in calibration. Both periods

show a consistent delay in spring runoff onset and fall recession, with low flows generally underestimated (Figure 3). Simulated

glacier SMB falls within the range of all datasets used, though none of the intra-annual variations match (Figure 2). Changes in

glacier area align well with remote-sensing estimates when the overestimation in 2002 is accounted for. The mean annual SWE

cycle is reproduced on average (Figure 4) but MATILDA overestimates SWE maxima and underestimates minima, since the260

catchment scale cannot resolve spatial variability in snowmelt. Separation into sub-catchments to account for spatial variability

of air temperature and radiation input may improve the representation of snow cover seasonality but increases processing time.

5.2.2 Climate Change Signals

The observed trends are consistent with earlier studies in high mountain catchments, suggesting a shift from a glacial-nival to

a nival-pluvial runoff regime (Braun and Hagg, 2009; Sorg et al., 2012; Li et al., 2020). Simulation trends, and the fact that265

1991–2000 (846.2 mm/a) and 2000–2010 (854.5 mm/a) had the highest average precipitation of all simulated decades, indicate

peak runoff around the millennium, followed by a decline in glacial runoff and total streamflow in both scenarios (Milner
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et al., 2009; Shea et al., 2013; Hock et al., 2019). However, the buffering role of meltwater during dry seasons noted in other

studies (Armstrong et al., 2018; Pritchard, 2019; Barandun et al., 2020; Van Tiel et al., 2021; Barandun et al., 2021) is less

evident, since peak evaporation and precipitation typically coincide. Nevertheless, reduced meltwater decreases peak runoff270

and impairs the ability to offset increasing dry spells, especially in late summer and fall. Despite this, the expected earlier onset

of spring runoff and summer peak flow (Barnett et al., 2005; Hock et al., 2019) is consistent with simulations for the nearby

Naryn catchment (Schaffhauser et al., 2023; Shannon et al., 2023) and other regional studies (Sorg et al., 2012; Kriegel et al.,

2013; Chen et al., 2018; Barandun et al., 2020; Siegfried et al., 2024).

5.2.3 Result Comparison275

Validation against Chevallier et al. (2023) revealed significant discrepancies in the adjusted forcing and the simulations. Our

results indicate stronger warming from the second to sixth decade: 1.87,°C for SSP2 (SSP5: 2.63,°C) vs. 0.77,°C (1.77,°C)

in Chevallier et al. (2023), and a higher Epot increase of 20.2 % (29.2 %) vs. 2 % (6.5 %). The variability of precipitation is

similar, but the annual totals are about 10% higher in our case. All simulated water balance components (2011–2020) are

higher in Chevallier et al. (2023), with minor differences in snowmelt (factor 1.6) and Eact (1.7). However, glacier melt is 5.3280

times higher—though flagged as an overestimation due to their static glacier assumption. Nevertheless, the trends in Eact align:

7.3 % (12.7 %) vs. 3.3 % (13 %), while snowmelt trends diverge: +16.3 % (11.3 %) in our results vs. -9.5 % (-17.5 %) in theirs.

These differences can mainly be attributed to the different model setups, including distinct bias adjustments, and our use of the

highly temperature-sensitive method by Oudin et al. (2005) to estimate evaporation compared to the Penman-Monteith method

of Allan et al. (1998). Additionally, Chevallier et al. (2023) only report decadal means, not trends, and SWE differences after285

2020 are minor, suggesting discrepancies in their calibration data for 2010–2020. Ice melt and total runoff estimates remain

incomparable due to their static glacier scheme, in which ice melt even surpasses snow melt in the projection.

The comparison of two approaches forced by the same original climate data illustrates the importance of carefully selecting

the bias adjustment approach and the target data. The use of a downscaled CMIP6 product and trend-preserving bias adjustment

to ERA5-Land results in significantly higher temperature and precipitation trends. By contrast, meteorological observations as290

used by Chevallier et al. (2023) generally provide valuable insights into local conditions, but often suffer from low spatial and

temporal coverage and quality shortcomings (Xenarios et al., 2019) such as unquantified precipitation undercatch (Kochendor-

fer et al., 2017). Moreover, the disparate SWE simulations demonstrate the impact of the chosen snow calibration approach on

the simulated water balance. Dedicated snow reanalysis products have advantages over snow cover area data alone, especially

regarding peak snow storage (Liu et al., 2021b).295

5.2.4 Limitations and Opportunities

Though there are few observations in many target regions, several global datasets could improve MATILDA’s predictive power

by addressing current calibration limitations. Soil and groundwater parameters remain uncalibrated with explicit data, so the

final calibration step is determined by compensating soil and routing parameters. However, datasets like HiHydroSoil v2.0

(Simons et al., 2020), accessible via GEE, require expert adaptation to HBV parameters. Furthermore, land degradation result-300
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ing from climate change and overgrazing poses an evident risk in Central Asia affecting evaporation and soil properties (Chen

et al., 2019). In contrast, high-altitude greening due to rising temperatures increases evapotranspiration (Mastrotheodoros et al.,

2020; Yang et al., 2020). Such dynamic changes cannot be represented with static parameters which is a key limitation of con-

ceptual models (Duethmann et al., 2020). CMIP6 models incorporate land cover change, but at a large scale (Lawrence et al.,

2016; Ma et al., 2020). More impact oriented datasets like those of the Inter-Sectoral Impact Model Intercomparison Project305

(ISIMIP, Warszawski et al. 2014; Frieler et al. 2017; Lange 2019) can add value, but their coarse resolution (≥0.5°) and com-

plexity require complex downscaling and preprocessing, limiting their integration into MATILDA-Online without additional

resources.

6 Conclusions

Public datasets with broad temporal and spatial coverage can help address data scarcity in regions like Central Asia. Yet, lim-310

ited access to data and models remains a major barrier for local users. Many global and regional tools lack the resolution for

reliable long-term water balance estimates in mesoscale catchments and require intensive downscaling and technical expertise.

MATILDA offers a solution by supporting, educating, and empowering water management stakeholders in regions affected by

climate change. In the demonstrated setup, MATILDA has shown reliable performance in simulating key hydrological com-

ponents across different periods and scenarios. Iterative assessment of parameter uncertainty has shown that robust calibration315

of water balance parameters is essential, while the impact of most soil and routing parameters is less significant in the long

term. MATILDA has proven to effectively capture general seasonal patterns and trends in the water balance. Projections for the

Kyzylsuu catchment indicate a significant increase in evapotranspiration, a reduction in glacier mass of up to 99%, and a shift

toward earlier spring runoff and summer peak runoff. These changes are consistent with trends observed in other catchments

in HMA, although the exact runoff contributions vary among related studies.320

Despite these promising results, significant uncertainties remain. As a lumped conceptual model, MATILDA does not ac-

count for spatial variability in forcing data and related processes, resulting in temporal inaccuracies. Further subdivision into

smaller sub-catchments may address this, particularly the timing of snowmelt, but increases processing costs. In addition, the

model’s static parameters cannot account for dynamic trends associated with land surface changes. However, most of the pro-

jection uncertainty is associated with biases in the precipitation data and the observations used for calibration. The temperature325

index model with the modified ∆h routine can provide reasonable long-term estimates of glacial contributions to runoff, includ-

ing stabilizing effects at higher elevations (Schuster et al., 2025c). However, this setup fails to reproduce observed inter-annual

changes and neglects important glaciological factors such as glacier dynamics and debris cover. While a more comprehensive

glacier model could address some of these limitations, the greatest uncertainty in glaciation scenarios arises from inconsis-

tencies in the mass balance datasets used as reference. Therefore, despite the improving quality of model-based datasets, the330

availability and reliability of observations are essential for predicting water balance and runoff contributions.
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Code and data availability. The MATILDA core model and calibration module are published as a Python package (Schuster et al., 2025b).

MATILDA-Online is available as a repository (Schuster et al., 2025a) and deployed as a Jupyter Book on the MATILDA-Online website

(https://matilda-online.github.io/jbook). All modeling results, forcing datasets, and discharge observations are available as example datasets

or can be reproduced by running the workflow locally or online. All other data can be accessed from the original sources cited in the text and335

listed in Table A1.
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Table 1. Characteristics of the example site "Kyzylsuu" as calculated by the MATILDA catchment routine.

Catchment Area [km2] 295.68

Glacierized Area [km2] 31.83

Glacierized Fraction [%] 10.8

Mean Catchment Elevation [m.a.s.l.] 3294

Catchment Elevation Range [m.a.s.l.] 3284 to 4771

ERA5-Land Reference Elevation [m.a.s.l.] 3337

Mean Glacier Elevation [m.a.s.l.] 4002

Latitude of Catchment Center [°] 42.18

No. of Glaciers (RGI 6.0) 38
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Table 2. Calibration workflow, including methods, criteria, and sample sizes for each calibration step, and final parameter values.

Step 1

“Input correction”

Step 2

“Snow”

Step 3

“Glaciers”

Step 4

“Soil & Routing”

Final

Method: LHS LHS LHS (1-D) DEMCz

Sampling

Criteria

k = 3,

p = 8

k = 5,

p = 3

- M = 4,

Nburn = 500,

R̂ = 0.8

Sample size: 279’936 14’400 5’000 85’400

Filter

Criteria:

MAEsmb < 100 mm

KGEswe > 0.7

KGEr (best 10%)

KGEswe

> 0.8

MAEsmb < 100

mm

MAEsmb < 100 mm

KGEr > 0.88

KGEr,s > 0.88

KGEr,w > 0.24

SFCF 1 1

CET 0 0

PCORR 0.58 ± 0.03 0.58 0.58

lrtemp -0.006 ± 0.003 -6×10−3 -6×10−3

lrprec (1.5±0.5)×10−3 1.5×10−3 1.5×10−3

CFR 0.15* 0.15* 0.15

TTsnow -1.00 ± 0.45 -1.45 ± 0.05 -1.45 -1.45

TTdiff 1.23 ± 0.55 0.76 ± 0.17 0.76 0.76

CFMAXsnow 3.29 ± 0.48 3.37 ± 0.42 3.37 3.37

CFMAXrel 1.54 ± 0.22 2.0* [1.2, 1.53] 1.256 1.26

CWH 0.1* 0.1* 0.1* 1.17×10−4 1.17×10−4

AG 0.055* 0.055* 0.055* 0.549 0.55

BETA 1.78 ± 0.7 1.0* 1.0* 1.0 1.0

FC 250* 250* 250* 99.160 99.16

LP 0.7* 0.7* 0.7* 0.998 1.0

K0 0.055* 0.055* 0.055* 0.010 0.01

K1 0.055* 0.055* 0.055* 0.010 0.01

K2 0.04* 0.04* 0.04* 0.150 0.15

PERC 1.5* 1.5* 1.5* 0.092 0.09

UZL 120* 120* 120* 126.412 126.41

MAXBAS 3.0* 3.0* 3.0* 2.0 2.0

Legend: Calibration parameter – Fixed parameter (* default)

k = number of divisions, p = number of parameters,

M = number of MCMC chains, Nburn = burn-in samples,

R̂ = Gelman–Rubin convergence statistic
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Figure 1. Overview of the Kyzylsuu catchment in the northern Tian Shan, Kyrgyzstan. Color gradients show elevation (MERIT DEM,

Yamazaki et al. 2017) and glacier ice thickness according to the consensus estimate by Farinotti et al. (2019). Markings locate the weather

(square) and discharge stations (triangle) used in this study. The barplot depicts the initial glacier ice distribution by elevation band in 2000.
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Figure 2. Surface mass balance (SMB) estimates for glaciers in the Kyzylsuu catchment. Annually resolved values shown for the MATILDA

simulation results, in-situ observations of Kara-Batkak glacier (WGMS, 2022), and a multi-method approach for the seven largest glaciers

Barandun et al. (2021). Multi-annual averages of geodetic estimates shown as horizontal lines with uncertainty range as shaded bands for the

seven largest glaciers (Miles et al., 2021) and all 38 glaciers (Shean et al., 2020; Hugonnet et al., 2021), respectively.
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Figure 3. Monthly MATILDA simulations for the Kyzylsuu catchment (2000–2020). Observed and simulated discharge (top), and positive

and negative modeled runoff contributions (bottom) shown as time series (left) and average annual cycles (right).
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Figure 4. Mean annual cycle of daily snow water equivalent (SWE) in the non-glacierized part of the Kyzylsuu catchment during 2000–2017.

Simulated SWE is compared to the ensemble mean of the High Mountain Asia Daily Snow Reanalysis (Liu et al., 2021a).
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ration; and mean annual air temperature. In the melt panel, shadings indicate runoff contributions while solid lines show differences between
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Vertical orange shading shows observed runoff periods. The vertical red line separates calibration and projection periods.
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Figure 6. Annual cycles of runoff, snowmelt, ice melt, and actual evapotranspiration from 2000 to 2100 under SSP2 and SSP5 scenarios.

Each panel shows monthly sums (x-axis: months; y-axis: years), highlighting seasonal patterns and long-term trends.
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Figure 7. Average annual cycle of the simulated

total runoff parameter uncertainty. Colored lines

show percentiles (5 % to 95 %) of 20’000 ran-

dom samples of simulated runoff in the calibra-

tion period (2000–2017) compared to observa-

tions. Subfigures represent different calibration

steps: (a) no constraints, 21 open parameters; (b)

external parameters fixed, 18 open parameters;

(c) snow routine calibrated, 12 open parameters;

(d) glacier routine calibrated, 11 open parame-

ters, ice melt rate constrained; (e) all runs of (d)

with KGEr > 0.8.
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Figure 8. Uncertainty in glacier projections due to inconsistency in calibra-

tion data. Lines represent runs of the calibrated model in two SSP scenarios

with the range of ice melt rates supported by the literature: bold lines for the

lower bound calibrated to the catchment mean SMB of Shean et al. (2020)

(2.11 mm K-1 d-1 ), thin lines for the upper bound calibrated on Karabatkak’s

SMB according to WGMS (2022) (6.11 mm K-1 d-1 ), dashed lines for the

calibrated best estimate based on Barandun et al. (2021) (4.2 mm K-1 d-1 ),

smoothed with a three-year moving average. The shading represents the range

of predictions between the bounds in steps of 10 %. (a) Simulated total glacier

area; (b) Simulated total glacier mass; (c) Simulated contribution of glacier

melt to total catchment runoff.
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Table A1. Datasets used in the present study.

Dataset Source
Meteorological observations Research Institute of Water Problems and Hydro-energy Problems of the Kyr-

gyz Republic Academy of Sciences (IWP); Institute of Ecology and Geography

of the Chinese Academy of Science
Gauging station Hydro-meteorological Service under the Ministry of Emergency Situation of

the Kyrgyz Republic (Kyrgyz HydroMet)
Ice thickness Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maus-

sion, F., and Pandit, A.: A consensus estimate for the ice thickness

distribution of all glaciers on Earth, Nature Geoscience, 12, 168–173,

https://doi.org/10.1038/s41561-019-0300-3, 2019.
ERA5-Land Muñoz Sabater, J., et al.: ERA5-Land: a state-of-the-art global reanalysis

dataset for land applications, Earth System Science Data, 13, 4349–4383,

https://doi.org/10.5194/essd-13-4349-2021, 2021.

GEE: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_

ERA5_LAND_DAILY_AGGR
RGI 6.0 RGI Consortium: Randolph Glacier Inventory - A dataset of global

glacier outlines, Version 6, Boulder, Colorado USA. NSIDC:

https://doi.org/10.7265/4m1f-gd79, 2017.
MERIT-DEM Yamazaki, D., et al.: A high-accuracy map of global ter-

rain elevations, Geophysical Research Letters, 44, 5844–5853,

https://doi.org/10.1002/2017GL072874, 2017.

GEE: https://developers.google.com/earth-engine/datasets/catalog/MERIT_

DEM_v1_0_3
SMB data – Shean et.al. Shean, D. E., et al.: A systematic, regional assessment of High

Mountain Asia glacier mass balance, Frontiers in Earth Science, 7,

https://doi.org/10.3389/feart.2019.00363, 2020.
SMB data – Barandun et.al. Barandun, M., et al.: Hot spots of glacier mass balance vari-

ability in Central Asia, Geophysical Research Letters, 48,

https://doi.org/10.1029/2020GL092084, 2021.
SMB data – Miles et.al. Miles, E. S., et al.: Health and sustainability of glaciers in High Mountain Asia,

Nature Communications, https://doi.org/10.1038/s41467-021-23073-4, 2021.
SMB data – WGMS WGMS: Fluctuations of Glaciers Database, Zurich,

https://doi.org/10.5904/wgms-fog-2022-09, 2022.
NEX-GDDP-CMIP6 Thrasher, B., et al.: NASA Global Daily Downscaled Projections, CMIP6, Sci-

entific Data, 9, https://doi.org/10.1038/s41597-022-01393-4, 2022.

GEE: https://developers.google.com/earth-engine/datasets/catalog/NASA_

GDDP-CMIP6
High Mountain Asia Daily Snow Reanalysis Liu, Y., Fang, Y., and Margulis, S. A.: High Mountain Asia UCLA Daily Snow

Reanalysis, Version 1, https://doi.org/10.5067/HNAUGJQXSCVU, 2021a.
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Table A2. List of all CMIP6 models used as future climate forcing. This study used a downscaled version called NEX-GDDP-CMIP6 by

Thrasher et al. (2022) which was accessed via Google Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/NASA_

GDDP-CMIP6) in two emission scenarios (SSP2 and SSP5).

Applied CMIP6 Models

ACCESS-CM2

ACCESS-ESM1-5

BCC-CSM2-MR

CESM2

CESM2-WACCM

CMCC-CM2-SR5

CMCC-ESM2

CNRM-CM6-1

CNRM-ESM2-1

CanESM5

EC-Earth3

EC-Earth3-Veg-LR

FGOALS-g3

GFDL-CM4_gr1

GFDL-CM4_gr2

GFDL-ESM4

GISS-E2-1-G

HadGEM3-GC31-LL

INM-CM4-8

INM-CM5-0

IPSL-CM6A-LR

KACE-1-0-G

KIOST-ESM

MIROC-ES2L

MIROC6

MPI-ESM1-2-HR

MPI-ESM1-2-LR

MRI-ESM2-0

NESM3

NorESM2-MM

UKESM1-0-LL
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Table A3. Ensemble means and standard deviation for selected variables from 2000 to 2100 for SSP2. Values are given as decadal mean (±
ensemble standard deviation). Temperatures are given in °C, all other values are given in mm w.e.

Variable 2000–2010 2010–2020 2020–2030 2030–2040 2040–2050 2050–2060 2060–2070 2070–2080 2080–2090 2090–2100
Mean Catchment Temperature -3.7 -3.5 -2.6 -2.3 -1.9 -1.6 -1.4 -1.1 -0.9 -0.7

(± 0.4) (± 0.5) (± 0.6) (± 0.8) (± 0.9) (± 0.9) (± 1.0) (± 1.1) (± 1.1) (± 1.2)

Mean Temperature Glacierized Area -8.1 -7.9 -7.1 -6.9 -6.7 -6.7 -6.8 -6.8 -6.8 -6.7

(± 0.4) (± 0.5) (± 0.6) (± 0.8) (± 0.7) (± 0.7) (± 0.7) (± 0.9) (± 1.0) (± 1.0)

Potential Evaporation 258.1 266.1 287.9 298.0 309.1 319.7 327.6 336.4 340.0 347.3

(± 15.1) (± 10.0) (± 20.8) (± 27.3) (± 28.2) (± 29.7) (± 32.4) (± 34.4) (± 36.7) (± 38.1)

Actual Evaporation 185.4 186.3 193.3 189.9 196.5 199.6 204.7 207.0 210.3 214.8

(± 11.9) (± 11.9) (± 17.2) (± 18.7) (± 18.8) (± 21.0) (± 21.3) (± 21.9) (± 24.8) (± 24.9)

Total Precipitation 854.5 810.7 834.1 791.4 794.1 775.9 778.0 773.1 774.1 787.8

(± 80.4) (± 92.9) (± 115.7) (± 115.7) (± 122.0) (± 116.8) (± 114.9) (± 117.1) (± 119.1) (± 114.1)

Total Melt 345.5 333.7 398.0 421.3 390.5 364.2 343.1 320.1 309.2 302.8

(± 24.7) (± 42.2) (± 48.4) (± 57.2) (± 58.4) (± 66.3) (± 70.2) (± 66.0) (± 63.8) (± 69.6)

Runoff Without Glaciers 548.4 515.4 545.4 520.2 530.2 527.7 538.2 539.4 545.9 555.5

(± 52.6) (± 71.6) (± 84.6) (± 94.8) (± 99.7) (± 97.6) (± 97.4) (± 93.8) (± 94.9) (± 97.0)

Runoff From Glaciers 157.1 156.4 173.5 154.4 126.7 93.2 61.7 42.0 31.0 23.4

(± 26.2) (± 14.7) (± 32.2) (± 27.9) (± 25.7) (± 28.5) (± 24.4) (± 16.5) (± 13.5) (± 13.4)

Total Runoff 705.5 671.8 718.9 674.6 656.9 620.9 599.9 581.4 576.9 579.0

(± 57.2) (± 80.1) (± 94.2) (± 90.9) (± 91.2) (± 93.3) (± 92.6) (± 90.3) (± 93.5) (± 96.1)

Snow Off Glaciers 227.7 219.0 257.6 290.5 284.3 284.8 290.6 286.4 282.2 284.8

(± 33.0) (± 31.3) (± 53.9) (± 57.5) (± 53.7) (± 54.8) (± 63.0) (± 62.2) (± 57.7) (± 61.7)

Snow On Glaciers 64.9 60.5 56.2 50.3 40.5 30.4 22.3 16.4 12.6 9.5

(± 6.3) (± 3.4) (± 6.8) (± 10.4) (± 10.9) (± 10.8) (± 9.3) (± 7.4) (± 6.5) (± 6.1)

Snow Melt Off Glaciers 231.7 215.0 258.7 290.6 283.4 284.9 291.0 284.8 283.4 283.2

(± 34.4) (± 42.3) (± 49.6) (± 59.0) (± 54.8) (± 57.6) (± 64.6) (± 61.3) (± 59.0) (± 65.0)

Total Melt On Glaciers 113.9 118.7 139.2 130.7 107.1 79.3 52.1 35.4 25.8 19.6

(± 20.4) (± 10.4) (± 28.6) (± 27.4) (± 24.5) (± 25.4) (± 21.4) (± 14.4) (± 11.6) (± 11.4)

Glacier Melt 55.3 61.9 84.7 82.0 67.7 49.6 30.3 19.4 13.6 10.4

(± 22.3) (± 10.7) (± 32.7) (± 32.2) (± 23.8) (± 20.0) (± 16.3) (± 10.9) (± 7.6) (± 7.0)

Snow Melt On Glaciers 58.6 56.8 54.6 48.7 39.4 29.7 21.8 15.9 12.3 9.2

(± 4.4) (± 4.3) (± 6.7) (± 9.7) (± 10.7) (± 10.5) (± 9.1) (± 7.1) (± 6.4) (± 5.9)
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Table A4. Ensemble means and standard deviation for selected variables from 2000 to 2100 for SSP5. Values are given as decadal mean (±
ensemble standard deviation). Temperatures are given in °C, all other values are given in mm w.e.

Variable 2000–2010 2010–2020 2020–2030 2030–2040 2040–2050 2050–2060 2060–2070 2070–2080 2080–2090 2090–2100
Mean Catchment Temperature -3.7 -3.5 -2.7 -2.3 -1.8 -1.0 0.0 1.0 2.2 3.6

(± 0.5) (± 0.5) (± 0.6) (± 0.6) (± 0.5) (± 0.6) (± 0.7) (± 0.6) (± 0.7) (± 1.0)

Mean Temperature Glacierized Area -8.1 -7.9 -7.1 -6.8 -6.4 -5.9 -5.6 -4.9 -4.2 -2.8

(± 0.5) (± 0.5) (± 0.6) (± 0.6) (± 0.4) (± 0.5) (± 0.6) (± 0.6) (± 0.7) (± 1.0)

Potential Evaporation 258.1 266.1 282.3 290.9 309.4 333.4 368.5 394.6 434.6 482.0

(± 15.8) (± 10.5) (± 19.5) (± 15.8) (± 18.6) (± 14.9) (± 22.2) (± 22.0) (± 22.5) (± 29.6)

Actual Evaporation 185.4 186.3 182.4 184.7 191.9 204.2 211.9 220.5 223.8 236.8

(± 12.5) (± 12.5) (± 13.9) (± 12.9) (± 11.6) (± 17.3) (± 20.6) (± 23.3) (± 26.5) (± 30.2)

Total Precipitation 854.5 810.7 803.3 833.8 784.2 798.5 746.5 833.2 768.1 781.7

(± 84.2) (± 97.3) (± 75.2) (± 132.2) (± 96.4) (± 113.0) (± 135.3) (± 135.2) (± 122.8) (± 125.0)

Total Melt 345.5 333.7 419.4 432.1 421.1 388.2 311.3 315.1 242.2 235.9

(± 25.9) (± 44.1) (± 55.3) (± 55.1) (± 62.9) (± 67.0) (± 66.2) (± 64.3) (± 59.6) (± 56.1)

Runoff Without Glaciers 548.4 515.4 525.3 563.9 530.6 554.0 515.4 593.3 546.0 538.8

(± 55.0) (± 75.0) (± 61.5) (± 74.8) (± 86.9) (± 99.2) (± 98.8) (± 108.9) (± 105.8) (± 99.7)

Runoff From Glaciers 157.1 156.4 158.7 148.8 139.9 108.7 65.0 38.0 12.8 0.0

(± 27.5) (± 15.4) (± 22.3) (± 17.9) (± 18.1) (± 17.5) (± 11.9) (± 8.6) (± 10.4) (± 0.0)

Total Runoff 705.5 671.8 684.0 712.6 670.5 662.6 580.5 631.4 558.8 538.8

(± 59.9) (± 83.8) (± 59.0) (± 75.9) (± 76.5) (± 92.6) (± 96.9) (± 106.1) (± 109.1) (± 99.7)

Snow Off Glaciers 227.7 219.0 287.1 304.5 292.9 291.5 250.4 283.0 227.3 238.7

(± 34.5) (± 32.8) (± 37.3) (± 63.5) (± 60.7) (± 61.6) (± 64.3) (± 56.3) (± 52.0) (± 51.5)

Snow On Glaciers 64.9 60.5 62.1 56.6 43.0 30.1 16.4 9.5 2.7 0.0

(± 6.6) (± 3.6) (± 6.5) (± 11.8) (± 8.0) (± 5.7) (± 5.0) (± 2.5) (± 2.4) (± 0.0)

Snow Melt Off Glaciers 231.6 214.9 286.0 304.2 298.6 293.3 253.9 281.0 230.5 235.9

(± 36.0) (± 44.3) (± 62.2) (± 59.6) (± 72.2) (± 64.2) (± 62.7) (± 65.1) (± 52.4) (± 56.1)

Total Melt On Glaciers 113.9 118.7 133.4 128.0 122.5 94.8 57.4 34.1 11.6 0.0

(± 21.3) (± 10.9) (± 18.2) (± 13.7) (± 16.7) (± 15.7) (± 11.4) (± 7.4) (± 9.5) (± 0.0)

Glacier Melt 55.3 61.9 72.9 73.8 80.6 64.2 40.9 24.6 8.9 0.0

(± 23.3) (± 11.2) (± 22.8) (± 21.3) (± 21.1) (± 12.6) (± 10.5) (± 5.8) (± 7.2) (± 0.0)

Snow Melt On Glaciers 58.6 56.8 60.6 54.2 41.9 30.6 16.5 9.6 2.8 0.0

(± 4.6) (± 4.5) (± 7.2) (± 9.6) (± 7.6) (± 6.0) (± 4.5) (± 2.7) (± 2.4) (± 0.0)
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Kernel Density Estimation of Mean Annual Air Temperature (1979-2022)

Figure A1. Kernel density estimation (KDE) for annual mean temperature of all CMIP6 ensemble members and ERA5-Land from 1979–

2022 before and after bias adjustment.
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Figure A2. Kernel density estimation (KDE) for annual precipitation of all CMIP6 ensemble members and ERA5-Land from 1979–2022

before and after bias adjustment.
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Figure A3. Ten year mean of air temperature of all CMIP6 ensemble members and ERA5-Land from 1979–2022 before and after bias

adjustment.
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Figure A4. Ten year mean of monthly precipitation of all CMIP6 ensemble members and ERA5-Land from 1979–2022 before and after bias

adjustment.
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Figure A5. Mean annual air temperature of all CMIP6 ensemble members with 90% confidence interval and ERA5-Land from 1979–2022

before and after bias adjustment.
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Figure A6. Annual mean of monthly precipitation of all CMIP6 ensemble members with 90% confidence interval and ERA5-Land from

1979–2022 before and after bias adjustment.
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Probability Plots of CMIP6 (SSP2) and ERA5-Land Daily Mean Temperature (1979-2022)

original (CMIP6 raw)
target (ERA5-Land)
adjusted (CMIP6 after SDM)

Figure A7. Probability plots of daily mean temperature under SSP2 for all CMIP6 ensemble members. The plots compare raw model data,

reanalysis data, and bias-adjusted model data using standard normal quantiles. Pearson correlation coefficients (R2) are shown for the latter

two.
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Probability Plots of CMIP6 (SSP5) and ERA5-Land Daily Mean Temperature (1979-2022)

original (CMIP6 raw)
target (ERA5-Land)
adjusted (CMIP6 after SDM)

Figure A8. Probability plots of daily mean temperature under SSP5 for all CMIP6 ensemble members. The plots compare raw model data,

reanalysis data, and bias-adjusted model data using standard normal quantiles. Pearson correlation coefficients (R2) are shown for the latter

two.
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Probability Plots of CMIP6 (SSP2) and ERA5-Land Monthly Precipitation (1979-2022)

original (CMIP6 raw)
target (ERA5-Land)
adjusted (CMIP6 after SDM)

Figure A9. Probability plots of monthly precipitation under SSP2 for all CMIP6 ensemble members. The plots compare raw model data,

reanalysis data, and bias-adjusted model data using standard normal quantiles. Pearson correlation coefficients (R2) are shown for the latter

two.
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original (CMIP6 raw)
target (ERA5-Land)
adjusted (CMIP6 after SDM)

Figure A10. Probability plots of monthly precipitation under SSP5 for all CMIP6 ensemble members. The plots compare raw model data,

reanalysis data, and bias-adjusted model data using standard normal quantiles. Pearson correlation coefficients (R2) are shown for the latter

two.
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Figure A11. Posterior kernel density estimations (KDEs) of calibration step 1. Red dashed lines show the mean value of the posterior

distribution. Blue dashed lines show the standard deviation from the mean in both directions.
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Figure A12. Posterior kernel density estimations (KDEs) of calibration step 2. Red dashed lines show the mean value of the posterior

distribution. Blue dashed lines show the standard deviation from the mean in both directions.
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Figure A13. Results of the semi-automated random forest glacier mapping in the upper Kyzylsuu catchment. Glacier outlines based on a

Landsat 7 image from August 25, 2002 shown in blue. Glacier outlines based on a Sentinel 2 image from July 21, 2022 shown in red. Glacier

outlines according to the Randolph Glacier Inventory v6 referring to 2002 shown in white. The background false color image shows a band

combination of the Sentinel-2 scene suitable to distinguish bare ice (dark blue) from snow (light blue). Base layer by Google ©2024.
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