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Abstract. The latest generation of high-resolution and convection-permitting reanalyses, capable of representing atmospheric

processes at small spatial scales (≤4 km), is crucial for studying the temporal and spatial evolution of phenomena such as con-

vective storms and orographic precipitation. Given the availability of long (>35
::::
long

:::
(37 years) and continuous

:::::::::
availability

::
of

::
the

:::::::::
MERIDA

:::::
HRES

:
convection-permitting reanalysis datasets over Italy, this study investigates the occurrence and characteristics

of hourly extreme precipitation events (EPEs) and quantifies their potential
::::::
employs

:::
its

::::::::::
precipitation

:::::
fields

::
to

:::::::::
investigate

::::::
hourly5

::::::::::
precipitation

::::::::
patterns,

::::::::
extremes,

::::
and

:::::::
quantify

::::
their

:
increase over time in this region. Using the MERIDA HRES reanalysis

(1986–2022), precipitation events
::::::::::
Precipitation

::::::
clusters

:
are extracted from hourly

::::::::
reanalysis fields as spatially coherent struc-

tures, yielding approximately 160,000 events per year. Each event is
::
of

::::
them

:::
per

:::::
year,

::::
each

:::
one

:
characterized by intensity and

shape indicators. The resulting HOPE-X
:::::::::
HOPSS-X (HOurly Precipitation Events and Xtremes

:::::
Spatial

:::::::::
Structures

:::
and

::::::::
eXtremes)

dataset enables a detailed climatological analysis of event
:::::
hourly

:::::::::::
precipitation

:
frequency, intensity, and spatial scale across10

seasons. The most extreme component of those events (EPEs) , defined based
::::
extent

::::::
across

:::::::
different

:::::::
seasons

:::
and

:::::::
regions.

::::
The

::::::
Hourly

::::::::::
Precipitation

::::::::
Extremes

:::::::
(HPEs)

:::
are

:::::::
selected

::::
from

:::
this

::::::
dataset

::::::
basing on the mean of local annual maxima in hourly pre-

cipitation (RX1hour), show a pronounced increase in occurrence. Specifically, significant upward trends
:
.
:::::::::
Significant

:::::::
upward

:::::
trends

::
in

:::::
HPEs

:::::::::::
occurrences

::::::
(+20%

:
/
::::::
+30%)

:
are present during summer in several Alpine and Prealpine regions, as well as

in parts of Calabria. In autumn, significant signals
::::::
similar

::::::
signals

::::::
(+30%

:
/
:::::::

+40%) emerge in the southern Apennines and in15

coastal and maritime areas, including the eastern Ligurian coast, eastern Sardinia, the southern Adriatic Sea, and the Ionian

Sea. These spatial and seasonal patterns align with regions where convective processes predominantly drive intense, localised

precipitation, potentially amplified by climate change. While these findings should be considered in light of known limitations

of reanalysis products, such as spatial mismatches with observations and temporal inhomogeneities, multiple independent ob-

servational studies support the increase in EPEs
:::::
HPEs during summer and autumn in specific areas. Moreover, the methodology20

presented here is broadly applicable in any region with access to long-term convection-permitting reanalysis data. In summary,

this study offers
::
the

:::::::
purpose

::
of
::::

this
:::::
study

::
is

::
to

:::::
offer a contribution to the ongoing discussion on precipitation extremes

:::
and
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:::::
trends in Italy and provides

:::::::
provide guidance for leveraging reanalysis data to enhance infrastructure resilience to short-lived,

intense precipitation events.

1 Introduction25

As global temperatures continue to rise due to climate change (IPCC, 2023), significant alterations in large-scale precip-

itation patterns are being observed across the globe (Allan et al., 2020). These shifts can trigger even more pronounced

changes at the local level (Fowler et al., 2021), particularly in the frequency, intensity, and timing of Extreme Precipitation

Events (EPEs)
::::::
extreme

:::::::::::
precipitation. The physical reason for these changes lies in the Clausius-Clapeyron

:::::::::::::
thermodynamic

relationship (Hardwick Jones et al., 2010), which describes how a warmer atmosphere can hold more water vapour. More-30

over, the rising ocean temperature observed in recent decades (Garcia-Soto et al., 2021) provides more moisture to fill the

atmospheric column. The increase in moisture availability produces contrasting effects (Zaitchik et al., 2023)
::::::
Climate

:::::::
change

:::::::
produces

::::::::
however

:::::::::
contrasting

::::::
effects: some regions may experience drier conditions, while others may see more intense and

frequent rainfall , including extreme precipitation events (EPEs) . This effect is
:::::::::::::::::
(Zaitchik et al., 2023)

:
.
::::
Both

::::::
drying

:::
and

:::::::
wetting

::::::
regions

::::
may

:::::::::
experience

:::::::
changes

::
in
::::::::

extreme
::::::::::
precipitation

:::::::::::::::::
(Donat et al., 2017).

::::
The

:::::::::::::
thermodynamic

::::::
effects

::::
tend

::
to

:::::::
produce

::
a35

:::::::
relatively

::::::::
uniform

:::::::
increase

::
in

:::::::::::
precipitation

::::::::
extremes,

:::
but

::::::::
dynamic

:::::::::::
contributions

:::::
(such

::
as

:::::::::
orography,

:::::::
coastal

:::::::::
interaction,

::::
and

::::::
changes

:::
in

::::::
weather

::::::::
regimes)

:::
can

::::::::
modulate

:::::
these

:::::::
changes

:::::::::
regionally,

::::::
leading

::
to
:::::
local

::::::::
variations

::
in

:::
the

::::::::
intensity

:::
and

:::::::::
frequency

::
of

:::::::
extremes

::::::::::::::::
(Pfahl et al., 2017).

:::::::::
Moreover,

::::
such

::::::::
extremes

:::
are generally more pronounced at shorter timescales, such as hourly,

than at longer durations (Lenderink et al., 2017).

The Mediterranean region, in particular, is recognised as a climate change hotspot, undergoing warming at a faster rate than40

many other parts of the world (Lionello and Scarascia, 2018). The increasing sea surface temperatures in the Mediterranean

contribute to more frequent heavy precipitation events (Senatore et al., 2025), in particular over the Alps and for hourly

timescales
:
at
::::

the
:::::
hourly

:::::::::
timescale (Peleg et al., 2025). Within this region, Italy is especially vulnerable to EPEs

:::::::::
short-lived

::::::
extreme

:::::::::::
precipitation.

:
(Giovannini et al., 2021; Donnini et al., 2023; Padulano et al., 2019), largely due to its complex orography

and the
::::::::
dynamical

:
interaction between moist air masses, mountain chains, and coastal dynamics

:::::::
interface (Stocchi and Davolio,45

2017; Mazzoglio et al., 2022). All these aspects highlight the need to investigate whether and to what extent climate change is

impacting the distribution of hourly precipitation extremes over Italy.

Research on precipitation trends in Italy has been extensive over the past decades, revealing a complex spatial and temporal

variability shaped by regional climatic dynamics, topography, and large-scale atmospheric patterns. Several regional inves-50

tigations based on observational datasets contributed to this discussion, emphasising pronounced local differences. Caloiero

et al. (2018, 2021) reported significant negative trends for the period 1951–2016 in both seasonal and annual total rainfall in

Southern Italy and inland central regions, especially in winter and autumn. Similarly, in Trentino-Alto Adige (north-eastern

Italy), Brugnara et al. (2012) observed a decrease in annual precipitation on the order of 1.0–1.5% per decade in the period
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1922-2009, with spring and winter contributing most to the decline. In the same study, the number of wet days significantly55

decreased east of the Adige Valley (north-western Italy), while trends in extremes (90th, 95th, 99th percentiles) were weak and

mostly non-significant. In Tuscany (west-central Italy), Bartolini et al. (2014) found a declining trend in annual rainfall and wet

days for the period 1955-2007, largely due to winter and spring decreases. In Calabria (southern Italy), Brunetti et al. (2012),

using a high-resolution daily dataset for the period 1923–2006, detected negative trends in mean precipitation intensity (total

precipitation per wet day), a reduction in daily precipitation amounts, and a decreased frequency of high-intensity daily events60

(95th and 99th percentiles). Similarly, Pavan et al. (2019), analysing the ARCIS gridded observational dataset for northern

Italy
::::::
Archivio

:::::::::::::
Climatologico

:::
per

::::::
l’Italia

:::::::
Centro

::::::::::::
Settentrionale

::::::::
(ARCIS),

::
a

:::::::::::::
high-resolution

::::::
gridded

:::::::::::
precipitation

:::::::
dataset

:::
for

::::::::::
north-central

:::::
Italy,

:
for the period 1961-2015, found

::::::::::
1961–2015,

:::::
found

::::::::::
widespread summer declines in most regions—driven

by fewer rainy days, longer dry spells, and reduced daily intensity—except for
:
in

:
the northern Alpine area, which showed

increases in
:::::
where

:
both total and intense precipitation

:::::::
increased. Finally, Capozzi et al. (2023) analysed multiple stations65

across Campania (south-western Italy) for the period 2002–2021 and found an increasing trend in both precipitation intensity

and the frequency of heavy rainfall events during autumn, particularly in the northern part of the region and in mountainous

areas.

Collectively, these studies depict a complex
:::::
show

:
a
::::::::
complex

:::
and

::::::::::::
heterogeneous

:
evolution of precipitation regimes in Italy,70

marked by substantial heterogeneity. However, it is important to note that these studies rely on observational datasets with daily

resolution, while the primary effects of climate change
::::
they

:::
are

:::::
based

::
on

:::::
daily

:::::::
datasets,

:::::::
whereas

::::::
climate

::::::
change

:::::::
impacts on pre-

cipitation are most evident at sub-daily timescales (Lenderink et al., 2017). Indeed, sub-daily observational datasets typically

::::::::
Sub-daily

:::::::::::
observational

:::::::
datasets

:::::::
usually

:
cover limited regions and relatively short periods, and are generally unavailable

for longer durations while also providing full national
:::::
rarely

:::::::
provide

:::::::::
long-term,

::::::::::
nationwide coverage (Blenkinsop et al.,75

2018; Morbidelli et al., 2025). In Italy, the observational network is extensive and of high quality, but since the 1990s

it has been managed at the regional level, resulting in some heterogeneity among measurement networks. An attempt to

homogenize sub-daily observations was made through the development of the GRIPHOdataset (Fantini, 2019); however,

:::
The

::::::::
GRidded

::::::
Italian

:::::::::::
Precipitation

:::::::
Hourly

:::::::::::
Observations

::::::::::
(GRIPHO)

::::::
dataset

::::::::::::::
(Fantini, 2019)

:::
was

:::::::::
developed

::
to

:::::::::::
homogenize

:::::
hourly

::::::::::::
observations,

:::
but

:
its limited temporal coverage (2001–2016) makes it unsuitable

:::::::
restricts

::
its

:::::::::
usefulness

:
for long-80

term trend analysis
:::::::
analyses. Consequently, sub-daily precipitation trends can be investigated using observations available for

specific regions . For example, a delay in the timing
:::
only.

::::::::
Regional

::::::::
analyses

:::::
show

::
a

:::::
delay of sub-daily rainfall extremes

toward autumn was observed in Emilia-Romagna, along with an overall increase in event magnitude , particularly in the

Apennine region (Persiano et al., 2020). In southern Italy , a growing tendency in hourly extreme rainfall events was observed

at several locations, and these trends generally loose significance over
:::
and

:::::::::
increasing

:::::
event

:::::::::
magnitude

::
in
:::::::::::::::

Emilia-Romagna85

::::::::::::::::::
(Persiano et al., 2020),

:::::
while

::::::::
southern

::::
Italy

:::::::
exhibits

:::::
rising

::::::
hourly

::::::::
extremes

:::::
whose

:::::::::::
significance

::::::::
decreases

::
at

:
longer durations

(Avino et al., 2024). Notably, Mazzoglio et al. (2020) developed a national dataset of annual daily and sub-daily precipitation

maxima for the period
::::::::::::::::::::
Mazzoglio et al. (2020)

::::::::
developed

:::
the

:::::::
I2-RED

::::::
dataset

:
(1916to

:
–2022(I2-RED), finding that

:
),
::::::::
showing
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:::::::::
nationwide

::::::::
increases

::
in

:
annual maxima for short durations (particularly 1-hour)have increased nationwide

::::::::
especially

::
1

::
h).

In contrast, longer durations, such as 24-hour aggregations, exhibit more spatially variable trends, including some negative90

tendencies (Mazzoglio et al., 2025). Furthermore, the authors highlight that the highest quantiles (0.95–0.99) display larger

changes than median values. These findings underscore the need for innovative methodologies to effectively capture and in-

terpret evolving patterns in hourly extreme precipitation across Italy, beyond observations alone. In fact,
:::
This

::
is

::::
also

:::::::
because

rain gauge networks often lack the spatial density required to detect
::::::
needed

::
to

::::::
capture

:
highly localised events, such as con-

vective storms, unless they occur directly over a station
:
,
:::
and

:::::::::::
consequently

::::
they

::::
tend

:::
to

:::::::::::
underestimate

::::::::
extremes

:::
by

:::::
about

::::
20%95

::::::::::::::::::
(Schroeer et al., 2018). Conversely, radar and satellite-based measurements

::::::::::
precipitation

::::::::
estimates, while offering broader spa-

tial coverage, may suffer from biases
:::
can

::::::
exhibit

:::::::::
substantial

:::::::
positive

::
or

:::::::
negative

:::::
biases,

::::::::::
particularly

:
during high-intensity events

or be
:
in

:::::
areas

:
affected by terrain-induced signal blocking

::::::::::::::::
(Wang et al., 2021). For this reason, convection-permitting reanal-

yses, blending model outputs with observational data, have proven to be valuable tools for investigating EPEs
::::::::::
precipitation

:::::::
extremes

:
and assessing their potential trends over time (Dallan et al., 2024; Poschlod et al., 2021).100

In this context, this study aims to investigate the spatial and seasonal characteristics of hourly precipitation events over Italy

and to assess potential changes over timein its most extreme component
::::::::
contribute

::
to
::::

the
:::::::
ongoing

::::::::
scientific

:::::::::
discussion

:::
on

::::::::::
precipitation

::::::
trends

:::
and

::::::::
extremes

:::
by

:::::::::
proposing

:
a
:::::::::::::
methodological

::::::::::
framework

:::
for

:::
an

::::::::
informed

:::
use

::
of

:::::::::::::::::::
convection-permitting

::::::::
reanalysis

::::
data

::
to

::::::::::
characterise

:::::
hourly

:::::::::::
precipitation

::::::::
structures

:::::
across

:::::
space

:::
and

:::::::
seasons,

::::
and

:
to
:::::::::
investigate

:::
the

::::::::
potential

::::::::::
precipitation105

:::::::::::
extremization

::::
over

::::
time. To this end, the hourly precipitation fields from the convection-permitting MEteorological Reanalysis

Italian DAtaset – High RESolution, MERIDA HRES (Viterbo et al., 2024) are employed. This product covers ,
::::::::
covering the 37-

year period from 1986 to 2022 at about a 4 km resolution. The choice of MERIDA HRES is supported by previous validation

studies that have demonstrated the product’s reliability. Its precipitation fields have been assessed from climatological to daily

(Cavalleri et al., 2024a; Viterbo et al., 2024) and hourly (Giordani et al., 2025) timescales. Other studies have inter-compared110

the performance of many reanalyses over Italy, including MERIDA HRES, highlighting both their strengths and limitations in

representing various meteorological variables (Bonanno et al., 2019; Raffa et al., 2021; Giordani et al., 2023; Cavalleri et al., 2024b)

. MERIDA HRES has been proven capable of representing convective features of precipitation at fine spatial scales, showing

good agreement with both gridded and station-based observations, and demonstrating overall temporal stability when compared

with homogenised observational datasets (Cavalleri et al., 2024a). These qualities make it the most appropriate product for115

hourly precipitation trend analyses. Other convection-permitting models available for Italy, such as MOLOCH (Capecchi et al., 2023)

and SPHERA (Cerenzia et al., 2022; Giordani et al., 2023), have been found to generally produce larger deviations from observed

precipitation trends than MERIDA HRES (Cavalleri et al., 2024a), while results from VHR-REA_IT (Raffa et al., 2021) indicate

a slightly weaker agreement with daily-scale observations (Cavalleri et al., 2024a). These aspects may limit their applicability

for the event-based analysis presented in this study.120
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Even if convection-permitting reanalyses represent a state-of-the-art, precipitation remains one of the most challenging vari-

ables to simulate, and it is not directly assimilated by the reanalyses, but instead derived from assimilated variables such as tem-

perature, pressure, and humidity. These limitations , together with the inherently chaotic nature of the atmosphere, especially

at small scales (Hohenegger and Schär, 2007), often lead to some discrepancies between simulated and observed precipitation125

fields
:
at
:::

the
:::::::

smaller
:::::
scales, especially during summer

:
,
::::::
mainly

::::
due

::
to

:::::::::::
precipitation

:::::::::
positioning

:::::::::::
uncertainties

:
(Cavalleri et al.,

2024a). This issue also arises from
::
the

:::::::::
inherently

::::::
chaotic

:::::
nature

::
of

:::
the

::::::::::
atmosphere

:::::::::::::::::::::::::
(Hohenegger and Schär, 2007)

:::::::
together

::::
with

limitations in the data assimilation frequency (Kalnay et al., 2024) of the driving global reanalyses
:::::::::::::::::
(Kalnay et al., 2024) (e.g.,

ERA5 assimilates data every 12 hours, much less than typical timescales of convection). While the assimilated
::::::::::
Assimilated

observations remain the same regardless of the temporal scale, the sub-daily precipitation fields no longer benefit from the130

temporal aggregation , which
::::::::::
investigated

:::::::
temporal

::::::
scale.

::::::::
Temporal

::::::::::
aggregation

::::
(e.g.

:::::
daily)

:
can sometimes hide deficiencies

at a smaller scale
:
.
::
At

::::
the

::::::::
sub-daily

::::
scale

:::::
(e.g.

::::::
hourly)

:::::::::::
precipitation

:::::
fields

:::
no

:::::
longer

:::::::
benefit

::::
from

::::
this

:::::
effect, making devia-

tions from observations more noticeable. Another relevant aspect is the potential divergence in precipitation trends between

observations and reanalyses. Discrepancies in the decadal trend
:::::
trends of annual precipitation totals were highlighted in global

reanalyses (Lussana et al., 2024) and Italian regional ones (Cavalleri et al., 2024a).135

In light of these limitations, an event-based approach
::::::::
approach

:::::
based

::
on

:::::::::::
precipitation

::::::::
structures has been adopted

::
to

:::::::
mitigate

:::::::::
positioning

:::::::::::
uncertainties

::::::
issues.

::
In

:::::::::
particular,

::
in

:::
this

:::::
work

:::::::
spatially

::::::::::
continuous

:::::
hourly

:::::::::::
precipitation

::::::::
structures

::::
and

:::::::::
associated

:::::::
extremes

:::
are

:::::::::
identified through the use of a clustering technique. Clustering methods are commonly employed to identify

individual precipitation events
::::::::
structures

:
from gridded datasets, particularly in the context of radar-based observations and

operational verification. These techniques typically rely on threshold-based object identification combined with clustering140

algorithms to isolate spatially coherent precipitation structures. For example, Wernli et al. (2008) describe an object-based

verification method (SAL) that requires the identification of distinct precipitation objects using a threshold proportional to the

domain’s maximum precipitation value, a strategy also discussed by Davis et al. (2006). Marzban and Sandgathe (2006) provide

a broader review of clustering approaches applied to precipitation fields, showing how cluster analysis can be used to define

features or objects in both forecast and observation fields, enabling event-based verification. Beyond verification
::::::::::
verification.145

::::::::
Moreover, clustering methods have also been applied to classify sub-daily rainfall events

:::::::
episodes

:
according to their internal

structure (Sottile et al., 2022). Several methods have also been developed to track precipitation events over time (Chang et al.,

2016; White et al., 2017; Li et al., 2020). In this study, however, a straightforward approach to identify precipitation clusters

::::::::
structures is proposed, based on percentile thresholds that adapt to seasonal variability and the differing precipitation regimes

across regions. This methodology does not account
:::
not

:::::::::
accounting

:
for the temporal evolution of the events identified within150

each cluster but rather focuses
::::::::::
precipitation

::::::
events,

:::::::
focusing

:
on each hourly time step independently, being fully aware of the

limitations of this approach, as discussed and acknowledged in the following.
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The paper presents in Section 2 the reanalysis dataset used in this study (MERIDA HRES ) and
:::
The

:::::
paper

::
is

:::::::::
organized

::
as

:::::::
follows.

::::::
Section

::
2
:::::::::
introduces

:::
the

::::::::
MERIDA

::::::
HRES

:::::::::
reanalysis,

:::::::
detailing

:::
the

:::::::
reasons

:::
for

::
its

::::::::
selection

:::::
along

::::
with

:::
its

:::::::
inherent155

:::::::
strengths

:::
and

::::::::::
limitations,

:::
and

:
describes the methodology adopted to construct the HOurly Precipitation Events

::::::
Spatial

::::::::
Structures

and Xtremes (HOPE-X
:::::::::
HOPSS-X) dataset, publicly available on Zenodo at https://bit.ly/HOPSS-X. Section 3 outlines the main

results, focusing on the spatial distribution and seasonal patterns of hourly precipitation events
::::::::
structures, with particular em-

phasis on the EPEs
:::::::
extremes subset and related trends. Section 4 discusses these findings in the context of previous studies on

precipitation trends and known limitations of reanalysis data. Finally, Section 5 summarises the key conclusions and outlines160

potential directions for future research.

2 Data and Methods

2.1 MERIDA HRES, a convection-permitting reanalysis

This study employs the hourly precipitation fields from MERIDA HRES (Viterbo et al., 2024), a reanalysis developed for the

Italian domain, resolving explicit convection to better represent localised and intense precipitation events. MERIDA HRES, de-165

veloped by Ricerca sul Sistema Energetico
::::::
Ricerca

:::
sul

:::::::
Sistema

:::::::::
Energetico (RSE), employs the Weather Research and Forecast-

ing (WRF) model to dynamically downscale
:::
over

:::::
Italy the global ERA5 reanalysis (Hersbach et al., 2020) to a high-resolution

::::::::::::::
higher-resolution

::::::::
horizontal

:
grid of approximately 4 km over Italy

:::
and

::
56

:::::::
vertical

:::::
levels,

::::
with

::::::::
increased

:::::::
vertical

::::::::
resolution

::
in

:::
the

:::::
lower

:::::::::
atmosphere

::::::
(levels

::::::
located

::
at

:::
10,

:::
35,

:::
70,

::::
100,

::::
130,

::::
180,

::::
250,

::::
325,

::::
415,

::::
and

:::
500

:::
m). It is driven by large-scale initial and

boundary conditions from ERA5 and applies a spectral nudging technique (von Storch et al., 2000) to constrain synoptic-scale170

features while filtering out smaller-scale perturbations that could introduce spurious signals. Additionally, SYNOP surface air

temperature observations are assimilated through an observational nudging technique (Liu et al., 2012; Bonanno et al., 2019;

Viterbo et al., 2024), further enhancing the representation of regional atmospheric characteristics. The dataset spans the period

from 1986 to 2022, but is constantly updated with about a 2-year
:::::::
two-year lag. The analyses for this work are calculated over

the domain 5.84°E to 18.96°E in longitude and 35.37°N to 48.25°N, centred on the Italian peninsula, for the period 1986-2022,175

enclosing the full period of availability for MERIDA HRES
::
at

:::
the

::::
time

::
of

::::::
writing.

2.2 Event detection and characterization

:::
The

:::::::
specific

::::::
choice

::
of

::::::::
MERIDA

::::::
HRES

:::::::::
reanalysis

::
is

::::::::
supported

:::
by

:::::::
previous

:::::::::
validation

:::::::
studies.

::
In

::::::::
particular,

:::
its

:::::::::::
precipitation

::::
fields

::::
have

:::::
been

:::::::
assessed

::::
from

::::::::::::
climatological

::
to

::::
daily

::::::::::::::::::::::::::::::::::::
(Cavalleri et al., 2024a; Viterbo et al., 2024)

:::
and

::::::
hourly

:::::::::::::::::::
(Giordani et al., 2025)

:::::::::
timescales,

::::
also

:::::::::
comparing

::::
with

:::::
other

::::::::::::::::::
convection-permitting

:::::::::
reanalyses

:::
for

:::
the

::::
same

:::::
area,

::::::::::
highlighting

::::
both

::
its

::::::::
strengths

::::
and180

:::::::::
limitations.

::::
The

:::::::
effective

::::::::
horizontal

::::::
spatial

::::::::
resolution

:::
of

::::::::
MERIDA

:::::
HRES

:::
has

:::::
been

::::::::
evaluated

::
in

:::::::
previous

:::::
works

:::::
using

:
a
:::::::
wavelet

::::::
spectral

:::::::::::::
decomposition

::::::::
approach

:::
(see

:::::::::::::::::::
Cavalleri et al. (2024a)

:
,
::::
Fig.

::
2),

::::::
which

:::::::::::
demonstrated

:::
its

::::::
ability

::
to

::::::::
represent

:::::::::
convective

:::::::::::
precipitation,

:::::::
although

::
it

::::
may

:::
not

::::
fully

::::::
resolve

:::
the

:::::::
smallest

:::::::::
structures.

::::::::
Moreover,

:::::::::
MERIDA

:::::
HRES

:::::
shows

:::::
good

:::::::::
agreement

::::
with

::::
both

::::::
gridded

::::
and

:::::::::::
station-based

:::::::::::
observations,

::::
and

:::::::::::
demonstrates

::::::
overall

::::::::
temporal

:::::::
stability

:::::
when

::::::::
compared

::::
with

::::::::::::
homogenised
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:::::::::::
observational

:::::::
datasets

:::::::::::::::::::
(Cavalleri et al., 2024a)

:
.
:::::
These

::::::::
qualities

:::::
make

:
it
:::
an

::::::::::
appropriate

::::::
product

:::
for

::::::
hourly

:::::::::::
precipitation

:::::
trend185

:::::::
analyses.

::::::
Other

::::::::::::::::::
convection-permitting

:::::::
models

::::::::
available

:::
for

:::::
Italy,

::::
such

::
as

::::::::::
MOLOCH

:::::::::::::::::::
(Capecchi et al., 2023)

:::
and

:::::::::
SPHERA

:::::::::::::::::::::::::::::::::::
(Cerenzia et al., 2022; Giordani et al., 2023)

:
,
::::
have

::::
been

:::::
found

::
to

::::::::
generally

:::::::
produce

:::::
larger

::::::::
deviations

:::::
from

:::::::
observed

:::::::::::
precipitation

:::::
trends

::::
than

::::::::
MERIDA

::::::
HRES

:::::::::::::::::::
(Cavalleri et al., 2024a)

:
,
:::::
while

::::::
results

::::
from

::::::::::::
VHR-REA_IT

::::::::::::::::
(Raffa et al., 2021)

:::::::
indicate

:
a
:::::::
slightly

::::::
weaker

:::::::::
agreement

::::
with

:::::::::
daily-scale

:::::::::::
observations

::::::::::::::::::::
(Cavalleri et al., 2024a).

::::::
These

::::::
aspects

::::
may

:::::
limit

:::
the

:::::::::::
applicability

::
of

:::::
other

:::::::
products

::
in

:::
this

::::::
study.190

:::::::::::
Nevertheless,

::::
these

::::::
studies

::::
also

:::::::
indicate

:::
that

::::::::
MERIDA

::::::
HRES

::::::::::
occasionally

::::::::::::
overestimates

::::::
rainfall

:::::::
amounts

::::::
during

:::::::
summer

::
in

::::::
specific

:::::::
regions,

::::::::
including

:::
the

::
Po

:::::::::::::
Valley–Adriatic

::::::::
interface,

::::
parts

::
of

:::
the

::::::::
Calabrian

::::::::::
mountains,

:::::::
southern

::::::
Apulia,

::::
and

::
the

::::::::
southern

:::::::
portions

::
of

:::
the

:::::
main

::::::
islands,

::::
with

:::::
local

:::::::::
deviations

::::
from

:::::::::::
observations

::::::::
reaching

:::::
10–30

::::
mm.

:::::::::
However,

::::
since

:::::
these

:::::::
regions

:::
are

:::::::
generally

::::
dry

:::::
during

::::::::
summer,

:::
the

::::::
relative

::::
error

::::
can

::
be

::::::::::
substantial,

::
up

::
to

::::::
locally

::::::::
doubling

:::
the

:::::::
observed

:::::::
rainfall

:::::::
amounts

::
in

::::
July

:::
and

::::::
August

:::::::::::::::::::
(Cavalleri et al., 2024a)

:
.
:::::::::
Moreover,

:::
the

::::
trend

::
in

:::
the

::::::
annual

:::::::::
differences

:::::::
between

:::::::::
MERIDA

:::::
HRES

::::
and

:::::::::::
homogenised195

::::::::::
observations

:::::::::::
precipitation

::::
totals

::
is
:::
on

::::::
average

::::
4%

:::
per

::::::
decade,

:::::::
meaning

::::
that

:::
this

:::::::
fraction

::
of

::::::
annual

:::::::::::
precipitation

:::::::
increase

:::::
might

::
be

::::::::::
attributable

::
to

::
a

::::::::
deviation

::::
from

:::::::::::
observations

:::::
rather

::::
than

::
a
::::
true

::::::
climate

::::::
signal

:::::::::::::::::::
(Cavalleri et al., 2024a)

:
.
::::
This

:::::::::
mismatch

::
is

:::
not

:::::::
uniform

:::::
across

:::
the

:::::::
territory

::::
(see

:::
the

:::::::::::::
supplementary

:::::::
material

::
of

:::::::::::::::::::
Cavalleri et al. (2024a)

:
).
::::
The

:::::::::
knowledge

::
of

:::::
these

:::::::
specific

:::::::::::::
inhomogeneities

::
of

:::::::::
MERIDA

:::::
HRES

::::
will

::
be

:::::
taken

::::
into

::::::
account

:::::
when

:::::::::
discussing

:::
the

::::::
results

::
of

:::
this

:::::
work

:::::::
(Section

:::
4).

2.2
:::::::::::
Precipitation

:::::::::
structures

::::::::
detection

::::
and

::::::::::::::
characterization200

The event-detection method used in this study aims to identify spatially coherent precipitation events from each

:::
The

::::
first

::::
step

:::::::
involves

:::::::::
identifying

:::::::
coherent

:::::::
Hourly

::::::::::
Precipitation

::::::
Spatial

::::::::
Structure

::::::::
(HPSSs)

::
in

::::
each

::::::::
MERIDA

::::::
HRES

:
hourly

field. It applies the 50th percentile of precipitation values exceeding 1 mm as a threshold, computed
::
To

::::::
account

:::
for

:::::::
seasonal

::::
and

:::::::
regional

:::::::::
differences,

:::::::::
thresholds

:::
are

::::::::
calculated

:
for each grid point of the MERIDA HRES reanalysis . Thresholds are calculated

::::::::
reanalysis

:::
and

:
separately for each season . Finally

::
by

:::::
taking

:::
the

:::::::
median

::::
(i.e.,

::::
50th

:::::::::
percentile)

::
of

:::::::::::
precipitation

:::::
values

:::::::::
exceeding205

:
1
::::
mm.

:::::
After

::::
that, a spatial smoothing filter with a 20 km radius is applied to reduce noise and improve spatial consistency

across neighbouring grid cells (Figure 1).

Precipitation values below 1 mm/h are excluded to distinguish meaningful precipitation from background noise. Below this

value,
::::::
Indeed,

::::::
below

:
1
:::::
mm/h

:::
the

:
spatial variability is very high, whereas it significantly decreases above it, indicating that pre-

cipitation becomes more spatially coherent and representative of broader areas (Lussana et al., 2023). At the beginning
::::::
During210

::
the

::::
first

::::::
stages

::
of

::::
this

:::::
work, a fixed 1 mm threshold was applied to detect hourly precipitation events

:::::
HPSS. Nevertheless,

the choice of a uniform threshold across the entire domain and for all seasons did not adequately account for the spatial and

seasonal variability of precipitation regimes, leading to the merging of multiple distinct convective cells into a single, large

cluster that did not reflect the localised nature of these events
::::::
HPSSs. This mismatch between the actual physical scale of con-

vective systems and the scale of the detected clusters motivated the choice of a percentile-based threshold, computed using215

all hourly precipitation values greater than 1 mm, separately for each season. The thresholds, defined as the 50th percentile

of precipitation above 1 mm (Figure 1), are applied to all hourly precipitation fields from 1986 to 2022.
:
.
::
In

:::::::::::
determining

::
the

:::::
most

:::::::
suitable

:::::::::
smoothing

::::::
radius,

:::::::
several

::::::
values

::::
were

::::::
tested.

:::::
Radii

::::::
larger

::::
than

:::
20

:::
km

::::::::::
excessively

:::::::::
smoothed

::::
areas

:::::
with
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Figure 1. Seasonal maps of the 50th percentile
::::::
median of hourly precipitation values above 1 mm, used as clustering thresholds.

:::::
higher

:::::::::
thresholds,

::::::::
reducing

:::
the

::::::
ability

::
to

::::::
resolve

::::::
regions

:::
of

::::::
intense

:::::::::::
precipitation.

::::::::::
Conversely,

::::::
smaller

:::::
radii

:::::::
retained

:::
too

:::::
much

:::::
noise,

::::::
limiting

:::
the

:::::::::::
effectiveness

::
of

:::
the

:::::::::
thresholds

::
in

:::::::
isolating

:::::::
coherent

:::::::::::
precipitation

:::::::::
structures.

::::::::
Moreover,

:::
20

:::
km

::::::::::::
approximately220

::::::::::
corresponds

::
to

:::
the

::::::::
boundary

:::::::
between

:::
the

:::::::
meso-β

:::
and

:::::::
meso-γ

::::::::::
atmospheric

:::::
scales

::::::::::::::::::::::::
(Thunis and Bornstein, 1996)

:
,
:::::
below

::::::
which

::::::::
convective

::::::::::
phenomena

::::::::
typically

:::::
occur.

:

Contiguous grid points exceeding these thresholds are identified
:::
the

:::::::::
thresholds

:::::::
(Figure

::
1)

:::
are

:::::::
treated as an individual

event
::::::
cluster. To reduce noise, clusters composed of fewer than five grid points are excluded: approximately 95% of them

exhibit intensities below 10 mm/h, and therefore have a negligible impact on the focus of this study on extreme precipitation.225

Retained clusters are identified as individual relevant precipitation events
::::
Each

:::::::
retained

:::::
cluster

::
is
::::::::
identified

:::
as

::
an

:::::
HPSS. More

specifically, ‘relevant’ refers to spatially continuous precipitation structures that occur in more than half of the instances within

::
in

:::
this

:::::
work

::::::
HPSSs

:::
are

:::::::
spatially

::::::::::
continuous

::::::
hourly

::::::::::
precipitation

:::::::::
structures,

::::::::::
identifying

::::::::
detectable

::::
and

:::::::
relevant

:::::::::::
precipitation

8



Figure 2.
::::::

Example
::
of

:::::
HPSS

:::::::
detection

::::::
process

:::
for

::
the

::::
day

:::
20th

:::::::
October

::::
2011,

:::::::
13:00:00

:::::
UTC.

::
a)

:::
raw

::::::::::
precipitation

::::
field,

::
b)

::::
after

:::::::
applying

::
the

:::::::
threshold

::::
and

::
the

::::::::
clustering

::::
(each

:::::
border

::::::
colour

:::::::
represents

::
a
::::::
different

:::::::
cluster),

::
c)

:::::::
minimum

:::::::
enclosing

::::::
ellipses

:::
(in

:::
red)

::::::
identify

:::::::
retained

:::::::
structures.

::::
with

:::::::
reference

::
to
:
a given area and season, and are therefore considered sufficient to identify detectable, and at times significant,

events. Hereafter, the term ‘event’ denotes the precipitation structures identified using this method. .
:
Figure 2 shows an exam-230

ple of the event-detection procedure
::::::::
procedure

:::::
used

::
to

::::::
identify

:::::::
HPSSs, applied to the hourly precipitation field of 20 October

2011 at 13:00:00 UTC. On that day, intense precipitation affected Rome and the surrounding areas, causing several floods

throughout the city and widespread power outages (Bonanno et al., 2019).

Example of event selection process for the day 20th October 2011, 13:00:00 UTC. a) raw precipitation field, b) after applying

the threshold and the clustering (each border colour represents a different cluster), c) minimum enclosing ellipses (in red)235

identify retained events.

For each identified event, an enclosing ellipse is calculated following the methodology of Wernli et al. (2008), and key properties

are extracted. The characteristics and methods used for their calculation are summarised and explained in Table
::::
Each

::::::::
identified

:::::
HPSS

::
is

:::::::::::
characterized

:::
by

::
a
:::
set

::
of

::::::::
features

:::::::::
describing

::
its

:::::
date

:::
and

:::::
time

::
of

::::::::::
occurrence,

::::::::
position,

::::
and

::::
total

::::
and

:::::::::
maximum240

::::::::::
precipitation

::::::::
intensity,

::
as

::::::::::
summarized

::
in

:::::
Table 1. The table presents only the characteristics directly used in this study; however,

many additional variables
::::::::
maximum

:::::
linear

::::::
spatial

:::::
extent

:::
of

:
a
::::::
HPSS

::
is

::::::
defined

:::
as

:::
the

:::::
major

::::
axis

::
of

:::
its

::::::::
minimum

:::::::::
enclosing

:::::
ellipse

:::
—

:::
i.e.,

:::
the

:::::::
smallest

::::::
ellipse

:::
that

:::::
fully

:::::::
contains

::
all

::::
grid

:::::
points

:::::::::
belonging

::
to

:::
the

:::::::
structure

:::::::::::::::::
(Wernli et al., 2008).

::::
The

::::::
choice

::
of

:::::::::::
characterizing

:::
the

:::::
shape

::
of

:::
an

:::::
HPSS

::
by

:::
its

::::::::
maximum

:::::
linear

::::::
extent

:
is
:::::::::
motivated

::
by

:::
the

:::
fact

::::
that

::::::::::
atmospheric

::::::
spatial

:::::
scales

:::
are

:::::::
generally

:::::::
defined

::
in

:::::
linear

:::::
terms

::::::::::::::::::::::::
(Thunis and Bornstein, 1996)

:
.
:::::::::
Moreover,

:::::::
deriving

:::
this

:::::::
feature

::::
from

:::
the

::::::::
minimum

:::::::::
enclosing245
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:::::
ellipse

::::::
allows

:::
for

:
a
:::::::::
consistent

:::::::::::::
characterization

:::
of

::::::::::
precipitation

::::::::
structure

::::::
having

::::
very

:::::::
different

:::::::
shapes.

:::::::::
Additional

:::::::
features are

included in the complete database
:::::::
available

::::
only,

:::::
while

::::
only

:::::::
features

::::
used

::
in

::::
this

::::
study

:::
are

::::::::
reported

:::
here.

Table 1. The characteristics
::
set

::
of
::::::
feature recorded for each event

::::
HPSS which are relevant for this study.

Variable Name
::::::
Feature

::::
name

::
in

:::
the

:::::::
database Description and/or definition

::::
Unit

::
of

::::::
measure

time Date and hour of the field where the object is detected .
:::::
HPSS

:
is
:::::::
detected

:
-

tp_max Maximum total
:::::
hourly precipitation value within the object.

::::
HPSS

: ::::
mm/h

:

lon_max Longitude where maximum precipitation (tp_max ) occurs .
:::::
occurs

::::::
degrees

lat_max Latitude where maximum precipitation (tp_max ) occurs .
:::::
occurs

: ::::::
degrees

lon
::::
cdm_wavg

:::
lon Intensity-weighted average longitude of the object.

:::::
HPSS

::::::
degrees

lat
::::
cdm_wavg

:::
lat Intensity-weighted average latitude of the object. area

::::
HPSS Area of the object (number of grid cells).

::::::
degrees

tot_tp Total
:::::
Hourly

:
precipitation summed over the entire object area.

::
all

:::::
points

::::::::
composing

:::
the

:::::
HPSS

::::
mm/h

:

axis_maj
::::
area

::::::
Number

::
of

:::::
pixels

::::::::
composing

:::
the

:::::
HPSS

:
-

:::::::::::
max_extent Length of the major axis of the object (in degrees ).

::::
HPSS

:::::::
minimum

::::::::
enclosing

:::::
ellipse

::::::
degrees

2.3 Event-based
:::::::::::::
Structure-based

:
statistics

The event detection methodology explained above resulted in the HOPE-X dataset. Several indicators are computed from this

dataset. First,
:::::
HPSS

::::::::
detection

:::::::::::
methodology

::::::::
described

::::::
above

::::::::
produced

:::
the

:::::::::
HOPSS-X

::::::
dataset,

::::::
which

:::
can

::
be

::::::::
analysed

:::::::
through250

::
the

:::
set

:::
of

:::::::
features

:::::::::
associated

::::
with

::::
each

::::::
HPSS.

:::::
First,

::::
the seasonal distributions of selected characteristics listed in Table 1

are obtained to provide an overview of their values. In particular, the average intensity (tot_tp/area
::::
mean

:::::::::::
precipitation

:::::::
intensity

:::::::::
(tot_tp

:
/
:::::
area), peak intensity (tp_max

::::::::::
precipitation

:::::::
intensity

::
(
:::::::
tp_max), and spatial scale (axis_maj) of

individual events
::::::::
maximum

::::::
linear

:::::
spatial

::::::
extent

:
(
::::::::::::
max_extent

:
)
::
of

:::
all

:::::
HPPS are examined. Then, spatial patterns of hourly

precipitation are investigated, accounting
:
.
:::
To

:::::::
account for location uncertainty inherent in reanalysis data . To this end, a255

spatial aggregation is applied using a moving window of
:::
and

:::::
avoid

:::::::::
misleading

::::::::::
point-scale

:::::::
analyses,

::::::::
statistics

:::
are

:::
not

::::::::
evaluated

:
at
:::::::::

individual
::::

grid
::::::

points
:::
but

::::::
within

::
a
:
0.5°

::::::
moving

:::::::
window

::::::
(≈156

::::
grid

::::::
points)

:
with 0.1° increments in both latitude and

longitude. In each of these windows, the number of events
:::::::
Number

::
of

::::::::::
occurrences

:
(N)

::
of

::::::
HPSSs

:
whose centre of mass

(lat_wavg,lon_wavg
:::::::::::::::::
cdm_lat,cdm_lon) fell inside the window is counted. Because the sliding distance (0.1°) is

smaller than the window size (0.5°), a single event
:::::
HPSS is counted in multiple adjacent windows, ensuring smooth spa-260

tial transitions. The Average Intensity (AvIn), the
:::::
Then,

::::
some

:::::::
features

:::
are

::::::::
averaged

::::::
among

::
all

:::
the

::::::
HPSSs

::::::
falling

::
in

:
a
::::::::
window.

::::::::::
Specifically,

:::
the

:::::::
Average

::::::
Mean

:::::::
Intensity

::::::::::
(MeanInt),

:::::::
Average

:
Peak Intensity (PkIn

::::::
PeakInt), and Spatial Scale (SpS

:::::::
Average

::::::::
Maximum

::::::
Linear

::::::
Spatial

::::::
Extent

::::::::::
(SpatExtent) are obtained by averaging over the events within each window tot_tp/area,

tp_max and axis_maj
::::::::::::
max_extent

:
respectively, as detailed in Table 2.
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Table 2. Description of indicators used for the analyses and their units of measure, where t= 1, . . . ,T indicates the different hours within

the period over which the indicator is computed (typically a season), and m= 1, . . . ,M denotes the different events
:::::
HPSSs

:
occurring at a

timestep within a given spatial window.

Short Name
:::::::
Indicator

::::
Full

:::::
Name Mathematical description Unit of Measure

N
::::::
Number

::
of

:::::
HPSS

:::::::::
occurrences

∑T
t=1

∑M
m=1 1 number

AvIn
::::::
MeanInt

: ::::::
Average

:::::
Mean

::::::
Intensity

:

1
T

∑T
t=1

1
M

∑M
m=1tot_tpm/aream. mm/h

PkIn
::::::
PeakInt

::::::
Average

::::
Peak

:::::::
Intensity 1

T

∑T
t=1

1
M

∑M
m=1tp_maxm mm/h

SpS
:::::::
SpatExtent

:

1
T

∑T
t=1

1
M

∑M
m=1axis_majm ::::::

Average
::::::::
Maximum

:::::
Linear

:::::
Spatial

:::::
Extent

: ::::::::::::::::::::::::::

1
T

∑T
t=1

1
M

∑M
m=1max_extentm:

km

Both AvIn and PkIn
:::::::::
Alternative

::::::
metrics

::
to

:::
N,

::::
such

::
as

:::
the

::::::::
frequency

:::
of

:::
wet

:::::
hours

::::
(i.e.,

:::
the

:::::::::
percentage

::
of
:::::

hours
:::::
with

::
at

::::
least265

:::
one

::::::::
structure

:::::::
detected

::
in

:::
the

::::::::
window),

:::::
were

::::
also

::::::::
evaluated

:::::::
(Figure

:::
S1,

::::::::::::
supplementary

:::::::::
material),

::::
with

::::
very

::::::
similar

::::::::
patterns.

::::::::
However,

::
for

:::
the

:::::
sake

::
of

::::::::
simplicity

::::
and

::
to

:::::
retain

:
a
:::::
more

:::::::
tangible

::::::::
indicator,

:::
the

:::::::
analysis

::
is

::::::::
presented

::
in

:::::
terms

:::
of

::
N

:::::
rather

::::
than

:::::::
wet-hour

:::::::::
frequency.

::::
Both

::::::::
MeanInt

:::
and

:::::::
PeakInt are expressed in millimetres per hour (mm/h), but they reflect different aspects

of precipitation intensity. AvIn
::::::
MeanInt

:
represents the average intensity across all grid points of all events

:::::
HPSSs

:
within a given

window, while PkIn
::::::
PeakInt

:
refers to the mean of the maximum intensities recorded at a single point for each event. SpS

::::::
HPSS.270

:::::::::
SpatExtent indicates the average maximum linear extent of the events

:::::
HPSSs

:
within the same window. Finally, these values are

cumulated (for N) or averaged (for AvIn, PkIn, SpS
:::::::
MeanInt,

:::::::
PeakInt,

:::::::::
SpatExtent) over time to obtain aggregated

:::::::::::
characteristic

values for each location. Statistics on the full event dataset, including climatologies of these indicators, are presented in Section

3.1.

2.4 Extreme
::::::
Hourly

::::::::
extreme precipitation events sub-setting275

After characterising the properties of the hourly precipitation events, the extremes are subset
::::::
HPSSs,

:::
the

::::::
Hourly

:::::::::::
Precipitation

::::::::
Extremes

::::::
(HPEs)

:::
are

:::::::
selected from the full event dataset. The selection criterion is based on the average of the annual maxima

of hourly precipitation (RX1hour), calculated for each grid point and each year. The resulting time series of 37 RX1hour

values are then averaged throughout the period 1986-2022 to derive a threshold value for each cell of the grid, representing

the average RX1hour at that location.
::::::
Higher

::::::::
threshold

::::::
values

::::
were

::::::
found

::
to

::::::::::
excessively

::::::
restrict

::::
the

::::::::
statistical

::::::
sample

:::
of280

::::::::
extremes,

:::::::
whereas

:::::
lower

::::::
values,

::::::::
although

:::::::::
expanding

:::
the

::::::
subset

::
of
:::::::::

identified
:::::::::
structures,

:::::
would

:::::
have

::::::
blurred

::::
the

:::::::::
distinction

:::::::
between

:::::
HPEs,

::
as

:::::::
defined

::
by

:::::::
Extreme

:::::
Value

:::::::
Theory

:::::::::::
(Coles, 2001),

::::
and

::::
more

::::::::
moderate

:::::::::::
high-quantile

:::::::
HPSSs,

::::::
thereby

::::::::
reducing

::
the

:::::::::::::
interpretability

::
of

:::
the

::::::
results.

:

This approach is similar to the methodology used by Lavers et al. (2025), who introduced the Extreme Rain Multiplier

(ERM) to classify extreme daily precipitation events. Lavers et al. (2025) employ ERA5 , which is a global reanalysis product285

with a 0.25° grid spacing, and consider daily precipitation accumulations to compute the mean of the annual daily maxima

(RX1day). The daily accumulation is the most appropriate timescale considering the coarse spatial scale of ERA5 (Chinita

11



et al., 2022; Raffa et al., 2021). In contrast, this study uses a regional convection-permitting reanalysis, which provides a more

accurate representation of hourly precipitation and associated extremes. Therefore, it is possible to define a threshold based

on hourly maxima (RX1hour). As the last step, a Gaussian filter with a 20 km radius
:::
the

::::
same

::::::::
Gaussian

:::::
filter

::
as

::::::::
specified

::
in290

::::::
Section

:::
2.2

:
is applied to smooth the average RX1hour field and reduce local-scale noise (Figure 3).
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Figure 3. 1986-2022 average of the annual maxima of hourly precipitation (RX1hour), after the application of a 20 km Gaussian filter.

In deciding the most suitable filtering radius, several values were tested. Radii larger than 20 km excessively smooth

areas with higher thresholds, reducing the ability to resolve localised extremes. Conversely, smaller radii retained too much

noise, limiting the effectiveness of the filtering in isolating coherent precipitation structures. Additionally, the 20 km scale

corresponds to the boundary between the meso-β and meso-γ atmospheric scales (Thunis and Bornstein, 1996), below which295

convective events typically occur. Finally, a precipitation event
:::::
HPSS

:
is identified as EPE

::::
HPE

:
if its maximum precipitation

value (tp_max) exceeds the average RX1hour value in the position where it occurred (lat_max,lon_max).
:::
The

:::::::
selected

:::::
HPEs

:::
can

::
be

::::::::::
interpreted

::
as

:::::::
extreme

::::::::::
precipitation

::::::
events

::::::
within

:
a
:::::::::
fixed-area

::::::::
(Eulerian)

::::::::::
framework,

::::::
which

:
is
:::::
more

:::::::
suitable

:::
for

:::
this

:::::
study

:::::
since

::
no

:::::::
tracking

:::
of

::::::::
individual

::::::
events

::
is

:::::::::
performed,

::::::
unlike

::
in

:
a
::::::::::

Lagrangian
::::::::
approach

::::
that

::::::
follows

:::::
storm

:::::::::
structures

:::
over

:::::
time

::::::::::::::::::::::::::::
(Ignaccolo and De Michele, 2010).

:::
In

::::::
support

::
of

::::
this

::::::::::::
interpretation,

::
in

::::::
section

:::
3.3

:::
the

:::::
local

:::::::::
persistence

:::
of

:::::
HPEs

::
is300

::::::::::
investigated,

:::::::
showing

::::
that

::::::
HPSSs

::::::::
exceeding

:::
the

:::::::
extreme

::::::::
threshold

:::
are

:::::::
typically

::::::::::
short-lived,

:::::
rarely

::::::::
persisting

:::
for

::::
more

::::
than

::::
one

::::
hour,

::::
thus

:::::::
aligning

::::
with

:::
the

:::::::
common

::::
use

::
of

::::::::
"extreme

:::::
event"

:::::::::::
terminology.

2.5 Extreme
::::::
Hourly

:
Precipitation Event

::::::::
Extremes

:
statistics and trends

Extreme statistics are calculated within the subset of events classified as EPEs
:::::
HPSSs

::::::::
classified

::
as

:::::
HPEs

:
with the same method-

ology described in Section 2.3. Subsequently, the trends of the yearly series of N, AvIn, PkIn and SpS
::::::::
MeanInt,

::::::
PeakInt

::::
and305

:::::::::
SpatExtent are computed (results shown in Section 3.2). On

::::::
Within

:
each moving window, the trend analysis is performed

using the Theil–Sen slope estimator (Sen, 1968), suitable for non-parametric data. The statistical significance of the trends is

evaluated using the Mann–Kendall test (Mann, 1945; McLeod, 2005). To control for the multiple testing problem across the

12



spatial domain, the False Discovery Rate (FDR) correction is applied (Benjamini and Hochberg, 1995; Wilks, 2006). Since

the FDR procedure tends to be conservative in the presence of spatial correlation, approximately correct global results can be310

obtained by setting the FDR threshold to twice the desired global significance level (Wilks, 2016, 2019). Therefore, results are

considered statistically significant if the FDR-corrected p-value is below 0.1, corresponding to a global significance level of

0.05. The results of the trend analysis are presented in the Results section 3.3.

3 Results

3.1 Full
:::::::
Hourly precipitation events dataset

:::::::::
structures analyses315

The HOPE-X
:::::
Before

::::::::
focusing

::
on

:::
the

:::::::::
extremes,

::
an

:::::::
analysis

:::
of

:::
the

::::::
overall

:::::::
patterns

::
of

::::::
HPSSs

::::::
across

:::
the

::::::
dataset

::
is

:::::::::
presented,

::::::::
providing

:::
the

::::::::
necessary

::::::
context

:::
for

:::
the

:::::::::::
interpretation

::
of

::::::::::
subsequent

:::::
results

:::
on

::::::::
extremes.

::::
The dataset consists of approximately

160.000 precipitation events
:::::
HPSSs

:
per year over the period 1986-2022. The interannual variability, calculated as the rela-

tive standard deviation of the annual number of events
:::::
HPSSs, is around 10%. At the seasonal level, the highest number of

events
:::::
HPSSs

:
is generally recorded in autumn (SON), accounting for 29% of the total, while summer (JJA) shows the lowest320

share, with 21%. Winter (DJF) and spring (MAM) contribute similarly, representing 26% and 24% of the total number of

events
::::::
HPSSs, respectively. The fraction of hours showing no identified events

::::::
HPSSs across the entire domain varies season-

ally, with approximately 11% for winter, 12% for spring, 9% for summer, and 7% for autumn. The number of events
::::::
HPSSs

detected per hour follows a distribution that decreases with increasing event count (Figure 4)
:::
the

:::::::::
distribution

::
of

::::::
Figure

::
4.
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Figure 4. Distribution of the number of events
:::::
HPSSs recorded per hour. Values are normalised by the total number of hours in each season

(24 × 90 × 37). Bin width: 5.
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Seasonal distributions of a) average intensity, b) peak intensity, and c) spatial scale of precipitation events. Bin width: 0.5325

mm for intensity variables, 2 km for spatial scale. Distributions are normalised by the total number of events; that is, the sum

of the integral of the four seasonal distributions gives 1.

The maximum number of events
::::::
HPSSs recorded in a single hour is 136, observed at 14:00 on June 11, 1992, as a result of a

widespread low-pressure area
::::::::
associated

:::::
with

::::
large

:::::::::::::
quasi-stationary

:::::::
cyclone

:
influencing the whole Italian peninsula. Intensity

and spatial scale distributions exhibit markedly skewed shapes, with a sharp peak at low values followed by an approximately330

exponential decay as their magnitude increases (Figure 5).
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Figure 5.
:::::::
Seasonal

:::::::::
distributions

::
of

::
a)

::::
mean

:::::::
intensity,

::
b)
::::

peak
:::::::
intensity,

:::
and

::
c)
::::::::
maximum

:::::
linear

:::::
spatial

:::::
extent

::
of

::::::
HPSSs.

:::
Bin

:::::
width:

::
0.5

::::
mm

::
for

:::::::
intensity

:::::::
variables,

::
2

::
km

:::
for

:::::
spatial

:::::
extent.

::::::::::
Distributions

:::
are

::::::::
normalised

:::
by

::
the

::::
total

::::::
number

::
of

::::::
HPSSs;

:::
that

::
is,

:::
the

:::
sum

::
of

:::
the

::::::
integral

::
of

::
the

::::
four

::::::
seasonal

::::::::::
distributions

::::
gives

::
1.

During summer and autumn, precipitation events
:::::
HPSSs

:
tend to exhibit higher median values and heavier tails for both

tot_tp/area (
::::
mean

:::::::::::
precipitation

:::::::
intensity

:::::::::::::::
(tot_tp/area, Figure 5a) and tp_max (

::::
peak

::::::::::
precipitation

::::::::
intensity

::::::::
(tp_max,

Figure 5b). The axis_maj (
::::::::
maximum

::::::
linear

:::::
spatial

::::::
extent

::::::::::::::
(max_extent, Figure 5c) distributions show less pronounced

seasonal variation, with only summer displaying slightly smaller-scale events
::::::
HPSSs

::::
with

:
a
::::::
slightly

:::::::
smaller

:::::
extent. A small per-335

centage of events
::::::
HPSSs fall outside the range of the distributions plotted in Figure 5: 0.22% of events exhibit an tot_tp/area

::::::
HPSSs

::::::
exhibit

:
a
:::::
mean

::::::::::
precipitation

::::::::
intensity greater than 15 mm/h, 0.96% have a tp_max

:::
peak

:::::::::::
precipitation

:::::::
intensity

:
above

40 mm/h, and 2.98% show a axis_maj
::::::::
maximum

:::::
linear

:::::
extent

:
larger than 100 km. According to definitions of atmospheric

scales in the scientific literature (Thunis and Bornstein, 1996),
:::::::::::::::::::::::
(Thunis and Bornstein, 1996)

:
, phenomena with lifetimes rang-

ing from about one hour to one day—such as isolated thunderstorms or groups of storms—typically occur within the lower340

portion of the mesoscale, with spatial extents from approximately 1–2 km up to 200 km. Our results
:::
The

::::::
results

:::
of

::::::
HPSSs

:::::::::
distribution

:::::::
analysis

:
confirm that, at the hourly timescale, significant precipitation events

:::
they

:
generally fall within the meso-

γ scale (2–20
:
km), with only occasional instances extending to larger spatial

:::::::::
exhibiting

:::::
larger

::::::
spatial

::::::
extents.

:::::
This

:::::
result

::
is

::::::::
consistent

::::
with

:::
the

::::
fact

:::
that

:::::::::::
precipitation

::::::::
structures

::::
are

:::::::
extracted

:::::
from

:
a
::
4
:::
km

::::::::::::::::::
convection-permitting

:::::::::
reanalysis

:::::::::::
precipitation
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::::
field,

:::::
which

::
is

:::::::
capable

::
of

::::::::::
representing

:::::::::
convection

::::::::::::::::::::
(Cavalleri et al., 2024a)

:::
even

::
if

::
it

:::
may

:::
not

::::
fully

:::::::
resolve

:
it
::
at

:::
the

::::::
smaller scales.345

This finding is particularly relevant for applications that require knowledge of the typical spatial scales of hourly precipita-

tionevents, such as spatial analysis of precipitation fields (Fortin et al., 2018; Van Hyfte et al., 2023). Moreover, it is important

to note that, in this dataset, high intensities generally correspond to smaller spatial scales (see Supplementary Material, Figure

S1
::
In

:::::::
general,

::::::::
structures

::::
with

::::::
smaller

::::::
spatial

::::::
extents

::::
tend

::
to

:::::::::
correspond

::
to

:::::
higher

:::::::::
intensities

:::
(see

:::::::::::::
supplementary

:::::::
material,

::::::
Figure

::
S2). Overall, the majority of events

::::::
HPSSs concentrate on low values of intensity and spatial scale

::::
small

::::::
spatial

::::::
extents. This350

underscores the need to isolate the most extreme events
:::::
HPSSs

:
to better understand their specific characteristics.

The results on spatial and seasonal distribution of events is
::::::
HPSSs

:::
are analysed using the methodology described in Section

2.3, resulting in seasonal climatological means
::::
maps

:
of N (Figure 6), SpS (Figure ??), AvIn (Figure ??) and PkIn (Figure

??
:::::::::
SpatExtent

::::::
(Figure

:::
7),

:::::::
MeanInt

:::::::
(Figure

::
8)

::::
and

::::::
PeakInt

::::
(not

::::::
shown,

::::
see

::::::::::::
supplementary

:::::::
material). Higher values in a given

area indicate a greater number of events
::::::
HPSSs with their centre of mass located within that region (for N), or larger values355

of AvIn, PkIn and SpS
::::::::
MeanInt,

::::::
PeakInt

::::
and

:::::::::
SpatExtent

:
for those same events. Events

::::::
HPSSs.

::::::
HPSSs may extend beyond the

boundaries of the window in which they are counted, since the averaging considers only the events
:::::
HPSSs

:
whose centre of

mass lies within the window. However, most of the recorded events
:::::
HPSSs

:
are well delimited in a small space (Figure 5c). It

is also important to emphasise that these means are computed from distributions that are strongly right-skewed, as shown in

Figure 5. Consequently, the values presented in the maps should be interpreted with some caution. While they may not fully360

capture the absolute characteristics of typical event occurrences, scales, and intensities, they remain
::::
HPSS

::::::::
intensity

:::
and

::::::
spatial

:::::
extent,

::::
they

::::
are informative when used to explore spatial and seasonal patterns and relative differences across regions

::::
their

::::::
relative

:::::::::
differences.

The spatial distribution of N (Figure 6) shows that, in summer, most of the events
:::::
HPSSs

:
occur in the Prealpine regions, with

secondary hotspots along parts of the Apennines, and almost no events
::::::
HPSSs over the sea. In autumn and winter, the areas365

with high N shift toward coastal and offshore areas, particularly along the Tyrrhenian and Ligurian seas. During spring, the

Prealps and Apennines are again prominent, although the occurrences are generally lower than in summer. The Po Valley and

Prealpine region exhibit very low N of events during the winter season. These seasonal patterns reflect the typical climatology

of convective precipitation in Italy, which tends to be more frequent during the warmer months and over mountainous regions

and coastal areas (Lombardo and Bitting, 2024).370

The seasonal maps of SpS (Figure ??
:::::::::
SpatExtent

::::::
(Figure

::
7) reveal that during summer events are generally smaller

::::::
HPSSs

::::
have

::::::::
generally

::::::
smaller

::::::
extents, with typical average SpS

:::::::::
SpatExtent ranging between 10 and 20 km, especially along coastal

areas and in southern Italy, and from 20 to 30 km in the other Italian areas. This is consistent with the convective nature of

summer precipitation. Springs show slightly larger SpS
::::::
Spring

:::::
shows

::::::
slightly

::::::
larger

:::::::::
SpatExtent, but still below 30 km over the375

Prealps and in southern regions, where autumn also displays those valuesof SpS
:::::
similar

::::::
values, despite showing larger ones

over plain areas in the north and central Italy. In contrast, winter is characterised by generally larger events
::::::
HPSSs, especially

over the Po Plain, where average spatial scales
:::::::::
SpatExtent

:
commonly reach 50 km, exceeding values registered over the

15



DJF MAM

JJA SON
0

40

80

120

160

200

240

280

320

average seasonal num
ber of occurrences (N)

Figure 6. Seasonal map of N occurring within the 0.5 × 0.5 windows (step size 0.1), averaged over the period 1986–2022.

Alps and Apennines. This broader spatial extent reflects the influence of large-scale synoptic systems typical of wintertime

precipitations over Italy. Overall, these patterns highlight a seasonal modulation in SpS
:::::::::
SpatExtent, reflecting the shift from380

localised convective activity in summer to more widespread, synoptic-driven precipitation in autumn and winter.

The spatial distribution of AvIn (Figure ??
:::::::
MeanInt

::::::
(Figure

::
8) highlights summer as the season with the highest average

intensities, often exceeding 5 mm/h with maxima of more than 7 mm/h in some areas along the Adriatic coast, such as Calabria,

the Tyrrenian sea, southeastern parts of the islands and southern Apulia. In winter, intensities generally range between 2 and

3 mm/h over most of the peninsula, dropping below 2 mm/h along the Alpine arc and exceeding this value only slightly in385

some southern areas and along the Tyrrhenian coast. During spring, values between 3 and 4 mm/h are widespread throughout

Italy, except for isolated spots over 4 mm/h in similar areas to those observed in summer. In autumn, slightly higher intensities,
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Figure 7. Seasonal map of SpS
::::::::
SpatExtent

:
of the events

:::::
HPSSs occurring within the 0.5 × 0.5 window (step size 0.1), averaged annually

over the period 1986–2022.

ranging from 4 to 5 mm/h, cover most of the country, while lower values persist only in the Prealpine and Alpine regions.

Intensities above 5 mm/h are found mainly along the coastal areas and over the surrounding seas.

Seasonal map of PkIn of the events occurring within the 0.5 × 0.5 window (step size 0.1), averaged annually over the period390

1986–2022.

The spatial distribution of local PkIn (Figure ??) further emphasises the seasonal contrasts. These maps
:::::::
seasonal

:::::::
patterns

::
of

::::::
PeakInt

:::::::
(Figure

:::
S3,

:::::::::::::
supplementary

::::::::
material) closely resemble those for AvIn, although PkIn

:::::::
MeanInt,

::::::::
although

:::::::
PeakInt

are generally higher. PkIn
:::::::
PeakInt increases from winter values ranging between 2 and 7 mm/h to well over 15 mm/h during

summer, with spring and autumn showing intermediate values. Notably, in autumn, PkIn
::::::
PeakInt

:
exceeding 10 mm/h are395
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Figure 8. Seasonal map of AvIn
:::::::
MeanInt of the events

:::::
HPSSs occurring within the 0.5 × 0.5 window (step size 0.1), averaged annually over

the period 1986–2022.

mostly confined to coastal areas and the surrounding seas. In summer, PkIn
::::::
PeakInt

:
surpasses 17 mm/h in the same regions

characterised by high summer AvIn (Figure ??
:::::::
MeanInt

:::::::
(Figure

:
8).

Since it is not straightforward to determine to what extent
::
the

::::::
extent

::
to

:::::
which

:
the seasonal differences in Figures 6, ??, ??,

and ??
::::
those

:::::
maps are influenced by the use of seasonally varying thresholds for event

::::
HPSS

:
selection, a set of corresponding

figures derived from the event-based dataset built using a fixed 1 mm threshold is provided in the Supplementary Material400

(Figures S2, S3, S4, and S5
::::::::::::
supplementary

:::::::
material

:::::::
(Figures

::::::
S4-S7). These figures display very similar spatial patterns—,

:
al-

beit with generally lower intensity values—suggesting
:
.
::::
This

:::::::
suggests

:
that the observed seasonal differences primarily reflect

genuine variability
:::
the

:::::
signal

::
of

:::
the

:::::
model

:
rather than artefacts introduced by the clustering method. Overall, the climatological

maps of hourly precipitation event indicators
::::
these

::::::
results are consistent with the established climatology of the region (Crespi
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et al., 2018; Giordani et al., 2025). However, while AvIn and PkIn (Figures ?? and ??)
:::::::
MeanInt

::::
and

::::::
PeakInt

::::::::
seasonal

:::::
maps405

appropriately reflect higher values during the autumn and summer seasons, they also display certain inconsistencies. In partic-

ular, some areas exhibit an overrepresentation of convective activity during summer, which may not fully align with observed

patterns. This issue will be examined in greater detail in the Discussion section 4.

3.2 Extreme
::::::
Hourly

:
Precipitation Events

::::::::
Extremes analyses

To gain insight into the most intense precipitation fraction, a focused analysis is conducted on a subset of EPEs, selected410

according to the criterion detailed in Section 2.4. The filtering procedure
::
A

:::::
subset

:::
of

:::
the

:::::::
dataset

:::::::::
HOPSS-X

::
is

::::::::
obtained

:::::::::
(according

::
to

:::::::
Section

::::
2.4)

::
to

::::
gain

::::::
insight

::::
into

:::
the

::::::
HPEs

:::::::
patterns

::::
and

:::::::::
tendencies.

:::::
This resulted in approximately 4.8% of

all events as EPEs
:::::
HPSSs

:::::::
selected

:::
as

:::::
HPEs, corresponding to an average of around 7800 hourly events

:::::
HPEs

:
per year across

the whole domain, with a notable interannual variability of about 30%. Most EPEs
::::
HPEs

:
are selected from summer (11% of all

summer events
::::::
HPSSs) and autumn (7%), while only a marginal fraction are

:
is
:
identified in spring (1.5%) and winter (0.5%).415

This seasonal breakdown results from the combined effect of higher thresholds applied for event
:::::
HPSS identification during

summer (Figure 1), which selected relatively intense precipitation events
:::::
HPSSs

:
even within the full dataset for that season,

and the use of a fixed threshold (average RX1hour) for EPE
::::
HPE

:
selection throughout the year. The greater number of hourly

EPEs
::::
HPEs

:
in summer and autumn is also consistent with the expectation that hourly precipitation more effectively captures

extremes and their associated impacts at smaller spatial scales, such as convective storms and other meso-γ scale phenomena,420

particularly prevalent during the warmer seasons. Consequently, the Sections 3.2 and 3.3 focus exclusively on summer and

autumn precipitation extremes.
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Figure 9. Seasonal distributions within the EPEs
::::
HPEs

:
subset: a) average

::::
mean

:
intensity, b) peak intensity, and c)

:::::::
maximum

:::::
linear spatial

scale
::::
extent

:
of EPEs

::::
HPEs. Distributions are normalised by the total number of EPEs

::::
HPEs; that is, the sum of the integral of the four seasonal

distributions gives 1. Binning as in Figure 5.
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A comparison between the distributions of intensity and spatial scale within the EPE
:::::
HPEs

:
subset (Figure ??

:
9) and those

from the full set of events
::::::
dataset (Figure 5) confirms that the applied filter effectively excludes a substantial number of events

::::::
HPSSs from the lower tails of the distributions. This effect is quite obvious for the peak intensity, which is explicitly used as425

the filtering parameter. However, it also significantly influences the distribution of average
::::
mean

:
intensity, suggesting that, on

average, EPEs
:::::
HPEs are not only more intense locally but also tend to have higher average

:::::
mean values. Moreover, the peaks

of the spatial scale
::::::
spatial

:::::
extent distributions are shifted towards larger values. Summarising, the applied filtering leads to the

exclusion of a large fraction of small and weak events
::::::
HPSSs, not meaningful for the EPEs

::::
HPEs

:
analysis.

The climatological seasonal maps of N within the EPEs
:::::
HPEs

:
subset (Figure ??

::
10) highlights clear seasonal differences430

between summer and autumn.
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Figure 10. JJA and SON maps of number
::::
HPEs

:::::::::
occurrences

:
(N) of EPEs occurring within the 0.5 × 0.5 window (step size 0.1), averaged

annually over the period 1986–2022.

In summer, EPEs
:::::
HPEs occur predominantly over mountainous areas, particularly the Alps and some spots along the Apen-

nines, and Calabria, reaching 20 to 30 events
::::
HPEs

:
per 0.5° grid window per year. In contrast, coastal and marine regions

display a significantly lower N, often fewer than 3 per window
:::
per

::::
year. In autumn, N is substantially less compared to sum-

mer. However, a clear spatial shift emerges: mountain areas experience fewer to none events
::::
HPEs, while coastal and marine435

zones see some, with over 7 occurrences per window
:::
per

::::
year

:
observed along many stretches of coastline. This

:::
The

:
sea-

sonal redistribution is likely driven by the persistence of summer-like convective activity into early autumn at lower latitudes,

where warm sea surface temperatures continue to support intense storm development
::::::::
conditions

:::::::
beneath

:
a
:::::
cooler

:::::::::::
atmosphere,

::::::
creating

:::::::::
conditions

::::::::::
favourable

::
to

:::::::::
convection

::::
and

:::::::::
sustaining

::::::
intense

:::::::::::
precipitation

:::::::
activity

:::
into

::::::::
autumn. (Cheng et al., 2022;

Argüeso et al., 2024).440
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Marked differences between summer and autumn also emerge in terms of SpS (Figure ??
::::::::
SpatExtent

:::::::
(Figure

::
11). In summer,

EPEs
::::
HPEs

:
rarely exceed 50 km in size, except in limited areas such as Friuli (North-East) and South Switzerland, and remain

well below 20 km across much of southern Italy and the islands. Conversely, in autumn, significantly larger events
:::::
HPEs

(exceeding 100 km in spatial extent) are frequently observed. Spatial scales remain smaller
::::::
extents

::::::
remain

:::::
small mainly in the

south, along the Adriatic coast, and over the islands. This suggests that EPEs
::::
HPEs

:
are typically small, convective systems445

during summer across most of the Italian territory, and during autumn along the southern coastlines. In contrast, in northern

Italy and neighbouring regions, autumn EPEs
::::
HPEs

:
are more frequently associated with larger-scale systems.
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Figure 11. JJA and SON maps of the Spatial Scale (SpS)
::::::::
SpatExtent

:
of EPEs

:::
the

::::
HPEs

:
occurring within the 0.5 × 0.5 window (step size

0.1), averaged annually over the period 1986–2022.

The climatological maps for the AvIn and the PkIn of EPEs
:::::::
MeanInt

:::
and

:::
the

::::::
PeakInt

::
of

:::::
HPEs

:
are provided in the Supplementary

Material (Figures S6 and S7
:::::::::::
supplementary

:::::::
material

::::::::
(Figures

::
S8

::::
and

::
S9). Overall, their spatial patterns closely resemble those

observed for the full set of precipitation events
::::::
dataset, though with generally higher values, due to the filtering, which also450

reduces the seasonal differences. Specifically, the AvIn
::::::
MeanInt

:
range from approximately 5 to 15 mm/h, increasing from the

Alpine regions to southern Italy for both seasons, while the PkIn
::::::
PeakInt

:
range from 20 up to 50 mm/h, with the lowest values

again found over the Alps and the highest values concentrated in the same hotspots highlighted before, such as the southern

Apulia.

3.3 Extreme
::::::
Hourly

:
Precipitation Event

::::::::
Extremes

:
trends455

Maps of the significant decadal relative trends in the number of Extreme Precipitation Events (EPEs) occurring within each

0.5° × 0.5° window (sliding step: 0.1°) for summer (JJA) and autumn (SON). Black dots indicate statistically significant trends.

Areas with more than 10 years without EPEs are masked in grey. The four colored boxes for each season highlight the regions

used to extract the time series shown in Figure ??.
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Time series of the annual N of EPEs within the colored windows in Figure ??. The left column shows the summer (JJA)460

series, while the right column displays the autumn (SON) series. Trend lines are plotted for each series, and the corresponding

decadal trends are reported. Grey (last row) plots denote non-significant trends.

Finally, given the context provided by the previous results, a trend analysis within the subset of EPEs
::::
HPEs

:
is conducted,

following the methodology outlined in Section 2.5. Significant trends in the number of EPEs
::::
HPEs

:
occurrences (N) during

summer and autumn are detected (Figure ??
::
12). Trends are expressed as percentages relative to the seasonal and local mean465

values of N (i.e., normalised by the values shown in Figure ??
::
10). For example, a 10% trend in Figure ??

::
12

:
means a decadal

increase of 10% in N, indicating that, on average in that area, approximately 30% more EPEs
:::::
HPEs occur at the end of the

study period compared to its beginning. Overall, a general increase in EPEs
:::::
HPEs occurrences is detected across the peninsula,

even though only some regions exhibit statistically significant trends.
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Figure 12.
::::
Maps

::
of

:::
the

::::::::
significant

:::::
decadal

::::::
relative

:::::
trends

::
in

::
the

::::::
number

::
of

::::::
Hourly

:::::::::
Precipitation

::::::::
Extremes

:::::
(HPEs)

::::::::
occurring

:::::
within

:::
each

::::
0.5°

:
×
::::
0.5°

::::::
window

::::::
(sliding

::::
step:

::::
0.1°)

::
for

:::::::
summer

::::
(JJA)

:::
and

::::::
autumn

:::::
(SON).

:::::
Black

:::
dots

::::::
indicate

:::::::::
statistically

::::::::
significant

:::::
trends.

:::::
Areas

::::
with

::::
more

:::
than

::
10

:::::
years

::::::
without

::::
HPEs

:::
are

::::::
masked

::
in

::::
grey.

:::
The

:::
four

::::::
colored

:::::
boxes

::
for

::::
each

:::::
season

:::::::
highlight

:::
the

::::::
regions

::::
used

:
to
::::::

extract
::
the

::::
time

:::::
series

:::::
shown

::
in

:::::
Figure

::
13.

In summer, a significant increase of approximately 20% to 30% per decade is detected across several Alpine and Prealpine470

regions, and in some parts of Calabria. In autumn, significant trends are primarily concentrated over the southern Apennines,

and various coastal and sea areas, such as Ligurian eastern coast, the eastern coast of Sardinia, the southern Adriatic Sea,

and the Ionian Sea. Individual series of some selected areas (specifically, inside coloured
::::::
colored

:
0.5 degree windows of

Figure ??
::::
boxes

:::
of

::::::
Figure

::
12) are extracted to visualise the EPEs N series

:::::
HPEs

::::::
annual

::::::::::
occurrences

:
along with the detected

trends (Figure ??
::
13). In summer, trends ranging from 10% to 40%, depending on the region, correspond to an increase of 2475

to 6 extreme precipitation events (EPEs)
::::
HPEs

:
per decade. In autumn, comparable percentage changes are associated with
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a smaller increase of 1 to 2 EPEs
:::::
HPEs per decade. In both seasons, some regions also display positive trends that are not

statistically significant (e.g., Boxes
:::::
boxes 4 and 8 in Figure ??

::::::
Figures

:::
12

:::
and

:::
13), likely due to high interannual variability that

dominates the signal.

1990 1995 2000 2005 2010 2015 2020
0

10
20
30
40
50

N 
HP

Es
 

Box 1: +24.9% /10yr 
 (+3.2 N /10yr)

JJA

1990 1995 2000 2005 2010 2015 2020
0

20

40
Box 5: +42.4% /10yr 
 (+2.1 N /10yr)

SON

1990 1995 2000 2005 2010 2015 2020
0

10
20
30
40
50

N 
HP

Es
 

Box 2: +27.4% /10yr 
 (+6.1 N /10yr)

1990 1995 2000 2005 2010 2015 2020
0

20

40
Box 6: +37.9% /10yr 
 (+2.6 N /10yr)

1990 1995 2000 2005 2010 2015 2020
0

10
20
30
40
50

N 
HP

Es
 

Box 3: +39.5% /10yr 
 (+2.5 N /10yr)

1990 1995 2000 2005 2010 2015 2020
0

20

40
Box 7: +29.0% /10yr 
 (+1.7 N /10yr)

1990 1995 2000 2005 2010 2015 2020
0

10
20
30
40
50

N 
HP

Es
 

Box 4: not significant

1990 1995 2000 2005 2010 2015 2020
0

20

40
Box 8: not significant

Figure 13.
::::
Time

:::::
series

::
of

::
the

::::::
annual

:
N
::
of
:::::
HPEs

:::::
within

:::
the

::::::
colored

:::::::
windows

:
in
::::::

Figure
::
12.

::::
The

:::
left

:::::
column

:::::
shows

:::
the

::::::
summer

:::::
(JJA)

:::::
series,

::::
while

:::
the

::::
right

::::::
column

::::::
displays

:::
the

::::::
autumn

:::::
(SON)

:::::
series.

:::::
Trend

::::
lines

::
are

::::::
plotted

:::
for

:::
each

:::::
series,

::::
and

::
the

:::::::::::
corresponding

::::::
decadal

:::::
trends

:::
are

::::::
reported.

::::
Grey

::::
(last

::::
row)

::::
plots

:::::
denote

:::::::::::
non-significant

::::::
trends.

Trends are also computed for the SpS, AvIn, and PkIn of EPEs (see Supplementary
:::::::::
SpatExtent,

::::::::
MeanInt,

::::
and

::::::
PeakInt

:::
of480

:::::
HPEs

:::
(see

:::::::::::::
supplementary material, Figures S8, S9, S10

:::
S10,

:::::
S11,

:::
S12, respectively). Overall, only weak trends (below 10%a

decadeover Italy
::::::
/decade) are observed, primarily over land points in summer and over some marine areas in autumn, showing

alternating patterns
::::::
spatial

:::::::::::
heterogeneity

:::
in

:::
the

::::
sign

::
of

:::
the

::::::
signal

:
with a slight tendency toward increasing intensities and

decreasing spatial scales. However, none of these trends is statistically significant at any location. This suggests that changes
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over time are more likely associated with the frequency of EPEs
:::::
HPEs rather than their intensity or spatial extent. It may also485

reflect the lower noise sensitivity of event counts
::
N compared to other indicators. Moreover, trend estimates based on N

:::::
Trend

::::::::
estimates could be biased by potential double-counting of temporally persistent events

:::::
HPEs, as the analysis is con-

ducted at hourly resolution. To address this, an additional analysis quantifies event
:::::
HPEs persistence, defined as the number of

consecutive hours during which an EPE (i.e., an event exceeding
:::::
HPSS

:::::::
exceeds the local average RX1hour threshold ) affects

:::::
within

:
the same window.490
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Figure 14. seasonal (JJA and SON) maps of the average EPEs
::::
HPEs persistence (expressed in hours) occurring within the 0.5 × 0.5 window

(step size 0.1).

Results (Figure ??
::
14) show that persistence exceeds one hour only marginally in most regions, with average persistence

values above 1.5 hours limited to a few localised areas expecially during autumn, such as the Ligurian Gulf, where persistent

mesoscale convective systems are more common (Cassola et al., 2016), and in parts of eastern Sardinia and southeastern Sicily,

where prolonged convective activity can occur (Forestieri et al., 2018). These findings support the overall temporal isolation of

most EPEs
:::::
HPEs and suggest that the impact of double-counting on trend estimates remains limited.495

4 Discussion

In understanding the results of this work, it is important to underline the uncertainties in analysing signals from the reanalysis

representation of hourly precipitation . The MERIDA HRESreanalysis provides hourly precipitation fields over a continuous

and homogeneous 37-year period; however, some limitations affect MERIDA HRES, particularly concerning the representation

of precipitation fields at the hourly scale. While the temporal stability and spatial accuracy of MERIDA HRES have been500

verified in previous studies from climatological to hourly timescales (Cavalleri et al., 2024a; Giordani et al., 2025), it is still
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necessary to discuss some potential inconsistencies and their impact on the results of this work. Specifically, previous studies

have shown that MERIDA HRES systematically overestimates rainfall in summer (and partly in autumn) in regions like the Po

Valley–Adriatic interface, the Calabrian mountains, southern Apulia, and southeastern islands (Cavalleri et al., 2024a; Viterbo et al., 2024; Giordani et al., 2025)

::::::::::
precipitation

::
as

::::::::::
represented

:::
by

::::::::
MERIDA

:::::::
HRES.

:::::
First,

:::::
while

:::
this

::
4
:::
km

::::::
model

:::
can

::::::::
explicitly

::::::::
represent

:::::::::
convective

:::::::::
processes505

:::::::::::::::::::::::::::::::::::
(Viterbo et al., 2024; Cavalleri et al., 2024a)

:
,
::
it

::::
may

:::
not

:::::
fully

::::::
resolve

:::
all

:::::::
aspects

::
of

:::::
these

:::::::::::
phenomena.

:::
For

:::
the

::::::::
purposes

:::
of

:::
this

:::::
study,

::::::::
however,

:::
the

::::::
HPSS

:::::::
isolated

::::
from

:::::::::
MERIDA

:::::
HRES

::::::
hourly

:::::
fields

:::::::
resulted

:::::::::
consistent

::::
with

:::
the

::::::
spatial

::::::
scales

:::::
under

::::::::::
investigation

:::::::::::::::::::::::::
(Thunis and Bornstein, 1996)

:::
and

::::::
allows

:::
for

::
a
:::::::::::::
characterization

:::
of

::::::
hourly

:::::::::::
precipitation

:::::::
patterns,

:::::
even

::
if

:::::
some

:::::::
sub-grid

::::::
aspects

::
of

:::::::::
convection

::::
may

:::
not

:::
be

::::
fully

::::::::
captured.

:::::
Then,

::
as

::::::::
described

:::
in

::::::
Section

::::
2.1,

::
a

::::::::::
precipitation

:::::::::::::
overestimation

::::
bias

::
is

::::::
present

::
in
::::::::

summer. These localised wet biases ,510

consistent across timescales, likely stem from
::
are

::::::
likely

:::
due

::
to
:

overly active explicit convection in the model, as suggested

by Figure ?? and ??
:::::
shown

:::
in

::::::
Figure

:
8. This behaviour is sometimes common in WRF-based dynamical downscalings of

ERA5 (Bernini et al., 2025), due to some possible problems in representing skin temperature , and difficulty capturing complex

:::
may

:::
be

:::::::::
associated

::::
with

::
a
:::
less

::::::::
accurate

:::::::::
estimation

::
of

::::
skin

::::::::::
temperature

:::
at

:::
the land-sea interactions that often arise

:::::::
interface

:::
due

::
to

:::
the

:::::::::::
interpolation

::
of

::::
skin

:::::::::::
temperature

::::
from

:::
the

::::::
coarse

::::::
ERA5

::::::
domain

::
to
:::

the
:::::::::::::

finer-resolution
:::::::::

MERIDA
::::::
HRES

:::::::
domain.515

::::::::::::
Overestimation

:::
of

::::
skin

::::::::::
temperature

::::
may

:::::
occur

:::
at

::::::
certain

:::::
points

::::::
along

:::
the

:::::::::
coastlines,

:::::::
leading

::
to

::::
high

::::::
values

::
of

::::::
latent

::::
heat

::::
flux.

::
In

::::::::
particular

:::::::::::::
meteorological

:::::::::
conditions

::::::::
associated

:::::
with

:::::::::
convective

:::::::::
instability,

:::
this

::::
may

:::::::::
exacerbate

::::::::::
convection,

::::::::
resulting

in an overestimation of precipitation in areas where it is not normally observed. Even if these aspects need to be taken into

account
:::::::
amounts.

:

:::::::
However, it is important to notice that these biases are temporally stable and do not coincide spatially with the areas520

showing significant EPEs increases. Moreover, it is important to underline that ERA5 (Lussana et al., 2024) and its regional

downscalings (Cavalleri et al., 2024a) can exhibit stronger precipitation trends than the observed ones. In particular, Cavalleri et al. (2024a)

highlighted that the trend in the differences between MERIDA HRES and homogenised observations annual precipitation

totals is about
:::::
HPSs

::::::::
increases.

::::::::
Another

:::::
aspect

:::
to

:::::::
consider

::
is
:::
the

::::::::
deviation

:::
of

::::::::
MERIDA

::::::
HRES

::::::
annual

:::::::::::
precipitation

::::::
trends

::::
from

:::::::::::
observational

::::
ones

:::::::::::::::::::
(Cavalleri et al., 2024a)

:
.
::::
The

::::::
average

::::::::
deviation

::::
over

::::
Italy

:::
has

::::
been

:::::::::
quantified

::
at

::::::::::::
approximately 4% for525

decade, meaning that this fraction of annual precipitation increase might be attributable to a deviation from observations rather

than a true climate signal. This value is not negligible, but overall
::::::::
relatively small if compared to the 10% to 40% increases

found in EPEs occurrences. Even with respect to this additional inhomogeneity, the areas affected by it, as delineated in the

:::::
HPEs

::::::::::
occurrences.

:::::::::
Moreover,

:::
the

:::::::
regions

::::::
where

:::
this

::::::::::
discrepancy

::
is
:::::

more
:::::::
marked

::::
(see supplementary material of Cavalleri

et al. (2024a), )
:
do not overlap with those in which significant trends in EPEs

::::
HPEs

::::::::::
occurrences

:
have been found.

::
In

::::::::
principle,530

::::
such

:::::
biases

:::::
could

::::
have

:::::::
masked

:::::::::
decreasing

:::::
trends

::
in

:::::
those

:::::
areas;

::::::::
however,

:::
the

::::::
overall

:::::
spatial

::::::
pattern

::::::::
suggests

:::
that

::::
this

:::::::
scenario

:
is
::::::
highly

:::::::
unlikely.

:

The increasing trends in hourly EPEs
::::
HPEs

:
identified in this study for the period 1986–2022 align with several previous

research efforts based on both sub-daily and daily extreme precipitation observations across Italy and its specific regions. In535
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particular, Mazzoglio et al. (2025) reported positive trends in the same Prealpine area analyzed here, based on the RX1hour

index, largely attributed to summer convective activity. At a regional scale, Dallan et al. (2022) examined extreme precipitation

trends from 1991 to 2020 by separating storm intensity and occurrence frequency, attributing the observed increases in the

Eastern Alps to a growing proportion of sub-daily convective storms during summer. Similarly, Persiano et al. (2020) found a

generalized increase in both the frequency and intensity of sub-daily extreme rainfall over the Apennines in Emilia-Romagna540

(northern Italy) for the 1961–2015 period. Moreover, Pavan et al. (2019), using a daily gridded precipitation dataset for the

north and central Italy covering 1961–2015, reported significant positive trends in the 90th percentile of daily precipitation

across most of the Alpine area and the northern Po Valley during summer, also supporting the idea that summer and autumn

are the seasons most affected by precipitation changes. In autumn, some of the hourly EPEs
:::::
HPEs

:
trends detected in this

study agree with findings by Capozzi et al. (2023), who, based on daily station data for the 2002–2021 period, documented an545

increasing tendency in both the intensity and frequency of heavy rainfall events in inland Campania. Additionally, the autumnal

trends over the central Pre-Alps
::::::
Prealps

:
are in line with the results of Pavan et al. (2019), who also reported significant increases

in daily precipitation extremes over the Alps during autumn. This kind of local evidence provides an important observational

context that supports the reliability of some of the signals identified through the present reanalysis-based approach.

5 Conclusions550

This study employs hourly precipitation fields from the convection-permitting MERIDA-HRES reanalysis to investigate the

characteristics of hourly precipitation events
:::::
spatial

:::::::::
structures, with a focus on their most extreme components

:::
the

::::::::
extremes

and their temporal evolution over the period 1986–2022. This approach yields a twofold outcome. First, it enables the con-

struction of the HOPE-X
::::::::
HOPSS-X

:
dataset, an event-based archive in which nearly 6 million significant precipitation events

::::::::::
precipitation

:::::::::
structures are described by a set of intensity and spatial characteristics. Second, by isolating the most extreme555

subset of these events, the method facilitates a
:::::::

method
::
is
::::::::
proposed

:::
to

:::::::
facilitate

:
the description of extreme patternsand the

detection of
:::::
hourly

:::::::::::
precipitation

:::::::
patterns,

::::
and,

:::
by

:::::::
isolating

:::
the

::::
most

:::::::
extreme

::::::
subset,

::
to
::::::
detect statistically significant trends in

the occurrence of EPEs during summer and autumn
:::::
hourly

::::::::
extremes.

In summer, increasing trends
:
in

:::::
HPEs

::::::::::
occurrences

:
are detected over several Alpine and Prealpine regions as well as in parts

of Calabria. In autumn, the most prominent trends emerged over the southern Apennines, over the central Pre-Alps
::::::
Prealps,560

and several maritime regions, including Ligurian eastern coast, the eastern coast of Sardinia, the southern Adriatic Sea, and the

Ionian Sea.

The results obtained in this work represent an additional perspective within the ongoing and complex debate on precipitation

trends in Italy, even with full awareness of some of the limitations of reanalysis datasets. Spatial uncertainty of MERIDA565

HRES reanalysis was addressed through an event-based
:
a
:::::::::::::
structure-based

:
approach, which allowed the identification and

subsequent spatial aggregation of hourly events
::::::
HPSSs using moving windows, with the intent of reducing the impact of spatial
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misplacement errors. The results were also interpreted in light of some known and documented local biases of the reanalysis,

such as the systematic
:::::::
-thought

::::::::
constant-

:
overestimation of convective precipitation in some areas and some discrepancies

::::
local

:::::::::
deviations

:
between modelled and observed trends at longer timescales. In the final results, regions affected by these570

model biases were carefully considered in the interpretation of the results and generally did not overlap with the
:::
The

:
areas

where statistically significant trends in the occurrence of EPEs were detected .

:::::
HPEs

::
are

::::::::
detected

::::::::
generally

:::
did

:::
not

::::::
overlap

::::
with

:::::
these

::
of

::::
such

:::::::::::::
inconsistencies,

:::::::::
supporting

:::
the

:::::::::
robustness

::
of

:::
the

::::::
results.

:

The comparison with previous works on precipitation trends and extremes, based on observational data at both daily and575

sub-daily timescales, supports the robustness of the results presented in this work. In particular, the consistency observed across

different studies strengthens the evidence of increasing occurrences of hourly EPEs
:::::
HPEs over specific regions of Italy during

summer and autumn.

Future developments may involve leveraging the event-based dataset HOPE-X
::::::
dataset

:::::::::
HOPSS-X to explore additional char-580

acteristics of EPEs
:::::
hourly

:::::::::::
precipitation

::::::::
structures, such as their dominant propagation direction and potential associations

with changes in large-scale atmospheric circulation
::::::::::::::::::
(Iacomino et al., 2025). In selected regions, identifying and employing

sufficiently long hourly observational records could allow for a more direct validation of the detected trends. The approach

could also be extended to identify EPEs
::::::::::
precipitation

:::::::::
structures

:
of different nature and duration, including synoptic-scale

events
::::::::::
precipitation

:::::::::
structures, by analysing longer accumulation periods (e.g., 3, 6, 12, or 24 hours). Furthermore, similar585

event-based datasets
::::::
datasets

:::::
based

:::
on

::::::::::
precipitation

:::::::::
structures could be produced using the same methodology to detect EPEs

::::::::::
precipitation

::::::::
extremes in other regions where convection-permitting reanalyses are available.
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and Saltalippi, C.: A reassessment of the history of the temporal resolution of rainfall data at the global scale, Journal of Hydrology, 654,

132 841, https://doi.org/https://doi.org/10.1016/j.jhydrol.2025.132841, 2025.

Padulano, R., Reder, A., and Rianna, G.: An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy),

Hydrological Processes, 33, 2020–2036, 2019.

Pavan, V., Antolini, G., Barbiero, R., Berni, N., Brunier, F., Cacciamani, C., Cagnati, A., Cazzuli, O., Cicogna, A., De Luigi, C., et al.: High750

resolution climate precipitation analysis for north-central Italy, 1961–2015, Climate Dynamics, 52, 3435–3453, 2019.

Peleg, N., Koukoula, M., and Marra, F.: A 2°C warming can double the frequency of extreme summer downpours in the Alps, npj Climate

and Atmospheric Science, 8, 216, https://doi.org/10.1038/s41612-025-01081-1, 2025.

32

https://doi.org/10.1007/s10113-018-1290-1
https://doi.org/10.1175/MWR-D-23-0156.1
https://doi.org/https://doi.org/10.1002/asl.1239
https://doi.org/https://doi.org/10.1016/j.ejrh.2025.102287
https://doi.org/https://doi.org/10.1016/j.jhydrol.2025.132841
https://doi.org/10.1038/s41612-025-01081-1


Persiano, S., Ferri, E., Antolini, G., Domeneghetti, A., Pavan, V., and Castellarin, A.: Changes in seasonality and magnitude of sub-daily

rainfall extremes in Emilia-Romagna (Italy) and potential influence on regional rainfall frequency estimation, Journal of Hydrology:755

Regional Studies, 32, 100 751, 2020.

Pfahl, S., O’Gorman, P. A., and Fischer, E. M.: Understanding the regional pattern of projected future changes in extreme precipitation,

Nature Climate Change, 7, 423–427, https://doi.org/https://doi.org/10.1038/nclimate3287, 2017.

Poschlod, B., Ludwig, R., and Sillmann, J.: Ten-year return levels of sub-daily extreme precipitation over Europe, Earth System Science

Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021, 2021.760

Raffa, M., Reder, A., Marras, G. F., Mancini, M., Scipione, G., Santini, M., and Mercogliano, P.: VHR-REA_IT Dataset: Very High Resolu-

tion Dynamical Downscaling of ERA5 Reanalysis over Italy by COSMO-CLM, Data, 6, https://doi.org/10.3390/data6080088, 2021.

Schroeer, K., Kirchengast, G., and O, S.: Strong Dependence of Extreme Convective Precipitation Intensities on Gauge Network Density,

Geophysical Research Letters, 45, 8253–8263, https://doi.org/https://doi.org/10.1029/2018GL077994, 2018.

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall’s Tau, Journal of the American Statistical Association, 63, 1379–1389,765

https://doi.org/10.1080/01621459.1968.10480934, 1968.

Senatore, A., Furnari, L., Nikravesh, G., Castagna, J., and Mendicino, G.: Increasing Daily Extreme and Declining Annual Precipitation

in Southern Europe: A Modeling Study on the Effects of Mediterranean Warming, EGUsphere, https://doi.org/10.5194/egusphere-2025-

1567, preprint, 2025.

Sottile, G., Francipane, A., Adelfio, G., and Noto, L. V.: A PCA-based clustering algorithm for the identification of stratiform and convective770

precipitation at the event scale: an application to the sub-hourly precipitation of Sicily, Italy, Stochastic Environmental Research and Risk

Assessment, 36, 2303–2317, 2022.

Stocchi, P. and Davolio, S.: Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temper-

ature uncertainty, Atmospheric Research, 196, 62–82, 2017.

Thunis, P. and Bornstein, R.: Hierarchy of Mesoscale Flow Assumptions and Equations, Journal of Atmospheric Sciences, 53, 380 – 397,775

https://doi.org/10.1175/1520-0469(1996)053<0380:HOMFAA>2.0.CO;2, 1996.

Van Hyfte, S., Le Moigne, P., Bazile, E., Verrelle, A., and Boone, A.: High-Resolution Reanalysis of Daily Precipitation using AROME

Model Over France, Tellus A: Dynamic Meteorology and Oceanography, https://doi.org/10.16993/tellusa.95, 2023.

Viterbo, F., Sperati, S., Vitali, B., D’Amico, F., Cavalleri, F., Bonanno, R., and Lacavalla, M.: MERIDA HRES: A new high-resolution

reanalysis dataset for Italy, Meteorological Applications, 31, e70 011, 2024.780

von Storch, H., Langenberg, H., and Feser, F.: A Spectral Nudging Technique for Dynamical Downscaling Purposes, Monthly Weather

Review, 128, 3664 – 3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2, 2000.

Wang, S., Li, C., Li, D., Tian, X., Bao, H., Chen, G., and Xia, Y.: Exploring the utility of radar and satellite-sensed pre-

cipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards, Journal of Hydrology,

https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126964, 2021.785

Wernli, H., Paulat, M., Hagen, M., and Frei, C.: SAL—A novel quality measure for the verification of quantitative precipitation forecasts,

Monthly Weather Review, 136, 4470–4487, 2008.

White, R., Battisti, D., and Skok, G.: Tracking precipitation events in time and space in gridded observational data, Geophysical Research

Letters, 44, 8637–8646, 2017.

Wilks, D.: On “field significance” and the false discovery rate, Journal of applied meteorology and climatology, 45, 1181–1189, 2006.790

Wilks, D.: Statistical Methods in the Atmospheric Sciences, Elsevier Science, ISBN 9780128158234, 2019.

33

https://doi.org/https://doi.org/10.1038/nclimate3287
https://doi.org/10.5194/essd-13-983-2021
https://doi.org/10.3390/data6080088
https://doi.org/https://doi.org/10.1029/2018GL077994
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.5194/egusphere-2025-1567
https://doi.org/10.5194/egusphere-2025-1567
https://doi.org/10.5194/egusphere-2025-1567
https://doi.org/10.1175/1520-0469(1996)053%3C0380:HOMFAA%3E2.0.CO;2
https://doi.org/10.16993/tellusa.95
https://doi.org/10.1175/1520-0493(2000)128%3C3664:ASNTFD%3E2.0.CO;2
https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.126964


Wilks, D. S.: “The Stippling Shows Statistically Significant Grid Points”: How Research Results are Routinely Overstated and Overinter-

preted, and What to Do about It, Bulletin of the American Meteorological Society, 97, 2263 – 2273, https://doi.org/10.1175/BAMS-D-15-

00267.1, 2016.

Zaitchik, B. F., Rodell, M., Biasutti, M., and Seneviratne, S. I.: Wetting and Drying Trends Under Climate Change, Nature Water, 1, 502–513,795

https://doi.org/10.1038/s44221-023-00073-w, 2023.

34

https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1038/s44221-023-00073-w

