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Abstract. The latest generation of high-reselution-and-convection-permitting reanalyses, capable of representing atmospheric
processes at small spatial scales (<4 km), is crucial for studying the temporal and spatial evolution of phenomena such as con-
vective storms and orographic precipitation. Given the availability-eflong(>35-long (37 years) and continuous availability of
M%I—ml&honvectlon permitting reanaly51s datasets over Italy, this study mve%&ga{e%—eheﬂeeuffeﬂee—&ﬂéeh%aeteﬁ%ﬁe%
i
precipitation patterns, extremes, and quantify their increase over time in this region. Using-the- MERIDA-HRESreanalysis
+1986-2022);precipitation-events-Precipitation clusters are extracted from hourly reanalysis fields as spatially coherent struc-

tures, yielding approximately 160,000 events-per-year—Each-eventis-of them per year, each one characterized by intensity and
shape indicators. The resulting HOPE-X-HOPSS-X (HOurly Precipitation Events-and-XtremesSpatial Structures and eXtremes)

dataset enables a detailed climatological analysis of event-hourly precipitation frequency, intensity, and spatial seale-aeross

extent across different seasons and regions. The
W@;@MMMM&WM on the mean of local annual maxima in hourly pre-
cipitation (RX1hour) - Significant upward
trends in HPEs occurrences (+20% / +30%) are present during summer in several Alpine and Prealpine regions, as well as

in parts of Calabria. In autumn, significant-sienals-similar signals (+30% / +40%) emerge in the southern Apennines and in

coastal and maritime areas, including the eastern Ligurian coast, eastern Sardinia, the southern Adriatic Sea, and the Ionian

Sea. These spatial and seasonal patterns align with regions where convective processes predominantly drive intense, localised
precipitation, potentially amplified by climate change. While these findings should be considered in light of known limitations
of reanalysis products, such as spatial mismatches with observations and temporal inhomogeneities, multiple independent ob-
servational studies support the increase in EPEs-HPEs during summer and autumn in specific areas. Moreover, the methodology

presented here is broadly applicable in any region with access to long-term convection-permitting reanalysis data. In summary,

this-study-offers-the purpose of this study is to offer a contribution to the ongoing discussion on precipitation extremes and



25

30

35

40

45

50

trends in Italy and provides-provide guidance for leveraging reanalysis data to enhance infrastructure resilience to short-lived,

intense precipitation events.

1 Introduction

As global temperatures continue to rise due to climate change (IPCC, 2023), significant alterations in large-scale precip-
itation patterns are being observed across the globe (Allan et al., 2020). These shifts can trigger even more pronounced
changes at the local level (Fowler et al., 2021), particularly in the frequency, intensity, and timing of ExtremePreeipitation
Events(EPEsjextreme precipitation. The physical reason for these changes lies in the Clausius-Clapeyron thermodynamic
relationship (Hardwick Jones et al., 2010), which describes how a warmer atmosphere can hold more water vapour. More-
over, the rising ocean temperature observed in recent decades (Garcia-Soto et al., 2021) provides more moisture to fill the
atmospheric column. The-inerease-in-moisture-availability-produces-contrasting-effeets(Zaitehik-et-al5-2623)Climate change
produces however contrasting effects: some regions may experience drier conditions, while others may see more intense and
regions may experience changes in extreme precipitation (Donat et al., 2017). The thermodynamic effects tend to produce a

relatively uniform increase in precipitation extremes, but dynamic contributions (such as orograph

frequent rainfall

, coastal interaction, and

changes in weather regimes) can modulate these changes regionally, leading to local variations in the intensity and frequenc
of extremes (Pfahl et al., 2017). Moreover, such extremes are generally more pronounced at shorter timescales, such as hourly,

than at longer durations (Lenderink et al., 2017).

The Mediterranean region, in particular, is recognised as a climate change hotspot, undergoing warming at a faster rate than
many other parts of the world (Lionello and Scarascia, 2018). The increasing sea surface temperatures in the Mediterranean
contribute to more frequent heavy precipitation events (Senatore et al., 2025), in particular ever—the-Alps—and—fer-heurly
timeseates-at the hourly timescale (Peleg et al., 2025). Within this region, Italy is especially vulnerable to EPEs-short-lived
extreme precipitation. (Giovannini et al., 2021; Donnini et al., 2023; Padulano et al., 2019), largely due to its complex orography
and the dynamical interaction between moist air masses, mountain chains, and coastal dynamies-interface (Stocchi and Davolio,
2017; Mazzoglio et al., 2022). All these aspects highlight the need to investigate whether and to what extent climate change is

impacting the distribution of hourly precipitation extremes over Italy.

Research on precipitation trends in Italy has been extensive over the past decades, revealing a complex spatial and temporal
variability shaped by regional climatic dynamics, topography, and large-scale atmospheric patterns. Several regional inves-
tigations based on observational datasets contributed to this discussion, emphasising pronounced local differences. Caloiero
et al. (2018, 2021) reported significant negative trends for the period 1951-2016 in both seasonal and annual total rainfall in
Southern Italy and inland central regions, especially in winter and autumn. Similarly, in Trentino-Alto Adige (north-eastern

Italy), Brugnara et al. (2012) observed a decrease in annual precipitation on the order of 1.0-1.5% per decade in the period
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1922-2009, with spring and winter contributing most to the decline. In the same study, the number of wet days significantly
decreased east of the Adige Valley (north-western Italy), while trends in extremes (90th, 95th, 99th percentiles) were weak and
mostly non-significant. In Tuscany (west-central Italy), Bartolini et al. (2014) found a declining trend in annual rainfall and wet
days for the period 1955-2007, largely due to winter and spring decreases. In Calabria (southern Italy), Brunetti et al. (2012),
using a high-resolution daily dataset for the period 1923-2006, detected negative trends in mean precipitation intensity (total
precipitation per wet day), a reduction in daily precipitation amounts, and a decreased frequency of high-intensity daily events
(95th and 99th percentiles). Similarly, Pavan et al. (2019), analysing the ARCIS-gridded-observational-datasetfornorthern
TealyArchivio Climatologico per ['ltalia Centro Settentrionale (ARCIS
north-central Italy, for the period +96+-2045found-1961-2015, found widespread summer declines in most regions—driven

, a high-resolution gridded precipitation dataset for

by fewer rainy days, longer dry spells, and reduced daily intensity—except fer-in_the northern Alpine area, which-showed
inereases—n-where both total and intense precipitation increased. Finally, Capozzi et al. (2023) analysed multiple stations
across Campania (south-western Italy) for the period 2002-2021 and found an increasing trend in both precipitation intensity
and the frequency of heavy rainfall events during autumn, particularly in the northern part of the region and in mountainous

areas.

Collectively, these studies Wmmmewmm of prempltatlon regimes in Italy,
marked-by-substantial-heterogeneity. However, #is+4

resolution; while the primary-effects of elimate change they are based on daily datasets, whereas climate change impacts on pre-
cipitation are most evident at sub-daily timescales (Lenderink et al., 2017). Indeed;-sub-daily-observational-datasets-typically
Sub-daily observational datasets usually cover limited regions and relativelyshort-periods;—and-are-generallyunavailable

forlonger-durations—while—alse—providingfull natienal-rarely provide long-term, nationwide coverage (Blenkinsop et al.,
2018; Morbidelli et al., 2025). In Italy, the observational network is extensive and of high quality, but since the 1990s

it has been managed at the regional level, resulting in some heterogeneity among measurement networks. An—attempt—te

The GRidded Italian Precipitation Hourly Observations (GRIPHO) dataset (Fantini, 2019) was developed to homogenize
hourly observations, but its limited temporal coverage (2001-2016) makes—it-unsuitablerestricts its_usefulness for long-

term trend analysisanalyses. Consequently, sub-daily precipitation trends can be investigated using observations available for
specific regions %%em&ple—&dehwah&ﬂﬂ%ﬂgonl Regional analyses show a delay of sub-daily rainfall extremes

toward autumn wa

and increasing event magnitude in Emilia-Romagna
Persiano et al., 2020), while southern Italy exhibits rising hourly extremes whose significance decreases at longer durations
(Avino et al., 2024).

ma*rma%eﬁhepeﬂeekMazzo lio et al. (2020) developed the I12-RED dataset (1916t6—2022(12-RED);finding-that), showing




nationwide increases in annual maxima for short durations (particutarly—t-heuryhave-inereased-nationwideespecially 1 h).

90 In contrast, longer durations, such as 24-hour aggregations, exhibit more spatially variable trends, including some negative
tendencies (Mazzoglio et al., 2025). i i
changes-than-median—values—These findings underscore the need for innovative methodologies to effectively capture and in-

terpret evolving patterns in hourly extreme precipitation across Italy, beyond observations alone. In-faet;-This is also because

rain gauge networks often lack the spatial density required-to-deteet-needed to capture highly localised events, such as con-
95 vective storms, unless they occur directly over a station, and consequently they tend to underestimate extremes by about 20%
(Schroeer et al., 2018). Conversely, radar and satellite-based measurementsprecipitation estimates, while offering broader spa-
tial coverage, may-sufferfrom-biasescan exhibit substantial positive or negative biases, particularly during high-intensity events
or be-in areas affected by terrain-induced signal blocking (Wang et al., 2021). For this reason, convection-permitting reanal-
yses, blending model outputs with observational data, have proven to be valuable tools for investigating EPEs-precipitation

100 extremes and assessing their potential trends over time (Dallan et al., 2024; Poschlod et al., 2021).

ontribute to the ongoing scientific discussion on
recipitation trends and extremes by proposing a methodological framework for an informed use of convection-permittin

105 reanalysis data to characterise hourly precipitation structures across space and seasons, and to investigate the potential precipitation
extremization over time. To this end, the hourly precipitation fields from the convection-permitting MEteorological Reanalysis

Italian DAtaset — High RESolution, MERIDA HRES (Viterbo et al., 2024) are employed-—Fhis-producteovers-, covering the 37-

year period from 1986 to 2022 at about a 4 km resolution. The-choice-of MERIDA-HRE apperted-by-previous-validatio
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Even if convection-permitting reanalyses represent a state-of-the-art, precipitation remains one of the most challenging vari-
ables to simulate, and it is not directly assimilated by the reanalyses, but instead derived from assimilated variables such as tem-
perature, pressure, and humidity. These limitations
atsmall-seales(Hohenegger-and-Sehér; 2007);-often lead to some discrepancies between simulated and observed precipitation
fields at the smaller scales, especially during summer, mainly due to precipitation positioning uncertainties (Cavalleri et al.,
2024a). This issue also arises from the inherently chaotic nature of the atmosphere (Hohenegger and Schir, 2007) together with

limitations in the data assimilation frequency Kalnay-et-al;2024)-of the driving global reanalyses (Kalnay et al., 2024) (e.g.,
ERAS assimilates data every 12 hours, much less than typical timescales of convectlon) White-the-assimitated-Assimilated

observations remain the same regardless of th

temporal-aggregation——whieh-investigated temporal scale. Temporal aggregation (e.g. daily) can sometimes hide deficiencies
at a smaller scale. At the sub-daily scale (e.g. hourly) precipitation fields no longer benefit from this effect, making devia-

tions from observations more noticeable. Another relevant aspect is the potential divergence in precipitation trends between

observations and reanalyses. Discrepancies in the-decadal-trend-trends of annual precipitation totals were highlighted in global

reanalyses (Lussana et al., 2024) and Italian regional ones (Cavalleri et al., 2024a).

In light of these limitations, an event-based-approach-approach based on precipitation structures has been adopted to mitigate

ositioning uncertainties issues. In particular, in this work spatially continuous hourly precipitation structures and associated
extremes are identified through the use of a clustering technique. Clustering methods are commonly employed to identify

individual precipitation events-structures from gridded datasets, particularly in the context of radar-based observations and
operational verification. These techniques typically rely on threshold-based object identification combined with clustering
algorithms to isolate spatially coherent precipitation structures. For example, Wernli et al. (2008) describe an object-based
verification method (SAL) that requires the identification of distinct precipitation objects using a threshold proportional to the
domain’s maximum precipitation value, a strategy also discussed by Davis et al. (2006). Marzban and Sandgathe (2006) provide
a broader review of clustering approaches applied to precipitation fields, showing how cluster analysis can be used to define
features or objects in both forecast and observation fields, enabling event-based-verifieation-—Beyond-verificationverification.
Moreover, clustering methods have also been applied to classify sub-daily rainfall events-episodes according to their internal
structure (Sottile et al., 2022). Several methods have also been developed to track precipitation events over time (Chang et al.,
2016; White et al., 2017; Li et al., 2020) In this study, however, a stralghtforward approach to 1dent1fy prec1p1tat10n chasters

structures is proposed, ba

aeross-regions—This-methodology-does-not-aceount-not accounting for the temporal evolution of the events-identified-within
each-cluster-butratherfoeuses-precipitation events, focusing on each hourly time step independently;-beingfully-aware-of-the
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The paper is organized

as follows. Section 2 introduces the MERIDA HRES reanalysis, detailing the reasons for its selection along with its inherent
strengths and limitations, and describes the methodology adopted to construct the HOurly Precipitation Events-Spatial Structures

and Xtremes (HOPE-XHOPSS-X) dataset, publicly available on Zenodo at https://bit.ly/HOPSS-X. Section 3 outlines the main
results, focusing on the spatial distribution and seasonal patterns of hourly precipitation eventsstructures, with particular em-
phasis on the EPEs-extremes subset and related trends. Section 4 discusses these findings in the context of previous studies on
precipitation trends and known limitations of reanalysis data. Finally, Section 5 summarises the key conclusions and outlines

potential directions for future research.

2 Data and Methods
2.1 MERIDA HRES, a convection-permitting reanalysis

This study employs the hourly precipitation fields from MERIDA HRES (Viterbo et al., 2024), a reanalysis developed for the
Italian domain, resolving explicit convection to better represent localised and intense precipitation events. MERIDA HRES, de-
veloped by Rieerea-sul-SistemaEnergetico-Ricerca sul Sistema Energetico (RSE), employs the Weather Research and Forecast-
ing (WRF) model to dynamically downscale over Italy the global ERAS reanalysis (Hersbach et al., 2020) to a high-resolution
higher-resolution horizontal grid of approximately 4 ki everatyand 56 vertical levels, with increased vertical resolution in the.
lower atmosphere (levels located at 10, 35, 70, 100, 130, 180, 250, 325, 415, and 500 m). It is driven by large-scale initial and
boundary conditions from ERAS and applies a spectral nudging technique (von Storch et al., 2000) to constrain synoptic-scale
features while filtering out smaller-scale perturbations that could introduce spurious signals. Additionally, SYNOP surface air
temperature observations are assimilated through an observational nudging technique (Liu et al., 2012; Bonanno et al., 2019;
Viterbo et al., 2024), further enhancing the representation of regional atmospheric characteristics. The dataset spans the period
from 1986 to 2022, but is constantly updated with about a 2-year-two-year lag. The analyses for this work are calculated over
the domain 5.84°E to 18.96°E indengitude-and 35.37°N to 48.25°N, centred on the Italian peninsula, for the period 1986-2022,
enclosing the full period of availability for MERIDA HRES at the time of writing.

2.2 Eventdetection-and-charaeterization

The specific choice of MERIDA HRES reanalysis is supported by previous validation studies. In particular, its precipitation

fields have been assessed from climatological to daily (Cavalleri et al., 2024a; Viterbo et al., 2024) and hourly (Giordani et al.

2

timescales, also comparing with other convection-permitting reanalyses for the same area, highlighting both its strengths and
limitations, The effective horizontal spatial resolution of MERIDA HRES has been evaluated in previous works using a wavelet
spectral decomposition approach (see Cavalleri et al. (2024a), Fig. 2), which demonstrated its ability to represent convective
precipitation, although it may not fully resolve the smallest structures. Moreover, MERIDA HRES shows good agreement with
both gridded and station-based observations, and demonstrates overall temporal stability when compared with homogenised

2025
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185  observational datasets (Cavalleri et al., 2024a). These qualities make it an appropriate product for hourly precipitation trend
analyses. Other convection-permitting models available for Italy, such as MOLOCH (Capecchi et al., 2023) and SPHERA
(Cerenzia et al., 2022; Giordani et al., 2023), have been found to generally produce larger deviations from observed precipitation
trends than MERIDA HRES (Cavalleri et al., 2024a), while results from VHR-REA_IT (Raffa et al., 2021) indicate a slightly
weaker agreement with daily-scale observations (Cavalleri et al., 2024a). These aspects may limit the applicability of other

190 products in this study.

Nevertheless, these studies also indicate that MERIDA HRES occasionally overestimates rainfall amounts during summer in
specific regions, including the Po Valley—Adriatic interface, parts of the Calabrian mountains. southern Apulia, and the southern
portions of the main islands, with local deviations from observations reaching 10-30 mm. However, since these regions are
generally dry during summer, the relative error can be substantial, up to locally doubling the observed rainfall amounts in July.

195 and August (Cavalleri et al., 2024a). Moreover. the trend in the annual differences between MERIDA HRES and homogenised
observations precipitation totals is on average 4% per decade, meaning that this fraction of annual precipitation increase might
be attributable to a deviation from observations rather than a true climate signal (Cavalleri et al., 2024a). This mismatch is

not uniform across the territory (see the supplementary material of Cavalleri et al. (2024a)). The knowledge of these specific

inhomogeneities of MERIDA HRES will be taken into account when discussing the results of this work (Section 4).

200 2.2 Precipitation structures detection and characterization

The first step involves identifying coherent Hourly Precipitation Spatial Structure (HPSSs) in each MERIDA HRES hourly

field. ec-To account for seasonal and

regional differences, thresholds are calculated for each grid point of the MERIDA-HRESreanalysis—Thresholds-are-caleulated
205 reanalysis and separately for each season —Finallyby taking the median (i.e., 50th percentile) of precipitation values exceedin

1 mm. After that, a spatial smoothing filter with a 20 km radius is applied to reduce noise and improve spatial consistency

across neighbouring grid cells (Figure 1).
Precipitation values below 1 mm/h are excluded to distinguish meaningful precipitation from background noise. Below-this
vatee;-Indeed, below 1 mm/h the spatial variability is very high, whereas it significantly decreases above it, indicating that pre-
210 cipitation becomes more spatially coherent and representative of broader areas (Lussana et al., 2023). Atthe-beginningDuring
the first stages of this work, a fixed 1 mm threshold was applied to detect hourly-precipitation-eventsHPSS. Nevertheless,
the choice of a uniform threshold across the entire domain and for all seasons did not adequately account for the spatial and
seasonal variability of precipitation regimes, leading to the merging of multiple distinct convective cells into a single, large
cluster that did not reflect the localised nature of these-eventsHPSSs. This mismatch between the actual physical scale of con-
215 vective systems and the scale of the detected clusters motivated the choice of a percentile-based threshold;eemputed-using

—In determining
the most suitable smoothing radius, several values were tested. Radii larger than 20 km excessively smoothed areas with
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Figure 1. Seasonal maps of the 56th-pereentite-median of hourly precipitation values above 1 mm, used as ehustering-thresholds.

higher thresholds, reducing the ability to resolve regions of intense precipitation. Conversely, smaller radii retained too much

noise, limiting the effectiveness of the thresholds in isolating coherent precipitation structures. Moreover, 20 km approximatel

corresponds to the boundary between the meso-5 and meso-y atmospheric scales (Thunis and Bornstein, 1996), below which

Contiguous grid points exceeding these-thresholds—are—identified-the thresholds (Figure 1) are treated as an individual
eventcluster. To reduce noise, clusters composed of fewer than five grid points are excluded: approximately 95% of them
exhibit intensities below 10 mm/h, and therefore have a negligible impact on the focus of this study on extreme precipitation.

Each retained cluster is identified as an HPSS. More

specifically,
in this work HPSSs are spatially continuous hourly precipitation structures, identifying detectable and relevant precipitation
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Figure 2. Example of HPSS detection process for the day 20th October 2011, 13:00:00 UTC. a) raw precipitation field, b) after applyin

the threshold and the clustering (each border colour represents a different cluster), ¢) minimum enclosing ellipses (in red) identify retained

structures.

— Figure 2 shows an exam-
ple of the event-deteetionproeedure-procedure used to identify HPSSs, applied to the hourly precipitation field of 20 October
2011 at 13:00:00 UTC. On that day, intense precipitation affected Rome and the surrounding areas, causing several floods

throughout the city and widespread power outages (Bonanno et al., 2019).

eEach identified
HPSS is characterized by a set of features describing its date and time of occurrence, position, and total and maximum

recipitation intensity, as summarized in Table 1. The tablepresents-only-thecharacteristiesdirectlyused-in-thisstudy:however;

many-additional-vartables-maximum linear spatial extent of a HPSS is defined as the major axis of its minimum enclosin

ellipse — i.e., the smallest ellipse that fully contains all grid points belonging to the structure (Wernli et al., 2008). The choice

of characterizing the shape of an HPSS by its maximum linear extent is motivated by the fact that atmospheric spatial scales are
enerally defined in linear terms (Thunis and Bornstein, 1996). Moreover, deriving this feature from the minimum enclosin
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ellipse allows for a consistent characterization of precipitation structure having very different shapes. Additional features are
included in the complete database available only, while only features used in this study are reported here.

Table 1. The eharacteristies-set of feature recorded for each event-HPSS which are relevant for this study.

Variable NameFeature name in the database = Description and/or definition Un
time Date and hour of the field where the ebjeetis-deteeted—HPSS is detected -

tp_max Maximum tetat-hourly precipitation value within the ebjeet—HPSS mi
lon_max Longitude where maximum-preeipitationt p_max yeeetrs—occurs de
lat_max Latitude where maximum-preeipitation{t p_max j-eeetrs—occurs de
Ytencdm_waveglon Intensity-weighted average longitude of the ebjeet—HPSS de
tetcdm_wavelat Intensity-weighted average latitude of the ebject—area HPSS At
tot_tp Fotal-Hourly precipitation summed over the-entire-objectarea-all points composing the HPSS ~ mu
exis—mejarea Number of pixels composing the HPSS <

max_extent Length of the major axis of the ebjeet(in-degreesH~HPSS minimum enclosing ellipse de

2.3 Event-based-Structure-based statistics

dataset—First-HPSS detection methodology described above produced the HOPSS-X dataset, which can be analysed through
the set of features associated with each HPSS. First, the seasonal distributions of selected-charaeteristiestisted—in—Table—+

mean precipitation
intensity (tot _tp / area), peak intensity(tp—maxprecipitation intensity (tp_max), and %p&fm%*%a%%eaﬂ%maﬁ%ﬁf
individual-events-maximum linear spatial extent (max_extent) of all HPPS are examined. Then, spatial patterns of hourly
precipitation are 1nvest1gated—&eeeuﬁﬂﬁg - To account for location uncertainty inherent in reanalysis data —To-this-end;—a
Hg-Wi -and avoid misleading point-scale analyses, statistics are not evaluated

at individual grid points but within a 0.5° moving window (/2156 grid points) with 0.1° increments in both latitude and
longitude. In each of these windows, the number—of-events-Number of occurrences (N) of HPSSs whose centre of mass

(Fat—wavegrton—wavegcdm_lat,cdm_lon) fell inside the window is counted. Because the sliding distance (0.1°) is

smaller than the window size (0.5°), a single event-HPSS is counted in multiple adjacent windows, ensuring smooth spa-

tial transitions. Fhe-Average Intensity tAvin);the Then, some features are averaged among all the HPSSs falling in a window.
Specifically, the Average Mean Intensity (MeanInt), Average Peak Intensity (PklnPeaklnt), and Spatiat-Seale(SpSAverage
Maximum Linear Spatial Extent (SpatExtent) are obtained by averaging everthe-events-withineach-windew-tot_tp/area,
tp_max and exis—maFmax_extent respectively, as detailed in Table 2.

10
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Table 2. Description of indicators used for the analyses and their units of measure, where t = 1,...,7T indicates the different hours within
the period over which the indicator is computed (typically a season), and m = 1,..., M denotes the different events-HPSSs occurring at a

timestep within a given spatial window.

Short Name Indicator Full Name Mathematical description Unit of
N Number of HPSS occurrences PDHED D] number
Aviar-MeanInt  Average Mean Intensity T > o M tot_tp,,/arean. mm/

. T M
Pidn-PeakInt Average Peak Intensit % 2 ﬁ > — tp_max,, mm/h
SpS SpaExent  +3T S s s e Average Maximum Linear Spatial Extent £ 37, & % nax_extent,  km

Both-Avin-andPkIn-Alternative metrics to N, such as the frequency of wet hours (i.e., the percentage of hours with at least
one structure detected in the window), were also evaluated (Figure S1, supplementary material), with very similar patterns.

However, for the sake of simplicity and to retain a more tangible indicator, the analysis is presented in terms of N rather than
wet-hour frequency. Both Meanlnt and PeaklInt are expressed in millimetres per hour (mm/h), but they reflect different aspects

of precipitation intensity. Avia-MeanlInt represents the average intensity across all grid points of all eventsHPSSs within a given
window, while Pkin-PeaklInt refers to the mean of the maximum intensities recorded at a single point for each event—SpS-HPSS.
SpatExtent indicates the average maximum linear extent of the events-HPSSs within the same window. Finally, these values are
cumulated (for N) or averaged (for Avla;PkIn-SpSMeanlnt, Peaklnt, SpatExtent) over time to obtain aggregated-characteristic
values for each location. Statistics on the full event-dataset, including climatologies of these indicators, are presented in Section

3.1.

2.4 ExtremeHourly extreme precipitation events-sub-setting

After characterising the properties of the heurly-preeipitation-events-the-extremes-are-subset- HPSSs, the Hourly Precipitation
Extremes (HPEs) are selected from the full event-dataset. The selection criterion is based on the average-of-the-annual maxima

of hourly precipitation (RX1hour), calculated for each grid point and each year. The resulting time series of 37 RX1hour

values are then averaged throughout the period 1986-2022 to derive a threshold value for each cell of the grid, representing

the average RX1lhour at that location. Higher threshold values were found to excessively restrict the statistical sample of
extremes, whereas lower values, although expanding the subset of identified structures, would have blurred the distinction
between HPEs, as defined by Extreme Value Theory (Coles, 2001), and more moderate high-quantile HPSSs, thereby reducin

the interpretability of the results.
This approach is similar to the methodology used by Lavers et al. (2025), who introduced the Extreme Rain Multiplier

ERM-to classify extreme daily precipitation events. Lavers et al. (2025) employ ERAS which-is-aglobalreanalysis-produet
with-a-0:25%-grid-spaeing;-and consider daily precipitation accumulations to compute the mean of the annual daily maxima

(RX1day). The daily accumulation is the most appropriate timescale considering the coarse spatial scale of ERAS (Chinita

11
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et al., 2022; Raffa et al., 2021). In contrast, this study uses a regional convection-permitting reanalysis, which provides a more
accurate representation of hourly precipitation and associated extremes. Therefore, it is possible to define a threshold based
on hourly maxima (RX1hour). As the last step, a-Gaussian-filter-with-a-20-km-radius-the same Gaussian filter as specified in

Section 2.2 is applied to smooth the average RX1hour field and reduce local-scale noise (Figure 3).
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conveetive-events-typically-oceur—Finally, a precipitation-event-HPSS is identified as EPE-HPE if its maximum precipitation

value (tp_max) exceeds the average RX1hour value in the position where it occurred (1at_max,lon_max). The selected

HPESs can be interpreted as extreme precipitation events within a fixed-area (Eulerian) framework, which is more suitable for
this study since no tracking of individual events is performed, unlike in a Lagrangian approach that follows storm structures
over time (Ignaccolo and De Michele, 2010). In support of this interpretation, in section 3.3 the local persistence of HPEs is
investigated, showing that HPSSs exceeding the extreme threshold are typically short:-lived, rarely persisting for more than one

2.5 ExtremeHourly Precipitation Event-Extremes statistics and trends

Extreme statistics are calculated within the subset of events-elassified-as-EPEs-HPSSs classified as HPEs with the same method-
ology described in Section 2.3. Subsequently, the trends of the yearly series of N, AviaPkln-and-SpS-Meanlnt, PeakInt and
SpatExtent are computed (results shown in Section 3.2). ©a-Within each moving window, the trend analysis is performed
using the Theil-Sen slope estimator (Sen, 1968), suitable for non-parametric data. The statistical significance of the trends is

evaluated using the Mann—Kendall test (Mann, 1945; McLeod, 2005). To control for the multiple testing problem across the
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spatial domain, the False Discovery Rate (FDR) correction is applied (Benjamini and Hochberg, 1995; Wilks, 2006). Since
the FDR procedure tends to be conservative in the presence of spatial correlation, approximately correct global results can be
obtained by setting the FDR threshold to twice the desired global significance level (Wilks, 2016, 2019). Therefore, results are
considered statistically significant if the FDR-corrected p-value is below 0.1, corresponding to a global significance level of

0.05. The results of the trend analysis are presented in the Results section 3.3.

3 Results

3.1 FullHourly precipitation events-dataset-structures analyses

The- HOPE-X-Before focusing on the extremes, an analysis of the overall patterns of HPSSs across the dataset is presented

roviding the necessary context for the interpretation of subsequent results on extremes. The dataset consists of approximately
160.000 precipitation events-HPSSs per year over the period 1986-2022. The interannual variability, calculated as the rela-

tive standard deviation of the annual number of eventsHPSSs, is around 10%. At the seasonal level, the highest number of
events-HPSSs is generally recorded in autumn (SON), accounting for 29% of the total, while summer (JJA) shows the lowest
share, with 21%. Winter (DJF) and spring (MAM) contribute similarly, representing 26% and 24% of the total number of
eventsHPSSs, respectively. The fraction of hours showing no identified events-HPSSs across the entire domain varies season-

ally, with approximately 11% for winter, 12% for spring, 9% for summer, and 7% for autumn. The number of events-HPSSs

detected per hour follows a-distribution-that-deereases-with-inereasing-event-ecount(Figure-<the distribution of Figure 4.
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Figure 4. Distribution of the number of events-HPSSs recorded per hour. Values are normalised by the total number of hours in each season

(24 x 90 x 37). Bin width: 5.
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The maximum number of events-HPSSs recorded in a single hour is 136, observed at 14:00 on June 11, 1992, as aresult of a

widespread low-pressure area associated with large quasi-stationary cyclone influencing the whole Italian peninsula. Intensity
and spatial scale distributions exhibit markedly skewed shapes, with a sharp peak at low values followed by an approximately

exponential decay as their magnitude increases (Figure 5).
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Figure 5. Seasonal distributions of a) mean intensity, b) peak intensity, and ¢) maximum linear spatial extent of HPSSs. Bin width: 0.5 mm
for intensity variables, 2 km for spatial extent. Distributions are normalised by the total number of HPSSs; that is, the sum of the integral of
the four seasonal distributions gives 1.

During summer and autumn, precipitation—events-HPSSs tend to exhibit higher median values and heavier tails for both
— mean precipitation intensity (tot__tp/area, Figure 5a) and +p— eak precipitation intensity (t p_max,
Figure 5b). The axis—ma-¢maximum linear spatial extent (max_extent, Figure 5c) distributions show less pronounced

seasonal variation, with only summer displaying slightly-smaler-seale-eventsHPSSs with a slightly smaller extent. A small per-
centage of events- HPSSs fall outside the range of the distributions plotted in Figure 5: 0.22% of events-exhibitantot—tp/area

HPSSs exhibit a mean precipitation intensity greater than 15 mm/h, 0.96% have a +p—max-peak precipitation intensity above
40 mm/h, and 2.98% show a azi-s—m=—=-maximum linear extent larger than 100 km. According to definitions of atmospheric

scales in the scientific literature (Fhunis-and-Bernstein; 1996);-(Thunis and Bornstein, 1996), phenomena with lifetimes rang-

ing from about one hour to one day—such as isolated thunderstorms or groups of storms—typically occur within the lower

portion of the mesoscale, with spatial extents from approximately +-2 km up to 200 km. Our—results-The results of HPSSs

distribution analysis confirm that, at the hourly timescale, significant-preeipitation-events-they generally fall within the meso-
v scale (2-20 km), with only occasional instances extending-to-larger-spatial-exhibiting larger spatial extents. This result is

consistent with the fact that precipitation structures are extracted from a 4 km convection-permitting reanalysis precipitation
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field, which is capable of representing convection (Cavalleri et al., 2024a) even if it may not fully resolve it at the smaller scales.

This finding is particularly relevant for applications that require knowledge of the typical spatial scales of hourly precipita-

tionevents, such as spatial analysis of precipitation fields (Fortin et al., 2018; Van Hyfte et al., 2023). Moreoveritis-important

S+Hn general, structures with smaller spatial extents tend to correspond to higher intensities (see supplementary material, Figure
S2). Overall, the majority of events-HPSSs concentrate on low values of intensity and spatial-sealesmall spatial extents. This

underscores the need to isolate the most extreme events-HPSSs to better understand their specific characteristics.
TFheresults-on-spatial-and-seasonal-distribution-of-eventsis-HPSSs are analysed using the methodology described in Section

2.3, resulting in seasonal climatological-means-maps of N (Figure 6), SpS—(Figure- 2 Avin(Figure-2?)-and-Pkln(Figure

22SpatExtent (Figure 7), Meanlnt (Figure 8) and PeakInt (not shown, see supplementary material). Higher values in a given

area indicate a greater number of everts-HPSSs with their centre of mass located within that region (for N), or larger values
of Avin;Pkin-and-SpS-Meanlnt, PeakInt and SpatExtent for those same events—Events-HPSSs. HPSSs may extend beyond the
boundaries of the window in which they are counted, since the averaging considers only the events-HPSSs whose centre of
mass lies within the window. However, most of the recorded events-HPSSs are well delimited in a small space (Figure 5c). It
is also important to emphasise that these means are computed from distributions that are strongly right-skewed, as shown in

Figure 5. Consequently, the values presented in the maps should be interpreted with some caution. While they may not fully

HPSS intensity and spatial
extent, they are informative when used to explore spatial and seasonal patterns and relative-differences-aeross—regionstheir

relative differences.

capture the absolute characteristics of typical

The spatial distribution of N (Figure 6) shows that, in summer, most of the events-HPSSs occur in the Prealpine regions, with
secondary hotspots along parts of the Apennines, and almost no events-HPSSs over the sea. In autumn and winter, the areas
with high N shift toward coastal and offshore areas, particularly along the Tyrrhenian and Ligurian seas. During spring, the
Prealps and Apennines are again prominent, although the occurrences are generally lower than in summer. The Po Valley and
Prealpine region exhibit very low N ef-events-during the winter season. These seasonal patterns reflect the typical climatology
of convective precipitation in Italy, which tends to be more frequent during the warmer months and over mountainous regions

and coastal areas (Lombardo and Bitting, 2024).

The seasonal maps of SpS—(Figure-22?SpatExtent (Figure 7) reveal that during summer events-are-generally-smaller HPSSs
have generally smaller extents, with typical average SpS-SpatExtent ranging between 10 and 20 km, especially along coastal

areas and in southern Italy, and from 20 to 30 km in the other Italian areas. This is consistent with the convective nature of
summer precipitation. Springs-show-shightly-targer-SpSSpring shows slightly larger SpatExtent, but still below 30 km over the
Prealps and in southern regions, where autumn also displays these-valuesef-SpSsimilar values, despite showing larger ones
over plain areas in the north and central Italy. In contrast, winter is characterised by generally larger eventsHPSSs, especially

over the Po Plain, where average spatial-seales-SpatExtent commonly reach 50 km, exceeding values registered over the
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Figure 6. Seasonal map of N occurring within the 0.5 x 0.5 windows (step size 0.1), averaged over the period 1986-2022.

Alps and Apennines. This broader spatial-extent reflects the influence of large-scale synoptic systems typical of wintertime
precipitations over Italy. Overall, these patterns highlight a seasonal modulation in SpSSpatExtent, reflecting the shift from
localised convective activity in summer to more widespread, synoptic-driven precipitation in autumn and winter.

The spatial distribution of Avln—(Figure-2?Meanlnt (Figure 8) highlights summer as the season with the highest average
intensities, often exceeding 5 mm/h with maxima of more than 7 mm/h in some areas along the Adriatic coast, such as Calabria,
the Tyrrenian sea, southeastern parts of the islands and southern Apulia. In winter, intensities generally range between 2 and
3 mm/h over most of the peninsula, dropping below 2 mm/h along the Alpine arc and exceeding this value only slightly in
some southern areas and along the Tyrrhenian coast. During spring, values between 3 and 4 mm/h are widespread throughout

Italy, except for isolated spots over 4 mm/h in similar areas to those observed in summer. In autumn, slightly higher intensities,
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Figure 7. Seasonal map of SpS-SpatExtent of the events-HPSSs occurring within the 0.5 x 0.5 window (step size 0.1), averaged annually
over the period 1986-2022.

ranging from 4 to 5 mm/h, cover most of the country, while lower values persist only in the Prealpine and Alpine regions.

Intensities above 5 mm/h are found mainly along the coastal areas and over the surrounding seas.

: gure-22)-f asona asts: aps-seasonal patterns
of Peaklnt (Figure S3, supplementary material) closely resemble those for Avln;-altheugh-Pkin-MeanInt, although PeakInt

are generally higher. Pidn-PeaklInt increases from winter values ranging between 2 and 7 mm/h to well over 15 mm/h during

summer, with spring and autumn showing intermediate values. Notably, in autumn, Pkla-PeakInt exceeding 10 mm/h are
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Figure 8. Seasonal map of Avla-MeanlInt of the events-HPSSs occurring within the 0.5 x 0.5 window (step size 0.1), averaged annually over
the period 1986-2022.

mostly confined to coastal areas and the surrounding seas. In summer, Pkin-Peaklnt surpasses 17 mm/h in the same regions
characterised by high summer Avln-(Figure-2?MeanInt (Figure 8).

Since it is not straightforward to determine to-what-extent-the extent to which the seasonal differences in Figures-6;:22-22%
and-22-those maps are influenced by the use of seasonally varying thresholds for event-HPSS selection, a set of corresponding
figures derived from the event-based-dataset built using a fixed 1 mm threshold is provided in the SupplementaryMaterial
(Figures-52:-53;-S4-and-SSsupplementary material (Figures S4-S7). These figures display very similar spatial patterns—, al-
beit with generally lower intensity values—suggesting-. This suggests that the observed seasonal differences primarily reflect
genuine-variability-the signal of the model rather than artefacts introduced by the clustering method. Overall, the-climatological
maps-of-hourly precipitation-eventindicators-these results are consistent with the established climatology of the region (Crespi
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et al., 2018; Giordani et al., 2025). However, while Avln-andPkIn<(Figures?2-and-22)-Meanlnt and PeaklInt seasonal maps

appropriately reflect higher values during the autumn and summer seasons, they also display certain inconsistencies. In partic-
ular, some areas exhibit an overrepresentation of convective activity during summer, which may not fully align with observed

patterns. This issue will be examined in greater detail in the Discussion section 4.

3.2

Extreme Hourly Precipitation Events-Extremes analyses

according to Section 2.4) to gain insight into the HPEs patterns and tendencies. This resulted in approximately 4.8% of
al-events-as-EPEsHPSSs selected as HPEs, corresponding to an average of around 7800 heurly-events-HPEs per year across

the whole domain, with a notable interannual variability of about 30%. Most EPEs-HPEs are selected from summer (11% of all
summer eventsHPSSs) and autumn (7%), while only a marginal fraction are-is identified in spring (1.5%) and winter (0.5%).
This seasonal breakdown results from the combined effect of higher thresholds applied for event-HPSS identification during
summer (Figure 1), which selected relatively intense preeipitation-events-HPSSs even within the full dataset for that season,
and the use of a fixed threshold (average RX1hour) for EPE-HPE selection throughout the year. The greater number of heurly
EPEs-HPEs in summer and autumn is also consistent with the expectation that hourly precipitation more effectively captures
extremes and their associated impacts at smaller spatial scales, such as convective storms and other meso-vy scale phenomena,
particularly prevalent during the warmer seasons. Consequently, the Sections 3.2 and 3.3 focus exclusively on summer and

autumn precipitation extremes.
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Figure 9. Seasonal distributions within the EPEs-HPEs subset: a) average-mean intensity, b) peak intensity, and ¢) maximum linear spatial

seate-extent of EPEsHPES. Distributions are normalised by the total number of EPEsHPESs:; that is, the sum of the integral of the four seasonal

distributions gives 1. Binning as in Figure 5.
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A comparison between the distributions of intensity and spatial scale within the EPE-HPEs subset (Figure 2?9) and those
from the full set-of-events-dataset (Figure 5) confirms that the applied filter effectively excludes a substantial number of events
HPSSs from the lower tails of the distributions. This effect is quite obvious for the peak intensity, which is explicitly used as
the filtering parameter. However, it also significantly influences the distribution of average-mean intensity, suggesting that, on
average, EPEs-HPEs are not only more intense locally but also tend to have higher average-mean values. Moreover, the peaks
of-the-spatial-seale-spatial extent distributions are shifted towards larger values. Summarising, the applied filtering leads to the
exclusion of a large fraction of small and weak eventsHPSSs, not meaningful for the EPEs-HPESs analysis.

The climatological seasonal maps of N within the EPEs-HPEs subset (Figure 2210) highlights clear seasonal differences

between summer and autumn.
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Figure 10. JJA and SON maps of aumberHPEs occurrences (N) ef- EPEs-oceurring-within the 0.5 x 0.5 window (step size 0.1), averaged
annually over the period 1986-2022.

l

In summer, EPEs-HPEs occur predominantly over mountainous areas, particularly the Alps and some spots along the Apen-
nines, and Calabria, reaching 20 to 30 events-HPEs per 0.5° grid window per year. In contrast, coastal and marine regions
display a significantly lower N, often fewer than 3 per window per year. In autumn, N is substantially less compared to sum-
mer. However, a clear spatial shift emerges: mountain areas experience fewer to none eventsHPEs, while coastal and marine
zones see some, with over 7 occurrences per window per year observed along many stretches of coastline. This-The sea-
sonal redistribution is likely driven by the persistence of summer-like-conveetive-activity-into-early-avtumn-atlower-latitudes;
where-warm sea surface temperatures-contintue-to-supportintense-storm-development-conditions beneath a cooler atmosphere,

creating conditions favourable to convection and sustaining intense precipitation activity into autumn. (Cheng et al., 2022;
Argiieso et al., 2024).
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Marked differences between summer and autumn also emerge in terms of SpS-(Figure-22SpatExtent (Figure 11). In summer,
EPEs-HPEs rarely exceed 50 km in size, except in limited areas such as Friuli (North-East) and South Switzerland, and remain
well below 20 km across much of southern Italy and the islands. Conversely, in autumn, significantly larger events-HPEs
(exceeding 100 km in spatial extent) are frequently observed. Spatial sealesremain-smaller-extents remain small mainly in the

445 south, along the Adriatic coast, and over the islands. This suggests that EPEs-HPEs are typically small, convective systems
during summer across most of the Italian territory, and during autumn along the southern coastlines. In contrast, in northern

Italy and neighbouring regions, autumn EPEs-HPEs are more frequently associated with larger-scale systems.
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Figure 11. JJA and SON maps of the-Spatial-Seale-(SpS)-SpatExtent of EPEs-the HPEs occurring within the 0.5 x 0.5 window (step size
0.1), averaged annually over the period 1986-2022.

The climatological maps for the Avln-and-the Pkln-ef EPEs-Meanlnt and the PeakInt of HPEs are provided in the Supplementary
Matertal-(Figures-S6-and-S7supplementary material (Figures S8 and S9). Overall, their spatial patterns closely resemble those
450 observed for the full set-ofprecipitation-eventsdataset, though with generally higher values, due to the filtering, which also
reduces the seasonal differences. Specifically, the Avlan-Meanlnt range from approximately 5 to 15 mm/h, increasing from the
Alpine regions to southern Italy for both seasons, while the Pkln-PeaklInt range from 20 up to 50 mm/h, with the lowest values
again found over the Alps and the highest values concentrated in the same hotspots highlighted before, such as the southern

Apulia.

455 3.3 Extreme Hourly Precipitation Event Extremes trends
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Finally, given the context provided by the previous results, a trend analysis within the subset of EPEs-HPEs is conducted,
following the methodology outlined in Section 2.5. Significant trends in the number of EPEs-HPEs occurrences (N) during
summer and autumn are detected (Figure 2212). Trends are expressed as percentages relative to the seasonal and local mean
values of N (i.e., normalised by the values shown in Figure 2210). For example, a 10% trend in Figure ??-12 means a decadal
increase of 10% in N, indicating that, on average in that area, approximately 30% more EPEs-HPEs occur at the end of the
study period compared to its beginning. Overall, a general increase in EPEs-HPEs occurrences is detected across the peninsula,

even though only some regions exhibit statistically significant trends.
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Figure 12. Maps of the significant decadal relative trends in the number of Hourly Precipitation Extremes (HPEs) occurring within each 0.5°

X 0.5° window (sliding step: 0.1°) for summer (JJA) and autumn (SON). Black dots indicate statistically significant trends. Areas with more

than 10 years without HPEs are masked in grey. The four colored boxes for each season highlight the regions used to extract the time series

shown in Figure 13.

In summer, a significant increase of approximately 20% to 30% per decade is detected across several Alpine and Prealpine
regions, and in some parts of Calabria. In autumn, significant trends are primarily concentrated over the southern Apennines,
and various coastal and sea areas, such as Ligurian eastern coast, the eastern coast of Sardinia, the southern Adriatic Sea,
and the Ionian Sea. Individual series of some selected areas (specifically, inside eoloured—colored 0.5 degree windows—of
Figure-2?boxes of Figure 12) are extracted to visualise the EPEs-N-series-HPEs annual occurrences along with the detected

trends (Figure 2213). In summer, trends ranging from 10% to 40%, depending on the region, correspond to an increase of 2

to 6 extreme preeipitation-events(EPEs)-HPEs per decade. In autumn, comparable percentage changes are associated with
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a smaller increase of 1 to 2 EPEs-HPEs per decade. In both seasons, some regions also display positive trends that are not
statistically significant (e.g., Boxes-boxes 4 and 8 in Figure-2?Figures 12 and 13), likely due to high interannual variability that

dominates the signal.
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Figure 13. Time series of the annual N of HPEs within the colored windows in Figure 12. The left column shows the summer (JJA) series,
while the right column displays the autumn (SON) series. Trend lines are plotted for each series, and the corresponding decadal trends are
reported. Grey (last row) plots denote non-significant trends.

480 Trends are also computed for the SpS;-Avin—andPldn-of EPEs—(see-Supplementary-SpatExtent, Meanlnt, and PeaklInt of
HPEs (see supplementary material, Figures $8;-59:-516S10, S11, S12, respectively). Overall, only weak trends (below 10%a

deeadeoverttaly/decade) are observed, primarily over land points in summer and over some marine areas in autumn, showing

alternating—patterns—spatial heterogeneity in the sign of the signal with a slight tendency toward increasing intensities and

decreasing spatial scales. However, none of these trends is statistically significant at any location. This suggests that changes
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over time are more likely associated with the frequency of EPEs-HPESs rather than their intensity or spatial extent. It may also
reflect the lower noise sensitivity of eventcounts- N compared to other indicators. Mereever;-trend-estimates-based-on-IN-
Trend estimates could be biased by potential double-counting of temporally persistent evertsHPEs, as the analysis is con-
ducted at hourly resolution. To address this, an additional analysis quantifies event HPEs persistence, defined as the number of
consecutive hours during which an EPE-(i-e-an-eventexeeeding HPSS exceeds the local average RX1hour threshold )-affeets

within the same window.
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Figure 14. seasonal (JJA and SON) maps of the average EPEs-HPEs persistence (expressed in hours) occurring within the 0.5 x 0.5 window
(step size 0.1).

Results (Figure 22?14) show that persistence exceeds one hour only marginally in most regions, with average persistence
values above 1.5 hours limited to a few localised areas expecially during autumn, such as the Ligurian Gulf, where persistent
mesoscale convective systems are more common (Cassola et al., 2016), and in parts of eastern Sardinia and southeastern Sicily,
where prolonged convective activity can occur (Forestieri et al., 2018). These findings support the overall temporal isolation of

most EPEs-HPEs and suggest that the impact of double-counting on trend estimates remains limited.

4 Discussion

In understanding the results of this work, it is important to underline the uncertainties in analysing signals from the-reanalysis

Nre N On he MERIIPA-HRE aan nrovidecho nye N1 on—feldeove on
v 2 v v v V
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precipitation as represented by MERIDA HRES. First, while this 4 km model can explicitly represent convective processes
(Viterbo et al., 2024; Cavalleri et al., 2024a), it may not fully resolve all aspects of these phenomena. For the purposes of
this study, however, the HPSS isolated from MERIDA HRES hourly fields resulted consistent with the spatial scales under
investigation (Thunis and Bornstein, 1996) and allows for a characterization of hourly precipitation patterns, even if some
sub-grid aspects of convection may not be fully captured.

Then, as described in Section 2.1, a precipitation overestimation bias is present in summer. These localised wet biases
consistent-across-timeseales;likely-stemfrom-a moverly active exphclt convection in the model, as %uggested

by%gufeﬂ—aﬂdﬂw This behaviour is—

may be associated with a less accurate estimation of skin temperature at the land-sea interactions—that-often—arise-interface
due to the interpolation of skin temperature from the coarse ERAS5 domain to the finer-resolution MERIDA HRES domain.
Overestimation of skin temperature may occur at certain points along the coastlines, leading to high values of latent heat

flux. In particular meteorological conditions associated with convective instability, this may exacerbate convection, resultin
in an overestimation of precipitation in H-S i se-as i

aceountamounts.
However, it is important to notice that these biases are temporally stable and do not coincide spatially with the areas

showing significant E

totals—is—abeut-HPSs increases. Another aspect to consider is the deviation of MERIDA HRES annual precipitation trends
from observational ones (Cavalleri et al., 2024a). The average deviation over Italy has been quantified at approximately 4% for

decade;meant

than-a-true-etimatestgnat. This value is not neghglble but everatr msmall if compared to the 10% to 40% increases

found in E

HPEs occurrences. Moreover, the regions where this discrepancy is more marked (see supplementary material of Cavalleri
et al. (2024a);-) do not overlap with those in which significant trends in EPEs-HPEs occurrences have been found. In principle,

such biases could have masked decreasing trends in those areas; however, the overall spatial pattern suggests that this scenario
is highly unlikely.

The increasing trends in hourly EPEs-HPEs identified in this study for the period 1986-2022 align with several previous

research efforts based on both sub-daily and daily extreme precipitation observations across Italy and its specific regions. In
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particular, Mazzoglio et al. (2025) reported positive trends in the same Prealpine area analyzed here, based on the RX1hour
index, largely attributed to summer convective activity. At a regional scale, Dallan et al. (2022) examined extreme precipitation
trends from 1991 to 2020 by separating storm intensity and occurrence frequency, attributing the observed increases in the
Eastern Alps to a growing proportion of sub-daily convective storms during summer. Similarly, Persiano et al. (2020) found a
generalized increase in both the frequency and intensity of sub-daily extreme rainfall over the Apennines in Emilia-Romagna
(northern Italy) for the 1961-2015 period. Moreover, Pavan et al. (2019), using a daily gridded precipitation dataset for the
north and central Italy covering 1961-2015, reported significant positive trends in the 90th percentile of daily precipitation
across most of the Alpine area and the northern Po Valley during summer, also supporting the idea that summer and autumn
are the seasons most affected by precipitation changes. In autumn, some of the hourly EPEs-HPEs trends detected in this
study agree with findings by Capozzi et al. (2023), who, based on daily station data for the 2002—-2021 period, documented an
increasing tendency in both the intensity and frequency of heavy rainfall events in inland Campania. Additionally, the autumnal
trends over the central Pre-Alps-Prealps are in line with the results of Pavan et al. (2019), who also reported significant increases
in daily precipitation extremes over the Alps during autumn. This kind of local evidence provides an important observational

context that supports the reliability of some of the signals identified through the present reanalysis-based approach.

5 Conclusions

This study employs hourly precipitation fields from the convection-permitting MERIDA-HRES reanalysis to investigate the
characteristics of hourly precipitation eventsspatial structures, with a focus on their-most-extreme-components-the extremes
and their temporal evolution over the period 1986-2022. This approach yields a twofold outcome. First, it enables the con-
struction of the HOPE-X-HOPSS-X dataset, an event-based-archive in which nearly 6 million significant-preeipitation-events
precipitation structures are described by a set of intensity and spatial characteristics. Second, by-iselating-the-most-extreme
stubset-of-these-events;—the-methodfactitates—a_method is proposed to facilitate the description of extreme-patternsand-the
deteetion-of-hourly precipitation patterns, and, by isolating the most extreme subset, to detect statistically significant trends in
the occurrence of EPEs-during-summer-and-autumnhourly extremes.

In summer, increasing trends in HPEs occurrences are detected over several Alpine and Prealpine regions as well as in parts
of Calabria. In autumn, the most prominent trends emerged over the southern Apennines, over the central Pre-AdpsPrealps,
and several maritime regions, including Ligurian eastern coast, the eastern coast of Sardinia, the southern Adriatic Sea, and the

Ionian Sea.

The results obtained in this work represent an additional perspective within the ongoing and complex debate on precipitation
trends in Italy, even with full awareness of some of the limitations of reanalysis datasets. Spatial uncertainty of MERIDA
HRES reanalysis was addressed through an-event-based-a_ structure-based approach, which allowed the identification and
subsequent spatial aggregation of hourty-events HPSSs using moving windows, with the intent of reducing the impact of spatial
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misplacement errors. The results were also interpreted in light of some known and documented local biases of the reanalysis,

such as the systematic -thought constant- overestimation of convective precipitation in some areas and seme-diserepaneies

where statistically significant trends in the occurrence of EPEs-were-deteeted—

HPE:s are detected generally did not overlap with these of such inconsistencies, supporting the robustness of the results.

The comparison with previous works on precipitation trends and extremes, based on observational data at both daily and
sub-daily timescales, supports the robustness of the results presented in this work. In particular, the consistency observed across
different studies strengthens the evidence of increasing occurrences of heurly-EPEs-HPEs over specific regions of Italy during

summer and autumn.

Future developments may involve leveraging the event-based-dataset HOPE-X-dataset HOPSS-X to explore additional char-
acteristics of EPEshourly precipitation structures, such as their dominant propagation direction and potential associations
with changes in large-scale atmospheric circulation (Iacomino et al., 2025). In selected regions, identifying and employing
sufficiently long hourly observational records could allow for a more direct validation of the detected trends. The approach
could also be extended to identify EPEs-precipitation structures of different nature and duration, including synoptic-scale
eventsprecipitation structures, by analysing longer accumulation periods (e.g., 3, 6, 12, or 24 hours). Furthermore, similar
event-based-datasets-datasets based on precipitation structures could be produced using the same methodology to detect EPEs

recipitation extremes in other regions where convection-permitting reanalyses are available.
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