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Abstract.  

Accurately quantifying methane emissions from cities, and understanding the processes that drive these emissions, is important 10 

for reaching climate mitigation goals. Methane emissions from New York City metropolitan area (NYCMA), the most 

populous urban area of the United States, have consistently been underestimated by emission inventories compared to aircraft 

and satellite observations. In this study, we used continuous rooftop measurements of methane over 6 winter-to-spring 

transitions (January–May, 2019–2024) to examine the variability of city-scale methane enhancements (ΔCH4) and estimate 

methane emissions from the NYCMA. We found large variability in the 10-day mean observed ΔCH4 (~50–250 ppbv) and 15 

monthly afternoon methane emissions rates (10.1–30.4 kg s–1) within and between the years of our study period. A recently 

released high-resolution regional methane emission inventory developed for the NYCMA performed better than other global 

and national inventories against the rooftop observations but still underestimated methane emissions, especially in winter. The 

estimates of methane emissions correlated with those of carbon monoxide (CO) emissions, determined from coincident 

measurements, suggesting a common city-scale incomplete combustion source for both methane and CO. Our analysis of these 20 

continuous measurements also implies a consistent diurnal cycle in urban methane emissions from the NYCMA, which reveals 

a potential bias in traditional afternoon-only approaches in this domain. This work highlights the usefulness of a long term, 

multi-species approach to constrain urban greenhouse gas emissions and their sources. 

1 Introduction 

Methane (CH4) is the second most potent greenhouse gas for climate change, with a global warming potential ~80 times greater 25 

than carbon dioxide (CO2) over 20 years (Forster et al., 2021). Atmospheric methane has a lifetime of only ~9 years (Prather 

et al., 2012) and thus provides a better opportunity than CO2 for near-term mitigation of warming with emissions reductions 

(Jackson et al., 2020; Ocko et al., 2021; UNEP, 2021). The largest global anthropogenic sources of methane to the atmosphere 

are livestock production, the oil and gas industry, and landfills and other waste, while natural methane emissions come largely 

from wetlands (Saunois et al., 2020). However, the trends, magnitude, and variability of these methane emissions sectors 30 
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remain uncertain (e.g., Tibrewal et al. (2024); Turner et al. (2019)). Recently, methane emissions from oil and gas infrastructure 

(i.e., rural production facilities, pipeline leaks in cities) have received particular attention as mitigation targets (Alvarez et al., 

2018; Ocko et al., 2021), highlighting the importance of accurately quantifying baseline methane emissions in order to track 

the effectiveness of mitigation efforts.   

 35 

In cities, anthropogenic methane emission sources are expected to be limited to landfills, wastewater treatment plants, and 

natural gas distribution (pipelines), with some natural wetland emissions. Previous studies have identified atmospheric methane 

emissions that were greater than expected from inventories for cities across the world (e.g., in the United States of America 

(US): Boston (McKain et al., 2015; Sargent et al., 2021); Indianapolis (Lamb et al., 2016); Washington, DC (Ren et al., 2018); 

Los Angeles (Wunch et al., 2016); and Europe: Utrecht, Netherlands (Maazallahi et al., 2020); Hamburg, Germany (Forstmaier 40 

et al., 2023; Maazallahi et al., 2020); Munich, Germany (Chen et al., 2020); Bucharest, Romania (Fernandez et al., 2022)). 

Numerous studies from cities in the US have identified an unexpected correlation between methane emissions and natural gas 

consumption (e.g., He et al. (2019); Huang et al. (2019); Sargent et al. (2021)). Sargent et al. (2021) found methane emissions 

from Boston did not follow the distribution of natural gas infrastructure, and there was little decrease in emission rates over 8 

years, despite concentrated efforts to mitigate leaks from pipelines. Without improved source attribution and understanding of 45 

urban methane emission processes, it is unlikely that cities will meet mitigation targets. 

 

The New York City metropolitan area (NYCMA) is the densest and most populated urban region in the US and contains some 

of the oldest infrastructure of the country. Previous work to measure atmospheric methane in the NYCMA has used airborne 

data that have focused on snapshot time periods, particularly good weather days in the fall, winter, and spring. For example, 50 

using April and May 2018 aircraft observations, Plant et al., (2019) showed that the NYCMA was by far the largest urban 

source of methane across the northeast US and that the city emits 3–5 times more methane than estimated by the US national 

gridded inventory for 2012 (Maasakkers et al., 2016). Additional airborne measurements in November, February, and March 

over two winters (2018-2020) found methane emissions from the NYCMA to be 2.4 times higher than the same national 

inventory (Pitt et al., 2022). Analysis of flights from September 2017 and March 2018 indicated that the observed methane 55 

was more likely to be from natural gas than microbial sources around the NYCMA (Floerchinger et al., 2021). 

 

The most recent US national gridded inventory (EPA GHGI v2023, Maasakkers et al., 2023) reduced the estimated methane 

emissions relative to the previous version (EPA GHGI v2016, Maasakkers et al., 2016) for the NYCMA, thus worsening the 

underestimate. EPA GHGI v2023 did not include natural gas post-meter methane emissions (assumed 100% combustion 60 

efficiency), but the simultaneously released EPA GHGI v2023 with Express Extension (EE) included a post-meter estimate 

that accounts for ~12% of total methane emissions in our study domain. A recently released higher-resolution regional 

inventory specific to the NYCMA indicated much greater methane emissions (~50% higher, including natural gas post-meter) 

than EPA GHGI v2023 but still underestimated airborne methane observations (Pitt et al., 2024b). 
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Satellite-based instruments have the potential to provide daily measurements of methane columns across large, diverse regions. 

However, these observations are limited to only clear sky afternoons, and current shortwave infrared instruments do not 

produce high-quality data over water, which presents a challenge for observing methane over coastal urban regions like the 

NYCMA, particularly surrounding the urban core of Manhattan Island. Still, Plant et al. (2022a) estimated the methane 

emissions from the NYCMA using TROPOMI data (methane and carbon monoxide (CO) column enhancement ratios) from 70 

37 days of 2019 and found the mean emission rate to be 3-4 times larger than the EPA GHGI v2016, with a confidence interval 

spanning nearly twice the mean. The national-scale inversion performed by Nesser et al. (2024) using TROPOMI methane 

columns from 2019 found methane emissions for the NYCMA to be similar to the aircraft-constrained estimates from Pitt et 

al. (2022) and Pitt et al. (2024b). Continuous, in situ measurements bridge the gap in the observing system between airborne 

and satellite studies by providing additional temporal coverage through all weather and times of day. 75 

 

In this study, we aimed to quantify and characterize the variability of city-scale methane enhancements (ΔCH4) and emissions 

estimates from the NYCMA using continuous rooftop measurements from winter to spring over 6 years (2019-2024). Using 

an atmospheric transport model, we isolated the impacts of meteorology and emissions changes on the observed ΔCH4 and 

evaluated various global, national, and regional gridded methane emission inventories. We then identified changes to NYCMA 80 

methane emissions induced by the COVID-19 shutdown of spring 2020 and compared them with observation-informed 

estimates of coincident CO. Finally, we determined monthly methane and CO emissions estimates for our study period and 

domain and investigated the variability of these emissions over various timeframes to gain insight into the previously 

underestimated urban methane emissions sources. 

2 Methods 85 

2.1 In situ Observations 

In this study, we used in situ observations of atmospheric methane abundance from a rooftop observatory in the dense urban 

core of the NYCMA and from a remote site located generally upwind of the city, which helped determine the abundance of 

methane entering the domain (i.e. the background). 

2.1.1 Rooftop Measurements in the Urban Core 90 

Ambient methane dry-mole fractions (units: ppbv, parts-per-billion by volume) were measured at the City University of New 

York Advanced Science Research Center (ASRC) Rooftop Observatory in Hamilton Heights, West Harlem, Manhattan 

(40.81534°N, 73.95033°W), a site located 56 m above ground level (93 m above sea level, a.s.l.) (Fig. S1). The CUNY ASRC 

site has been used extensively in recent years as a site representative of high-density urban air around the New York City 

metropolitan area. It has been the site of long-term studies (Schiferl et al., 2024), instrument characterization studies (Commane 95 
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et al., 2023, Khare et al., 2022), COVID activity change studies (Cao et al., 2023, Tzortziou et al., 2022) and was the location 

of atmospheric chemistry focused intensive studies in 2022 and 2023 (e.g. Hass-Mitchell et al., 2024 for the NYC-Mets 

project). The site sampled air most strongly interacting with the surface of a large area of Upper Manhattan and the Bronx and 

observed a mixture of methane from thermogenic and microbial sources including from natural gas infrastructure, wastewater 

treatment plants, and landfills. Additional details of the ASRC site were described in Commane et al. (2023) and Cao et al. 100 

(2023).  

 

Several different instruments were used to measure dry-mole fractions of methane over the 6 consecutive winters and springs 

(January – May) of the study period (2019 – 2024) due to varying availability. The instruments used in this study were (i) 

Picarro G2401-m for 2019, 2020, and 1 January – 16 March 2023 (reporting at 0.5–1 Hz), (ii) Picarro G2401 for 2021, 16 105 

March – 31 May 2023, and 2024 (reporting at ~0.3 Hz), and (iii) Aerodyne SuperDUAL for 2022 (reporting at 1 Hz). Each 

instrument was calibrated using gas cylinders that were traceable to standards calibrated by the Central Calibration Laboratory 

(CCL) at the National Oceanographic and Atmospheric Administration (NOAA) Global Monitoring Laboratory (GML) in 

Boulder, Colorado, USA. CCL maintains the World Meteorological Organization (WMO) methane scale (WMO CH4 

X2004A). The Aerodyne SuperDUAL set-up at ASRC was described in Commane et al. (2023). Simultaneous measurements 110 

of dry-mole fractions of carbon monoxide (CO, calibration scale WMO CO X2014A) made at the ASRC site for 2019–2022 

were described by Schiferl et al. (2024). Here we extended that record of CO measured at the ASRC site to include January–

May 2023–2024.  

 

We calculated the hourly mean methane dry-mole fraction at the ASRC site for hours with at least 50% valid sub-hourly 115 

observations (e.g., at least 1800 1-Hz measurements), which were rounded to the nearest 1 ppbv. Since we were interested in 

characterizing the methane variability of the entire NYCMA, rather than nearby sources, we removed the local-scale plume 

observations from the city-scale analysis. In the 1-Hz data, all examples of highly variable methane plumes (ie. near field 

sources) were strongly correlated with highly variable CO (R2 > 0.99). Methane observations were categorized as either city- 

or local-scale using the variability of the co-located CO observations at the ASRC site: hours with a CO standard deviation 120 

below 200 ppbv do not contain large plumes and were classified as city-scale. The threshold of 200 ppb for the CO standard 

deviation was chosen from a sensitivity analysis to replicate the results of the two-tower approach detailed in Schiferl et al., 

2024. The categorization scheme indicated that many of the largest methane peaks were from local-scale sources near the 

observation site (Fig. S2), as was the case for CO in Schiferl et al. (2024). As these plumes are not representative of the broader 

city scale, especially in 2020–2023, they were excluded from the analysis. The observed city-scale methane mole fractions had 125 

hourly peaks that were generally below 3000 ppbv and accounted for nearly 80% of the total observed hours. We also 

calculated the hourly mean CO at the ASRC site and classified hours of city-scale observed CO as for methane. 
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2.1.2 Remote Measurements to Constrain Domain Inflow 

We used hourly methane dry-mole fractions for the entire study period from the Picarro G2301 on the Earth Networks tower 

in Stockholm, New Jersey (SNJ, 41.14356°N, –74.53872°W; 406 m a.s.l., 53 m above ground level intake height) as a paired 130 

remote background site (see Fig. S1, Sect. 2.2). The SNJ site was described by Karion et al. (2020), and the Earth Networks 

measurement system module was described by Welp et al. (2013) and Verhulst et al. (2017). All data were calibrated to the 

NOAA WMO calibration scale (WMO CH4 X2004A), and data are archived at the National Institute of Standards and 

Technology (NIST) (Karion et al., 2025). 

2.2 Observed Methane Enhancement Calculation 135 

We defined the observed methane enhancement (ΔCH4) from the NYCMA for each hourly city-scale observation as in Eq. 1: 

 

  observed ΔCH4 = observed CH4 – background CH4     (1) 

 

where the observed ΔCH4 (units: ppbv) was the observed methane dry-mole fraction with the background methane removed. 140 

The background methane accounts for the atmospheric methane entering the study domain prior to being impacted by fluxes 

from the NYCMA.  

 

To approximate the potential range in background methane, we estimated the rolling hourly 10-day background methane in 

two ways: (i) the fifth percentile of mole fractions at the urban core (ASRC) site using only the city-scale methane observations 145 

and (ii) the mean of the methane observations at the remote (SNJ) site, with both methods using data from the previous and 

following five days. These background estimation methods were applied as in Schiferl et al. (2024). We determined a 

confidence interval (CI) for each hourly background by calculating a distribution of backgrounds using a resampling bootstrap 

(n = 1000) with replacement over the methane observations for each rolling 10-day window. The background methane mole 

fractions were variable but most often peaked in late winter and declined toward June (Fig. S3). We also observed an increasing 150 

trend in background methane from year-to-year consistent with the increase in global atmospheric methane. The 95% CI for 

each hourly methane background was generally smaller, especially using the remote site method, than the variability in the 

background over time, which indicated high relative confidence in that background at a given hour. Differences in the 

background methane calculated from the two methods (an estimation of the background uncertainty) were up to 50 ppbv but 

were often much lower (~5–10 ppbv). Given the position of the remote site in the prevailing upwind direction relative to the 155 

largest emitting regions of the NYCMA (Fig. S1), it is unlikely that the NYCMA was heavily sampled at the remote site, 

except for days with strong east winds. In this case, using the remote site as a background may lead to an underestimate in the 

magnitude of the observed ΔCH4. 
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Observed ΔCH4 was calculated for the ASRC site using the observed methane from that site and the distributions of both the 160 

urban core fifth-percentile background and the remote background. From the hourly observed ΔCH4, we calculated: (i) the 10-

day mean observed ΔCH4 centered on each day of the study period, which allowed us to assess sub-monthly methane variability 

while removing variability on synoptic timescales, and (ii) the mean observed ΔCH4 for each two-hour period throughout the 

day (a diurnal pattern) over various periods to assess sub-daily methane variability. These averaging techniques were 

previously used by Schiferl et al. (2024) to assess the variability of CO from the NYCMA, but here we estimated the mean 165 

observed ΔCH4 and corresponding CI by calculating a distribution using a resampling bootstrap (n = 1000) with replacement, 

where the sampled population included the distribution of backgrounds from both methods and the variability of observed 

methane within each averaging period. As in Schiferl et al. (2024), we only calculated the mean observed ΔCH4 over averaging 

periods with at least 50% valid hours. We also recalculated and extended the record of observed ΔCO from Schiferl et al. 

(2024) at the ASRC site using the urban core fifth-percentile and remote site mean backgrounds to match the time period of 170 

study and method for ΔCH4 (now through 2024). For CO, the remote background was calculated using observations from the 

regional-scale Air Quality System (AQS) site operated by the Environmental Protection Agency (EPA) site at Cornwall, 

Connecticut (Fig. S1) as in Schiferl et al., (2024) since the methane remote site (SNJ) did not measure CO. The calibration of 

the EPA CO observations and their comparability to the ASRC observations are discussed in Schiferl et al., (2024). To avoid 

biasing the corresponding distributions of mean observed ΔCH4 and ΔCO, we only used a given background site type (urban 175 

core or remote) in the distribution when both methane and CO data were available. 

2.3 Methane Emission Inventories 

We used anthropogenic methane emissions from 6 global, national, and regional inventories: 1) the global Emissions Database 

for Global Atmospheric Research (EDGAR) v6.0 for 2018 (Crippa et al., 2021), 2) the global EDGAR v8.0 for 2018 (Crippa 

et al., 2023, 2024), 3) the national EPA Greenhouse Gas Inventory (GHGI) v2016 for 2012 (Maasakkers et al., 2016), 4) US 180 

national EPA GHGI v2023 for 2018 (Maasakkers et al., 2023), 5) the national GHGI v2023 with Express Extension (EE) for 

2018 (Maasakkers et al., 2023), and 6) the regional Pitt High-Resolution Inventory for 2019 (Pitt et al., 2024b). We used 

methane inventory emissions from the year 2018, which was the most commonly available year in our set of inventories, or 

from the closest year to 2018, when that year was not available. All methane emissions inventories used here were available 

monthly at 0.1°x0.1° spatial resolution, except for the Pitt High-Resolution Inventory, which presented an annual emissions 185 

rate at 0.02°x0.02° over a regional domain centered on the NYCMA. The Pitt High-Resolution Inventory used here was an 

ensemble comprised of 16 versions with varying scaling assumptions for the wastewater, stationary combustion, and natural 

gas distribution and post-meter sectors. 

 

According to these inventories, landfills (24.3 – 52.8%), wastewater (11.9 – 29.4%), and natural gas distribution (8.6 – 26.1%) 190 

generally provided the largest annual sources of anthropogenic methane emissions from the NYCMA domain, while stationary 

combustion made up 5.7 – 10.9% of the domain total (Table 1). Spatially, landfill and wastewater emissions appeared as point 
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sources, while natural gas distribution emissions followed population density (Figs. S4, S5). Inventory emissions were greatest 

in the center of the NYCMA, in the densest urban infrastructure. The New York City (NYC) subdomain (Fig. S1) emitted 

~30% of the NYCMA total methane emissions (Table S1). Large methane sources also existed away from the urban core as 195 

waste was transported for storage at suburban and rural landfill sites. 

 

 

 
Table 1. Annual methane emissions from various inventories by sector and totals for the New York City Metropolitan Area (NYCMA) study 200 
domain. The NYCMA area is 46.7×103 km2 and shown in Fig. S1. Methane emissions inventories are (left to right): Emissions Database for 
Global Atmospheric Research (EDGAR) v6.0 for 2018 (Crippa et al., 2021), EDGAR v8.0 for 2018 (Crippa et al., 2023, 2024), EPA 
Greenhouse Gas Inventory (GHGI) v2016 for 2012 (Maasakkers et al., 2016), EPA GHGI v2023 for 2018 (Maasakkers et al., 2023), GHGI 
v2023 with Express Extension (EE) for 2018 (Maasakkers et al., 2023), and Pitt High-Resolution Inventory for 2019 (Pitt et al., 2024b). For 
the Pitt High Resolution Inventory, emissions were the mean of the 16 ensemble versions. 205 

Methane Inventory Emissions 
[Gg CH4 yr–1] 

(Percentage of Total [%]) 

EDGAR 
v6.0 
2018 

EDGAR 
v8.0 
2018 

EPA GHGI 
v2016 
2012 

EPA GHGI 
v2023 
2018 

EPA GHGI 
v2023 EE 

2018 

Pitt High-Res. 
Inventory 

 2019 

Landfill 126.0 
(46.0) 

123.5 
(52.8) 

102.7 
(44.4) 

66.7 
(37.2) 

67.2 
(31.0) 

64.6 
(24.3) 

Natural Gas Distribution 23.6 
(8.6) 

23.2 
(9.9) 

39.5 
(17.1) 

40.1 
(22.4) 

48.4 
(22.3) 

69.3 
(26.1) 

Natural Gas Transmission 14.5 
(6.3) 

15.1 
(8.4) 

16.8 
(7.7) 

10.2 
(3.8) 

Natural Gas Post-meter     26.1 
(12.0) 

52.3 
(19.7) 

Wastewater 80.6 
(29.4) 

42.4 
(18.1) 

40.9 
(17.7) 

22.1 
(12.4) 

25.8 
(11.9) 

35.3 
(13.3) 

Stationary Combustion 15.7 
(5.7) 

25.6 
(10.9) 

15.3 
(6.6) 

17.3 
(9.7) 

17.2 
(7.9) 

15.4 
(5.8) 

Other 27.9 
(10.2) 

19.3 
(8.3) 

18.5 
(8.0) 

17.7 
(9.9) 

15.4 
(7.1) 

18.4 
(6.9) 

Total 273.8 234.1 231.4 179.1 216.9 265.6 
Total [kg s–1] 8.68 7.42 7.34 5.68 6.88 8.42 

 

The total methane emissions and the relative contribution of source sectors varied greatly between the inventories. EPA GHGI 

v2023 had the smallest total methane emissions for NYCMA (5.7 kg s–1), while EDGAR v6.0 (8.7 kg s–1) had the largest total 

(Table 1). While the variability between the inventory totals was substantial (up to 3 kg s–1), this uncertainty was much smaller 

than the range of potential methane emission rates derived from previous observational studies (~10 kg s–1). EDGAR v6.0 had 210 

very high wastewater emissions compared to the other inventories, with twice the wastewater emissions from EDGAR v8.0 

and four-times the wastewater emissions from EPA GHGI v2023. EDGAR v6.0 and v8.0 had larger landfill methane emissions 

than the other inventories, which were twice the landfill emissions from EPA GHGI v2023 and the Pitt High-Resolution 

Inventory. EDGAR v8.0 had ~50% higher stationary combustion methane emissions than the other inventories. EPA GHGI 
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v2023 EE and Pitt High-Resolution Inventory included methane emissions from post-meter natural gas, and the total emissions 215 

from that sector in both inventories were greater than the total natural gas distribution and transmission in EDGAR v6.0 and 

EDGAR v8.0, although the post-meter emissions in the Pitt High-Resolution Inventory were twice those in EPA GHGI v2023 

EE. Generally, EDGAR v6.0 and EDGAR v8.0 had very small natural gas emissions components and larger relative landfill 

and wastewater emissions than the other inventories. 

 220 

The differences in methane emissions between inventories were also evident in the spatial distribution of emissions throughout 

the domain. In the more densely populated NYC subdomain, EDGAR v8.0 had the smallest total methane emissions (1.4 kg 

s–1), while the Pitt High-Resolution Inventory had the largest (3.1 kg s–1) (Table S1). EDGAR v8.0 had more methane emissions 

from stationary combustion than from the wastewater, landfill, and natural gas sectors in NYC, while the natural gas component 

total alone from the Pitt High-Resolution Inventory was greater than the total for all sectors in EDGAR v8.0. EPA GHGI 225 

v2023 fell between EDGAR v8.0 and EPA GHGI v2016 in NYC total emissions and had more similar proportions by sector, 

but with lower wastewater and greater landfill emission totals, than the Pitt High-Resolution Inventory (and was missing post-

meter natural gas completely). EPA GHGI v2023 EE (with post-meter natural gas) was more similar in totals and sector 

proportions to the Pitt High-Resolution Inventory but had half the post-meter emissions. The higher spatial resolution of the 

Pitt High-Resolution Inventory allowed for more precise positioning of emission sources within the NYC dense urban core. 230 

The spatial variability between some of the inventories may have been due to the incorrect gridding of point sources in some 

cases, such as the large point sources in New Jersey placed in adjacent grid boxes between inventories (Figs. S4, S5). 

 

Monthly methane emissions changes in these inventories were minimal when applied over our January-May study period for 

the NYCMA. For example, EDGAR v6.0 and EPA GHGI v2023 varied less than 3% month-to-month compared to the mean 235 

annual rate. Monthly variability in EDGAR v6.0 was from stationary combustion emissions (5.7% of annual total), which 

dropped by more than 50% from January to May, while the monthly variability in EPA GHGH v2023 was from manure 

management (1.3% of annual total), which increased slightly only in May. 

 

Compared to EDGAR v6.0 (Fig. S4), EDGAR v8.0 (Fig. S5) used updated spatial proxies for power generation, industrial 240 

facilities, and population distribution (Crippa et al., 2024). Scaling applied to these updated spatial proxies resulted in lower 

methane emissions in EDGAR v8.0 throughout the NYCMA and a different spatial distribution associated with population-

dependent emissions such as wastewater and natural gas distribution. This change contrasts with the point source emissions 

from landfills which remained relatively constant between the two EDGAR versions. 

 245 

EPA GHGI v2023 updated methane emissions totals for more recent years using methodological improvements and additional 

sources, and it better aligned gridding methods with underlying data sets than EPA GHGI v2016 (Maasakkers et al., 2023). In 

addition to including methane emissions from post-meter natural gas, EPA GHGI v2023 EE provided annual emissions 
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estimates consistent with US methane emission totals for each year but with the same spatial pattern proxy from EPA GHGI 

v2023 in 2018. Both EPA GHGI v2023 and EPA GHGI v2023 EE had less methane emissions from the NYCMA than EPA 250 

GHGI v2016, which previous studies have shown to be too low for this region (e.g., Plant et al. (2019)). Most of this methane 

reduction came from lower emissions from the landfill and wastewater sectors. For 2012, the only coincident year between the 

EPA GHGI versions, EPA GHGI v2023 was about 7% lower than EPA GHGI v2016 for the NYCMA and 27% lower for the 

NYC subdomain. 

 255 

We did not apply any interannual emissions scaling to the inventories for our study period due to the large uncertainty of 

regional and city-scale variability, especially during the COVID-19 shutdown in 2020. Adding interannual variability to the 

inventories would have unnecessarily confounded the large differences that already existed between the inventories for the 

most common emissions year. While Crippa et al. (2020) suggested methods to implement diurnal variability in EDGAR using 

nationwide sector-specific scale factors, we did not apply a diel correction to the emissions of any inventory. Emissions for all 260 

inventories were constant throughout the day. Hourly methane emissions variability associated with stationary combustion 

was expected to be small. Methane emissions from natural sources (i.e., wetlands) are very limited during the winter and spring 

in the NYCMA, and we did not consider them here.  

 

We also used monthly-varying CO emissions from EDGAR v8.1 (Crippa et al., 2024) for 2018, which were 15% higher on an 265 

annual basis for the NYCMA domain and 67% higher for the NYC subdomain than the EDGAR v6.1 CO emissions (Crippa 

et al., 2018, 2020) evaluated in Schiferl et al., (2024). EDGAR v8.1 included the same updated spatial proxies as in EDGAR 

v8.0 for methane (Crippa et al., 2024). We used CO emissions from EDGAR rather than from the EPA National Emissions 

Inventory (NEI) because at this time only EDGAR had both CO and CH4 emissions, uniting the air quality and greenhouse 

gas emissions communities, as discussed in Schiferl et al. (2024). Hourly CO emissions variability from transportation 270 

combustion were expected to be much greater than that from stationary combustion, although we did not apply any hourly 

scaling to the CO emissions, consistent with our approach for methane. 

2.4 Simulated Methane Enhancement Calculation 

We simulated methane enhancements (ΔCH4) from the NYCMA for each hour of the study period as in Eq. 2: 

 275 

  simulated ΔCH4 = inventory CH4 emissions flux × surface influence footprint  (2) 

 

where the simulated ΔCH4 (units: ppbv) was an inventory methane emissions flux (units: nmol m–2 s–1) multiplied by the 24-

hour surface influence footprint (units: ppbv (nmol m–2 s–1)–1). The footprint is an indication of where and for how long the air 

interacted with the surface of the NYCMA in the previous 24 hours. We calculated simulated ΔCH4 using each of the 6 methane 280 

emissions inventories described in Sec. 2.3. We did not consider any loss of atmospheric methane over this 24-hour period 
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due to the long lifetime of methane (~9 years, Prather et al. (2012)), so all surface methane emissions intercepted by the 

footprint reach the observation site. 

 

We calculated the surface influence footprint using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven 285 

by NOAA High-Resolution Rapid Refresh (HRRR) meteorology (3 km horizontal, hourly temporal resolution): together 

referred to as HRRR-STILT (Benjamin et al., 2016; Fasoli et al., 2018). STILT estimates the impact of surface gas fluxes on 

the atmospheric mole fraction by moving particles backward in time in three dimensions based on the HRRR winds and random 

turbulence. Interaction between the surface flux and atmospheric mole fraction (the surface influence) happens when particles 

are present within the lower half of the mixing layer. The accumulated surface influence of the particles was smoothed onto a 290 

regular 2-dimensional grid to form a surface influence footprint for ease of combination with the emissions flux inventories. 

 

For this study, we derived the surface influence footprint at 0.01° horizontal and hourly temporal resolution for an integration 

period of 24-hours before the measurement at the ASRC observation site for each hour of the study period to match the hourly 

mean observations. Our configuration of HRRR-STILT for the NYCMA domain (Fig. S1) was previously used extensively to 295 

investigate CO and is described in more detail in Schiferl et al. (2024). While testing the configuration, Schiferl et al. (2024) 

found that the model configuration for vertical mixing and choice of meteorological product had little effect on the results at 

this site. They found that only the choice of the minimum Mixing Layer Height (MLH) produced a quantifiable change (> 1 

ppbv) in the simulated CO mixing ratio; a 20 ppbv increase in simulated CO enhancement was observed when reducing the 

minimum MLH from 250 m to 150 m (Figure S7 in Schiferl et al., 2024). We evaluated four possible parameterization of the 300 

MLH in STILT and all configurations simulated methane enhancements that differed by less than 1 ppbv in the afternoon, 

increasing to a maximum of 5 ppbv at night. We also tested the impact of the STILT minimum mixing height (150m v. 250m) 

and meteorological product (HRRR v. NAMS, North American Mesoscale Forecast System at 12 km horizontal resolution) 

on our monthly observation-informed emissions estimates (see Sec. 2.5) for 2023 and 2024 and discuss those sensitivity results 

in Sec. 3.3. 305 

 

The surface influence footprint from each hourly HRRR-STILT simulation combined with the inventory methane emission 

flux produced a single simulated ΔCH4, which we matched with the valid hourly observed ΔCH4 at the ASRC site. Mean 

simulated ΔCH4 and a corresponding distribution was calculated from the hourly simulated ΔCH4 as described above for the 

mean observed ΔCH4 (over 10-day and 2-hour periods). For the Pitt High-Resolution Inventory, the distribution of simulated 310 

ΔCH4 included the ensemble of 16 inventory versions. We also calculated hourly and mean simulated ΔCO using the same 

HRRR-STILT footprints and CO emissions from EDGAR v8.1. 
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2.5 Observation-informed Methane Emissions 

We calculated observation-informed methane emissions estimates from the NYCMA for each month (or various multi-week 

periods during the COVID-19 shutdown, see Sec. 3.3) of the study period as in Eq. 3: 315 

 

 observation-informed CH4 emissions flux = domain total inventory CH4 emissions flux × observed ΔCH4 
simulated ΔCH4 

 (3) 

 

where the distribution of methane emissions was determined using valid hourly observed ΔCH4 and simulated ΔCH4 (using 

annual emissions from the Pitt High-Resolution Inventory) sampled from afternoon (11–16 h EST) hours only and from all 320 

hours (24-hr). Afternoon emissions estimates required at least 30 valid observation hours, and 24-hour estimates required 144 

valid observation hours per multi-week period (minimum 6 observations per hour length) to be calculated. This calculation 

used the relative bias in the methane inventory compared to the methane observations to adjust the initial emissions inventory, 

and when applied over multi-week timescales to widely sample the study domain, estimated a city-scale methane emissions 

flux for the NYCMA. A similar method was used to calculate afternoon methane emissions for Boston, Massachusetts by 325 

Sargent et al. (2021). We combined the retained distributions of the previously calculated hourly observed and simulated ΔCH4 

such that the resulting observation-informed methane emissions and corresponding CI (calculated at 50% and 95%) account 

for the background uncertainty, the variability of the observed methane mole fractions within each period, and the ensemble 

estimate from the Pitt High-Resolution Inventory.  

 330 

We also calculated the observation-informed CO emissions and corresponding CIs using hourly observed ΔCO and simulated 

ΔCO (using emissions from EDGAR v8.1) using the same method as for methane. As with calculating the mean 10-day and 

2-hour observed and simulated enhancements, we only used a given background site type (urban core or remote) in the 

distribution when the background site type was valid for both methane and CO.  

 335 

Aggregating hours over the afternoon hours, when the atmospheric transport and mixing is less uncertain, and over the entire 

day, to increase observational coverage in time and space, provided more confident estimates compared to shorter or more 

uncertain time periods (e.g., 2-hour periods, overnight). These longer aggregation time periods resulted in much narrower 

confidence intervals, boosting the confidence in our observation-informed emission rates. 

2.6 Carbon Monoxide (CO) as a Combustion Tracer 340 

We used coincident observations of CO from the ASRC site as a tracer for incomplete combustion. CO is emitted as a 

byproduct of combustion when the efficiency of burning a carbon-based fuel source is not optimized, with higher CO emissions 

per amount of fuel burned indicating a more inefficient combustion process. In the US, CO emission rates have been declining 

due to improvements in on-road vehicle efficiency, the largest source of CO emissions nationwide (e.g., Hedelius et al., 2021; 
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Lopez-Coto et al., 2022; Yin et al., 2015). Generally, CO emission sources are not co-located with large urban methane 345 

emission sources such as landfills, wastewater treatment, and natural gas distribution as the methane from these sources is not 

actively being combusted, and methane and CO sources are not linked in emissions inventories (outside of wildfires and wood 

burning). In a well-controlled environment, methane can be efficiently burned, but inefficient combustion can lead to large 

methane emissions (Plant et al., 2022b). Post-meter methane emissions are thought to be from leaks in the local system and do 

not have well-documented corresponding CO emissions. 350 

 

Schiferl et al. (2024) characterized CO emissions from the NYCMA using a shorter period of observations from the ASRC 

site (ending in 2022). That study found large variability in city-scale observed ΔCO, ~60% of which was driven by atmospheric 

transport meteorology and ~40% of which was driven by emissions changes. Schiferl et al. (2024) also found a substantial 

underestimate in simulated ΔCO when evaluating CO inventory emissions from EDGAR v6.1 and that the observed ΔCO and 355 

associated CO emissions from the transportation sector were unlikely to account for the observed ΔCO variability and 

magnitude outside of the COVID-19 shutdown of spring 2020. 

 

In this study, we extended the record of hourly observed CO dry-mole fractions at the ASRC site to match the record of 

methane observations described above. We excluded hours identified as local-scale observations, removed urban site and 360 

remote backgrounds, and calculated simulated ΔCO and observation-informed CO emissions in the same manner as for 

methane. We used the EDGAR v8.1 CO inventory emissions combined with the observed-to-simulated ΔCO ratio to estimate 

the city-scale CO emissions. Since CO emissions in EDGAR v8.1 were greater than in EDGAR v6.1, especially in the urban 

core, simulated ΔCO driven by EDGAR v8.1 were improved over the EDGAR v6.1 CO emissions evaluated by Schiferl et al. 

(2024) when compared to the observed ΔCO from the ASRC site. 365 

3 Results and Discussion 

We first use our rooftop observations from six years of winter-to-spring transitions to quantify the magnitude and variability 

of the city-scale observed methane enhancements (ΔCH4) from the New York City metropolitan area (NYCMA) and their 

correlation with enhancements from incomplete combustion (ΔCO). Then, we use our simulations to evaluate and identify bias 

in various regional-to-global scale methane emission inventories and remove variability in the observations from atmospheric 370 

transport (meteorology). Next, we examine diurnal variability in the observed and simulated ΔCH4 and quantify the changes 

in methane emissions that occurred relative to known CO emissions declines during the COVID-19 shutdown of spring 2020. 

Finally, we present monthly observation-informed methane and CO emission rate estimates for the NYCMA over the study 

period and discuss potential reasons for their correlation. 
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3.1 City-scale Observed ΔCH4  375 

The observed ΔCH4 from the NYCMA varied substantially on sub-monthly timescales throughout the winter and spring across 

all years of the study (Fig. 1). Mean 10-day observed ΔCH4 ranged from ~50 ppbv to ~250 ppbv. The winters of 2019, 2020, 

2022, and 2023 experienced extended large peaks (>100 ppbv) in observed ΔCH4 with general declines toward spring. The 

large peak in 2021 occurred in late March, at the beginning of the transition to spring, while several moderate peaks (50–100 

ppb) were observed in winter 2024. In 2019, 2020, and 2023, there was less variability outside of these extended peaks as 380 

compared to 2021, 2022, and 2024, which showed several additional small episodes of more elevated ΔCH4 (~50 ppbv). 

 

Observed ΔCO from the NYCMA also varied substantially throughout the study period (Fig. 1), as previously shown by 

Schiferl et al. (2024) for 2019-2022. The 10-day mean observed ΔCH4 and observed ΔCO varied together throughout the study 

period (Fig 1), except for during the COVID-19 shutdown of 2020 (see Sec 3.3). There was a strong correlation between the 385 

observed enhancements of both species (Fig. 2a, R2 = 0.61), with generally higher observed ΔCH4 and observed ΔCO during 

winter (January–February) than in spring (April–May). A large portion of the correlation is likely from the variability of 

atmospheric transport but could also indicate simultaneous emission sources of both methane and CO. 

 

 390 
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Figure 1. Timeseries of 10-day mean observed ΔCH4 (black) and ΔCO (red) for the New York City Metropolitan Area (NYCMA) domain 
at the urban core ASRC site during January–May 2019–2024. Vertical bars show the 95% confidence interval (CI) of the mean. Observations 
are plotted in time at the center of the 10-day averaging period. The COVID-19 shutdown period (15 March–31 May 2020) is shaded in 
blue. 

 395 

The uncertainty in the 10-day mean observed ΔCH4 derived from the different background methane calculation methods was 

most often ~10–25 ppbv but spanned near 0 ppbv to 50 ppbv. This uncertainty varied between time periods. For example, the 

uncertainty in observed ΔCH4 was notably small throughout 2019 and 2020, while larger uncertainty occurred during March 

2022 and more consistently throughout 2023. When combining the uncertainty in the background with the variability of 

observed methane mole fractions within each averaging window, the 95% CI of the 10-day mean consistently spanned 20-50 400 

ppbv, with some CI reaching nearly 100 ppbv. The 95% CI of the 10-day mean observed ΔCO were usually similar to, or 

slightly smaller than, those for observed ΔCH4. The 95% CI for both species were also mostly smaller than the variability over 

time in the 10-day mean, which indicates confidence that we can detect changes in observed ΔCH4 and ΔCO on the 10-day 

timescale. 

 405 

 

 
Figure 2. (a) Comparison of 10-day mean observed ΔCH4 and ΔCO at the urban core ASRC site as in Fig. 1 for the study period colored by 
day of year. Horizontal (ΔCH4) and vertical (ΔCO) bars show the 95% CI of the mean. The linear best fit line, slope, and uncertainty from 
standard error determined by York fit, the coefficient of determination (R2), and the number of points considered (N) are shown as indicated. 410 
The 1:1 line is shown in dark gray. (b) Comparison of 10-day mean observed ΔCH4 and ΔCO as in (a) separated and colored by COVID-19 
shutdown (15 March–31 May 2020; red) and non-shutdown (all other times; black) periods. 

 

3.2 Evaluation of NYCMA Methane inventories  

We found much more variability in observed ΔCH4 for the NYCMA than could be explained by existing emissions inventories. 415 

Monthly methane emissions for the NYCMA from EDGAR v8.0 and EPA GHGI v2023, the most recent global and US 

national inventories, only declined by 0.5% and 2.7%, respectively, between their seasonal maximum and minimum. For the 
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smaller sub-domain over NYC, the two inventories declined by a similarly small rate (0.9% for EDGAR v8.0, 1.2% for EPA 

GHGI v2023). The Pitt High-Resolution Inventory had no sub-annual variability. Emissions inventories are designed to be 

longer term snapshots of average emissions and cannot accurately account for all mechanistic variations in emissions 420 

processes. 

 

We compared the 10-day mean observed ΔCH4 with the corresponding simulated ΔCH4 to evaluate the magnitude in the 

inventories and to partition the sources of the observed ΔCH4 variability between meteorology and emissions changes. All six 

methane emission inventories we examined consistently underestimated the observed ΔCH4 from the NYCMA (Figs. 3, S6), 425 

and the degree of performance generally followed the domain-wide totals for each inventory (larger emissions performed 

better). 
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Figure 3. Timeseries of 10-day mean observed ΔCH4 (black) for the NYCMA domain as in Fig. 1 and simulated ΔCH4 determined by 430 
HRRR-STILT combined with methane emissions from EDGAR v6.0 (blue), EPA GHGI v2023 (brown), and Pitt High-Resolution Inventory 
(purple). Vertical bars show the 95% CI of the mean. 

 

The Pitt High-Resolution Inventory (Fig. 4a) performed the best of the inventories evaluated, having the smallest underestimate 

in simulated ΔCH4 (slope = 0.60±0.05) for the entire study period (Fig. 4b). The comparison differed seasonally, with most of 435 

the missing observed ΔCH4 occurring during with winter, in contrast with the inventory matching or even overestimating the 

observed ΔCH4 in the spring (Fig. 4b). The Pitt High-Resolution Inventory coupled with HRRR-STILT also captured peaks 

and variability in the observed ΔCH4 not captured by other models (such as in March 2019 and April 2023) (Fig. 3). Simulated 

ΔCH4 using EDGAR v6.0 had a slightly greater underestimate (slope = 0.51±0.04) compared to the observed ΔCH4 despite a 

slightly higher domain-wide methane emissions total than the Pitt High-Resolution Inventory. However, the Pitt High-440 

Resolution Inventory emissions for the NYC sub-domain were 32% higher than for EDGAR v6.0 in this region, the area of 

the domain most heavily sampled by atmospheric observations (Fig. 4a). These discrepancies highlight the importance of 

accurate and highly resolved spatial emissions distributions for a city with highly variable and heterogeneous sources (Tables 

1 and S1). 

 445 
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Figure 4. (a) Map of the annual mean methane (CH4) emissions flux from the Pitt High-Resolution Inventory (Pitt et al., 2024b) for the 
NYCMA study domain, the locations of the urban core ASRC and remote SNJ observations sites used in the study, and contours of the 50th 
(solid) and 75th (dashed) percentile mean surface influence footprint from HRRR-STILT used to calculate the mean 10-day simulated ΔCH4 
in (b) for the entire study period. (b) Comparison of 10-day mean observed and simulated ΔCH4 at the ASRC site as in Fig. 3 colored by 450 
day of year, where simulated ΔCH4 was calculated using the Pitt High-Resolution Inventory. Observed ΔCH4 are plotted as in Fig. 2. 
Simulated ΔCH4 are plotted with horizontal bars for the 95% CI of the mean. Statistics and annotation are as in Fig. 2. 

 

The EDGAR v6.0 methane inventory performed the best of the global and national inventories compared to the atmospheric 

observations and the simulated ΔCH4 were considerably better in magnitude than the more recent inventories such as EDGAR 455 

v8.0 (slope = 0.35±0.03) and EPA GHGI v2023 (slope = 0.29±0.02). The previous US national inventory, EPA GHGI v2016 

(slope = 0.36±0.03), had a smaller underestimate than the newer version, however, including post-meter emissions in EPA 

GHGI v2023 EE (slope = 0.39±0.03) improved the performance of the updated EPA inventory considerably. 

 

Our atmospheric observations thoroughly sampled all directions throughout the domain for the study period, according to the 460 

surface influence footprints from our transport model simulations, with a slight preference to the southern half of the domain 

(Fig. 4a). Accounting for the varying atmospheric transport and vertical mixing throughout the study period, which drives 

nearly all variability in the simulated ΔCH4, we found that atmospheric transport and vertical mixing only explained 30%–

43% of the variability in observed ΔCH4, depending on inventory comparison, based on the calculated R2 between the observed 

ΔCH4 and simulated ΔCH4. We note that the Pitt High-Resolution Inventory with no monthly emissions variability was in the 465 

middle of this range (R2 = 0.34), indicating that incorporating the monthly emission changes included in the other inventories 

had limited impact on the outcome. We found that the impact of atmospheric transport and vertical mixing on observed ΔCH4 

in this study was considerably less than was found by Schiferl et al. (2024) for CO using the same metric and largely same 

methods, where ~60% of the variability in observed ΔCO was due to atmospheric transport and vertical mixing. The weaker 

correlation for methane than CO implies that the methane emissions may change more across the seasons when calculated on 470 

a 10-day time scale. This result is consistent with relatively unchanging seasonal magnitudes of CO emissions from traffic, 
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power generation, and manufacturing, which are sources that are not expected to contribute much to the methane emissions 

totals in the NYCMA. 

3.3 NYCMA Methane Emissions during the COVID-19 Shutdown 

We found that the COVID-19 shutdown of spring 2020 had limited impact on the observed ΔCH4 from the NYCMA (Fig. 2b). 475 

The 10-day mean observed ΔCH4 centered on 15 March–31 May 2020 were not outside the distribution of observed ΔCH4 for 

other study time periods. This result contrasts with the observed ΔCO for the same shutdown period, which decreased by up 

to 50 ppb below the lower end of the distribution for non-shutdown periods (Fig. 2b). The COVID-19 shutdown was coincident 

with meteorological conditions favoring lower surface influence (as described by Schiferl et al. (2024)), and so the observed 

enhancements of both species were on the lower end of the observations for the entire study period, but there was no clear step 480 

change decrease in observed ΔCH4 like there was for observed ΔCO. 

 

Using our continuous hourly data record, we also examined the changes in the diurnal pattern of ΔCH4 prior to and during the 

COVID-19 shutdown (Fig. 5a). The mean diel cycle of observed ΔCH4 and simulated ΔCH4 for the NYCMA both generally 

followed the height of the mixing layer: ΔCH4 peaked in the early morning hours when the layer was lowest, decreased 485 

throughout the day as the layer rose, and increased again in the evening. The simulated ΔCH4 using the Pitt High-Resolution 

Inventory were generally lower than the observed ΔCH4, especially during the daytime hours in winter periods prior to the 

COVID-19 shutdown, consistent with the mean 10-day underestimate identified above. 

 

 490 
Figure 5. (a) Diurnal timeseries of mean observed ΔCH4 (black) and simulated ΔCH4 (purple) using Pitt High-Resolution Inventory for the 
NYCMA domain at the urban core ASRC site. ΔCH4 were averaged every two hours for various periods before and during the peak COVID-
19 shutdown (15 January–15 May 2020, left to right). Vertical boxes show the 50% CI and vertical bars show the 95% CI of the mean. (b) 
Diurnal time series (black) of the ratio of observed ΔCH4 to simulated ΔCH4 from (a) and the ratio of mean afternoon (11–16h) and mean 
24-hr observed to simulated ΔCH4 (blue/black) and ΔCO (red) for each period and plotted in the same matter as in (a). Simulated ΔCO was 495 
calculated using CO emissions from EDGAR v8.1. 
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Since there was no diurnal variability in the inventory methane emissions, the diurnal variability in the simulated ΔCH4 was 

entirely due to changes in the surface influence footprint (i.e., atmospheric transport and vertical mixing) throughout the day. 

Sensitivity studies of the simulated footprints found that simulated methane could change by up to 1ppb during the afternoon 500 

to 5 ppb overnight depending on the configuration of the model. However, the diel changes in the methane enhancements were 

of the order 80-200 ppb at night (Figure 5a) so we estimated the model bias was at most 6%. The differences in the variability 

between the observed ΔCH4 and simulated ΔCH4 were therefore attributed to changes in the methane emissions which were 

not included in the inventory. By normalizing the observed ΔCH4 by the simulated ΔCH4, we minimized the impact of 

meteorology, thereby isolating only the changes in methane emissions. Using this method, Schiferl et al. (2024) found that 505 

most of the CO emissions changes occurred in areas located within 2 hours atmospheric transport of the ASRC site and we 

expect a similar atmospheric transport time for methane. This normalization method produced observation-informed changes 

in methane emissions for multi-week periods before and during the COVID-19 shutdown (Fig. 5b). 

 

Prior to the COVID-19 shutdown, we found that the normalized ΔCH4 exhibited a large diurnal cycle with a peak at midday 510 

and consistent minimum overnight (Fig. 5b). The daytime peak degraded slightly for the early part of the shutdown (15–31 

March), nearly disappeared for early April and returned for the last month (15 April–15 May) of the shutdown. These observed 

pattern changes imply methane emissions variability that occurred throughout the day and emissions changes that occurred 

during different time periods of the COVID-19 shutdown. Although not examined closely, these daytime diurnal peaks in 

normalized ΔCH4 consistently occurred for all months of the study period.  515 

 

As part of estimating the observation-informed methane emissions rates when combined with the Pitt High-Resolution 

Inventory (see Sec 2.5), we calculated the aggregated 5-hour afternoon (11–16 h EST) and 24-hour daylong ratios of observed-

to-simulated ΔCH4. These aggregated normalized ΔCH4 were similar to the ratios of the coincident 2-hour time periods but 

were produced with much narrower confidence intervals (Fig. 5b). The observed-to-simulated ΔCO ratio for the same time 520 

periods showed a larger relative decrease in afternoon when compared to normalized ΔCH4 (Fig. 5b), consistent with the 

expected larger decrease in CO emissions (likely from the transportation sector) due to the COVID-19 shutdown. 

 

Afternoon observation-informed methane emission rates from the NYCMA decreased by 22% (16.2 to 12.6 kg s–1) between 

early March and the COVID-19 shutdown of late March 2020 (Table S2). Afternoon CO emission rate reductions were much 525 

greater, 49% (44.9 to 22.9 kg s–1) between the same time periods. Clearly, the large reduction in CO emissions was at least 

partly due to large reductions in the transportation sector due to stay-at-home orders, as expected and observed in other cities  

(Lopez-Coto et al., 2022; Monteiro et al., 2022). However, Schiferl et al. (2024) also showed that, for the NYCMA, the 

observed reduction in traffic was not enough to fully explain the reduction in observed ΔCO due to COVID-19 shutdowns. 

Therefore, it is possible that the methane and CO emissions reductions during the COVID-19 shutdown, from sources other 530 

than transportation, were related. It remains uncertain if these COVID-19 shutdown reductions were due to an activity change 
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(e.g., urban population decline, work from home policies) or merely corresponded to seasonal or other non-shutdown emissions 

mechanisms over the COVID-19 shutdown (e.g., reduction in building heating due to warmer weather).  

3.4 Monthly NYCMA Observation-informed Methane Emission Rates 

Meteorological products (i.e., 3-dimensional wind fields) used to drive the atmospheric transport model are more uncertain at 535 

night, for mixing heights especially, and so we focused first on monthly emissions estimates using only afternoon hours. We 

found the monthly afternoon observation-informed methane emission rates for the NYCMA were highly variable over our 

study period (Fig. 6a). Generally, the methane emission rates had large, variable peaks in the winter, plateaued during the 

winter-to-spring transition, and fell to seasonal lows by May. The 95% CI of these methane emission rate estimates, which 

included background uncertainties, variability in the observations, and an ensemble of inventory configurations, also varied 540 

widely, spanning a range of 4 to 17 kg s–1. The greatest methane emission rate occurred in January 2021 (30.4 kg s–1), with the 

lowest methane emission rate in May 2022 (10.1 kg s–1; May 2023 and May 2024 are very similar), excluding the COVID-19 

shutdown of 2020. Most of the afternoon observation-informed methane emissions rates were much larger than the best-

performing emissions inventory, the Pitt High-Resolution Inventory (8.4 kg s–1). The surface influence footprints used in these 

afternoon estimates generally sampled the NYCMA domain consistently for all months of the study period (Fig. S7). 545 

 

The NYCMA observation-informed CO emission rates for the afternoon over the same time periods (Fig. 6b) showed similar 

trends in variability to those of methane, but without the extreme January peaks. The CO emissions rates for January 2021 and 

February 2019, for example, were also times of large methane emission rates. However, several March and April CO emission 

rates were high, while methane was reduced relative to the cold months. This difference could be due to the relatively large 550 

portion of CO emissions from non-heating related sources that are expected to be consistent throughout the winter-to-spring 

transition (e.g., transportation). 

 

The impact of the COVID-19 shutdown on atmospheric composition was clearly seen in the monthly estimates as well (Figs. 

6a–b). A nearly linear month-to-month decrease in emission rates between February and May 2020 resulted in observation-555 

informed CO emissions reductions of 73%, which was only slightly larger than the relative reduction in methane emissions 

(67% over the same period). Afternoon observation-informed emissions rates for the NYCMA for methane and CO are in 

Tables S3 and S4, respectively. 
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 560 
Figure 6. Monthly afternoon (11–16 h) observation-informed (a) methane (CH4) and (b) CO emission rates from the NYCMA for January–
May 2019–2024. Vertical boxes show the 50% CI and vertical bars show the 95% CI of the emission rate. Monthly emission rates are colored 
by year according to the legend. Emission rates from 2020 are outlined in black. Individual months without enough data to meet availability 
threshold to calculate a monthly emission rate are not shown. (c) Comparison of monthly afternoon observation-informed methane and CO 
emission rates as in (a–b). Horizontal (CH4) and vertical (CO) bars show the 50% CI of the emission rate. Monthly emission rates are colored 565 
by month according to the legend. The R2 is shown as indicated. (d) Observation-informed methane emission rates from this study (afternoon 
rooftop observations) compared to methane emission rates for the NYCMA from other studies using aircraft and satellite observations. For 
this study, the horizontal box shows the 50% CI and the horizontal bar shows the 95% CI of the mean emission rate. For other studies, the 
definition of emission rate point and horizontal bars varies by study-specific method. 

 570 

The afternoon observation-informed methane and CO emissions rates for the NYCMA were well correlated over our study 

period (Fig. 6c, R2 = 0.59). Unlike the observed ΔCH4:ΔCO dry mole fraction enhancements compared in Sec. 3.1, this 

relationship between methane and CO emissions accounted for variability in atmospheric transport. We do not know the 

CH4:CO emission ratio, nor the modified combustion efficiency of individual incomplete combustion sources (i.e. boilers and 

other appliances) within our study domain. However, we can expect the CH4:CO ratio to be variable with each appliance 575 

configuration, and so it may change across time and space. We likely observed two competing thermogenic methane source 

sectors at the rooftop: (1) inefficient consumption of natural gas during peak heating season (January-February), which is 

correlated with extreme cold events, and (2) intermittent emissions of natural gas during the appliance duty cycle (also known 

as “slip”) (Lindburg et al., 2025). During the winter-to-spring transition, when outdoor temperatures vary around 55°F, the 

threshold below which all buildings are required to be heated by NYC laws (Chapter 2: Housing Maintenance Code, 2025), 580 
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boilers will repeatedly cycle. This evidence suggests a common source of methane and CO emissions, which may be related 

to stationary incomplete combustion. Further study is required to isolate and quantify these processes in more detail. 

 

Our estimates for NYCMA afternoon methane emission rates overlap with methane emissions estimates from previous 

airborne and satellite studies, which also focused on the afternoon period only (Fig. 6d). Our long-term in situ measurements 585 

spanned a greater range of methane emissions, especially at the high end of studies using in situ measurements. Regional 

inversions using aircraft data by Pitt et al. (2022) and Pitt et al. (2024b) and a national inversion using satellite data by Nesser 

et al. (2024) found optimized methane emissions from the NYCMA on the lower end (9.4–10.5 kg s–1) of our estimates but 

with narrow uncertainty. Plant et al. (2019) used CH4:CO and CH4:CO2 ratios from aircraft data and inventories to estimate 

methane emissions for the NYCMA and found similar mean emissions estimates using both methods close to our mean 590 

estimate, but their estimate using CH4:CO had a much larger uncertainty range, which is similar to our range that combines 

uncertainty and variability throughout our study period. Plant et al. (2022a) used satellite column CH4:CO ratios to estimate 

methane emissions, the uncertainty of which spanned our entire range of emissions estimates. All these airborne and satellite 

studies used the US Census Bureau Topologically Integrated Geographic Encoding and Referencing (TIGER) domain for New 

York–Newark, which contains ~70% of the total emissions of Pitt High-Resolution Inventory used in our study. We note that 595 

the airborne studies were restricted to weather conditions that are suitable for flight and satellite studies were restricted to 

clear-sky days when the methane plume did not move out to sea. 

 

We tested the sensitivity of our observation-informed emissions estimates to assumptions in the transport model in two ways: 

1) by lowering the minimum mixing height from 250m (default) to 150m when STILT is driven by HRRR, and 2) by driving 600 

STILT with NAMS instead of HRRR. We found a consistent reduction in afternoon emissions estimates when lowering the 

HRRR minimum mixing height, with a mean decrease of 13% for methane and 10% for CO emissions over 2023 and 2024 

(Fig. S8). Using NAMS meteorology resulted in similar drops in mean methane (13%) and CO (16%) emissions estimates, but 

with a larger range of changes across months (~50% reduction to ~25% increase in individual months) which weakened the 

winter-to-spring emissions relationship compared to the default HRRR-STILT configuration. Given the heterogeneity of the 605 

complex NYCMA landscape, the differences in emissions estimates are more likely to be due to the spatial resolution of 

meteorological product (HRRR: 3km, NAMS: 12km) than mixing height errors for the afternoon time periods. 

 

The methane and CO emission estimates for this study (Fig. 6) and in previous studies used afternoon observations only, 

because there is greater confidence in the atmospheric transport processes used to interpret the observations during this time 610 

of day. When we calculated the monthly observation-informed methane and CO emission rates using all observations for a 

given month (24-hour rate), we found consistently lower emissions rates for both methane and CO (Figs S9a-b). The 24-hour 

emission rates for methane and CO were similarly correlated (R2 = 0.53) as they were using afternoon hours only and 

maintained a similar winter-to-spring decline (Fig. S9c). The consistent difference between the afternoon and 24-hour emission 
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rates suggests a diurnal cycle in emissions, which is well-known for CO emissions (traffic, human activity), but had not been, 615 

to our knowledge, previously inferred for urban methane emissions. These diurnal emissions patterns were not included in 

methane inventories nor in the CO inventories used here. If related to combustion, the methane and CO emissions from building 

heating sources could be greater during the day when commercial and industrial buildings increase heating temperature as 

occupancy increases. The combination of many hours to produce the monthly 24-hour emissions estimates resulted in narrower 

confidence intervals compared to the afternoon-only emission estimates, further supporting the possibility of diurnal cycle for 620 

urban methane emissions. The 24-hour observation-informed methane emissions estimates were also more consistent with the 

inventories evaluated here. CO emissions studies (e.g., Lopez-Coto et al. (2022)) apply a daytime correction given the assumed 

diurnal pattern of CO emissions, so a similar correction may be needed for methane as well to avoid biasing observational-

constrained methane emissions too high. The surface influence footprints used in the 24-hour emission rate estimates were 

more balanced in all directions and more contained within the NYC subdomain than when using only the afternoon hours 625 

(Figs. S7, S10), and this implies more sensitivity to larger emissions sources in the urban core on average. The 24-hour 

observation-informed emissions rates for the NYCMA for methane and CO for each month January – May for 2019 – 2024 

are shown in Tables S5 and S6, respectively. Our sensitivity analysis of the atmospheric transport model for the 24-hour 

emissions estimates found that reducing the minimum mixing height consistently lowered the estimated emissions for the 

NYCMA (mean CH4 by 21%, mean CO by 19%) (Fig. S8). Using NAMS reduced the mean 24-hour estimated emissions by 630 

similar relative amounts (CH4 by 15%, CO by 20%), although the impact of NAMS on emissions ranged from ~30% reduction 

to ~15% increase depending on the month across both species. 

4 Conclusions 

Using in-situ rooftop observations, this study found unexpected variability in atmospheric methane mole fractions, city-scale 

enhancements, and methane emission rates from the New York City Metropolitan Area (NYCMA) over 6 winter-to-spring 635 

transition periods. Our work reveals the power of long-term continuous measurements, since this variability is not captured by 

favorable weather-only aircraft campaigns or afternoon, clear-sky satellite measurements. Although our analysis to quantify 

the methane emissions can retain large relative confidence intervals, especially during periods of highly variable observations, 

an urban core site with precise instrumentation measuring multiple trace gas species can still be very informative, including 

potentially resolving diurnal methane emissions patterns previously not shown from afternoon-only studies. 640 

 

Even the best performing methane emissions inventory, developed specifically for the NYCMA at higher resolution, 

underestimated the observed atmospheric methane during peak emission events in winter. These methane emission peaks were 

correlated with elevated CO emissions, which provides strong evidence that these unaccounted-for methane emissions are 

from the same stationary combustion source type as the CO. Clearly, there is a city-scale atmospheric impact of combustion 645 

emissions, but we do not know how widespread the source type is or if there are a few large source points or many small ones. 
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Examining the characteristics of the local-scale measurements removed from the analysis here may help answer these 

questions. 

 

Future studies should also focus on approximating the stationary incomplete combustion sources based on relationships with 650 

temperature or other environmental factors and knowledge of urban stationary combustion systems (i.e., building boilers). 

Given the uncertainties previously discussed, we need additional sites with 24-hour year-round atmospheric measurements of 

methane and CO, collocated meteorological observations, and systematic evaluation of reanalysis and forecast products, 

especially at night, to improve the continuous quantification of methane and CO emissions and define their source 

apportionment. Discovering a mechanistic driver for the methane emissions variability related to incomplete combustion will 655 

allow for these emissions estimates to be improved and included in future inventories enabling stakeholders to properly target 

all potential methane emission sources and track and have confidence in the progress of greenhouse gas emission mitigation 

efforts. 

Data availability 

Data that support the findings of this study are available as listed below: 660 

ASRC Rooftop methane (CH4) observations and NYCMA observed and simulated ΔCH4, with coincident carbon monoxide 

(CO) observations and ΔCO [Dataset]. Dryad. https://doi.org/10.5061/dryad.ghx3ffc0g  

Stockholm, New Jersey (SNJ) methane observations: https://data.nist.gov/od/id/mds2-3765 (Karion et al., 2025) 

EDGAR v6.0 methane emissions: https://edgar.jrc.ec.europa.eu/dataset_ghg60  

EDGAR v8.0 methane emissions: https://edgar.jrc.ec.europa.eu/dataset_ghg80 665 

EPA GHGI v2016 methane emissions: https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions (US EPA, 2016) 

EPA GHGI v2023 and EPA GHGI v2023 EE methane emissions: https://zenodo.org/records/8367082 (McDuffie et al., 2023) 

Pitt High-Resolution Inventory methane emissions: https://data.nist.gov/od/id/mds2-2915 (Pitt et al., 2024a) 

EPA Cornwall CO observations: https://aqs.epa.gov/aqsweb/airdata/download_files.html 

EDGAR v8.1 CO emissions: https://edgar.jrc.ec.europa.eu/dataset_ap81 670 

STILT model: https://uataq.github.io/stilt/#/ 

HRRR ARL files: https://www.ready.noaa.gov/archives.php 
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