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Abstract. Forest soils are generally considered a sink for atmospheric methane (CH4), but their uptake rate can 

vary considerably in space and time. This study aimed to investigate the temporal patterns of spatially distributed 

soil CH4 fluxes in a topographically complex cold-temperate mountain forest in central Japan. Soil CH4 fluxes 15 

were measured nine times during the snow-free season at multiple locations within a 40-ha area in a forested 

watershed. A machine-learning approach was developed to upscale measured upland fluxes to the landscape scale, 

using topographic attributes derived from a digital elevation model and vegetation types. Upland soils were a sink 

of CH4, while small wetland patches emitted CH4 consistently throughout the study period. The accuracy of 

predicted upland fluxes varied seasonally, with the highest model performance observed in early autumn (R² = 20 

0.67) and the lowest in mid-summer (R² = 0.28). Within the study landscape, predicted upland CH4 fluxes varied 

significantly across topographic positions, with greater uptake on ridges and slopes than on the plain and foot 

slopes. Predicted upland CH4 fluxes ranged from -0.35 to -0.60 g CH4 ha-1 h-1 in spring, -0.41 to -1.25 g CH4 ha-1 

h-1 in summer, and -0.50 to -0.89 g CH4 ha-1 h-1 in autumn. Seasonal upland fluxes were highly correlated with the 

20-day antecedent precipitation index (R² = 0.71), revealing the importance of seasonal moisture conditions in 25 

regulating CH4 flux dynamics. This study highlighted the importance of topography in controlling the soil CH4 

fluxes and the efficiency of remote sensing and machine learning approaches in scaling field measurements to the 

landscape level, enabling visualization of spatial patterns of fluxes across the landscape over time. 

1 Introduction 

Methane (CH4), the second most important anthropogenic greenhouse gas, contributes substantially to the 30 

anthropogenic radiative forcing and is responsible for approximately 0.5°C of current global warming compared 

to 1850 - 1900 (IPCC, 2023). Natural wetlands (149 Tg CH4 yr-1) and rice cultivation (30 Tg CH4 yr-1) are 

important sources of CH4; in contrast, upland soils are considered a biological sink of atmospheric CH4, with an 

estimated uptake of 25-45 Tg yr-1, contributing 5-7% to the global CH4 sink (Saunois et al., 2020). Among the 

upland ecosystems, forest soils account for approximately 60% of global soil CH4 uptake (Dutaur and Verchot, 35 

2007), and soil uptake rates are particularly high in Japanese mountainous forests due to their high porosity 

(Ishizuka et al., 2000). CH4 uptake by forest soils is driven by methane-oxidizing bacteria in oxic soil layers, 
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whereas anaerobic environments such as wetland soils are usually dominated by methanogenic archaea producing 

CH4 (Christiansen et al., 2016). CH4 production can also occur in upland soils, either in deeper soil layers or in 

microsites located in otherwise well-aerated soil layers, if anaerobic conditions prevail (Angel et al., 2012). Hence, 40 

CH4 oxidation and production can occur simultaneously at the same location, determining the net flux. 

Net soil CH4 fluxes depend mainly on the soil air-filled porosity (AFP), which in turn depends on total porosity 

and soil water content. A high AFP enhances gas diffusion in soil and, consequently, microbial CH4 oxidation 

(Kruse et al., 1996). Soil organic matter at the soil surface can act as a physical barrier to atmospheric CH4 

diffusion and reduce the CH4 uptake rate (Yu et al., 2017). Conversely, carbon substrates released by the 45 

decomposition of soil organic matter can increase CH4 oxidation activity either by directly stimulating the growth 

of methanotrophs or by promoting CH4 production in anaerobic microsites and indirectly supporting the growth 

of methanotrophs (West and Schmidt, 1999). Additionally, soil nutrients can influence soil CH4 fluxes by 

regulating the soil microbial community. The activity of methanotrophic microorganisms is affected by the 

availability of inorganic nitrogen (Bodelier and Laanbroek, 2004). Although methanotrophic activity can be 50 

nitrogen-limited in forest soils (Veldkamp et al., 2013), increasing ammonium (NH4
+) concentration often reduces 

CH4 uptake due to competitive inhibition by NH4
+

 of the enzyme methane mono-oxygenase, which can oxidize 

both CH4 and NH4
+. Nitrate (NO3

-) can also be a potent inhibitor of CH4 oxidation in some soils (Mochizuki et 

al., 2012). Although temperature affects microbial activities, including methanogenesis and methanotrophy (Luo 

et al., 2013; Praeg et al., 2017), CH4 uptake is generally less sensitive to changes in soil temperature than in soil 55 

moisture (Epron et al., 2016). 

Topography and vegetation cover can create a predictable distribution of soil moisture and nutrients across 

topographically complex landscapes (Jeong et al., 2017; Murphy et al., 2011). In Japan, forests cover 68% of the 

land, mostly in mountainous areas. Conifers account for 44% of the total forest area (Lundbäck et al., 2021; 

Nakamura and Krestov, 2005). Topography is a critical determinant of soil hydrological conditions, from well-60 

drained slopes to waterlogged riparian areas (Kaiser et al., 2018). Topography can also impact soil nutrient 

availability by altering leaf litter accumulation and the movement of soil nutrients (Osborne et al., 2017; Tateno 

and Takeda, 2003). The spatial distribution of trees, differences in species abundance across the landscape, and 

variation in litter chemistry often create heterogeneity in soil nitrogen cycling (Osborne et al., 2017). Furthermore, 

differences in stem flow and throughfall related to differences in canopy structure between tree species can 65 

indirectly influence spatial patterns of soil moisture (Holwerda et al., 2006). 

In situ chamber measurements have long been the dominant method for studying CH4 fluxes in forests, providing 

insight into the processes that drive them (Brumme and Borken, 1999; Guckland et al., 2009; Itoh et al., 2009). 

Until recently, most studies reported spatially average flux values measured at several locations (Gomez et al., 

2016; Itoh et al., 2009). This method is acceptable for small patches of homogeneous landscapes, such as crops 70 

or single-species tree plantations in flat terrain. However, it is inappropriate for more complex landscapes, as the 

number of sampling points required to obtain an accurate spatially-averaged flux would increase considerably. 

In complex terrains, measurement locations can be grouped into several distinct categories according to landforms 

(Courtois et al., 2018; Gomez et al., 2016; Itoh et al., 2009; Kagotani et al., 2001; Kaiser et al., 2018; Warner et 

al., 2018), soil microtopographic features (Epron et al., 2016), vegetation characteristics (Guckland et al., 2009), 75 

or land uses (Jacinthe et al., 2015). However, as Vainio et al. (2021) pointed out, aggregation assumes spatial 
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homogeneity of fluxes within each category or requires a large number of sampling points to capture the spatial 

heterogeneity, and this approach ignores the spatially continuous nature of soil processes and their drivers. 

More recently, regressions with multiple landscape attributes derived from remote sensing-based maps were 

successfully applied to upscale CH4 to a catchment scale (Kaiser et al., 2018). Recent studies conducted on a 12-80 

ha forested watershed (Warner et al., 2019), a 10-ha boreal forest plot (Vainio et al., 2021) , two northern peatland-

forest-mosaic catchments of 4.5 km2 and 7.9 km2 respectively (Räsänen et al., 2021), and a 450-ha subarctic tundra 

(Virkkala et al., 2024) have demonstrated the effectiveness of machine-learning modeling approaches for 

upscaling CH4 fluxes from remote sensing data. 

This study aimed to assess temporal variations of soil CH4 fluxes across a topographically complex landscape in 85 

a cold-temperate mountain forest in central Japan and to estimate soil CH4 fluxes at the landscape scale. We 

measured soil CH4 fluxes several times during the snow-free season at multiple locations within a 40-ha area in a 

forested watershed. We applied a random forest machine-learning approach in combination with terrain attributes 

from remotely sensed data, i.e., a digital elevation model (DEM), to upscale measured soil CH4 fluxes to the 

landscape level. We hypothesized that (1) terrain attributes related to water accumulation are reliable predictors 90 

of soil CH4 fluxes, (2) predicted soil CH4 fluxes vary within the landscape depending on topography (3) spatial 

patterns of uncertainties in predicted soil CH4 fluxes vary seasonally due to a wet early summer influenced by the 

East Asian monsoon, and (4) seasonal variations of CH4 flux at the landscape scale are explained by recent past 

precipitations. 

2 Materials and methods 95 

2.1 Description of the study site and experimental design 

This study was conducted in the forested upper Yura River watershed (35.34 N; 135.76 E) located at the Ashiu 

Experimental Forest of Kyoto University in northeastern Kyoto Prefecture, Japan (Fig. 1). The mean annual 

temperature and precipitation were 10.3°C and 2,732 mm, respectively, between 2011 and 2020 and the ground 

was covered by snow (2-3 m depth) from mid-December to mid-April (Epron et al., 2023). The study area is 100 

characterized by a cool-temperate monsoon climate, with a very humid early summer (520 mm in June and July 

on average between 2011 and 2020) and occasionally heavy precipitation caused by typhoons in late summer. The 

soils in the study area are classified as brown forest soils according to the Classification of Forest Soils in Japan, 

with a relatively thick brownish-black A horizon with a crumb structure and a brown B horizon with a blocky 

structure (Hirai et al., 1988; Ueda et al., 1993). The forest is primarily dominated by Cryptomeria japonica D. 105 

Don (Japanese cedar, 73% of the basal area in four 1-ha census plots), mixed with more than 50 broadleaved 

species (Ishihara et al., 2011). 
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Figure 1: Map of the upper Yura River watershed with an enlargement of the 40.2 ha study area. The green dots 

represent the 52 flux measurement locations on unsaturated soils (upland) and the red dots the 3 measurement locations 110 

on waterlogged wetlands. 

 

The study site covered an area of 40.2 hectares (Fig. 1) and included a variety of landscapes, ranging from ridges 

to waterlogged wetlands. It has a mountainous topography with an elevation between 650 and 850 m and slopes 

that vary from gentle to steep. The site was classified into uplands (including ridges, slopes, foot slopes and plains 115 

as topographic positions where the soil is almost always unsaturated), wetlands (small patches with water-

saturated soil in the valley), and rivers, accounting for approximately 94%, 1%, and 5% of the total study area, 

respectively. Soil CH4 fluxes were measured on 52 sampling points in upland areas, distributed across the four 

topographic positions, to optimize the representation of topographic and vegetation variations that can influence 

soil properties and, consequently, soil CH4 fluxes. We also measured soil CH4 fluxes in three small wetland patches 120 

(one sampling point in each). Unfortunately, the machine learning model we developed (see below) was unable 

to accurately predict fluxes across the landscape when wetland measurements were included in the training dataset. 

We recorded the positions of all sampling locations using a portable GPS tracker (Garmin, eTrex® Touch 35) with 

an accuracy of less than 5 m. 

2.2 Flux measurements 125 

Soil CH4 fluxes were measured using a static, non-steady-state, non-flow-through system composed of a dark 

acrylic chamber (20 cm diameter and 12.5 cm height) connected to a cavity-enhanced absorption spectroscopy 

gas analyzer (Li 7810, Licor; Lincoln, USA) with two PTFE tubes, each 1.8 m long and 4 mm in inner diameter. 

One week before the first measurements, a 20 cm diameter, 9 cm tall PVC collar was inserted approximately 5 

cm into the soil at each of the sampling point. Flux from each collar was measured on nine occasions in 2023: in 130 
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early spring after snowmelt (4/27), mid-spring (5/12), late spring (5/31), early summer (7/06), mid-summer (7/26), 

late summer (9/04), early autumn (10/07), mid-autumn (11/07), and late autumn (11/30). 

To measure soil CH4 flux, the chamber was placed on the collar, and changes in CH4 and CO2 concentrations 

inside were recorded for 4 minutes at a frequency of 1 Hz. The slope of the linear regression of CH4 concentration 

over time was used to calculate the soil CH4 flux:  135 

𝐹𝐶𝐻4
=  

∆[𝐶𝐻4]

∆𝑡
×

𝑉 ×  𝑃

𝐴 × 𝑅 × 𝑇
 

where 𝐹𝐶𝐻4
 is the soil CH4 flux, 

∆[𝐶𝐻4]

∆𝑡
 is the slope of the linear change in CH4 concentrations over time, V is the 

system volume (chamber, collar above the ground, tubes, and analyzer), A is the soil area covered by the collar, 

and R is the ideal gas constant (8.314 J K-1 mol-1). A constant value of 93,525 Pa for an elevation of 650 m was 

used for the atmospheric pressure (P). The slope was calculated over 90 seconds following Epron et al. (2023). 140 

The R2 of the linear variation of CH4 concentration was less than 0.9 for a single measurement, and for this 

measurement, the R2 of the linear variation of CO2 concentration was 0.99, indicating that the low R2 for CH4 was 

due to the near-zero CH4 flux and not to an erroneous measurement. 

2.3 Topographic characterization 

To characterize and process the terrain attributes related to soil CH4 fluxes, we used a 0.5 m mesh digital elevation 145 

model (DEM) based on airborne laser surveys conducted throughout the upper Yura River watershed in 2012 by 

the Ashiu Experimental Forest staff. The DEM was further processed and conditioned into a 5 m mesh DEM 

image according to the GPS tracker's accuracy (less than ≤ 5 m) that was used to locate each collar position, 

enabling us to identify the corresponding pixels on the terrain attribute grids. We derived several topographic 

attributes from the DEM using SAGA Next Generation in QGIS (v3.34.5-Prizren). The calculated attributes 150 

included aspect, slope, profile curvature (PrC), topographic position index (TPI), topographic wetness index 

(TWI), and vertical distance to channel network (VDCN). Slope and TPI were used to partition the landscape into 

ridges, slopes, foot slopes and the plain. 

Aspect, slope, and profile curvature were calculated following the 9-parameter 2nd order polynom method 

(Zevenbergen and Thorne, 1987). Aspect, a circular variable, was transformed into a linear variable by calculating 155 

the cosine of the aspect values, resulting in a range from -1 (south) to 1 (north). Negative values of profile 

curvature indicate a convex surface where the flow of water accelerates as it moves downslope; in contrast, 

positive values suggest a concave surface where the flow slows down (Pachepsky et al., 2001). 

TWI was calculated using the equation 𝑇𝑊𝐼 = ln (𝐶𝐴 𝑠𝑙𝑜𝑝𝑒⁄ ) , where CA refers to the catchment area. We 

derived CA from a filled DEM using the multiple flow direction algorithm (Freeman, 1991; Wang and Liu, 2006). 160 

A filled DEM is a hydrologically corrected elevation model in which erroneous surface depressions have been 

removed to avoid biases in water accumulation and flow direction. 

TPI describes the relative position of a location within a landscape, indicating whether it is on a ridge, slope, or 

valley based on the elevation compared to the surrounding terrain at a specified radius (Ågren et al., 2014). 

Positive values indicate ridges; negative values indicate depressions, and zero or near-zero values indicate slopes 165 

or flat areas. TPI was calculated at the center of circular areas of 30 m radius using the unfilled DEM. 

VDCN was calculated as the elevation difference between each grid cell and the baseline of the nearest stream 

channel. This parameter serves as a proxy for groundwater depth, with lower VDCN values typically 
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corresponding to areas with shallower groundwater and higher water tables, and higher values indicating deeper 

groundwater levels often found in upland positions (Bock and Köthe, 2008). 170 

2.4 Vegetation classification 

Tree inventory was conducted during the flux measurement period to classify the vegetation surrounding the flux 

measurement points. A circular plot with a 10-meter radius was established, centered at each flux measurement 

point. Within the plot, all trees were identified at the species level, and their diameter at breast height (DBH) was 

measured. Vegetation types were classified based on the proportional contribution of coniferous and broadleaved 175 

trees to the plot basal area, the sum of cross-sectional areas at breast height of all tree trunks in each plot. Three 

types were defined: coniferous when the proportional contribution of coniferous trees was higher than 0.75, 

broadleaf when it was lower than 0.25, or mixed (comprising both coniferous and broadleaf). 

2.5 Soil sampling and analysis 

After completing the flux measurements, soil cores were collected using a sampling cylinder at 0-10 cm depth 180 

near the flux measurement points. Samples were sieved at 2 mm and separated into stones and fine earth. The 

fresh weight of the fine earth fraction was measured before being air-dried. Bulk density of this fraction was 

determined as the ratio of oven-dried soil (subsample dried at 105°C) to the soil volume. Soil texture was analyzed 

using the micro-pipette method, following Burt et al. (1993). Total soil carbon (C) and nitrogen (N) contents were 

measured using a Macro Corder JM 1000CN (J-SCIENCE LAB Co., Ltd., Japan). The soil pH was measured in 185 

a suspension (10 g of soil in 25 ml distilled H2O) after shaking for 1 hour. 

2.6 Climatic data 

Air temperature and rainfall were measured every 10 minutes at a nearby weather station operated by the Field 

Science Education and Research Centre of Kyoto University. The antecedent precipitation index (API), an 

indicator of soil moisture conditions, was calculated using the following equation: 190 

API𝑛 =  ∑ 𝑃𝑡 × 𝑘𝑡

𝑛

𝑡=1

 

where, Pt is the precipitation during day t, k is the recession coefficient, and n is the number of antecedent days. 

The parameter k accounts for the water removed from the soil by evapotranspiration and drainage.  

2.7 Modeling 

In this study, modeling was conducted independently for each of the nine measurement dates. We applied quantile 195 

regression forests (QRF) introduced by Meinshausen (2006), an extension of the random forests (RF) algorithm. 

RF is an ensemble learning method that builds a set of regression trees, and the final prediction is the average of 

all the regression trees, which are evaluated using out-of-bag cross-validation (Breiman, 2001). The QRF 

algorithm estimates the full conditional distribution of the response variable as a function of its predictors, not just 

the mean as with the original RF algorithm. Therefore, it is possible to extract the prediction interval for each 200 

pixel across the landscape for each measurement period. We followed three steps to develop models for predicting 

soil CH4 fluxes at each measurement period. We used the six topographic features (aspect, slope, PrC, TPI, TWI, 

and VDCN) and the three vegetation types listed above as predictors. Before applying QRFs, we eliminated the 

less important variables and identified the most relevant predictors for each measurement date, using a variable 
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selection algorithm for random forest models proposed by Genuer et al. (2010) and implemented in the “VSURF” 205 

package for R (Genuer et al., 2015). This approach systematically uses a repeated cross-validation procedure to 

rank variables by their importance index and iteratively eliminates the least informative ones to minimize model 

error. The result is a refined subset of predictors that enhances model interpretation and predictive performance. 

This predictor reduction approach has been previously used for mapping CH4 fluxes (Räsänen et al., 2021; Warner 

et al., 2019) and soil properties (Jeong et al., 2017; Miller et al., 2015).  210 

After selecting the relevant predictor variables, the QRF models were trained to predict CH4 fluxes for each of the 

nine measurement dates using the R-packages “caret” (Kuhn and Johnson, 2013) and “quantregForest” 

(Meinshausen, 2017). The mtry parameter, which determines the number of randomly selected predictor variables 

at each node, was tested from 2 to n-1 (n being the total number of predictors) using leave-one-out cross-validation 

to minimize prediction error and maximize the variance explained by the model. The ntree parameter was set to 215 

500, ensuring the model constructed an ensemble of 500 decision trees. Furthermore, we calculated the variable's 

importance scores using the “vip” R-package (Greenwell and Boehmke, 2020). For each of the nine measurement 

dates, model accuracy was evaluated based on the root mean square error (RMSE) and coefficient of determination 

(R2). The output of the QRF was a set of conditional prediction distributions of CH4 fluxes for each landscape 

pixel and measurement dates. Because these prediction distributions were often not normally distributed, the 220 

medians of the conditional prediction distributions at each pixel were used as the final predictions, and the 

interquartile ranges of these distributions were used to quantify the uncertainty in the predictions (Warner et al., 

2019). Prediction uncertainties were expressed as a percentage (i.e., interquartile range of the conditional 

prediction distribution divided by the median). 

2.8 Statistical analysis 225 

We used analysis of variance (ANOVA) to test the differences in soil properties across the topographic positions 

and vegetation types. A linear mixed-effect model (LMM) was used to test the effects of topographic positions, 

vegetation types, and measurement dates (fixed effects) on measured CH4 fluxes, where sampling points (collar 

ID) were included as a random effect. Similarly, LMM was used to test the relationship between the predicted and 

measured fluxes (fixed effect), with flux measurement dates as a random effect. The root mean square error 230 

(RMSE) was used to evaluate model performance at each date, and the marginal and conditional coefficients of 

the determinant (Rm
2 and Rc

2) were used to determine the strength of the relationship between the predicted and 

measured fluxes. LMM was carried out using the ‘lmerTest’ package (Bates et al., 2015; Kuznetsova et al., 2017), 

and Rm
2 and Rc

2 were calculated using the ‘MUMIn’ package (Bartoń, 2010). To test the effects of topographic 

positions and measurement dates on predicted CH4 fluxes while accounting for spatial autocorrelation, we also 235 

used a linear mixed-effect model. Topographic positions and measurement dates were included in the model as 

fixed effects, and pixel ID as a random effect. To eliminate spatial autocorrelation among residuals, we 

incorporated an exponential spatial correlation structure based on each pixel coordinate nested within each 

measurement date. This was performed using the ‘nlme’ package (Pinheiro et al., 1999). The semi-variogram of 

the residuals confirmed that the residuals were not spatially correlated. A pairwise comparison across the 240 

topographic positions within each measurement date was performed using the ‘emmeans’ package (Lenth, 2017). 

Linear regression models were used to examine the relationship between scaled soil CH4 fluxes and API. The 

recession coefficient (k) and the number of antecedent days (n) were not fixed a priori but optimized to maximize 

R2 while ensuring the best distribution of the residuals, allowing parameters k and n to vary iteratively from 0.6 
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to 0.9 with an increment of 0.01 and from 0 to 30 with an increment of 0.01, respectively. Using a more complex 245 

bivariate model with an exponential function of air temperature did not improve the quality of the fit and returned 

Q10 values that were not significantly different from 1, as previously reported (Epron et al., 2016). Calculations, 

modelling, and statistical analyses were performed using the R statistical programming environment (R Core 

Team, 2024). 

3 Results 250 

3.1 Variations in soil properties, vegetation, and methane fluxes across the landscape 

Topographic positions influenced several soil properties, whereas vegetation type and its interaction with positions 

had no significant effects (Table 1). Overall, the bulk density of the fine earth fraction was relatively low due to 

the presence of stones, highest in the plain (0.48 ± 0.05 g cm⁻³, mean ± SE and significantly lowest in the ridge 

(0.26 ± 0.04 g cm⁻³). Soil pH differed significantly across topographic positions (p < 0.001), with more acidic 255 

conditions observed at higher elevations (ridge: 4.0 ± 0.14) compared to the plain (5.0 ± 0.12). Similarly, total 

carbon (C) and total nitrogen contents (N) were significantly higher on the ridges (16.7 ± 2.2% C and 0.8 ± 0.10% 

N) and lower in the plain (3.9 ± 0.60% C and 0.3 ± 0.04% N). 

In contrast, the soil texture of the fine earth fraction (clay, silt, and sand) did not vary significantly with topographic 

positions. Vegetation types varied depending on topographic positions, where broadleaved species dominated in 260 

the lower positions (77.8% in the plain and 56.3% in foot slopes), while conifers and their mixtures with 

broadleaved species dominated the ridges and slopes (Table A1). 

We observed that upland soils consistently uptake CH4 (negative fluxes, Fig. 2a, b), while soils in the three small 

wetland patches emitted CH4 (positive flux, Fig. A1). In the upland areas, the linear mixed-effect model (LMM) 

indicated that topographic positions (p = 0.17) and vegetation types (p = 0.83) individually had no significant 265 

effects on soil CH4 fluxes (Fig. 2a, b; Table A2). However, all upland topographic positions and vegetation types 

showed the same distinct significant variation in CH4 fluxes across the measurement dates (p < 0.001), which was 

consistent with the seasonal patterns of rainfall and air temperature (Fig. 2; Table A2). Although two-way 

interactions among positions, vegetation types, and measurement dates were not significant, their three-way 

interaction was (Table A2). We also found that mean CH4 fluxes from upland areas were significantly correlated 270 

with soil pH (r = 0.32; p < 0.05, Table A3), while they were not significantly correlated with soil C, N, or bulk 

density. 

  

https://doi.org/10.5194/egusphere-2025-3449
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

Table 1. Soil physical and chemical properties (mean ± standard error) according to topographic positions and 

vegetation types. Different lowercase letters indicate significant differences between topographic positions and 275 

vegetation types (p < 0.05). The p-values from two-way ANOVA are shown in the last rows. The number of independent 

replicates in each factor level is indicated in the first column. Significant differences between fertilization levels are 

indicated by different lowercase letters. 

 

Factors 

Bulk 

density (g 

cm-3) 

Clay % Silt  

% 

Sand % pH Total 

carbon 

(%) 

Total 

nitrogen 

(%) 

Position:        

Plain  

(n = 9) 

0.48 ± 

0.05 a 

10 ± 2 28 ± 3  63 ± 5 5.0 ± 0.12 

a 

3.9 ± 0.60 

a 

0.3 ± 

0.04 a 

Foot slope  

(n = 16) 

0.34 ± 

0.04 ab 

9 ± 2 31 ± 3  60 ± 5 4.5 ± 0.08 

b 

7.9 ± 0.98 

ab 

0.5 ± 

0.05 a 

Slope  

(n = 14) 

0.28 ± 

0.03 b 

9 ± 1 28 ± 2  63 ± 3 4.3 ± 0.06 

bc 

10.4 ± 

1.50 b 

0.6 ± 

0.08 ab 

Ridge  

(n = 13) 

0.26 ± 

0.04 b 

9 ± 2 23 ± 4  68 ± 4 4.0 ± 0.14 

c 

16.7 ± 2.2 

c 

0.8 ± 

0.10 b 

Vegetation:        

Broadleaved  

(n = 19) 

0.38 ± 

0.04 

10 ± 2 29 ± 3 61 ± 4 4.7 ± 0.10 6.8 ± 0.98 0.4 ± 

0.05 

Coniferous  

(n = 11) 

0.32 ± 

0.04 

7 ± 1 27 ± 4 66 ± 5 4.3 ± 0.13 11.1 ± 

2.37 

0.6 ± 

0.11 

Mixed (n = 22) 
0.28 ± 

0.03 

9 ± 1 26 ± 2 64 ± 3 4.2 ± 0.09 12.4 ± 

1.59 

0.6 ± 

0.07 

ANOVA results: 

Position p < 0.01 p = 0.97 p = 0.43 p = 0.6 p < 0.001 p < 0.001 p < 0.01 

Vegetation p = 0.93 p = 0.37 p = 0.99 p = 0.89 p = 0.89 p = 0.97 p = 0.95 

Position × 

Vegetation 
p = 0.45 p = 0.51 p = 0.29 p = 0.21 p =0.72 p = 0.68 p = 0.59 

 280 
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Figure 2: Seasonal variations in soil CH4 fluxes (mean ± standard error) according to (a) topographic positions (n = 9 

for the plain, 16 for foot slopes, 14 for slopes, and 13 for ridges), (b) vegetation types for upland measurement locations 

(n = 19 for broadleaved, 11 for coniferous, and 22 for mixed), (c) daily precipitation, and (d) daily mean air temperature 

from April to November in 2023. 285 

 

3.2 Selected variables and performance of the upland CH4 flux models 

The topographic position index (TPI) was consistently selected in all seasons, with high importance scores, 

ranging from 0.51 to 0.90, depending on the measurement dates (Table 2). The topographic wetness index (TWI) 

was selected for most measurement dates, except two, where the vertical distance to the channel network (VDCN) 290 

was selected instead. TWI importance scores were high in early spring (0.64), late spring (0.61), and mid-summer 
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(0.63). VDCN and profile curvature (PrC) were occasionally selected along with TPI and TWI. VDCN showed 

moderate importance scores, contributing mostly in mid-spring (0.67) and early autumn (0.57). PrC, although less 

consistently selected, played a role in specific seasons, particularly early spring (0.55) and mid-autumn (0.51). 

Vegetation type was never selected in any season. 295 

 

Table 2. Selected variables for each measurement date, along with the R2 and root mean square error (RMSE) values 

to evaluate the accuracy of the quantile regression forests (QRFs) model. Importance scores of the selected variables 

are shown in parentheses, indicating their contribution to predicting soil CH4 fluxes. 

Measurement dates Selected variables R2 
RMSE 

(nmol m-2 s-1) 

2023/04/27 TWI (0.64), TPI (0.63), PrC (0.55) 0.48 0.53 

2023/05/12 TPI (0.80), VDCN (0.67) 0.31 0.82 

2023/05/31 TWI (0.61), TPI (0.54), VDCN (0.53) 0.46 0.47 

2023/07/06 TWI (0.52), TPI (0.58) 0.28 0.51 

2023/07/26 TWI (0.63), TPI (0.57), VDCN (0.47) 0.30 1.07 

2023/09/04 TWI (0.51), TPI (0.71), VDCN (0.35) 0.43 1.15 

2023/10/07 TPI (0.87), VDCN (0.57) 0.67 0.81 

2023/11/07 TWI (0.24), TPI (0.90), PrC (0.51) 0.61 0.68 

2023/11/30 TWI (0.49), TPI (0.52), VDCN (0.41) 0.44 0.57 

 300 

Model accuracy showed seasonal variation, with the highest obtained in early autumn (R2 = 0.67; RMSE = 0.81 

nmol m-2 s-1) and the lowest in early wet summer (R2 = 0.28; RMSE = 0.51 nmol m-2 s-1; Table 2). The relationship 

between measured and predicted fluxes for each measurement date showed that estimated fluxes were close to the 

observed fluxes (Fig. 3a-i).  

 305 
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Figure 3: Comparison of predicted (median of the quartile predictions from QRFs) and measured CH4 fluxes for each 

measurement date. Vertical bars indicate the interquartile ranges of the prediction distribution. Intercepts and slopes 

are estimated using a linear mixed-effect model with measurement dates as a random effect (full statistics are shown in 

Table A4). 310 

 

Overall, the slope of the relationship between measured and predicted fluxes (fixed effects) was not significantly 

different from 1 and was similar at all dates. The marginal (R2
m) and conditional (R2

c) coefficients of determination 

were 0.93 and 0.94, respectively, highlighting the consistency of the prediction for all measurement dates (linear 

mixed model, Table A4). 315 

3.3 Predicted upland soil CH4 fluxes 

Predicted median CH4 fluxes showed significant spatial heterogeneity and temporal variability across the 

landscape (Fig. 4; Table A6).  
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 320 

Figure 4: Maps of predicted soil CH4 fluxes at each pixel of the study area for each measurement date. Values represent 

the median of the conditional prediction distribution for each pixel. 

 

Spatial trends were consistent across seasons, with the highest net CH4 uptake observed on ridges and steepest 

parts of the slopes and decreasing toward the foot slopes near streams and the flat plain (Fig. 5; Table A6). 325 

In early (April 27) and late spring (May 31), CH4 uptake was low across the landscape. Higher uptake was 

predicted in mid-spring (May 12), consistent with measurements when there was less rain and warmer 

temperatures. CH4 uptake was still low in the early wet summer (July 6) and increased toward the mid to late dry 

summer (July 26 and Sep 4). Net CH4 uptake then decreased from early autumn (Oct 7) and reached its lowest 

rate in late autumn (Nov 30). 330 
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Figure 5: Predicted landscape-scale soil CH4 fluxes for each measurement date at the pixel level, aggregated by upland 

topographic positions. Different letters indicate significant differences between topographic positions for each 

measurement date. 

 335 

3.4 Uncertainty of predicted upland soil CH4 fluxes 

The spatial distribution of the percentage of predicted uncertainty varied across seasons (Fig. 6). The percentage 

was consistently low to moderate (less than 100%) for pixels on ridges and steep slopes, but extremely high 

uncertainties (more than 500%) was observed at some dates for low-elevation pixels when predicted fluxes were 

close to zero. However, low predicted fluxes were often associated with equally low predicted uncertainty (Fig. 340 

6, A2). The proportion of pixels with low uncertainty (<50%) was highest in early autumn (39.7% of the total 

upland pixels) and lowest in early spring (4.5% of the total upland pixels). In contrast, moderate uncertainty (50-

100%) was predominant in most seasons, particularly in spring and autumn, accounting for approximately 50% 

of the landscape. Moderate to high uncertainty (101-500%) was also predominant at some measurement dates, 

reaching its highest contribution of the landscape in late spring (47.6%). Extreme uncertainty (>500%) was very 345 

rare in all seasons, generally below 0.2%, except for a small peak in late autumn (0.5%) (Table A7). 
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Figure 6. Uncertainty map of predicted soil CH4 fluxes at each pixel of the study area for each measurement date. 

Values represent the ratio of the interquartile range to the median of the prediction distribution for each pixel. 

 350 

3.5 Predicted seasonal upland fluxes at the landscape level 

The predicted upland CH4 flux per hectare was calculated as the sum of the predicted fluxes at each pixel 

multiplied by pixel area (25 m2), and the sum divided by the upland area. Across the landscape, predicted median 

seasonal fluxes ranged from -0.35 to -0.60 g CH4 ha-1 hr-1 in spring, from -0.41 to -1.25 g CH4 ha-1 hr-1 in summer, 

and from -0.50 to -0.89 g CH4 ha-1 hr-1 in autumn (Fig. 7a).  355 
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Figure 7: Predicted soil CH4 fluxes, calculated as the mean of all pixels in the study area, and antecedent precipitation 

index (API). (a) Seasonal variations in landscape-scaled soil CH4 fluxes and (b) relationship between landscape-scaled 

soil CH4 fluxes and the 20-day API. Vertical bars indicate the uncertainty of the predicted fluxes. 

 360 

This seasonal variation in predicted upland median fluxes was well explained by the 20-day antecedent 

precipitation index (R2 = 0.71, p < 0.01) with a recession coefficient of 0.71 (Fig. 7b), followed closely by the 30-

day (R2 = 0.70) and 7-day (R2 = 0.69) API (Table A8). The average CH4 uptake by upland soils during the snow-

free season was -0.67 (interquartile range: -0.94 to -0.43) g CH4 ha-1 hr-1. 

4. Discussion 365 

4.1 Selected variables  

We employed quantile regression forest (QRF) models, driven by topographic and vegetation attributes, to upscale 

in-situ soil CH4 flux measurements from sampling points to the landscape level for each measurement date in all 

upland topographic positions, but excluding wetlands (1% of our study area). This non-parametric machine 

learning approach is particularly suited for handling non-linear relationships and complex interactions among 370 

predictors (Meinshausen, 2006). 

Unexpectedly, vegetation type was never selected despite previous evidence of greater soil CH4 uptake in plots 

containing only deciduous broadleaved tree species than in plots containing evergreen coniferous trees, either 

alone or in mixture (Jevon et al., 2023). The discrepancy between this previous study and our results may be 

related to the fact that their study area was ten times smaller and more topographically homogeneous than ours (4 375 

versus 40 ha). Moreover, soil properties that could explain the lower rate of CH4 oxidation in coniferous than in 

broadleaved stands, such as higher acidity (Borken et al., 2003; Hütsch, 1998; Ishizuka et al., 2000) did not differ 

significantly among the three types of vegetation cover at our site, whereas they differed according to topographic 

position. Furthermore, vegetation types were not randomly distributed among topographic positions (Table A1), 

meaning that the confounding effects of vegetation and DEM-derived variables on the prediction soil CH4 uptake 380 

could make it difficult to separate the influence of vegetation and topography in our complex mountain landscape. 

Among all tested topographic variables derived from the DEM, TWI, TPI, PrC, and VDCN were consistently 
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selected in different models across all measurement periods, emphasizing their importance in upscaling CH4 fluxes. 

Overall, the results validated our first hypothesis, as the selected topographic attributes were related to water 

circulation and accumulation. 385 

Among these variables, TWI represents water accumulation potential and is a common surrogate for soil moisture 

in mountainous regions. This key factor controls CH4 fluxes by affecting gas diffusion and microbial activity 

(Kaiser et al., 2018; Vainio et al., 2021; Warner et al., 2019), as TWI integrates potential inflows and discharges 

through runoff and drainage (Ågren et al., 2014; Beven and Kirkby, 1979). TWI was selected in seven out of nine 

measurement periods but not on May 12 and October 7. These two periods correspond to transitional seasons, i.e., 390 

mid-spring and early autumn, when the landscape is generally drier, and water does not accumulate. 

TPI describes the elevation of a location relative to those of the surrounding terrain within a given radius, allowing 

the identification of landform positions such as ridges, slopes, and valleys (Ågren et al., 2014). TPI is generally 

calculated using a non-filled DEM, which is also more representative of local-scale moist depression that TWI 

doesn’t capture, as TWI is calculated using the filled DEM (Kemppinen et al., 2018). In our study, TPI was 395 

consistently selected in all measurement periods, highlighting that localized moisture, and potentially soil 

chemistry, are more influential parameters in controlling the CH4 fluxes at the landscape level. Areas with negative 

TPI values (e.g., valleys or depressions) typically function as convergence zones, where water and nutrients 

accumulate due to gravitational flow and reduced drainage. In contrast, positive TPI values (e.g., ridges and 

convex upper slopes) are more divergent, often characterized by increased drainage and runoff, and limited water 400 

and nutrient retention. 

Although PrC was significantly correlated to TPI (Table A5), it was selected twice (April 27 and Nov 7). PrC 

refers to the curvature of the land surface in the direction of the slope (along a flow line). It influences the 

acceleration or deceleration of surface and subsurface water flow (Ågren et al., 2014). Negative values (concave 

slopes) tend to slow water movement, promoting water and nutrient accumulation in soils. Conversely, positive 405 

values (convex slopes) accelerate flow, often reducing water retention time and lowering nutrient accumulation 

due to leaching or erosion. Excluding PrC from the list of available variables for selection decreased the model 

performance for these two dates, probably because PrC helps discriminate between plains and slopes, both of 

which have near-zero TPI values.  

VDCN is another important variable reflecting groundwater level conditions. Lower values typically observed 410 

near stream channels with higher groundwater level (Bock and Köthe, 2008). When the landscape was drier (May 

12 and October 7), and TWI was not selected, TPI and VDCN had more substantial explanatory power. VDCN 

was also selected several times with TWI. Interestingly, VDCN has been shown to be useful in distinguishing 

well-drained from poorly drained soils (Bell et al., 1992; Kravchenko et al., 2002). It may explain why, despite 

significant correlations between VDCN and both TPI and TWI (Table A5), excluding VDCN from the list of 415 

variables available for selection decreased model performance. This highlights that TWI and TPI alone were not 

sufficient to reflect local soil moisture conditions, as drainage conditions can potentially vary across the landscape, 

which controls soil microhabitat conditions and thus influences CH4 fluxes. 

4.2 Spatial patterns of predicted soil CH4 fluxes 

The models revealed clear spatial patterns in soil CH4 fluxes that were consistent across measurement dates, even 420 

though the models selected different variables at each date. Predicted soil CH4 fluxes closely matched topographic 

gradients, consistent with our second hypothesis. Ridges and upper slopes exhibited the highest net CH4 uptake, 
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functioning as strong sinks for CH4 across all seasons, whereas CH4 uptakes were lowest in plain and foot slope 

positions. These topographic patterns of CH4 uptake are consistent with previous studies. In a temperate forest in 

central Ontario, Canada, the highest CH4 uptake was observed on slopes and ridges (Wang et al., 2013). Similarly, 425 

in a temperate forest in Maryland, USA, transition zones were identified as hotspots for CH4 uptake (Warner et 

al., 2018). In a tropical forest in China, hillslopes exhibited the highest CH4 uptake, while lower uptake was 

observed at the foot slopes and in groundwater discharge areas (Yu et al., 2021). Similarly, CH4 uptake was greater 

on ridges than at valley bottoms in a subtropical forest in Puerto Rico (Quebbeman et al., 2022). 

In our studied landscape, we observed lower soil bulk density on ridges and slopes than on the plain area, 430 

indicating that ridge and slope soils have higher porosity, which is consistent with higher soil CH4 oxidation rates 

due to higher diffusion rates of O2 and CH4 from the atmosphere through soil pores (Ishizuka et al., 2009). 

Although we did not assess the methanotroph community structure, the greater atmospheric CH4 uptake on slopes 

and ridges is consistent with the community structure observed in a subalpine forest, with type I methanotrophs 

dominating in riparian soils, whereas type II methanotrophs were more prevalent in upland soils (Du et al., 2015). 435 

The higher soil carbon (C) and nitrogen (N) contents observed on ridges and slopes at our site may contribute to 

higher soil CH4 uptake, as soil CH4 uptake has been found to be positively correlated with soil organic matter 

content in subtropical and temperate forests (Lee et al., 2023). Possible explanations are that higher soil carbon 

may increase the availability of labile substrates that stimulate methanotrophic activity by increasing CH4 supply 

through enhanced methanogenesis in anoxic microsites or by directly providing substrate for facultative methane-440 

oxidizing bacteria, thereby increasing their abundance (Jensen et al., 1998; Semrau et al., 2011; West and Schmidt, 

1999). Soil nitrogen was probably predominantly in organic form, and therefore the soil concentration of nitrate 

and ammonium, known to inhibit CH4 oxidation by methanotrophs at high concentration (King and Schnell, 1994; 

Mochizuki et al., 2012), likely remained low (Aronson and Helliker, 2010; Bodelier and Laanbroek, 2004). 

Nitrogen is an essential nutrient for the growth of methanotrophs, whose activity has been shown to be nitrogen-445 

limited in forest soils (Börjesson and Nohrstedt, 2000; Martinson et al., 2021; Veldkamp et al., 2013). Therefore, 

mineralization of these low levels of organic nitrogen could alleviate the nitrogen limitation of CH4 oxidation and 

partly explain the higher soil CH4 uptake observed on ridges and slopes, where total nitrogen concentration was 

higher than at the foot slopes and in the plain. 

4.3 Model performance and uncertainty 450 

Soil CH4 fluxes predicted by QRF models were close to the measured fluxes for all measurement periods (Fig. 3; 

Table A4), indicating that topographic attributes could be used for upscaling CH4 fluxes in mountainous 

landscapes. The performance of the models developed for scaling CH4 fluxes was comparable to previous studies 

using topographic data for similar purposes (Kaiser et al., 2018; Vainio et al., 2021; Virkkala et al., 2024; Warner 

et al., 2019). However, it is important to note that direct comparisons between studies are difficult due to variations 455 

in cross-validation approaches, as the choice of cross-validation technique can significantly influence model 

performance (Roberts et al., 2017). 

Unfortunately, it was not possible to accurately predict CH4 fluxes when measurements collected in wetland 

patches were included in the training data, probably because neither the topographic features nor the vegetation 

differed sufficiently between the large areas functioning as CH4 sinks and the small wetland patches functioning 460 

as CH4 sources in the plain area. Räsänen et al. (2021) noticed that spatial patterns of CH4 fluxes could be 

accurately predicted in a northern peatland-forest-mosaic landscape when they were modeled for sinks and sources 
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separately. This separation was not possible in our study due to the low number of measurement locations in 

wetlands, related to their small extent (1%) in our upland-dominated landscape. 

One advantage of the QRF approach is its ability to estimate prediction intervals (Meinshausen, 2006), thus 465 

offering insights into the uncertainty associated with the predicted flux value at each pixel. The spatial distribution 

of the uncertainty associated with the predicted soil CH4 fluxes varied seasonally (Fig. 6; Table A7) in agreement 

with our third hypothesis, reflecting both spatial heterogeneity and temporal changes in model confidence. In our 

study, the spatial patterns of QRF-derived uncertainties were consistently related to topographic position and flux 

magnitude. Predictions in ridge and steep slope pixels generally exhibited low percentage uncertainties (often 470 

below 100%), likely because these well-drained upland areas were well represented in the training data and 

exhibited relatively stable and high CH4 uptake across seasons. In contrast, extremely high percentage 

uncertainties (exceeding 500%) were observed in some low-lying pixels during specific seasons, especially where 

predicted CH4 fluxes were close to zero. A crucial methodological point is that percentage uncertainty is a relative 

measure; even a small absolute uncertainty around a near-zero prediction can yield a very large percentage 475 

(Warner et al., 2019). Large absolute uncertainties can result from large differences in fluxes measured at locations 

with similar topographic characteristics. Since lower fluxes were measured in the flat plain area compared to the 

ridges and slopes, yet with similar variability (Fig. 2a), high relative uncertainties were often associated with this 

area characterized by complex hydrological conditions, which are difficult to model accurately. 

Consistent with our third hypothesis, seasonal differences in the uncertainty distribution were also evident, with 480 

the lowest uncertainty in late summer and early autumn, i.e., under warm and dry conditions, indicating better 

model performance when hydrological conditions were less variable. In contrast, larger uncertainties were 

produced by the models in early spring and late autumn, as well as in late spring and early summer, when measured 

and predicted soil CH4 fluxes were lowest. The East Asian monsoon flow bringing warm and humid air mass and 

resulting in the rainy season in late spring and early summer, as well as low evapotranspiration in early spring and 485 

late autumn, may have introduced greater variability in soil hydrology, contributing to higher uncertainties. 

Nevertheless, low to moderate uncertainty (<100%) was the most prevalent class across all seasons, consistently 

accounting for more than half the landscape—up to 80% in late summer and early autumn—while extreme 

uncertainties (>500%) were rare across all seasons. This suggests that the models performed well overall. 

Although some areas remain challenging to model, the QRF approach provides generally reliable spatial 490 

predictions of soil CH4 fluxes with quantifiable and interpretable uncertainties. 

4.4 Scaled soil CH4 fluxes and seasonal variation 

The upland CH4 fluxes per hectare were calculated by aggregating pixel-level predictions and normalizing them 

to the total upland area, allowing for standardized comparison across sites, although there are still very few 

comparable data available, making it difficult to analyze the causes of differences across sites. Our highest CH4 495 

uptake in late summer was -1.25 g CH4 ha-1 hr-1 (interquartile range -1.71 to -0.82), 2.6 times higher in absolute 

value than in a forested watershed in Maryland, USA (-0.47 g CH4 ha-1 hr-1, Warner et al. 2019), but slightly lower 

than in a boreal pine forest in Finland (-1.59 g CH4 ha-1 hr-1, Vainio et al. 2021). 

Consistent with our fourth hypothesis, the seasonal variation in predicted upland CH4 fluxes reflects strong 

sensitivity to soil moisture dynamics, which were effectively captured using the Antecedent Precipitation Index 500 

(API). The API, serving as a proxy for dynamic soil moisture, integrates precipitation over a defined period and 

includes a recession factor to account for evapotranspiration and drainage. Short durations (e.g., 7 days) reflect 
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surface moisture, while longer durations (e.g., 30 days) capture deeper soil moisture conditions (Schoener and 

Stone, 2020; Sidle et al., 2000; Yamao et al., 2016). Among the API durations tested, the 20-day API with a 

recession coefficient of 0.70 showed the highest explanatory power (R2 = 0.71), although using either a 30-day or 505 

a 7-day API would provide similar goodness of fit with similar recession coefficients, indicating that soil moisture 

conditions across different depths had similar influence on CH4 flux variability. The consistently low recession 

coefficient (Kohler and Linsley, 1951) suggested that rainwater does not accumulate in our watershed. Higher API 

values indicate wetter antecedent conditions, which can suppress CH4 uptake by reducing oxygen availability and 

thus limiting methanotrophic activity, and by temporarily turning the subsoil condition to anoxic, promoting 510 

methane production and reducing net CH4 uptake (Angel et al., 2012; Hu et al., 2023; Kruse et al., 1996). 

Conversely, drier periods with lower API values were observed in mid and late summer and earlier autumn, when 

soils were better aerated, creating favorable conditions for atmospheric CH4 oxidation and leading to greater CH4 

uptake. 

5 Conclusion 515 

In conclusion, our study showed the dominant role of topography on the spatial variation of soil CH4 fluxes in 

upland forest landscapes. The quantile regression forest (QRF) model successfully captured these ridge-to-plain 

spatial gradients in the upland area where the soil is almost always unsaturated, with strong performance. CH4 

uptake was consistently highest on ridges and slopes, where well-drained soils with lower bulk density and higher 

porosity supported enhanced methanotrophic activity. Furthermore, the seasonal dynamics of CH4 uptake were 520 

well-captured by the 20-day Antecedent Precipitation Index (API), with a significant positive relationship between 

API and CH4 uptake, emphasizing the sensitivity of CH4 uptake by upland soils to seasonal fluctuations in soil 

moisture conditions. Our modeling approach was unable to accurately predict CH4 fluxes when including 

measurements collected in three wetland patches functioning as CH4 sources in the plain area (1% of the total 

landscape). The integration of terrain-based predictors and moisture history provides a reliable framework for 525 

scaling soil CH4 fluxes across complex landscapes, highlighting the importance of considering both static 

(topographic) and dynamic (climatic) controls in future assessments of CH4 flux. 

 

  

https://doi.org/10.5194/egusphere-2025-3449
Preprint. Discussion started: 8 August 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

Appendix A 530 

Table A1. Proportion of vegetation types associated with the different topographic positions 

Position Vegetation Proportion of vegetation type (%) 

Plain Broadleaf 77.8 

Coniferous 11.1 

Mixed 11.1 

Foot slope Broadleaf 56.3 

Coniferous 18.8 

Mixed 25.0 

Slope Broadleaf 21.4 

Coniferous 21.4 

Mixed 57.1 

Ridge Coniferous 30.8 

Mixed 69.2 

 

Table A2. Summary of linear mixed model (LMMs) analyzing the effects of topographic position, vegetation types, date 

of measurement, and their interactions on measured soil CH4 fluxes. Collar ID was included as the random effect. 

Response variable 
Explanatory factors 

(fixed effects) 
p-value 

Measured soil CH4 

fluxes 

Position [df = 3] 0.17 

Vegetation [df = 2] 0.83 

 Measurement date (DM) [df = 8] < 2 × 10-16 

 Position × Vegetation [df = 5] 0.93 

 Position × DM [df = 24] 0.74 

 Vegetation × DM [df = 16] 0.51 

 Position × Vegetation × DM [df = 40] 0.04 

 535 
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Table A3. Spearman’s correlation coefficients and p-values (*p > 0.05, **p > 0.01, ***p > 0.001) between soil properties 

and mean soil CH4 fluxes. Non-significant coefficients are shown in gray. 

 

BD Clay Silt Sand pH C% N% 

BD        

Clay -0.23       

Silt -0.06 0.40**      

Sand 0.14 -0.73*** -0.93***     

pH 0.47*** 0.11 0.03 -0.064    

C% -0.72*** -0.00 -0.10 0.078 -0.69***   

N% -0.74*** 0.01 -0.11 0.077 -0.65*** 0.97***  

Mean CH4 flux 0.26 -0.04 -0.11 0.105 0.32* -0.20 -0.22 

 540 

Table A4. Summary of the linear mixed model (LMMs) analyzing the relationship between the predicted soil CH4 fluxes 

and measured soil CH4 fluxes, where measurement periods were included as the random factor on both slope and 

intercept. The p-values of the fixed effect were for testing if the intercept was different from zero and the slope different 

from 1. The marginal (R2
m) and conditional (R2

c) coefficients of determination, and the root mean square error of the 

model are shown. 545 

Fixed effect: predicted CH4 flux Random effects: measurement dates 

Estimate ± SE p-values  Intercept Slope 

Intercept 0.12 ± 0.03 from 0: 0.004 2023/04/27 -0.03 0.02 

Slope 1.15 ± 0.02 from 0: 2 × 10-11 2023/05/12 0.00 0.03 

  from 1: 0.91 2023/05/31 -0.03 0.02 

   2023/07/06 -0.07 0.04 

Statistics  2023/07/26 0.05 0.03 

n 467  2023/09/04 0.09 -0.05 

R2
m 0.93  2023/10/07 0.03 -0.05 

R2
c 0.94  2023/11/07 -0.01 -0.04 

RMSE 0.28  2023/11/30 -0.02 0.01 
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Table A5. Spearman’s correlation coefficients and p-values (*p > 0.05, **p > 0.01, ***p > 0.001) between topographic 

attributes: cosine-transformed aspect, slope, profile curvature (PrC), topographic position index (TPI), topographic 

wetness index (TWI), and vertical distance to channel network (VDCN). 550 

  Aspect Slope PrC TPI TWI 

Aspect      

Slope -0.04     

PrC 0.17 -0.01    

TPI 0.16 0.02 0.63***   

TWI -0.25 -0.58 -0.20 -0.57***  

VDCN -0.03 0.26 0.46*** 0.73*** -0.53*** 

 

Table A6. Summary of the LMM analyzing the effects of topographic position and measurement dates (MD) on 

predicted soil CH4 fluxes. Pixel ID was included as a random effect, and spatial autocorrelation among residuals 

eliminated. 

Response variables Explanatory variables p-values 

Predicted median CH4 fluxes Position [df = 3] < 0.001 

 MD [df = 8] < 0.001 

 Position × MD [df = 24] < 0.001 

 555 

Table A7. Percentage of upland pixels in the study area distributed among four levels of predicted relative uncertainty 

for soil CH4 fluxes. 

 Uncertainty 

Seasons < 50% 50 - 99 % 100 - 500% >5 00% 

2023/04/27 4.54% 53.06% 42.35% 0.04% 

2023/05/12 19.93% 54.01% 26.06% - 

2023/05/31 8.28% 44.19% 47.54% - 

2023/07/06 21.68% 39.73% 38.50% 0.08% 

2023/07/26 13.18% 43.75% 43.05% 0.02% 

2023/09/04 30.85% 39.64% 29.35% 0.16% 

2023/10/07 39.68% 38.13% 22.19% - 

2023/11/07 16.98% 54.58% 28.37% 0.07% 

2023/11/30 11.29% 46.85% 41.34% 0.52% 
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Table A8. Statistics of the linear relationship between landscape-scaled soil CH4 fluxes and antecedent precipitation 560 

indexes (API). 20 antecedent days provided the best fit. 30 and 7 antecedent days are shown as common metrics in 

hydrology. Adjusted recession coefficients (k) and determination coefficients (R2) are shown. 

Antecedent days k R2 

20 0.70 0.71 

30 0.70 0.70 

7 0.68 0.69 

 

 

 565 

 

Fig A1. Seasonal variation of soil CH4 fluxes from wetlands (means and standard error, n = 3). 
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Fig A2. Relationship between predicted uncertainty and predicted CH4 fluxes. The highest uncertainty is observed for 570 

a near-zero prediction. 
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