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Abstract. Forest soils are generally considered a sink for atmospheric methane (CH4), but their uptake rate can vary 

considerably in space and time. This study investigated the role of topography and vegetation on soil CH4 fluxes and the 

temporal patterns of spatially upscaled soil CH4 fluxes in a topographically complex cold-temperate mountain forest in central 

Japan. We measured soil CH4 fluxes nine times during the snow-free season at multiple locations within a 40-ha area in a 

forested watershed. Non-waterlogged soils were a sink of CH4, while small wetland patches emitted CH4 consistently 15 

throughout the study period. We used a machine-learning approach to upscale the measured soil CH4 fluxes to the landscape 

scale for non-waterlogged soils at each date of measurement, using topographic and vegetation attributes derived from a digital 

elevation model and aerial images. The accuracy of predicted fluxes varied seasonally, with the highest model performance 

observed in early autumn (R² = 0.67) and the lowest in mid-summer (R² = 0.31). Predicted CH4 fluxes varied significantly 

across topographic positions, with greater uptake on ridges and slopes than on the plain and foot slopes. Topography played a 20 

predominant role compared to vegetation in the spatial variability of CH4 fluxes. Predicted CH4 fluxes at the landscape scale 

in the non-waterlogged area ranged from -0.34 to -0.60 g CH4 ha-1 h-1 in spring, -0.39 to -1.28 g CH4 ha-1 h-1 in summer, and -

0.48 to -0.89 g CH4 ha-1 h-1 in autumn. Seasonal fluxes were highly correlated with the 20-day antecedent precipitation index 

(R² = 0.70), revealing the importance of seasonal moisture conditions in regulating CH4 flux dynamics. This study highlighted 

the importance of topography in controlling soil CH4 fluxes and the efficiency of remote sensing and machine learning 25 

approaches to scale field measurements to the landscape level, enabling visualization of spatial patterns of fluxes across the 

landscape over time, despite high uncertainty on some measurement dates, particularly for low elevation pixels. 

1 Introduction 

Methane (CH4), the second most important anthropogenic greenhouse gas, contributes substantially to the anthropogenic 

radiative forcing and is responsible for approximately 0.5°C of current global warming compared to 1850 - 1900 (IPCC, 2023). 30 

Natural wetlands (149 Tg CH4 yr-1) and rice cultivation (30 Tg CH4 yr-1) are important sources of CH4; in contrast, non-

waterlogged soils are considered a biological sink of atmospheric CH4, with an estimated uptake of 25-45 Tg yr-1, contributing 

5-7% to the global CH4 sink (Saunois et al., 2020). Forest soils account for approximately 60% of global soil CH4 uptake 

(Dutaur and Verchot, 2007), and soil uptake rates are particularly high in Japanese mountain forests due to their high porosity 

(Ishizuka et al., 2000). CH4 uptake by forest soils is driven by methane-oxidizing bacteria in oxic soil layers, whereas anaerobic 35 

environments such as wetland soils are usually dominated by methanogenic archaea producing CH4 (Christiansen et al., 2016). 

CH4 production can also occur in non-waterlogged soils, either in deeper soil layers or in microsites located in otherwise well-

aerated soil layers, if anaerobic conditions prevail (Angel et al., 2012). Hence, CH4 oxidation and production can occur 

simultaneously at the same location, contributing to the net flux. 

Net soil CH4 fluxes depend mainly on the soil air-filled porosity (AFP), which in turn depends on total porosity and soil water 40 

content. A high AFP enhances gas diffusion in soil and, consequently, microbial CH4 oxidation (Kruse et al., 1996). Soil organic 

matter at the soil surface can act as a physical barrier to atmospheric CH4 diffusion and reduce the CH4 uptake rate (Yu et al., 
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2017). Conversely, carbon substrates released by the decomposition of soil organic matter can increase CH4 oxidation activity 

either by directly stimulating the growth of methanotrophs or by promoting CH4 production in anaerobic microsites and 

indirectly supporting the growth of methanotrophs (West and Schmidt, 1999). Additionally, soil nutrients can influence soil 45 

CH4 fluxes by regulating the soil microbial community. The activity of methanotrophic microorganisms is affected by the 

availability of inorganic nitrogen (Bodelier and Laanbroek, 2004). Although methanotrophic activity can be nitrogen-limited 

in forest soils (Veldkamp et al., 2013), increasing ammonium (NH4
+) concentration often reduces CH4 uptake due to 

competitive inhibition by NH4
+

 of the enzyme methane mono-oxygenase, which can oxidize both CH4 and NH4
+. Nitrate (NO3

-) 

can also be a potent inhibitor of CH4 oxidation in some soils (Mochizuki et al., 2012). Although temperature affects microbial 50 

activities, including methanogenesis and methanotrophy (Luo et al., 2013; Praeg et al., 2017), CH4 uptake is generally less 

sensitive to changes in soil temperature than in soil moisture (Epron et al., 2016). 

Topography and vegetation cover can create a predictable distribution of soil moisture and nutrients across topographically 

complex landscapes (Jeong et al., 2017; Murphy et al., 2011). In Japan, forests cover 68% of the land, mostly in mountain 

areas. Conifers account for 44% of the total forest area (Lundbäck et al., 2021; Nakamura and Krestov, 2005). Topography is 55 

a critical determinant of soil hydrological conditions, from well-drained slopes to waterlogged riparian areas (Kaiser et al., 

2018). Topography can also impact soil nutrient availability by altering leaf litter accumulation and the movement of soil 

nutrients (Osborne et al., 2017; Tateno and Takeda, 2003). The spatial distribution of trees, differences in species abundance 

across the landscape, and variation in litter chemistry often create heterogeneity in soil nitrogen cycling (Osborne et al., 2017). 

Furthermore, differences in stem flow and throughfall related to differences in canopy structure between tree species can 60 

indirectly influence spatial patterns of soil moisture (Holwerda et al., 2006). 

In situ chamber measurements have long been the dominant method for studying CH4 fluxes in forests, providing insight into 

the processes that drive them (Brumme and Borken, 1999; Guckland et al., 2009; Itoh et al., 2009). Until recently, most studies 

reported spatially average flux values measured at several locations (Gomez et al., 2016; Itoh et al., 2009). This method is 

acceptable for small patches of homogeneous landscapes, such as crops or single-species tree plantations in flat terrain. 65 

However, it is inappropriate for more complex landscapes, as the number of sampling points required to obtain an accurate 

spatially-averaged flux would increase considerably. 

In complex terrains, measurement locations can be grouped into several distinct categories according to landforms (Courtois 

et al., 2018; Gomez et al., 2016; Itoh et al., 2009; Kagotani et al., 2001; Kaiser et al., 2018; Warner et al., 2018), soil 

microtopographic features (Epron et al., 2016), vegetation characteristics (Guckland et al., 2009), or land uses (Jacinthe et al., 70 

2015). However, as Vainio et al. (2021) pointed out, aggregation assumes spatial homogeneity of fluxes within each category 

or requires a large number of sampling points to capture the spatial heterogeneity, and this approach ignores the spatially 

continuous nature of soil processes and their drivers. 

More recently, regressions with multiple landscape attributes derived from remote sensing-based maps have been successfully 

applied to upscale CH4 to a catchment scale (Kaiser et al., 2018). Recent studies conducted on a 12-ha forested watershed 75 

(Warner et al., 2019), a 10-ha boreal forest plot (Vainio et al., 2021) , two northern peatland-forest-mosaic catchments of 450 

ha and 790 ha, respectively (Räsänen et al., 2021), and a 450-ha subarctic tundra (Virkkala et al., 2024) have demonstrated the 

effectiveness of machine-learning modelling approaches for upscaling CH4 fluxes from remote sensing data. 

Soil CH4 fluxes exhibit strong spatiotemporal variability in temperate mountain forests, and robust large-scale estimates remain 

scarce despite their importance for consolidating the global methane budget because upscaling fine-scale chamber-measured 80 

CH4 fluxes requires an explicit understanding of their spatial and seasonal heterogeneity. We assessed the role of terrain 

attributes (topography, vegetation) on methane fluxes throughout the snow-free season in a topographically complex mountain 

landscape, and how the spatial heterogeneity of predicted fluxes and the aggregated fluxes at the landscape level vary over 

time. We measured soil CH4 fluxes several times during the snow-free season at multiple locations within a 40-ha area in a 

forested watershed. We applied a random forest machine-learning approach in combination with terrain attributes from 85 
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remotely sensed data, i.e., a digital elevation model (DEM) and a vegetation map derived from aerial images, to upscale 

measured soil CH4 fluxes to the landscape level. We hypothesized that (1) terrain attributes related to water accumulation are 

reliable predictors of soil CH4 fluxes, (2) spatial patterns of uncertainties in predicted soil CH4 fluxes vary seasonally due to a 

wet early summer influenced by the East Asian monsoon, (3) predicted soil CH4 fluxes vary within the landscape depending 

on topography and vegetation, and (4) seasonal variations of CH4 flux at the landscape scale are explained by recent past 90 

precipitations. 

2 Materials and methods 

2.1 Description of the study site and experimental design 

This study was conducted in the forested upper Yura River watershed (520 ha, 35.34 N; 135.76 E) located at the Ashiu 

Experimental Forest of Kyoto University in northeastern Kyoto Prefecture, Japan (Fig. 1). The mean annual temperature and 95 

precipitation were 10.3°C and 2,732 mm, respectively, between 2011 and 2020 and the ground was covered by snow (2-3 m 

depth) from mid-December to mid-April (Epron et al., 2023). The study area is characterized by a cool-temperate monsoon 

climate, with a very humid early summer (520 mm in June and July on average between 2011 and 2020) and occasionally 

heavy precipitation caused by typhoons in late summer. The soils in the study area are classified as brown forest soils according 

to the Classification of Forest Soils in Japan (cambisols according to the FAO classification), with a relatively thick brownish-100 

black A horizon with a crumb structure and a brown B horizon with a blocky structure (Hirai et al., 1988; Ueda et al., 1993). 

The forest is primarily dominated by Cryptomeria japonica D. Don (Japanese cedar, 73% of the basal area in four 1-ha census 

plots), mixed with more than 50 broadleaved species (Ishihara et al., 2011). 

 

Figure 1. Map of the upper Yura River watershed with its location in Japan on the left and an enlargement of the 40.2 ha study area 105 

on the right. The green triangles represent the 52 flux measurement locations on unsaturated soils and the red dots the 3 

measurement locations on waterlogged soils. (Japan map: http://www.gsi.go.jp/ENGLISH/page_e30286.html) 

 

The study site covered an area of 40.2 hectares and included 55 sampling points for CH4 flux measurements and soil sampling 

(Fig. 1). The sampling points were chosen along three transects perpendicular to the main river, from the plain to the ridges 110 

covering two slopes (south-facing and north-facing), as well as in a lateral canyon, and along transects parallel to the main 

river, on the plain, above the foot slope and on a ridge. The sampling was designed to encompass the landscape heterogeneity, 

while being constrained by the geography of the site and safety considerations. We recorded the positions of all sampling 

locations using a portable GPS tracker (Garmin, eTrex® Touch 35) accurate to a radius of 5 m or less. 
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2.2 Soil sampling and analysis 115 

Soil cores were collected using a sampling cylinder at 0-10 cm depth at approximately 0.3 m of the flux measurement points. 

Samples were sieved at 2 mm and separated into stones and fine earth. The fresh weight of the fine earth fraction was measured 

before being air-dried. Bulk density of this fraction was determined as the ratio of oven-dried soil (subsample dried at 105°C) 

to the soil volume. Soil texture was analysed using the micro-pipette method, following Burt et al. (1993). Total soil carbon 

(C) and nitrogen (N) contents were measured using a Macro Corder JM 1000CN (J-SCIENCE LAB Co., Ltd., Japan). The soil 120 

pH was measured in a suspension (10 g of soil in 25 ml distilled H2O) after shaking for 1 hour. 

2.3 Topographic characterization 

To characterize and process the terrain attributes related to soil CH4 fluxes, we used a 0.5 m grid digital elevation model (DEM) 

based on airborne laser surveys conducted throughout the upper Yura River watershed in 2012 by the Ashiu Experimental 

Forest staff. The DEM was further processed and conditioned into a 5 m grid DEM image according to the GPS tracker's 125 

accuracy (≤ 5 m) that was used to locate each soil collar position, enabling us to identify the corresponding pixels on the terrain 

attribute grids. We derived several topographic attributes from the DEM using SAGA Next Generation in QGIS (v3.34.5-

Prizren). The calculated attributes included slope, profile curvature (PrC), topographic position index (TPI), SAGA wetness 

index (SWI), and vertical distance to channel network (VDCN). Among the many attributes that can be derived from a DEM, 

we avoided selecting those that would be redundant to limit collinearities and overparameterization. Our preselection was 130 

motivated by the fact that methane fluxes result from the activity of methanotrophic and methanogenic communities, which 

are controlled by soil moisture and chemistry (C, N, pH), and, to a lesser extent, temperature. All the preselected attributed 

were correlated with soil moisture and chemistry (Table A1) and can potentially serve as a proxy for the spatial distribution of 

soil moisture and nutrient availability (Jeong et al., 2017; Kemppinen et al., 2018). 

Slope, and profile curvature were calculated following the 9-parameter 2nd order polynom method (Zevenbergen and Thorne, 135 

1987). Negative values of profile curvature indicate a convex surface where the flow of water accelerates as it moves 

downslope; in contrast, positive values suggest a concave surface where the flow slows down (Pachepsky et al., 2001). 

SWI is a refined version of the topographic wetness index (TWI) (Beven and Kirkby, 1979), which indicates that the spatial 

distribution of soil moisture is defined as 𝑇𝑊𝐼 = ln⁡(𝑆𝐶𝐴 tan Ɵ⁄ ), where 𝑆𝐶𝐴 refers to the specific catchment area and Ɵ⁡is 

the local slope. SWI considers small differences in elevation values by using an iterative modification of the specific catchment 140 

area, assuming rather homogenous hydrologic conditions in the flat areas. The SWI was calculated using the SAGA wetness 

index algorithm, which is available in the SAGA library and integrated within QGIS (Conrad et al., 2015). Prior to computation, 

the DEM was hydrologically corrected by filling sinks to ensure continuous flow routing (Wang and Liu, 2006). 

TPI describes the relative position of a location within a landscape, indicating whether it is on a ridge, slope, or valley based 

on the elevation compared to the surrounding terrain at a specified radius (Ågren et al., 2014). Positive values indicate ridges; 145 

negative values indicate depressions, and zero or near-zero values indicate slopes or flat areas. TPI is a highly scale-dependent 

variable and was calculated at the centre of circular areas with radii of 20 m, 30 m, and 50 m using the unfilled DEM. In our 

final model, we used TPI calculated with a 30 m radius, as it had the highest Spearman correlations with soil physical and 

chemical properties that influence soil CH4 fluxes (Table A1). 

VDCN was calculated as the elevation difference between each grid cell and the baseline of the nearest stream channel. This 150 

parameter serves as a proxy for groundwater depth, with lower VDCN values typically corresponding to areas with shallower 

groundwater and higher water tables, and higher values indicating deeper groundwater levels often found at higher topographic 

positions (Bock and Köthe, 2008). To calculate VDCN, the filled DEM was first used to create a flow accumulation layer using 

the multiple flow direction method (Freeman, 1991). The resulting flow accumulation raster was then used to create 

topographically defined flow channel networks, applying flow initiation thresholds of 0.5, 2.5, and 5 ha. VDCN then 155 
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subsequently calculated for each threshold. In our final model, we used VDCN calculated with a 5-ha initiation threshold, as 

it has the highest Spearman correlations with soil physical and chemical properties that influence soil CH4 fluxes (Table A1). 

The site was classified into non-waterlogged areas (including ridges, slopes, foot slopes and plains as topographic positions 

where the soil is almost always unsaturated), wetlands (small patches with water-saturated soil year-round in the plain), and 

rivers. To distinguish wetland and non-waterlogged areas, we collected additional GPS positions at the edges and within the 160 

three wetland patches, in addition to the positions of the 55 sampling points. We then used SWI, PrC, slope, and VDCN to 

predict the locations of wetlands using a machine learning approach described in the supplementary file (Note S1). Finally, the 

boundaries between wetlands and non-waterlogged areas were refined by visual inspection. We acknowledged that using a 

fixed boundary between non-waterlogged areas and wetlands, although these boundaries may vary seasonally depending on 

the balance between precipitation and evaporation, may increase uncertainties in CH4 flux prediction. Predicting the temporal 165 

variations of these boundaries was beyond the scope of this work, and, at our site, wetlands represent only 1% of the pixels 

(see below), and their boundaries even less. A posteriori, pixels classified as wetland had SWI values above 8.1, profile 

curvature between -0.003 and 0.001, slope values below 6.8, and VDCN values below 2.2 (Fig. S1). For river mapping, pixels 

corresponding to rivers were identified in the channel network raster, which was calculated using a 5-ha initiation threshold. 

Slope angle and TPI at 30 m radius were used to partition the non-waterlogged areas into ridges, slopes, foot slopes, and the 170 

plain. Locations with TPI values of 5 or greater were defined as ridges, representing locally elevated, convex surfaces. 

Locations with TPI values ≤ -5 were defined as foot slopes, concave surface. Areas with intermediate TPI values (−5 < TPI < 

5) were further divided according to slope angle: sites with slope > 18° were defined as slopes, and those with slope ≤ 18° 

were defined as plains. Non-waterlogged areas, wetlands, and rivers, accounted for 94%, 1%, and 5% of the total study area, 

with respectively 52 sampling points located in non-waterlogged areas, including 14 in plains, 9 in foot slopes, 16 in slopes, 175 

and 13 in ridges, while 3 were situated in wetland areas. 

 

2.4 Vegetation classification 

Tree inventory was conducted during the flux measurement period to classify the vegetation surrounding the flux measurement 

points. A circular plot with a 10-meter radius was established, centred at each flux measurement point. Within the plot, all trees 180 

were identified at the species level, and their diameter at breast height (DBH) was measured. We calculated the plot basal area 

(BA) as the sum of the cross-sectional areas (CSA) at breast height of all tree trunks in each plot, and subsequently determined 

the relative basal area of coniferous trees (RBACON) in each plot. Then, we predicted the BA and RBACON for the entire study 

area using SWI, TPI, VDCN, and the normalized vegetation index (NDVI) using a machine learning approach described in 

the supplementary file (Note S2, Fig. S2). Vegetation density was classified into three categories based on the quantile 185 

distribution of BA: high (BA > 2.6, upper quartile), medium (0.9 < BA < 2.6, interquartile range), and low (BA > 2.6, lower 

quartile). High, medium, and low vegetation density accounted for 37%, 37% and 26% of the total study area (Fig. S3), 

represented by 14, 28 and 10 sampling points, respectively. Vegetation types were classified based on RBACON. Three types 

were defined: coniferous when RBACON was higher than 0.75, broadleaf when it was lower than 0.25, or mixed (comprising 

both conifers and broadleaved trees). These three types accounted 6%, 22% and72% of the total study area (Fig. S3), 190 

represented by 11, 19 and 22 sampling points, respectively. 

2.5 Flux measurements 

Soil CH4 fluxes were measured using a static, non-steady-state, non-flow-through system composed of a dark acrylic chamber 

(20 cm diameter and 12.5 cm height) connected to a cavity-enhanced absorption spectroscopy gas analyser (Li 7810, Licor; 

Lincoln, USA) with two PTFE tubes, each 1.8 m long and 4 mm in inner diameter. One week before the first measurements, a 195 

20 cm diameter, 9 cm tall PVC collar was inserted approximately 5 cm into the soil at each sampling point. Flux from each 

collar was measured on nine occasions in 2023: in early spring after snowmelt (4/27), mid-spring (5/12), late spring (5/31), 
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early summer (7/06), mid-summer (7/26), late summer (9/04), early autumn (10/07), mid-autumn (11/07), and late autumn 

(11/30). When measuring fluxes from the three small wetland patches, we took care to avoid trampling the soil near the collars, 

taking advantage of the abundant presence of stones and coarse woody debris. 200 

To measure soil CH4 flux, the chamber was placed on the collar, and changes in CH4 and CO2 concentrations inside were 

recorded for 4 minutes at a frequency of 1 Hz. The slope of the linear regression of CH4 concentration over time was used to 

calculate the soil CH4 flux:  

𝐹𝐶𝐻4 =⁡
∆[𝐶𝐻4]

∆𝑡
×

𝑉⁡ × ⁡𝑃

𝐴⁡ × 𝑅 × 𝑇
 

where 𝐹𝐶𝐻4 is the soil CH4 flux, 
∆[𝐶𝐻4]

∆𝑡
 is the slope of the linear change in CH4 concentrations over time, V is the system 205 

volume (chamber, collar above the ground, tubes, and analyser), A is the soil area covered by the collar, and R is the ideal gas 

constant (8.314 J K-1 mol-1). A constant value of 93,525 Pa for an elevation of 650 m was used for the atmospheric pressure 

(P). The slope was calculated over 90 seconds following Epron et al. (2023). The R2 of the linear variation of CH4 concentration 

was less than 0.9 for a single measurement, and for this measurement, the R2 of the linear variation of CO2 concentration was 

0.99, indicating that the low R2 for CH4 was due to the near-zero CH4 flux and not to an erroneous measurement. 210 

Soil moisture content and soil temperature near each collar were recorded on each measurement date using a soil moisture 

probe (SM150-T Device, Cambridge, UK) and a digital thermometer. 

2.6 Climatic data 

Air temperature and rainfall were measured every 10 minutes at a nearby weather station operated by the Field Science 

Education and Research Centre of Kyoto University. The antecedent precipitation index (API), an indicator of soil moisture 215 

conditions, was calculated using the following equation: 

API𝑛 =⁡∑𝑃𝑡 × 𝑘𝑡
𝑛

𝑡=1

 

where, Pt is the precipitation during day t, k is the recession coefficient, and n is the number of antecedent days. The parameter 

k accounts for the water removed from the soil by evapotranspiration and drainage.  

2.7 Modelling 220 

We applied quantile regression forests (QRF) introduced by Meinshausen (2006), an extension of the random forests (RF) 

algorithm. RF is an ensemble learning method that builds a set of regression trees, and the final prediction is the average of all 

the regression trees, which are evaluated using out-of-bag cross-validation (Breiman, 2001). The QRF algorithm estimates the 

full conditional distribution of the response variable as a function of its predictors, not just the mean as with the original RF 

algorithm. Therefore, it is possible to extract the prediction interval for each pixel across the landscape for each measurement 225 

period. We used the five terrain attributes (slope, PrC, TPI at 30-m radius, SWI, and VDCN at 5-ha initiation threshold), basal 

area (BA), and relative basal area of coniferous trees to BA (RBACON) as predictors. Our strategy was to directly predict CH4 

fluxes using topographic and vegetation variables as proxies for soil moisture and chemistry, because incorporating soil 

moisture and chemistry as predictors, which would need to be extrapolated to the landscape level, would introduce additional 

layers of uncertainty. Unfortunately, the machine learning model was unable to accurately reproduce the measured fluxes when 230 

wetland measurements were included in the training dataset, likely due to the imbalance between the 52 non-waterlogged and 

only 3 wetland sampling points. The comparison of models including and not including wetland data is shown in Table A2 (3 

of 55 collars for data, less than 1% of the landscape pixels). Patches, which had temporarily water-saturated soils, were not 

excluded. 

We followed three steps to develop models for predicting soil CH4 fluxes at each measurement period. Before applying QRFs, 235 

we eliminated the less important variables and identified the most relevant predictors for each measurement date, using a 
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variable selection algorithm for random forest models proposed by Genuer et al. (2010) and implemented in the “VSURF” 

package for R (Genuer et al., 2015). This approach systematically uses a repeated cross-validation procedure to rank variables 

by their importance index and iteratively eliminates the least informative ones to minimize model error. The result is a refined 

subset of predictors that enhances model interpretation and predictive performance. The predictor reduction approach has 240 

previously been used to map CH4 fluxes (Räsänen et al., 2021; Warner et al., 2019) and soil properties (Jeong et al., 2017; 

Miller et al., 2015). 

After selecting the relevant predictor variables, the QRF models were trained to predict CH4 fluxes using the R-packages “caret” 

(Kuhn and Johnson, 2013) and “quantregForest” (Meinshausen, 2017). The mtry parameter, which determines the number of 

randomly selected predictor variables at each node, was tested from 2 to n-1 (n being the total number of predictors) using 245 

leave-one-out cross-validation to minimize prediction error and maximize the variance explained by the model. The ntree 

parameter was set to 500, ensuring the model constructed an ensemble of 500 decision trees. For each of the nine measurement 

dates, model accuracy was evaluated based on the root mean square error (RMSE) and coefficient of determination (R2). R2 

was calculated as the square of the correlation between observed and cross-validated predicted fluxes, as implemented in the 

“caret” package. Furthermore, we calculated the variable's importance scores using the “vip” R-package (Greenwell and 250 

Boehmke, 2020). Variable importance scores were estimated using a permutation-based approach, in which the values of each 

predictor in the training data were randomly permuted to assess the resulting change in model performance, as quantified by 

the adjusted R-squared value. A greater reduction in adjusted R2 indicated a higher importance of the predictor variable. We 

generated the accumulated local effect (ALE) plots to visualize the response of CH4 fluxes to the predictor variables, 

accounting for the effect of the predictors in the model (Apley and Zhu, 2020). In ALE plots, an ALE value of zero on the y-255 

axis corresponds to the mean predicted CH4 flux, with positive values indicating higher and negative values indicating lower 

flux under the specific predictor on the x-axis. ALE reduces a complex machine learning function to depend on only one or, 

in some cases, two input variables, and visualizes the effect of a selected variable on the predicted CH4 flux. The method 

removes the confounding effects of other input variables, computes the partial derivatives (local effects) of the prediction 

function with respect to the variable of interest, and integrates (accumulates) these effects across the range of that variable. 260 

The output of the QRFs was a set of conditional prediction distributions of CH4 fluxes for each landscape pixel and 

measurement dates. Because these prediction distributions were often not normally distributed, the median of the conditional 

prediction distribution at each pixel was used as the final prediction, and the interquartile range of the distribution was used to 

quantify the uncertainty in the prediction (Warner et al., 2019). Prediction uncertainties were expressed as a percentage (i.e., 

interquartile range of the conditional prediction distribution divided by the median). Modelling was conducted independently 265 

for each of the nine measurement dates, without including meteorological data, as in previous studies (Vainio et al., 2021; 

Warner et al., 2019). 

2.8 Statistical analysis 

We used analysis of variance (ANOVA) to test the differences in soil properties across the topographic positions and vegetation 

types and densities. Interactions were not included because the model would be rank-deficient as there were no “pure” 270 

broadleaved plots on the ridge. We examined the relationships between soil properties and topographic and vegetation variables 

using Spearman’s rank correlation analysis using the ‘Hmisc’ package (Harrell Jr, 2003). Linear mixed-effect models (LMM) 

were used to test the relationship between the predicted fluxes at pixel levels and measured fluxes (fixed effect), with flux 

measurement dates as a random effect and between the predicted soil CH4 fluxes and measured soil CH4 fluxes aggregated by 

landscape units (topographical position, vegetation types, and vegetation density), which were included as random effects on 275 

both slope and intercept. The root mean square error (RMSE) was used to evaluate model performance at each date, and the 

marginal and conditional coefficients of the determination (Rm
2 and Rc

2) were used to determine the strength of the relationship 

between the predicted and measured fluxes. LMM was carried out using the ‘lmerTest’ package (Bates et al., 2015; Kuznetsova 
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et al., 2017), and Rm
2 and Rc

2 were calculated using the ‘MUMIn’ package (Bartoń, 2010). To test the effects of topographic 

positions, vegetation types, and densities on predicted CH4 fluxes while accounting for spatial autocorrelation, we also used a 280 

linear mixed-effect model. Topographic positions, vegetation types, and densities were included in the model as fixed effects, 

and pixel ID as a random effect. Interactions were not included as no pixel contains “pure” broadleaved vegetation on the ridge. 

To eliminate spatial autocorrelation among residuals, we incorporated an exponential spatial correlation structure based on 

each pixel coordinate nested within each measurement date. This was performed using the ‘nlme’ package (Pinheiro et al., 

1999). The semi-variogram of the residuals confirmed that the residuals were not spatially correlated. To quantify the effect 285 

size that indicates the relative contribution of each factor to the total variance in the response variable, we calculated eta-

squared (𝜂𝑝
2) values using the ‘effectsize’ package (Ben-Shachar et al., 2019). A pairwise comparison across the topographic 

positions, vegetation types, and densities was performed using the ‘emmeans’ package (Lenth, 2017). Linear regression models 

were used to examine the relationship between predicted soil CH4 fluxes at the landscape scale and API. The recession 

coefficient (k) and the number of antecedent days (n) were not fixed a priori but optimized to maximize R2 while ensuring the 290 

best distribution of the residuals, allowing parameters k and n to vary iteratively from 0.6 to 0.9 with an increment of 0.01 and 

from 0 to 30 with an increment of 0.01, respectively. Using a more complex bivariate model with an exponential function of 

air temperature did not improve the quality of the fit and returned Q10 values that were not significantly different from 1, as 

previously reported (Epron et al., 2016). Calculations, modelling, and statistical analyses were performed using the R statistical 

programming environment (R Core Team, 2024). 295 

3 Results 

3.1 Environmental conditions and soil properties across non-waterlogged topographic and vegetation features 

The total rainfall in the study area during the snow-free period of 2023 was 1578.5 mm, with relatively high rainfall in late-

May to mid-June and a peak on August 15 due to the typhoon Lan (Fig. 2a). The monthly mean air temperature ranged from 

7.5 to 24.2 °C during the study period (Fig. 2b). Mean soil moisture content varied seasonally, with the highest (47.7 ± 1.1 %; 300 

mean ± standard error) observed in the early summer (07/06) and the lowest (32.9 ± 1.2 %) in the late summer (09/04) (Fig. 

2c). Mean soil temperature followed a similar trend to air temperature across the study period (Fig. 2d). Non-waterlogged soils 

consistently absorbed CH4 (negative fluxes, Fig. 2e), while soils in the three small wetland patches emitted CH4 (positive flux, 

Fig. A1). Variation in CH4 fluxes across the measurement dates was consistent with the seasonal patterns of rainfall and air 

temperature. The fluxes measured on two collars that were temporarily waterlogged were positive on one occasion each. 305 
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Figure 2. Seasonal variation in (a) daily rainfall and (b) daily air temperature from April to November in 2023 measured at a weather 

station located nearby our study area, and (c) mean soil moisture content, (d) mean soil temperature, and (e) mean CH4 fluxes from 

non-waterlogged soils, including all topographic positions (n = 52). Vertical bar indicating the standard error. 

 310 

Topographic positions were significantly related to several soil properties (bulk density, pH, total carbon and nitrogen, and 

mean temperature), whereas vegetation type and vegetation density were significantly related to soil temperature and soil 

moisture, respectively (Table 1). The bulk density of the fine earth fraction was relatively low due to the presence of stones, 

highest in the plain (0.42 ± 0.04 g cm⁻³, mean ± SE) and significantly lowest in the ridge (0.26 ± 0.04 g cm⁻³). Soil pH differed 

significantly across topographic positions (p < 0.001), with more acidic conditions observed at higher elevations (ridge: 4.0 ± 315 

0.14) compared to the plain (5.1 ± 0.73). Similarly, total carbon (C) and total nitrogen contents (N) were significantly higher 
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on the ridges (16.7 ± 2.2% C and 0.8 ± 0.10% N) and lower in the plain (5.1 ± 0.73% C and 0.3 ± 0.04% N). Mean soil 

temperature also significantly varied across topographic positions, with the highest in the plain (14.3 ± 0.2°C) and the lowest 

in the foot slope (13.4 ± 0.2°C). In contrast, the soil texture of the fine earth fraction (clay, silt, and sand) and mean soil 

moisture content did not vary significantly with topographic positions.  320 

Vegetation type significantly influenced soil temperature, with the highest values observed under broadleaved stands and the 

lowest under coniferous stands. Vegetation density significantly affected soil moisture content, which was highest in low-

density areas and lowest in medium-density areas. 

 

Table 1. Mean (± standard error) of soil bulk density (BD), texture (clay, silt and sand), total carbon (C) and nitrogen (N) 325 

concentration, pH, mean soil water content (SWC) and temperature (Tsoil) according to topographic position, vegetation type, and 

vegetation density. SWC and Tsoil are the average of the 9 measurement dates. A soil core (0-10 cm depth) was sampled at 

approximately 0.3 m of each soil collar. Different lowercase letters indicate significant differences among topographic positions, 

vegetation types, and vegetation densities (p < 0.05). The p-values of the ANOVA are shown in the last rows. The number of 

independent replicates in each factor level is indicated in the first column. 330 

 

Factor 
Bulk density 

(g cm-3) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 
pH 

Total C 

(%) 

Total N 

(%) 

Mean SWC 

(%) 

Mean Tsoil 

(°C) 

Position          

Plain 

(n=14) 

0.42 

± 0.04 a 

8 

± 2 

27  

 ±3 

65 ± 

4 

4.9 

± 0.1 a 

5.1 

± 0.7 a 

0.3 

± 0.0 a 

44.2 

± 2.0 

14.3 

± 0.2 a 

Foot slope 

(n=9) 

0.36 

± 0.06 ab 

8 

± 2 

33 

± 4 

60 

± 5 

4.3 

± 0.1 b 

8.3 

± 2.2 a 

0.5 

± 0.1 ab 

42.1 

± 2.0 

13.4 

± 0.2 b 

Slope 

(n=16) 

0.29 

± 0.03 ab 

10 

± 2 

29 

± 3 

60 

± 4 

4.3 

± 0.1 b 

10.0 

± 1.1 a 

0.6 

± 0.1 ab 

39.2 

± 1.4 

13.9 

± 0.1 a 

Ridge 

(n=13) 

0.26 

± 0.04 b 

9 

± 2 

23 

± 4 

68 

± 4 

4.0 

± 0.1 b 

16.7 

± 2.2 b 

0.8 

± 0.1 b 

40.1 

± 2.0 

13.9 

± 0.1 ab 

Vegetation type         

Broadleaved 

(n=19) 

0.38 

± 0.04 

10 

± 2 

29 

± 3 

61 

± 4 

4.7 

± 0.1 

6.8 

± 1.0 

0.4 

± 0.1 

43.3 

± 1.6 

14.2 

± 0.1 a 

Coniferous 

(n=11) 

0.32 

± 0.04 

7 

± 1 

27 

± 4 

66 

± 5 

4.3 

± 0.1 

11.1 

± 2.4 

0.6 

± 0.1 

40.8 

± 1.7 

13.4 

± 0.2 b 

Mixed 

(n=22) 

0.29 

± 0.03 

9 

± 1 

26 

± 2 

64 

± 3 

4.2 

± 0.1 

12.4 

± 

1.6 

0.6 

± 0.1 

39.7 

± 1.3 

13.9 

± 0.1 a 

Vegetation density         

High 

(n=14) 

0.32 

± 0.04 

9 

± 2 

28 

± 3 

64 

± 4 

4.4 

± 0.1 

10.6 

± 2.02 

0.57 

± 0.1 

40.4 

± 0.1 a 

13.7 

± 0.2 

Medium 

(n=28) 

0.30 

± 0.03 

10 

± 1 

28 

± 3 

62 

± 3 

4.3 

± 0.1 

11.3 

± 1.34 

0.59 

± 0.1 

39.5 

± 1.0 a 

13.9 

± 0.1 

Low 

(n=10) 

0.43 

± 0.05 

8 

± 2 

26 

± 3 

66 

± 4 

4.7 

± 0.2 

6.1 

± 1.27 

0.40 

± 0.1 

47.6 

± 2.1 b 

14.2 

± 0.2 

Anova 

results 
         

Position p < 0.05 p = 0.55 p = 0.33 p = 0.49 p < 0.001 p < 0.001 p < 0.01 p = 0.12 p < 0.001 

Vegetation 

type 
p = 0.81 p = 0.30 p = 0.92 p = 0.66 p = 0.75 p = 0.90 p = 0.99 p = 0.52 p < 0.001 

Vegetation 

density 
p = 0.58 p = 0.45 p = 0.58 p = 0.43 p = 0.99 p = 0.93 p = 0.98 p < 0.05 p = 0.91 
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3.2 Selected variables and performance of the non-waterlogged soil CH4 flux models 

The topographic position index (TPI) was consistently selected in all seasons, with high importance scores, ranging from 0.54 335 

to 0.88, depending on the measurement dates (Table 2). The SAGA wetness index (SWI) was selected for most measurement 

dates, except for two, where the vertical distance to the channel network (VDCN) was selected instead. SWI importance scores 

were higher in summer than in the other seasons. VDCN and profile curvature (PrC) were occasionally selected along with 

TPI and TWI. VDCN showed moderate to low importance scores, contributing mostly in mid-spring (0.66) and early autumn 

(0.58). PrC, although less consistently selected, played a role in specific seasons, particularly in early spring and mid to late 340 

autumn. Accumulated local effect (ALE) plots showed the direction of the variables’ effects on soil CH4 fluxes for each 

measurement date (Fig. A2). For the two most influential predictors, low CH4 uptake rates were associated with low TPI values, 

while they were associated with high SWI values. The vegetation density (BA) was selected only on two dates in 2023/04/27 

and 2023/10/07, without improving the model accuracy, so we did not include it the final models (Appendix Table A3). 

 345 

Table 2. Selected variables for the quantile regression forest (QRF) models applied to non-waterlogged soil CH4 fluxes at each 

measurement date, along with the R2 and root mean square error (RMSE) values to evaluate the accuracy of the models. Importance 

scores of the selected variables are shown in parentheses, indicating their contribution to predicting soil CH4 fluxes. 

 

Measurement dates Selected variables R2 RMSE (nmol m-2 s-1) 

2023/04/27 SWI (0.57), TPI (0.67), PrC (0.58) 0.53 0.52 

2023/05/12 TPI (0.80), VDCN (0.66) 0.31 0.82 

2023/05/31 SWI (0.55), TPI (0.57), VDCN (0.42) 0.43 0.48 

2023/07/06 SWI (0.73), TPI (0.60) 0.40 0.50 

2023/07/26 SWI (0.80), TPI (0.69) 0.37 1.02 

2023/09/04 SWI (0.74), TPI (0.85) 0.40 1.18 

2023/10/07 TPI (0.88), VDCN (0.58) 0.67 0.81 

2023/11/07 SWI (0.32), TPI (0.84), VDCN (0.12), PrC (0.45) 0.59 0.66 

2023/11/30 SWI (0.32), TPI (0.54), VDCN (0.21), PrC (0.28) 0.51 0.56 

 350 

Model accuracy showed seasonal variation, with the highest obtained in early autumn (R2 = 0.67; RMSE = 0.81 nmol m-2 s-1) 

and the lowest in mid-spring (R2 = 0.31; RMSE = 0.82 nmol m-2 s-1; Table 2). The relationship between measured and predicted 

fluxes for each measurement date showed that estimated fluxes were close to the observed fluxes (Fig. 3a-i).  
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 355 

Figure 3. Comparison of predicted (median of the quartile predictions from QRFs) and measured CH4 fluxes (n = 52) for each 

measurement date. Vertical bars indicate the interquartile ranges of the prediction distribution. Intercepts and slopes are estimated 

using a linear mixed-effect model with measurement dates as a random effect (full statistics are shown in Table A4). The diagonals 

are the identity (1:1) lines. 

 360 

Overall, the slope of the relationship between measured and predicted fluxes (fixed effects) was not significantly different 

from 1 and was similar at all dates. The marginal (R2
m) and conditional (R2

c) coefficients of determination were 0.93 and 0.94, 

respectively, highlighting the consistency of the prediction for all measurement dates (linear mixed model, Table A4). To 

validate the fluxes at the landscape level, predicted fluxes were aggregated by landscape unit (i.e., topographic position, 

vegetation type, and vegetation density) and compared with the aggregated measured fluxes, which were consistent with the 365 

measured fluxes (Fig. 4, Table A5). 
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Figure 4. Comparison between aggregated mean predicted and measured soil CH4 fluxes from non-waterlogged soil for (a) 

topographic position, (b) vegetation type, and (c) vegetation density (full statistics are shown in Table A5). The diagonals are the 370 

identity (1:1) lines. 

 

3.3 Predicted non-waterlogged soil CH4 fluxes 

We predicted that non-waterlogged soils consistently uptake CH4 across the seasons (negative fluxes, Fig.5). Predicted median 

CH4 fluxes showed significant spatial heterogeneity, which was consistent across the seasons (Fig. 5). The highest net CH4 375 

uptake was predicted on ridges and the steepest parts of the slopes and decreased toward the foot slopes near streams and the 

flat plain (Fig. 6a). Coniferous and mixed stands showed the highest uptake compared to the broadleaved stands (Fig. 6b). 

Vegetation density (BA) also influenced the soil CH4 uptake with higher uptake in the high and medium density areas. Although 

substantial variation was observed within each landscape unit, topographic position exerted the strongest control on CH4 fluxes 

(𝜂𝑝
2 = 0.43), followed by vegetation density (𝜂𝑝

2 = 0.11) and vegetation type (𝜂𝑝
2 = 0.006) (Table A6). 380 
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Figure 5. Maps of predicted soil CH4 fluxes at each pixel of the study area (40.2 ha) for each measurement date. Values represent the 

median of the conditional prediction distribution for each pixel (5 m × 5 m). 
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Figure 6. Predicted soil CH4 fluxes at the landscape scale averaged over the nine measurement dates, aggregated by (a) topographic 385 

positions, (b) vegetation type, and (c) vegetation density (Full statistics with significance of the differences between each landscape 

unit shown in Table A6). Green squares indicate the mean of the measured fluxes with standard errors, blue triangles indicate the 

mean of the predicted fluxes at the landscape level and grey boxplots indicate the distribution of the predicted fluxes. 

 

3.4 Uncertainty of predicted non-waterlogged soil CH4 fluxes 390 

The spatial distribution of the percentage of predicted uncertainty varied across seasons (Fig. 7). The percentage was 

consistently low to moderate (less than 100%) for pixels on ridges and steep slopes, but extremely high uncertainties (more 

than 500%) was observed at some dates for low-elevation pixels when predicted fluxes were close to zero. However, low 

predicted fluxes were often associated with equally low predicted uncertainty (Fig A3). The proportion of pixels with low 

uncertainty (<50%) was highest in early autumn (39.7% of the total non-waterlogged pixels) and lowest in early spring (5.7% 395 

of the total non-waterlogged pixels). In contrast, moderate uncertainty (50-100%) was predominant in most seasons, 

particularly in spring and autumn, accounting for approximately 50% of the landscape. Moderate to high uncertainty (101-

500%) was also predominant on some measurement dates, particularly in late spring (49.8% of the total non-waterlogged 

pixels). Extreme uncertainty (>500%) was very rare in all seasons, except for a small peak in late autumn (0.26% of the total 

non-waterlogged pixels, Table A7). 400 
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Figure 7. Uncertainty map of predicted soil CH4 fluxes at each pixel of the study area (40.2 ha) for each measurement date. Values 

represent the ratio of the interquartile range to the median of the prediction distribution for each pixel (5 m × 5 m). 

 

3.5 Predicted seasonal fluxes at the landscape level 405 

The predicted CH4 flux from non-waterlogged soil per hectare was calculated as the sum of the predicted fluxes at each pixel 

multiplied by pixel area (25 m2), and the sum divided by the non-waterlogged area. Across the landscape, the average CH4 

flux by non-waterlogged soils during the snow-free season was -0.66 (interquartile range: -0.94 to -0.44) g CH4 ha-1 hr-1. 

Predicted median seasonal fluxes ranged from -0.34 to - 0.60 g CH4 ha-1 hr-1 in spring, from -0.39 to -1.28 g CH4 ha-1 hr-1 in 

summer, and from -0.48 to -0.89 g CH4 ha-1 hr-1 in autumn (Fig. 8a). CH4 uptake was low across the landscape in early (April 410 

27) and late spring (May 31), while higher uptake was predicted in mid-spring (May 12). CH4 uptake remained low in the 

early wet summer (July 6) and increased toward the mid (July 26) to late dry summer (Sep 4) when it reached its peaks. Net 

CH4 uptake then decreased from early autumn (Oct 7) and reached its lowest rate in late autumn (Nov 30). 



17 

 

 

Figure 8. Predicted soil CH4 fluxes, calculated as the mean of all pixels in the study area (40.2 ha), and antecedent precipitation index 415 

(API). (a) Seasonal variations in predicted soil CH4 fluxes at the landscape scale and (b) relationship between predicted soil CH4 

fluxes at the landscape scale and the 20-day API. Vertical bars indicate the uncertainty of the predicted fluxes. 

 

This seasonal variation in predicted median fluxes was well explained by the 20-day antecedent precipitation index (R2 = 0.70, 

p < 0.01) with a recession coefficient of 0.69 (Fig. 8b), followed closely by the 30-day (R2 = 0.69) and 7-day (R2 = 0.68) API 420 

(Table A8).  

4. Discussion 

4.1 Selected variables  

We employed quantile regression forest (QRF) models, driven only by topographic attributes, to upscale in-situ soil CH4 flux 

measurements from sampling points to the landscape level for each measurement date in all topographic positions, but 425 

excluding wetlands (1% of our study area). Although selected twice, the inclusion of BA did not improve the accuracy and 

performance of the model and was eventually not retained in any final models, while RBACON was never selected. 

Among all tested topographic variables derived from the DEM, SWI, TPI, PrC, and VDCN were consistently selected in 

different models across all measurement periods, emphasizing their importance in upscaling CH4 fluxes. Overall, the results 

validated our first hypothesis, as the selected topographic attributes were related to water circulation and accumulation. 430 

Among these variables, SWI, which positively influence CH4 fluxes (low uptake in areas with high SWI), represents water 

accumulation potential and is a common surrogate for soil moisture in mountainous regions. This key factor controls CH4 

fluxes by affecting gas diffusion and microbial activity (Kaiser et al., 2018; Vainio et al., 2021; Warner et al., 2019), as SWI 

integrates potential inflows and discharges through runoff and drainage (Ågren et al., 2014; Beven and Kirkby, 1979). SWI 

was selected in seven out of nine measurement periods but not on May 12 and October 7. These two periods correspond to 435 

transitional seasons, i.e., mid-spring and early autumn, when the landscape is generally drier, and water does not accumulate. 

TPI describes the elevation of a location relative to those of the surrounding terrain within a given radius, allowing the 

identification of landform positions such as ridges, slopes, and valleys (Ågren et al., 2014). TPI is generally calculated using 

a non-filled DEM, which is also more representative of local-scale moist depression that SWI doesn’t capture, as SWI is 
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calculated using the filled DEM (Kemppinen et al., 2018). In our study, TPI was consistently selected in all measurement 440 

periods, and clearly related, highlighting that localized moisture, and potentially soil chemistry, are more influential parameters 

in controlling the CH4 fluxes at the landscape level. Areas with negative TPI values (e.g., valleys or depressions) typically 

function as convergence zones, where water and nutrients accumulate due to gravitational flow and reduced drainage. In 

contrast, positive TPI values (e.g., ridges and convex upper slopes) are more divergent, often characterized by increased 

drainage and runoff, and limited water and nutrient retention. TPI negatively affected soil CH4 fluxes (high uptake in areas 445 

with high TPI).  

PrC refers to the curvature of the land surface in the direction of the slope (along a flow line) which was selected three times 

(April 27, Nov 7 and Nov 30) across the measurement dates. It influences the acceleration or deceleration of surface and 

subsurface water flow (Ågren et al., 2014). Negative values (concave slopes) tend to slow water movement, promoting water 

and nutrient accumulation in soils. Conversely, positive values (convex slopes) accelerate flow, often reducing water retention 450 

time and lowering nutrient accumulation due to leaching or erosion. Excluding PrC from the list of available variables for 

selection decreased the model performance for these three dates, probably because PrC helps discriminate between plains and 

slopes, both of which have near-zero TPI values.  

VDCN is another important variable reflecting groundwater level conditions. Lower values typically observed near stream 

channels with higher groundwater level (Bock and Köthe, 2008). When the landscape was drier (May 12 and October 7), and 455 

SWI was not selected, TPI and VDCN had more substantial explanatory power. VDCN was also selected several times with 

SWI. Interestingly, VDCN has been shown to be useful in distinguishing well-drained from poorly drained soils (Bell et al., 

1992; Kravchenko et al., 2002). It may explain why excluding VDCN from the list of variables available for selection decreased 

model performance. This highlights that SWI and TPI alone were not sufficient to reflect local soil moisture conditions, as 

drainage conditions can potentially vary across the landscape, which controls soil microhabitat conditions and thus influences 460 

CH4 fluxes. 

QRF modelling is non-parametric machine learning approach is particularly suited for handling non-linear relationships and 

complex interactions among predictors (Meinshausen, 2006). However, although the topographic predictors have successfully 

predicted CH4 fluxes, the QRF method, like other statistical methods, does not provide a mechanistic understanding of the 

underlying biogeochemical processes, and the existence of confounding factors cannot be ruled out. 465 

4.2 Model performance and uncertainty 

Soil CH4 fluxes predicted by QRF models were close to the measured fluxes for all measurement periods (Fig. 3; Table A4). 

We recognize that our models, by forcing pixel-scale predictors (5 m resolution) to explain finer-scale chamber measurements 

(20 cm diameter), may actually overestimate the predictive accuracy of the models at coarser scales. However, the predicted 

soil CH4 fluxes not only closely matched the individual measured fluxes, but also when the two were aggregated by topographic 470 

position classes (ridge, slope, foot slope, and plain), vegetation density classes (high, medium, and low) or vegetation type 

classes (coniferous, mixed, and broadleaf, Fig. 4; Table A5). This confirmed that our models did not only predict point-level 

flux heterogeneity but were also able to capture the landscape-scale flux patterns and indicated that topographic attributes 

could be used for upscaling CH4 fluxes in mountain landscapes. Overall, the performance of the models developed for scaling 

CH4 fluxes was comparable to previous studies using topographic data for similar purposes (Kaiser et al., 2018; Vainio et al., 475 

2021; Virkkala et al., 2024; Warner et al., 2019). However, it is important to note that direct comparisons between studies are 

difficult due to variations in cross-validation approaches, as the choice of cross-validation technique can significantly influence 

model performance (Roberts et al., 2017). 

Unfortunately, it was not possible to accurately predict CH4 fluxes when measurements collected in wetland patches were 

included in the training data, as the model accuracy decreased at all dates (Table A9). As a consequence, the marginal and 480 

conditional coefficients of determination of the relationship between the predicted and measured fluxes decreased from 0.93 
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and 0.94 respectively to 0.70 when wetland data were included. This is probably because neither the topographic features nor 

the vegetation differed sufficiently between the large areas functioning as CH4 sinks and the small wetland patches in the plain 

area functioning as CH4 sources (Fig. A1). Räsänen et al. (2021) noticed that spatial patterns of CH4 fluxes could be accurately 

predicted in a northern peatland-forest-mosaic landscape when they were modelled for sinks and sources separately. This 485 

separation was not possible in our study due to the low number of measurement locations in wetlands, related to their small 

extent (1%) in our non-waterlogged soil-dominated landscape. Wetland exclusion, although acceptable in our 40-ha study area 

due to their small extent, would overestimate CH4 uptake if incorrectly applied at larger scales, i.e., to the entire upper Yura 

River catchment in our case or to other hydrologically complex forest landscapes. 

One advantage of the QRF approach is its ability to estimate prediction intervals (Meinshausen, 2006), thus offering insights 490 

into the uncertainty associated with the predicted flux value at each pixel. The spatial distribution of the uncertainty associated 

with the predicted soil CH4 fluxes varied seasonally (Fig. 7; Table A7) in agreement with our second hypothesis, reflecting 

both spatial heterogeneity and temporal changes in model confidence. In our study, the spatial patterns of QRF-derived 

uncertainties were consistently related to topographic position and flux magnitude. Predictions in ridge and steep slope pixels 

generally exhibited low percentage uncertainties (often below 100%), likely because these well-drained areas were well 495 

represented in the training data and exhibited relatively stable and high CH4 uptake across seasons. In contrast, extremely high 

percentage uncertainties (exceeding 500%) were observed in some low-lying pixels during specific seasons, especially where 

predicted CH4 fluxes were close to zero. Our models did not predict median positive fluxes although positive fluxes were 

occasionally measured. However, the possibility of positive fluxes is reflected in the large uncertainties associated with near-

zero fluxes. A crucial methodological point is that percentage uncertainty is a relative measure; even a small absolute 500 

uncertainty around a near-zero prediction can yield a very large percentage (Warner et al., 2019). In addition, large absolute 

uncertainties can result from large differences in fluxes measured at locations with similar topographic characteristics.  

The lowest uncertainty was obtained in late summer and early autumn, i.e., under warm and dry conditions, indicating better 

model performance when hydrological conditions were less variable. In contrast, larger uncertainties were produced by the 

models in early spring and late autumn, as well as in late spring and early summer, when measured and predicted soil CH4 505 

fluxes were lowest. The East Asian monsoon flow bringing warm and humid air mass and resulting in the rainy season in late 

spring and early summer, as well as low evapotranspiration in early spring and late autumn, may have introduced greater 

variability in soil hydrology, contributing to higher uncertainties. Nevertheless, low to moderate uncertainty (<100%) was the 

most prevalent class across all seasons, consistently accounting for more than half the landscape—up to 80% in late summer 

and early autumn—while extreme uncertainties (>500%) were very rare in all seasons. This suggests that the models performed 510 

well overall. Although some areas remain challenging to model, the QRF approach provides generally reliable spatial 

predictions of soil CH4 fluxes with quantifiable and interpretable uncertainties. 

4.3 Spatial patterns of predicted soil CH4 fluxes 

The models revealed clear spatial patterns in soil CH4 fluxes that were consistent across measurement dates, even though the 

models selected different variables at each date. Predicted soil CH4 fluxes closely matched topographic gradients, consistent 515 

with our third hypothesis. Ridges and upper slopes exhibited the highest net CH4 uptake, functioning as strong sinks for CH4 

across all seasons, whereas CH4 uptakes were lowest in plain and foot slope positions. These topographic patterns of CH4 

uptake are consistent with previous studies. In a temperate forest in central Ontario, Canada, the highest CH4 uptake was 

observed on slopes and ridges (Wang et al., 2013). Similarly, in a temperate forest in Maryland, USA, transition zones were 

identified as hotspots for CH4 uptake (Warner et al., 2018). In a tropical forest in China, hillslopes exhibited the highest CH4 520 

uptake, while lower uptake was observed at the foot slopes and in groundwater discharge areas (Yu et al., 2021). Similarly, 

CH4 uptake was greater on ridges than at valley bottoms in a subtropical forest in Puerto Rico (Quebbeman et al., 2022). 
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In our studied landscape, we observed lower soil bulk density on ridges and slopes than on the plain area, indicating that ridge 

and slope soils have higher porosity, which is consistent with higher soil CH4 oxidation rates due to higher diffusion rates of 

O2 and CH4 from the atmosphere through soil pores (Ishizuka et al., 2009). Although we did not assess the methanotroph 525 

community structure, the greater atmospheric CH4 uptake on slopes and ridges is consistent with the community structure 

observed in a subalpine forest, with type I methanotrophs dominating in riparian soils, whereas type II methanotrophs were 

more prevalent in upland soils (Du et al., 2015). The higher soil carbon (C) and nitrogen (N) contents observed on ridges and 

slopes at our site may contribute to higher soil CH4 uptake, as soil CH4 uptake has been found to be positively correlated with 

soil organic matter content in subtropical and temperate forests (Lee et al., 2023). Possible explanations are that higher soil 530 

carbon may increase the availability of labile substrates that stimulate methanotrophic activity by increasing CH4 supply 

through enhanced methanogenesis in anoxic microsites or by directly providing substrate for facultative methane-oxidizing 

bacteria, thereby increasing their abundance (Jensen et al., 1998; Semrau et al., 2011; West and Schmidt, 1999). Soil nitrogen 

was probably predominantly in organic form, and therefore the soil concentration of nitrate and ammonium, known to inhibit 

CH4 oxidation by methanotrophs at high concentration (King and Schnell, 1994; Mochizuki et al., 2012), likely remained low 535 

(Aronson and Helliker, 2010; Bodelier and Laanbroek, 2004). Nitrogen is an essential nutrient for the growth of methanotrophs, 

whose activity has been shown to be nitrogen-limited in forest soils (Börjesson and Nohrstedt, 2000; Martinson et al., 2021; 

Veldkamp et al., 2013). Therefore, mineralization of these low levels of organic nitrogen could alleviate the nitrogen limitation 

of CH4 oxidation and partly explain the higher soil CH4 uptake observed on ridges and slopes, where total nitrogen 

concentration was higher than at the foot slopes and in the plain. 540 

Although the effect-size of vegetation density was much smaller than that of topographic position, the predicted soil CH4 

uptake was significantly lower in areas with low basal area. Vegetation density can also potentially be related to local moisture 

conditions, as dense vegetation likely consume more water, thus increasing the soil air-filled porosity (Hakamada et al., 2020; 

Vanclay, 2009). Unexpectedly, although a very small effect-size, our models predicted higher soil CH4 uptake in conifer-

dominated areas and lower uptake in broadleaf-dominated areas, contrary to previous evidence of greater soil CH4 uptake in 545 

plots containing only deciduous broadleaved tree species than in plots containing evergreen coniferous trees, either alone or in 

mixture (Jevon et al., 2023). The discrepancy between this previous study and our results may be related to the fact that their 

study area was ten times smaller and more topographically homogeneous than ours (4 versus 40 ha). Moreover, soil properties 

that could explain the lower rate of CH4 oxidation in coniferous than in broadleaved stands, such as higher acidity (Borken et 

al., 2003; Hütsch, 1998; Ishizuka et al., 2000) did not differ significantly among the three types of vegetation cover at our site, 550 

whereas they differed according to topographic position. However, vegetation types and density were not randomly distributed 

among topographic positions (Table A9), meaning that the confounding effects of vegetation and DEM-derived variables on 

the prediction soil CH4 uptake could make it difficult to separate the influence of vegetation and topography in our complex 

mountain landscape. 

4.4 Predicted soil CH4 fluxes at the landscape scale and seasonal variation 555 

The CH4 fluxes per hectare were calculated by aggregating pixel-level predictions and normalizing them to the total non-

waterlogged area, allowing for standardized comparison across sites, although there are still very few comparable data 

available, making it difficult to analyse the causes of differences across sites. Our highest CH4 uptake in late summer was -

1.28 g CH4 ha-1 hr-1 (interquartile range -1.70 to -0.89), 2.6 times higher in absolute value than in a forested watershed in 

Maryland, USA (-0.47 g CH4 ha-1 hr-1, Warner et al. 2019), but slightly lower than in a boreal pine forest in Finland (-1.59 g 560 

CH4 ha-1 hr-1, Vainio et al. 2021). 

Consistent with our fourth hypothesis, the seasonal variation in soil CH4 fluxes at the landscape scale in the non-waterlogged 

areas demonstrates a strong sensitivity to soil moisture dynamics, which were effectively captured using the Antecedent 

Precipitation Index (API). The API, serving as a proxy for soil moisture dynamics, integrates precipitation over a defined 
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period and includes a recession factor to account for evapotranspiration and drainage. Short durations (e.g., 7 days) reflect 565 

surface moisture, while longer durations (e.g., 30 days) capture deeper soil moisture conditions (Schoener and Stone, 2020; 

Sidle et al., 2000; Yamao et al., 2016). Among the API durations tested, the 20-day API with a recession coefficient of 0.69 

showed the highest explanatory power (R2 = 0.70), although using either a 30-day or a 7-day API would provide similar 

goodness of fit with similar recession coefficients, indicating that soil moisture conditions across different depths had similar 

influence on CH4 flux variability. The consistently low recession coefficient (Kohler and Linsley, 1951) suggested that 570 

rainwater does not accumulate in our watershed. High API values indicate wetter antecedent conditions, which can suppress 

CH4 uptake by reducing oxygen availability and thus limiting methanotrophic activity, and by temporarily turning the subsoil 

condition to anoxic, promoting methane production and reducing net CH4 uptake (Angel et al., 2012; Hu et al., 2023; Kruse et 

al., 1996). Conversely, drier periods with low API values were observed in mid and late summer and earlier autumn, when 

soils were better aerated, creating favourable conditions for atmospheric CH4 oxidation and leading to greater CH4 uptake. 575 

5 Conclusion 

In conclusion, our study showed the dominant role of topography, compared to that of vegetation, on the spatial variation of 

soil CH4 fluxes in mountain forest landscapes throughout the snow-free season. The quantile regression forest models 

successfully captured these ridge-to-plain spatial gradients where the soil is almost always unsaturated, with strong 

performance. However, our modelling approach was unable to accurately predict CH4 fluxes when including measurements 580 

collected in three wetland patches functioning as CH4 sources in the plain area (1% of the total landscape). CH4 uptake was 

consistently highest on ridges and slopes, where well-drained soils with lower bulk density and higher porosity supported 

enhanced methanotrophic activity. Furthermore, the seasonal dynamics of the predicted soil CH4 flux at the landscape scale 

was well-captured by the 20-day Antecedent Precipitation Index (API), with a significant positive relationship between API 

and CH4 uptake, emphasizing the sensitivity of CH4 uptake by non-waterlogged soils to seasonal fluctuations in soil moisture 585 

conditions. The integration of terrain-based predictors and moisture history provides a reliable framework for scaling soil CH4 

fluxes across complex landscapes, highlighting the importance of considering both static (topography, vegetation) and dynamic 

(climate) controls in future assessments of CH4 flux. 
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Appendix A 590 

 

Table A1. Spearman's rank correlation test between soil properties measured on soil cores (0-10 cm depth) sampled at approximately 

0.3 m of each soil collar and topographic and vegetation attributes. Significant coefficients are shown in bold and italic. 

 
 

Mean SWC Mean Tsoil Total C Total N  pH BD Sand Silt Clay 

PrC -0.21 0.14 0.27 0.23 -0.27 -0.14 0.24 -0.26 -0.06 

Slope -0.17 -0.24 0.25 0.22 -0.51 -0.11 0.00 -0.02 0.01 

TPI 20m -0.35 -0.11 0.45 0.39 -0.34 -0.26 0.05 -0.04 0.03 

TPI 30m -0.31 -0.08 0.64 0.55 -0.46 -0.36 0.11 -0.14 0.03 

TPI 50m -0.33 -0.08 0.59 0.50 -0.42 -0.31 0.11 -0.13 0.02 

SWI 0.43 0.27 -0.62 -0.55 0.65 0.41 -0.03 0.04 -0.01 

VDCN 0.5ha -0.24 -0.16 0.61 0.52 -0.51 -0.36 0.16 -0.20 0.04 

VDCN 2.5ha -0.24 -0.20 0.71 0.62 -0.65 -0.42 0.18 -0.22 -0.02 

VDCN 5ha -0.31 -0.29 0.65 0.56 -0.71 -0.47 0.16 -0.23 0.09 

BA -0.37 -0.29 0.22 0.13 -0.25 -0.19 -0.03 0.08 0.00 

RBACON -0.17 -0.56 0.30 0.19 -0.41 -0.17 0.03 0.02 -0.11 

SWC: soil water content; Tsoil: soil temperature; BD: soil bulk density 595 

 

Table A2. R2 and root mean square error (RMSE) values for the quantile regression forest (QRF) models applied to soil CH4 fluxes 

without wetland and with wetland at each measurement date. Note that the same variables were selected at all dates in both cases. 

 

Measurement dates Selected variables R2 (RMSE, nmol m-2 s-1) 
 

R2 (RMSE, nmol m-2 s-1) 

  
Without wetland 

 
With wetland 

2023/04/27 SWI, TPI, PrC 0.53 (0.52) 
 

0.37 (0.86) 

2023/05/12 TPI, VDCN 0.31 (0.82) 
 

0.22 (1.27) 

2023/05/31 SWI, TPI, VDCN 0.43 (0.48) 
 

0.25 (1.07) 

2023/07/06 SWI, TPI 0.40 (0.50) 
 

0.34 (1.99) 

2023/07/26 SWI, TPI 0.37 (1.02) 
 

0.30 (1.60) 

2023/09/04 SWI, TPI 0.40 (1.18) 
 

0.38 (1.27) 

2023/10/07 TPI, VDCN 0.67 (0.81) 
 

0.42 (1.07) 

2023/11/07 SWI, TPI, VDCN, PrC 0.59 (0.66) 
 

0.47 (1.25) 

2023/11/30 SWI, TPI, VDCN, PrC 0.51 (0.56) 
 

0.40 (0.57) 

 600 
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Table A3. Comparison of the accuracy of the quantile regression forest (QRF) models applied to non-waterlogged soil CH4 fluxes 

without and with vegetation at the two dates where BA was selected. Selected variables and their importance scores in parentheses, 

along with the R2 and root mean square error (RMSE) values (model with vegetation is in bold italic letters). 

 605 

 

Table A4. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and 

measured soil CH4 fluxes, with measurement periods included as a random effect on both slope and intercept. The p-values of the 

fixed effect were for testing if the intercept was different from zero and the slope different from 1. The statistics panel at the bottom 

left shows the marginal (R2
m) and conditional (R2

c) coefficients of determination, the root mean square error of the model, and the 610 

overall significance of the model (p-value). 

 

Fixed effect: predicted CH4 flux Random effects: measurement dates 

Estimate ± SE p-values  Intercept Slope 

Intercept 0.15 ± 0.03 from 0: 0.003 2023/04/27 -0.05 0.03 

Slope 1.16 ± 0.02 from 1: 0.92  2023/05/12 -0.02 0.02 

   2023/05/31 -0.05 0.02 

   2023/07/06 -0.06 0.02 

Statistics  2023/07/26 0.07 0.00 

n 467  2023/09/04 0.14 -0.03 

R2
m 0.94  2023/10/07 0.02 -0.04 

R2
c 0.95  2023/11/07 -0.01 -0.04 

RMSE 0.26  2023/11/30 -0.03 0.01 

p-value 2.5 × 10-9     

 

  

Date Selected variables R2 RMSE 

2023/04/27 
SWI (0.57) 

SWI (0.64) 

PrC (0.58) 

BA (0.42) 

TPI (0.67) 

TPI (0.50) 

 0.53 

0.51 

0.52 

0.52 

2023/10/07 
TPI (0.88) 

TPI (0.77) 

VDCN (0.58) 

VDCN (0.39) 

 

BA (0.27) 

 0.67 

0.55 

0.81 

0.80 
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Table A5. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and 615 

measured soil CH4 fluxes, with landscape units (either positions, vegetation types, and vegetation density) included as a random 

effect on both slope and intercept. The p-values of the fixed effect were for testing if the intercept was different from zero and the 

slope different from 1. The statistics panel at the bottom left shows the marginal (R2
m) and conditional (R2

c) coefficients of 

determination, the root mean square error of the model, and the overall significance of the model. 

 620 

Fixed effect: Predicted CH4 flux Random effect: Positions 

Estimate ± SE p values  Intercept Slope 

Intercept -0.17 ± 0.04 from 0: 0.006 Plain 0.01 -0.02 

Slope 0.94 ± 0.05 from 1: 0.99 Foot slope 0.01 0.01 

Statistics  Slope -0.05 0.1 

n 36  Ridge 0.05 -0.09 

R2m 0.93     

R2c 0.98 
 

   

RMSE 0.20     

p-value 7.8 × 10-05     

Fixed effect: Predicted CH4 flux Random effect: Vegetation type 

Intercept -0.19 ± 0.07  from 0: 0.08 Broadleaf 0.02 0.02 

Slope 0.82 ± 0.09 from 1: 0.99 Coniferous -0.09 -0.14 

Statistics  Mixed 0.08 0.12 

n 27     

R2m 0.91     

R2c 0.96     

RMSE 0.17     

p-value 0.01 
    

Fixed effect: Predicted CH4 flux Random effect: Vegetation density 

Intercept -0.13 ± 0.05  from 0: 0.08 High -0.01 0.02 

Slope 0.81 ± 0.08 from 1: 0.99 Medium 0.06 -0.14 

Statistics  Low -0.05 0.11 

n 27     

R2m 0.80     

R2c 0.95     

RMSE 0.19     

p-value 0.01     
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Table A6. Summary of the linear mixed model (LMM) analysing the effects of topographic position, vegetation type, and vegetation 

density on predicted soil CH4 fluxes. Pixel ID was included as a random effect, and spatial autocorrelation among residuals was 

eliminated. 𝜼𝒑
𝟐  was calculated as the effect size of each explanatory variable. Letters indicated the significance within each 625 

landscape unit. 

 

 

 

 630 

 

 

 

 

 635 

 

 

Table A7. Percentage of pixels in the study area distributed among four levels of predicted relative uncertainty for soil CH4 fluxes 

from non-waterlogged soil. 

 640 

 

 

 

 

 645 

 

 

 

 

 650 

 

 

 

 

  655 

Explanatory variables p-value Effect size (𝜂𝑝
2) [with 95% CI] 

Position [df=3] <0.001 0.43 [0.42, 0.44] 

Plain (a), Foot slope (b), Slope (c), Ridge (c) 

Vegetation type [df=2] <0.001 0.006 [0.00, 0.01] 

Broadleaf (a), Coniferous (b), Mixed (c) 

Vegetation density [df=2] <0.001 0.11 [0.10, 0.12] 

High (c), Medium (b), Low (a) 

Measurement date Uncertainty 

< 50 % 50 - 99 % 100- 500 % > 500 % 

2023/04/27 5.72% 53.29% 40.99% 0.01% 

2023/05/12 19.93% 54.01% 26.06% - 

2023/05/31 10.90% 39.29% 49.81% - 

2023/07/06 27.76% 38.32% 33.92% - 

2023/07/26 21.12% 40.66% 38.13% 0.09% 

2023/09/04 30.19% 51.24% 18.58% - 

2023/10/07 39.68% 38.13% 22.19% - 

2023/11/07 17.50% 46.10% 36.4% - 

2023/11/30 7.83% 43.65% 48.26% 0.26% 
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Table A8. Statistics of the linear relationship between soil CH4 fluxes at the landscape scale and antecedent precipitation indexes 

(API). 20 antecedent days provided the best fit. 30 and 7 antecedent days are shown as common metrics in hydrology. Adjusted 

recession coefficients (k) and determination coefficients (R2) are shown. 

 

Antecedent days k R2 

20 0.69 0.70 

30 0.69 0.69 

7 0.67 0.68 

 660 

Table A9. Proportion of vegetation density and type associated with the different topographic positions across the study area (40.2 

ha). 

 

Position Vegetation density Proportion (%) Vegetation type Proportion (%) 

Plain 

High 19.6 Broadleaf 91.8 

Medium 8.4 Coniferous 2.7 

Low 72.0 Mixed 5.5 

Foot slope 

High 4.9 Broadleaf 12.9 

Medium 38.5 Coniferous 0.5 

Low 56.6 Mixed 86.6 

Slope 

High 33.4 Broadleaf 4.5 

Medium 46.3 Coniferous 20.1 

Low 20.3 Mixed 75.4 

Ridge 
High 86.0 Coniferous 13.6 

Medium 14.0 Mixed 86.4 

 

  665 
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Figure A1. Seasonal variation in soil CH4 fluxes from wetlands (means and standard error, n = 3). 
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Figure A2. Accumulated local effect (ALE) plots for the quantile regression forest (QRF) models applied to non-waterlogged soil 670 

CH4 fluxes at each measurement date. 
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Figure A3. Relationships between predicted uncertainty and predicted soil CH4 fluxes using quantile regression forest (QRF) models 

applied to non-waterlogged soil CH4 fluxes at each measurement date. The highest uncertainty is observed for a near-zero prediction. 

  675 
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