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Abstract. Forest soils are generally considered a sink for atmospheric methane (CH4), but their uptake rate can vary
considerably in space and time. This study investigated the role of terrain attributes (topography, vegetation) on soil CH4 fluxes
and the temporal patterns of spatially distributed soil CH4 fluxes in a topographically complex cold-temperate mountain forest
in central Japan. We measured soil CH4 fluxes nine times during the snow-free season at multiple locations within a 40-ha area
in a forested watershed. We used a machine-learning approach to upscale the measured soil CHy fluxes to the landscape scale
at each date of measurement, using topographic and vegetation attributes derived from a digital elevation model and aerial
images. Upland soils were a sink of CHs, while small wetland patches emitted CH4 consistently throughout the study period.
Unfortunately, the quantile random forest models were unable to accurately reproduced the measured fluxes when wetland
measurements were included in the training dataset. The accuracy of predicted upland fluxes varied seasonally, with the highest
model performance observed in early autumn (R?= 0.67) and the lowest in mid-summer (R?= 0.31). Within the study landscape,
predicted upland CH4 fluxes varied significantly across topographic positions, with greater uptake on ridges and slopes than
on the plain and foot slopes. Topography played a predominant role compared to vegetation in the spatial variability of CH4
fluxes. Landscape-scale predicted CHy fluxes in the upland area ranged from -0.34 to -0.60 g CH4 ha! h'! in spring, -0.39 to -
1.28 g CHy ha'!' h! in summer, and -0.48 to -0.89 g CH4 ha! h'! in autumn. Seasonal upland fluxes were highly correlated with
the 20-day antecedent precipitation index (R? = 0.70), revealing the importance of seasonal moisture conditions in regulating
CHy flux dynamics. This study highlighted the importance of topography in controlling the soil CH4 fluxes and the efficiency
of remote sensing and machine learning approaches in scaling field measurements to the landscape level, enabling visualization

of spatial patterns of fluxes across the landscape over time.

1 Introduction

Methane (CH,4), the second most important anthropogenic greenhouse gas, contributes substantially to the anthropogenic
radiative forcing and is responsible for approximately 0.5°C of current global warming compared to 1850 - 1900 (IPCC, 2023).
Natural wetlands (149 Tg CHs4 yr'!) and rice cultivation (30 Tg CH4yr'") are important sources of CHy; in contrast, upland soils
are considered a biological sink of atmospheric CH4, with an estimated uptake of 25-45 Tg yr!, contributing 5-7% to the global
CHas sink (Saunois et al., 2020). Among the upland ecosystems, forest soils account for approximately 60% of global soil CH4
uptake (Dutaur and Verchot, 2007), and soil uptake rates are particularly high in Japanese mountainous forests due to their
high porosity (Ishizuka et al., 2000). CH4 uptake by forest soils is driven by methane-oxidizing bacteria in oxic soil layers,
whereas anaerobic environments such as wetland soils are usually dominated by methanogenic archaea producing CHy4
(Christiansen et al., 2016). CH4 production can also occur in upland soils, either in deeper soil layers or in microsites located
in otherwise well-aerated soil layers, if anaerobic conditions prevail (Angel et al., 2012). Hence, CH4 oxidation and production
can occur simultaneously at the same location, determining the net flux.

Net soil CHy4 fluxes depend mainly on the soil air-filled porosity (AFP), which in turn depends on total porosity and soil water

content. A high AFP enhances gas diffusion in soil and, consequently, microbial CH4 oxidation (Kruse et al., 1996). Soil organic
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matter at the soil surface can act as a physical barrier to atmospheric CH4 diffusion and reduce the CH4 uptake rate (Yu et al.,
2017). Conversely, carbon substrates released by the decomposition of soil organic matter can increase CHy4 oxidation activity
either by directly stimulating the growth of methanotrophs or by promoting CH4 production in anaerobic microsites and
indirectly supporting the growth of methanotrophs (West and Schmidt, 1999). Additionally, soil nutrients can influence soil
CHy fluxes by regulating the soil microbial community. The activity of methanotrophic microorganisms is affected by the
availability of inorganic nitrogen (Bodelier and Laanbroek, 2004). Although methanotrophic activity can be nitrogen-limited
in forest soils (Veldkamp et al., 2013), increasing ammonium (NH4") concentration often reduces CHy4 uptake due to
competitive inhibition by NH4" of the enzyme methane mono-oxygenase, which can oxidize both CH4 and NH4*. Nitrate (NO3)
can also be a potent inhibitor of CH4 oxidation in some soils (Mochizuki et al., 2012). Although temperature affects microbial
activities, including methanogenesis and methanotrophy (Luo et al., 2013; Praeg et al., 2017), CH4 uptake is generally less
sensitive to changes in soil temperature than in soil moisture (Epron et al., 2016).

Topography and vegetation cover can create a predictable distribution of soil moisture and nutrients across topographically
complex landscapes (Jeong et al., 2017; Murphy et al., 2011). In Japan, forests cover 68% of the land, mostly in mountainous
areas. Conifers account for 44% of the total forest area (Lundbéck et al., 2021; Nakamura and Krestov, 2005). Topography is
a critical determinant of soil hydrological conditions, from well-drained slopes to waterlogged riparian areas (Kaiser et al.,
2018). Topography can also impact soil nutrient availability by altering leaf litter accumulation and the movement of soil
nutrients (Osborne et al., 2017; Tateno and Takeda, 2003). The spatial distribution of trees, differences in species abundance
across the landscape, and variation in litter chemistry often create heterogeneity in soil nitrogen cycling (Osborne et al., 2017).
Furthermore, differences in stem flow and throughfall related to differences in canopy structure between tree species can
indirectly influence spatial patterns of soil moisture (Holwerda et al., 2006).

In situ chamber measurements have long been the dominant method for studying CH4 fluxes in forests, providing insight into
the processes that drive them (Brumme and Borken, 1999; Guckland et al., 2009; Itoh et al., 2009). Until recently, most studies
reported spatially average flux values measured at several locations (Gomez et al., 2016; Itoh et al., 2009). This method is
acceptable for small patches of homogeneous landscapes, such as crops or single-species tree plantations in flat terrain.
However, it is inappropriate for more complex landscapes, as the number of sampling points required to obtain an accurate
spatially-averaged flux would increase considerably.

In complex terrains, measurement locations can be grouped into several distinct categories according to landforms (Courtois
et al., 2018; Gomez et al., 2016; Itoh et al., 2009; Kagotani et al., 2001; Kaiser et al., 2018; Warner et al., 2018), soil
microtopographic features (Epron et al., 2016), vegetation characteristics (Guckland et al., 2009), or land uses (Jacinthe et al.,
2015). However, as Vainio et al. (2021) pointed out, aggregation assumes spatial homogeneity of fluxes within each category
or requires a large number of sampling points to capture the spatial heterogeneity, and this approach ignores the spatially
continuous nature of soil processes and their drivers.

More recently, regressions with multiple landscape attributes derived from remote sensing-based maps have been successfully
applied to upscale CHy to a catchment scale (Kaiser et al., 2018). Recent studies conducted on a 12-ha forested watershed
(Warner et al., 2019), a 10-ha boreal forest plot (Vainio et al., 2021) , two northern peatland-forest-mosaic catchments of 450
ha and 790 ha, respectively (Résénen et al., 2021), and a 450-ha subarctic tundra (Virkkala et al., 2024) have demonstrated the
effectiveness of machine-learning modelling approaches for upscaling CH4 fluxes from remote sensing data.

Soil CH4 fluxes exhibit strong spatiotemporal variability in temperate mountain forests, and robust large-scale estimates remain
scarce despite their importance for consolidating the global methane budget because upscaling fine-scale chamber-measured
CH4 fluxes requires an explicit understanding of their spatial and seasonal heterogeneity. We assessed the role of terrain
attributes (topography, vegetation) on methane fluxes throughout the snow-free season in a topographically complex
mountainous landscape, and how the spatial heterogeneity of predicted fluxes and the aggregated fluxes at the landscape level
vary over time. We measured soil CH4 fluxes several times during the snow-free season at multiple locations within a 40-ha
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area in a forested watershed. We applied a random forest machine-learning approach in combination with terrain attributes
from remotely sensed data, i.e., a digital elevation model (DEM) and a vegetation map derived from aerial images, to upscale
measured soil CH4 fluxes to the landscape level. Our strategy was to directly predict CH4 fluxes using topographic and
vegetation variables as proxies for soil moisture and chemistry, because incorporating soil moisture and chemistry as predictors,
90 which would need to be extrapolated to the landscape level, would introduce additional layers of uncertainty. We hypothesized
that (1) terrain attributes related to water accumulation are reliable predictors of soil CHs4 fluxes, (2) spatial patterns of
uncertainties in predicted soil CH4 fluxes vary seasonally due to a wet early summer influenced by the East Asian monsoon,
(3) predicted soil CH,4 fluxes vary within the landscape depending on topography and vegetation, and (4) seasonal variations

of CH4 flux at the landscape scale are explained by recent past precipitations.

95 2 Materials and methods

2.1 Description of the study site and experimental design

This study was conducted in the forested upper Yura River watershed (520 ha, 35.34 N; 135.76 E) located at the Ashiu
Experimental Forest of Kyoto University in northeastern Kyoto Prefecture, Japan (Fig. 1). The mean annual temperature and
precipitation were 10.3°C and 2,732 mm, respectively, between 2011 and 2020 and the ground was covered by snow (2-3 m
100 depth) from mid-December to mid-April (Epron et al., 2023). The study area is characterized by a cool-temperate monsoon
climate, with a very humid early summer (520 mm in June and July on average between 2011 and 2020) and occasionally
heavy precipitation caused by typhoons in late summer. The soils in the study area are classified as brown forest soils according
to the Classification of Forest Soils in Japan, with a relatively thick brownish-black A horizon with a crumb structure and a
brown B horizon with a blocky structure (Hirai et al., 1988; Ueda et al., 1993). The forest is primarily dominated by
105 Cryptomeria japonica D. Don (Japanese cedar, 73% of the basal area in four 1-ha census plots), mixed with more than 50

broadleaved species (Ishihara et al., 2011).
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Figure 1: Map of the upper Yura River watershed with its location in Japan on the left and an enlargement of the 40.2 ha study area
on the right. The green triangles represent the 52 flux measurement locations on unsaturated soils (upland) and the red dots the 3

110 measurement locations on waterlogged wetlands. (Japan map: http://www.gsi.go.jp/ENGLISH/page_e30286.html)

The study site covered an area of 40.2 hectares and included 55 sampling points for CH4 flux measurements and soil sampling
(Fig. 1). The sampling points were chosen along three transects perpendicular to the main river, from the plain to the ridges
covering two slopes (south-facing and north-facing), as well as in a lateral canyon, and along transects parallel to the main
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river, on the plain, above the foot slope and on a ridge. The sampling was designed to encompass the landscape heterogeneity,
while being constrained by the geography of the site and safety considerations. We recorded the positions of all sampling

locations using a portable GPS tracker (Garmin, eTrex® Touch 35) with an accuracy of less than 5 m.

2.2 Soil sampling and analysis

Soil cores were collected using a sampling cylinder at 0-10 cm depth at approximately 0.3 m of the flux measurement points.
Samples were sieved at 2 mm and separated into stones and fine earth. The fresh weight of the fine earth fraction was measured
before being air-dried. Bulk density of this fraction was determined as the ratio of oven-dried soil (subsample dried at 105°C)
to the soil volume. Soil texture was analysed using the micro-pipette method, following Burt et al. (1993). Total soil carbon
(C) and nitrogen (N) contents were measured using a Macro Corder JM 1000CN (J-SCIENCE LAB Co., Ltd., Japan). The soil

pH was measured in a suspension (10 g of soil in 25 ml distilled H,O) after shaking for 1 hour.

2.3 Topographic characterization

To characterize and process the terrain attributes related to soil CHs fluxes, we used a 0.5 m grid digital elevation model (DEM)
based on airborne laser surveys conducted throughout the upper Yura River watershed in 2012 by the Ashiu Experimental
Forest staff. The DEM was further processed and conditioned into a 5 m grid DEM image according to the GPS tracker's
accuracy (< 5 m) that was used to locate each collar position, enabling us to identify the corresponding pixels on the terrain
attribute grids. We derived several topographic attributes from the DEM using SAGA Next Generation in QGIS (v3.34.5-
Prizren). The calculated attributes included slope, profile curvature (PrC), topographic position index (TPI), saga wetness
index (SWI), and vertical distance to channel network (VDCN). Among the many attributes that can be derived from a DEM,
we avoided selecting those that would be redundant to limit collinearities and overparameterization. Our preselection was
motivated by the fact that methane fluxes result from the activity of methanotrophic and methanogenic communities, which
are controlled by soil moisture and chemistry (C, N, pH), and, to a lesser extent, temperature. All the preselected attributed
were correlated with soil moisture and chemistry (Table A1) and can potentially serve as a proxy for the spatial distribution of
soil moisture and nutrient availability (Jeong et al., 2017; Kemppinen et al., 2018).

Slope, and profile curvature were calculated following the 9-parameter 2™ order polynom method (Zevenbergen and Thorne,
1987). Negative values of profile curvature indicate a convex surface where the flow of water accelerates as it moves
downslope; in contrast, positive values suggest a concave surface where the flow slows down (Pachepsky et al., 2001).

SWI is a refined version of the topographic wetness index (TWI) (Beven and Kirkby, 1979), which indicates that the spatial
distribution of soil moisture is defined as TWI = In (§CA/tan ©), where SCA refers to the specific catchment area and © is
the local slope. SWI considers small differences in elevation values by using an iterative modification of the specific catchment
area, assuming rather homogenous hydrologic conditions in the flat areas. The SWI was calculated using the Saga wetness
index algorithm, which is available in the SAGA library and integrated within QGIS (Conrad et al., 2015). Prior to computation,
the DEM was hydrologically corrected by filling sinks to ensure continuous flow routing (Wang and Liu, 2006).

TPI describes the relative position of a location within a landscape, indicating whether it is on a ridge, slope, or valley based
on the elevation compared to the surrounding terrain at a specified radius (Agren et al., 2014). Positive values indicate ridges;
negative values indicate depressions, and zero or near-zero values indicate slopes or flat areas. TPI is a highly scale-dependent
variable and was calculated at the centre of circular areas with radii of 20 m, 30 m, and 50 m using the unfilled DEM. In our
final model, we used TPI calculated with a 30 m radius, as it had the highest Spearman correlations with soil physical and
chemical properties that influence soil CHy fluxes (Table A1).

VDCN was calculated as the elevation difference between each grid cell and the baseline of the nearest stream channel. This
parameter serves as a proxy for groundwater depth, with lower VDCN values typically corresponding to areas with shallower
groundwater and higher water tables, and higher values indicating deeper groundwater levels often found in upland positions

(Bock and Koéthe, 2008). To calculate VDCN, the filled DEM was first used to create a flow accumulation layer using the
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multiple flow direction method (Freeman, 1991). The resulting flow accumulation raster was then used to create
topographically defined flow channel networks, applying flow initiation thresholds of 0.5, 2.5, and 5Sha. VDCN then
subsequently calculated for each threshold. In our final model, we used VDCN calculated with a 5-ha initiation threshold, as
it has the highest Spearman correlations with soil physical and chemical properties that influence soil CH4 fluxes (Table A1).

The site was classified into uplands (including ridges, slopes, foot slopes and plains as topographic positions where the soil is
almost always unsaturated), wetlands (small patches with water-saturated soil year-round in the plain), and rivers. To
distinguish wetland and upland areas, we collected additional GPS positions at the edges and within the three wetland patches,
in addition to the positions of the 55 sampling points. We then used SWI, PrC, slope, and VDCN to predict the locations of
wetlands using a machine learning approach described in the supplementary file (Note S1). Finally, the boundaries between
wetlands and uplands were refined by visual inspection. We acknowledged that using a fixed boundary between "upland" and
"wetland" conditions, although these boundaries may vary seasonally depending on the balance between precipitation and
evaporation, may increase uncertainties in CH4 flux prediction. Predicting the temporal variations of these boundaries was
beyond the scope of this work, and, at our site, wetlands represent only 1% of the pixels (see below), and their boundaries even
less. A posteriori, pixels classified as wetland had SWI values above 8.1, profile curvature between -0.003 and 0.001, slope
values below 6.8, and VDCN values below 2.2 (Fig. S1). For river mapping, pixels corresponding to rivers were identified in
the channel network raster, which was calculated using a 5-ha initiation threshold. Slope angle and TPI at 30 m radius were
used to partition the upland into ridges, slopes, foot slopes, and the plain. Locations with TPI values of 5 or greater were
defined as ridges, representing locally elevated, convex surfaces. Locations with TPI values < -5 were defined as foot slopes,
concave surface. Areas with intermediate TPI values (—5 < TPI < 5) were further divided according to slope angle: sites with
slope > 18° were defined as slopes, and those with slope < 18° were defined as plains. Uplands, wetlands, and rivers, accounted
for 94%, 1%, and 5% of the total study area, with respectively 52 sampling points located in upland areas, including 14 in

plains, 9 in foot slopes, 16 in slopes, and 13 in ridges, while 3 were situated in wetland areas.

2.4 Vegetation classification

Tree inventory was conducted during the flux measurement period to classify the vegetation surrounding the flux measurement
points. A circular plot with a 10-meter radius was established, centred at each flux measurement point. Within the plot, all trees
were identified at the species level, and their diameter at breast height (DBH) was measured. We calculated the plot basal area
(BA) as the sum of the cross-sectional areas (CSA) at breast height of all tree trunks in each plot, and subsequently determined
the relative basal area of coniferous trees (RBAcon) in each plot. Then, we predicted the BA and RBAcon for the entire study
area using SWI, TPI, VDCN, and the normalized vegetation index (NDVI) using a machine learning approach described in
the supplementary file (Note S2, Fig. S2). Vegetation density was classified into three categories based on the quantile
distribution of BA: high (BA > 2.6, upper quartile), medium (0.9 < BA < 2.6, interquartile range), and low (BA > 2.6, lower
quartile). High, medium, and low vegetation density accounted for 37%, 37% and 26% of the total study area (Fig. S3),
represented by 14, 28 and 10 sampling points, respectively. Vegetation types were classified based on RBAcon. Three types
were defined: coniferous when RBAcon was higher than 0.75, broadleaf when it was lower than 0.25, or mixed (comprising
both conifers and broadleaved trees). These three types accounted 6%, 22% and72% of the total study area (Fig. S3),
represented by 11, 19 and 22 sampling points, respectively.

2.5 Flux measurements

Soil CH4 fluxes were measured using a static, non-steady-state, non-flow-through system composed of a dark acrylic chamber
(20 cm diameter and 12.5 cm height) connected to a cavity-enhanced absorption spectroscopy gas analyser (Li 7810, Licor;
Lincoln, USA) with two PTFE tubes, each 1.8 m long and 4 mm in inner diameter. One week before the first measurements, a
20 cm diameter, 9 cm tall PVC collar was inserted approximately 5 cm into the soil at each sampling point. Flux from each

collar was measured on nine occasions in 2023: in early spring after snowmelt (4/27), mid-spring (5/12), late spring (5/31),
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early summer (7/06), mid-summer (7/26), late summer (9/04), early autumn (10/07), mid-autumn (11/07), and late autumn
(11/30). When measuring fluxes from the three small wetland patches, we took care to avoid trampling the soil near the collars,
taking advantage of the abundant presence of stones and coarse woody debris.

To measure soil CH4 flux, the chamber was placed on the collar, and changes in CH4 and CO» concentrations inside were
recorded for 4 minutes at a frequency of 1 Hz. The slope of the linear regression of CH4 concentration over time was used to

calculate the soil CHy flux:
A[CH,] V x P
CHy = X
4 At AXRXT

. . A . . . . . .
where Fcy, is the soil CHs flux, % is the slope of the linear change in CH4 concentrations over time, ¥ is the system

volume (chamber, collar above the ground, tubes, and analyzer), 4 is the soil area covered by the collar, and R is the ideal gas
constant (8.314 J K-! mol™!). A constant value of 93,525 Pa for an elevation of 650 m was used for the atmospheric pressure
(P). The slope was calculated over 90 seconds following Epron et al. (2023). The R? of the linear variation of CH4 concentration
was less than 0.9 for a single measurement, and for this measurement, the R? of the linear variation of CO, concentration was
0.99, indicating that the low R? for CH4 was due to the near-zero CHy flux and not to an erroneous measurement.

Soil moisture content and soil temperature near each collar were recorded on each measurement date using a soil moisture

probe (SM150-T Device, Cambridge, UK) and a digital thermometer.

2.6 Climatic data

Air temperature and rainfall were measured every 10 minutes at a nearby weather station operated by the Field Science
Education and Research Centre of Kyoto University. The antecedent precipitation index (API), an indicator of soil moisture

conditions, was calculated using the following equation:

n
APl = Z P, Xkt
t=1

where, Pt is the precipitation during day t, k is the recession coefficient, and n is the number of antecedent days. The parameter

k accounts for the water removed from the soil by evapotranspiration and drainage.

2.7 Modeling

We applied quantile regression forests (QRF) introduced by Meinshausen (2006), an extension of the random forests (RF)
algorithm. RF is an ensemble learning method that builds a set of regression trees, and the final prediction is the average of all
the regression trees, which are evaluated using out-of-bag cross-validation (Breiman, 2001). The QRF algorithm estimates the
full conditional distribution of the response variable as a function of its predictors, not just the mean as with the original RF
algorithm. Therefore, it is possible to extract the prediction interval for each pixel across the landscape for each measurement
period. We followed three steps to develop models for predicting soil CH4 fluxes at each measurement period. We used the
five terrain attributes (slope, PrC, TPI at 30-m radius, SWI, and VDCN at 5-ha initiation threshold), basal area (BA), and
relative basal area of coniferous trees to BA (RBAcon) as predictors. Unfortunately, the machine learning model was unable
to accurately reproduce the measured fluxes when wetland measurements were included in the training dataset, likely due to
the imbalance between the 52 upland and only 3 wetland sampling points. The comparison of models including and not
including wetland data is shown in Table A2. Only permanent wetlands in the plain area were excluded (3 of 55 collars for
data, less than 1% of the landscape pixels). Wet patches, which had temporarily water-saturated soils, were not excluded.

Before applying QRFs, we eliminated the less important variables and identified the most relevant predictors for each
measurement date, using a variable selection algorithm for random forest models proposed by Genuer et al. (2010) and
implemented in the “VSURF” package for R (Genuer et al., 2015). This approach systematically uses a repeated cross-

validation procedure to rank variables by their importance index and iteratively eliminates the least informative ones to
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minimize model error. The result is a refined subset of predictors that enhances model interpretation and predictive
performance. The predictor reduction approach has previously been used to map CH, fluxes (Résénen et al., 2021; Warner et
al., 2019) and soil properties (Jeong et al., 2017; Miller et al., 2015).

After selecting the relevant predictor variables, the QRF models were trained to predict CH4 fluxes using the R-packages “caret”
(Kuhn and Johnson, 2013) and “quantregForest” (Meinshausen, 2017). The mtry parameter, which determines the number of
randomly selected predictor variables at each node, was tested from 2 to n-1 (n being the total number of predictors) using
leave-one-out cross-validation to minimize prediction error and maximize the variance explained by the model. The ntree
parameter was set to 500, ensuring the model constructed an ensemble of 500 decision trees. Furthermore, we calculated the
variable's importance scores using the “vip” R-package (Greenwell and Boehmke, 2020). Variable importance scores were
estimated using a permutation-based approach, in which the values of each predictor in the training data were randomly
permuted to assess the resulting change in model performance, as quantified by the adjusted R-squared value. A greater
reduction in adjusted R? indicated a higher importance of the predictor variable. We generated the accumulated local effect
(ALE) plots to visualize the response of CH4 fluxes to the predictor variables, accounting for the effect of the predictors in the
model (Apley and Zhu, 2020). In ALE plots, an ALE value of zero on the y-axis corresponds to the mean predicted CH4 flux,
with positive values indicating higher and negative values indicating lower flux under the specific predictor on the x-axis. ALE
reduces a complex machine learning function to depend on only one or, in some cases, two input variables, and visualizes the
effect of a selected variable on the predicted CH4 flux. The method removes the confounding effects of other input variables,
computes the partial derivatives (local effects) of the prediction function with respect to the variable of interest, and integrates
(accumulates) these effects across the range of that variable.

For each of the nine measurement dates, model accuracy was evaluated based on the root mean square error (RMSE) and
coefficient of determination (R?). The output of the QRFs was a set of conditional prediction distributions of CHs fluxes for
each landscape pixel and measurement dates. Because these prediction distributions were often not normally distributed, the
median of the conditional prediction distribution at each pixel was used as the final prediction, and the interquartile range of
the distribution was used to quantify the uncertainty in the prediction (Warner et al., 2019). Prediction uncertainties were
expressed as a percentage (i.e., interquartile range of the conditional prediction distribution divided by the median). Modelling
was conducted independently for each of the nine measurement dates, without including meteorological data, as in previous
studies (Vainio et al., 2021; Warner et al., 2019). Indeed, since all pixels would exhibit the same values for meteorological
variables at a given date, it would be pointless to include them in RF models to predict the spatial heterogeneity of fluxes at

the landscape scale.

2.8 Statistical analysis

We used analysis of variance (ANOVA) to test the differences in soil properties across the topographic positions and vegetation
types and densities. Interactions were not included because the model would be rank-deficient as there were no “pure”
broadleaved plots on the ridge. We examined the relationships between soil properties and topographic and vegetation variables
using Spearman’s rank correlation analysis using the ‘Hmisc’ package (Harrell Jr, 2003). Linear mixed-effect models (LMM)
were used to test the relationship between the predicted fluxes at pixel levels and measured fluxes (fixed effect), with flux
measurement dates as a random effect and between the predicted soil CH4 fluxes and measured soil CHs fluxes aggregated by
landscape units (topographical position, vegetation types, and vegetation density), which were included as the random factor
on both slope and intercept. The root mean square error (RMSE) was used to evaluate model performance at each date, and
the marginal and conditional coefficients of the determination (R.,> and R.?) were used to determine the strength of the
relationship between the predicted and measured fluxes. LMM was carried out using the ‘ImerTest’ package (Bates et al., 2015;
Kuznetsova et al., 2017), and Ry? and R.? were calculated using the ‘MUMIn’ package (Barton, 2010). To test the effects of

topographic positions, vegetation types, and densities on predicted CH4 fluxes while accounting for spatial autocorrelation, we
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also used a linear mixed-effect model. Topographic positions, vegetation types, and densities were included in the model as
fixed effects, and pixel ID as a random effect. Interactions were not included as no pixel contains “pure” broadleaved vegetation
on the ridge. To eliminate spatial autocorrelation among residuals, we incorporated an exponential spatial correlation structure
based on each pixel coordinate nested within each measurement date. This was performed using the ‘nlme’ package (Pinheiro
et al., 1999). The semi-variogram of the residuals confirmed that the residuals were not spatially correlated. To quantify the
effect size that indicates the relative contribution of each factor to the total variance in the response variable, we calculated
eta-squared (77;27) values using the ‘effectsize’ package (Ben-Shachar et al., 2019). A pairwise comparison across the topographic
positions, vegetation types, and densities was performed using the ‘emmeans’ package (Lenth, 2017). Linear regression models
were used to examine the relationship between landscape-scaled predicted soil CHs fluxes and API. The recession coefficient
(k) and the number of antecedent days (n) were not fixed a priori but optimized to maximize R? while ensuring the best
distribution of the residuals, allowing parameters k and n to vary iteratively from 0.6 to 0.9 with an increment of 0.01 and from
0 to 30 with an increment of 0.01, respectively. Using a more complex bivariate model with an exponential function of air
temperature did not improve the quality of the fit and returned Qo values that were not significantly different from 1, as
previously reported (Epron et al., 2016). Calculations, modelling, and statistical analyses were performed using the R statistical

programming environment (R Core Team, 2024).

3 Results

3.1 Environmental conditions and soil properties across upland topographic and vegetation features

The total rainfall in the study area during the snow-free period of 2023 was 1578.5 mm, with relatively high rainfall in late-
May to mid-June and a peak on August 15 due to the typhoon Lan (Fig. 2a). The monthly mean air temperature ranged from
7.5 to 24.2 °C during the study period (Fig. 2b). Mean soil moisture content varied seasonally, with the highest (47.7 £ 1.1 %;
mean =+ standard error) observed in the early summer (07/06) and the lowest (32.9 £ 1.2 %) in the late summer (09/04) (Fig.
2¢). Mean soil temperature followed a similar trend to air temperature across the study period (Fig. 2d). Upland soils
consistently uptake CHy (negative fluxes, Fig. 2¢), while soils in the three small wetland patches emitted CH4 (positive flux,
Fig. Al). Variation in upland CH4 fluxes across the measurement dates was consistent with the seasonal patterns of rainfall
and air temperature. The fluxes measured on two collars located in the upland area, but in wet patches, were positive on one

occasion each.
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Figure 2: Seasonal variation in (a) daily rainfall and (b) daily air temperature from April to November in 2023, and (c) mean soil
moisture content, (d) mean soil temperature, and (e) mean soil CHs fluxes from upland sampling points, including all topographic

positions (n = 52). Vertical bar indicating the standard error.

Topographic positions significantly influenced several soil properties (bulk density, pH, total carbon and nitrogen, and mean
temperature), whereas vegetation type and vegetation density significantly influenced soil temperature and soil moisture,
respectively (Table 1). The bulk density of the fine earth fraction was relatively low due to the presence of stones, highest in
the plain (0.42 = 0.04 g cm™>, mean + SE) and significantly lowest in the ridge (0.26 + 0.04 g cm™). Soil pH differed
significantly across topographic positions (p < 0.001), with more acidic conditions observed at higher elevations (ridge: 4.0 +

0.14) compared to the plain (5.1 £ 0.73). Similarly, total carbon (C) and total nitrogen contents (N) were significantly higher
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on the ridges (16.7 + 2.2% C and 0.8 = 0.10% N) and lower in the plain (5.1 = 0.73% C and 0.3 + 0.04% N). Mean soil
temperature also significantly varied across topographic positions, with the highest in the plain (14.3 + 0.18°C) and the lowest
in the foot slope (13.4 + 22°C). In contrast, the soil texture of the fine earth fraction (clay, silt, and sand) and mean soil moisture
content did not vary significantly with topographic positions.

Vegetation type significantly influenced soil temperature, with the highest values observed under broadleaved stands and the
lowest under coniferous stands. Vegetation density significantly affected soil moisture content, which was highest in low-

density areas and lowest in medium-density areas.

Table 1. Mean (£ standard error) of soil bulk density (BD), texture (clay, silt and sand), total carbon (C) and nitrogen (N)
concentration, pH, mean soil water content (SWC) and temperature (Tsoil) according to topographic position, vegetation type, and
vegetation density. SWC and Tsoi are the average of the 9 measurement dates. Different lowercase letters indicate significant
differences among topographic positions, vegetation types, and vegetation densities (p < 0.05). The p-values of the ANOVA are shown

in the last rows. The number of independent replicates in each factor level is indicated in the first column.

Factor Bulk density Clay Silt Sand H Total C Total N Mean SWC  Mean Tsoil
(g em™) (%) (%) (%0) P (%0) (%) (%) °C)
Position
Plain 0.42 8 27 65 + 49 5.1 0.3 442 14.3
(n=14) +0.04a +2 +3 4 +0.1a +0.7a +00a +2.0 +02a
Foot slope 0.36 8 33 60 43 8.3 0.5 42.1 134
(n=9) +0.06 ab +2 +4 +5 +0.1b +22a +0.1ab +2.0 +0.2b
Slope 0.29 10 29 60 4.3 10.0 0.6 39.2 13.9
(n=16) +0.03 ab +2 +3 +4 +0.1b +1.1a +0.1ab +14 +0.1a
Ridge 0.26 9 23 68 4.0 16.7 0.8 40.1 13.9
(n=13) +0.04 b +2 +4 +4 +0.1b +22Db +0.1b +2.0 +0.1ab
Vegetation type
Broadleaved 0.38 10 29 61 4.7 6.8 0.4 433 14.2
(n=19) +0.04 +2 +3 +4 +0.1 +1.0 +0.1 +1.6 +0.1a
Coniferous 0.32 7 27 66 4.3 11.1 0.6 40.8 134
(n=11) +0.04 +1 +4 +5 +0.1 +2.4 +0.1 +1.7 +0.2b
Mixed 0.29 9 26 64 4.2 11’4 0.6 39.7 13.9
(n=22) +0.03 +1 +2 +3 +0.1 s +0.1 +13 +0.1a
Vegetation density
High 0.32 9 28 64 4.4 10.6 0.57 40.4 13.7
(n=14) +0.04 +2 +3 +4 +0.1 +2.02 +0.1 +0.1a +0.2
Medium 0.30 10 28 62 4.3 11.3 0.59 39.5 13.9
(n=28) +0.03 +1 +3 +3 +0.1 +1.34 +0.1 +10a +0.1
Low 0.43 8 26 66 4.7 6.1 0.40 47.6 14.2
(n=10) +0.05 +2 +3 +4 +0.2 +1.27 +0.1 +2.1b +0.2
Anova
results
Position p <0.05 p=055 p=033 p=049 p<0001 p<0.001 p<0.01 p=0.12 p <0.001
?;Zieta“o“ p=081 p=030 p=092 p=066 p=075 p=090 p=099 p=052  p<0.001
Vegetation p=058  p=045 p=058 p=043 p=099 p=093 p=098 p<005  p=09I

density
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3.2 Selected variables and performance of the upland CH4 flux models

The topographic position index (TPI) was consistently selected in all seasons, with high importance scores, ranging from 0.54
to 0.88, depending on the measurement dates (Table 2). The saga wetness index (SWI) was selected for most measurement
dates, except for two, where the vertical distance to the channel network (VDCN) was selected instead. SWI importance scores
were higher in summer than in the other seasons. VDCN and profile curvature (PrC) were occasionally selected along with
TPI and TWI. VDCN showed moderate to low importance scores, contributing mostly in mid-spring (0.66) and early autumn
(0.58). PrC, although less consistently selected, played a role in specific seasons, particularly in early spring and mid to late
autumn. Accumulated local effect (ALE) plots showed the direction of the variables’ effects on soil CH4 fluxes for each
measurement date (Fig. A2). For the two most influential predictors, low CH4 uptake rates were associated with low TPI values,
while they were associated with high SWI values. The vegetation density (BA) was selected only on two dates in 2023/04/27
and 2023/10/07, without improving the model accuracy, so we did not include it the final models (Appendix Table A3).

Table 2. Selected variables for the quantile regression forest (QRF) models at each measurement date, along with the R? and root
mean square error (RMSE) values to evaluate the accuracy of the models. Importance scores of the selected variables are shown in

parentheses, indicating their contribution to predicting soil CHs fluxes.

Measurement dates Selected variables R? RMSE (nmol m? s1)
2023/04/27 SWI (0.57), TPI (0.67), PrC (0.58) 0.53 0.52
2023/05/12 TPI (0.80), VDCN (0.66) 0.31 0.82
2023/05/31 SWI (0.55), TPI (0.57), VDCN (0.42) 0.43 0.48
2023/07/06 SWI (0.73), TPI (0.60) 0.40 0.50
2023/07/26 SWI (0.80), TPI (0.69) 0.37 1.02
2023/09/04 SWI (0.74), TPI (0.85) 0.40 1.18
2023/10/07 TPI (0.88), VDCN (0.58) 0.67 0.81
2023/11/07 SWI (0.32), TPI (0.84), VDCN (0.12), PrC (0.45) 0.59 0.66
2023/11/30 SWI (0.32), TPI (0.54), VDCN (0.21), PrC (0.28) 0.51 0.56

Model accuracy showed seasonal variation, with the highest obtained in early autumn (R%2 = 0.67; RMSE = 0.81 nmol m? s™')
and the lowest in mid-spring (R?>=0.31; RMSE = 0.82 nmol m? s’!; Table 2). The relationship between measured and predicted

fluxes for each measurement date showed that estimated fluxes were close to the observed fluxes (Fig. 3a-i).
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Figure 3: Comparison of predicted (median of the quartile predictions from QRFs) and measured CHj4 fluxes for each measurement
date. Vertical bars indicate the interquartile ranges of the prediction distribution. Intercepts and slopes are estimated using a linear
mixed-effect model with measurement dates as a random effect (full statistics are shown in Table A4). The diagonals are the identity

(1:1) lines.

Overall, the slope of the relationship between measured and predicted fluxes (fixed effects) was not significantly different
from 1 and was similar at all dates. The marginal (R%,) and conditional (R%.) coefficients of determination were 0.93 and 0.94,
respectively, highlighting the consistency of the prediction for all measurement dates (linear mixed model, Table A4). To
validate the fluxes at the landscape level, predicted fluxes were aggregated by landscape unit (i.e., topographic position,
vegetation type, and vegetation density) and compared with the aggregated measured fluxes, which were consistent with the

measured fluxes (Fig. 4, Table AS).
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Figure 4: Comparison between aggregated mean predicted and measured CH4 fluxes for (a) topographic position, (b) vegetation

type, and (c) vegetation density (full statistics are shown in Table A5). The diagonals are the identity (1:1) lines.

3.3 Predicted upland soil CH4 fluxes

We predicted that upland soils consistently uptake CH4 across the seasons (negative fluxes, Fig.5). Predicted median CHy
fluxes showed significant spatial heterogeneity, which was consistent across the seasons (Fig. 5). The highest net CH, uptake
was predicted on ridges and the steepest parts of the slopes and decreased toward the foot slopes near streams and the flat plain
(Fig. 6a). Coniferous and mixed stands showed the highest uptake compared to the broadleaved stands (Fig. 6b). Vegetation
density (BA) also influenced the soil CH4 uptake with higher uptake in the high and medium density areas. Although substantial

variation was observed within each landscape unit, topographic position exerted the strongest control on CH4 fluxes (7712; =

0.43), followed by vegetation density (1, = 0.11) and vegetation type (1, = 0.006) (Table A6).
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Figure 6: Predicted landscape-scale soil CH4 fluxes averaged over all measurement dates, aggregated by (a) upland topographic
positions, (b) vegetation type, and (c) vegetation density (Full statistics with significance of the differences between each landscape
unit shown in Table A6). Green squares indicate the mean of the measured fluxes with standard errors, blue triangles indicate the

mean of the predicted fluxes at the landscape level and grey boxplots indicate the distribution of the predicted fluxes.

3.4 Uncertainty of predicted upland soil CH4 fluxes

The spatial distribution of the percentage of predicted uncertainty varied across seasons (Fig. 7). The percentage was
consistently low to moderate (less than 100%) for pixels on ridges and steep slopes, but extremely high uncertainties (more
than 500%) was observed at some dates for low-elevation pixels when predicted fluxes were close to zero. However, low
predicted fluxes were often associated with equally low predicted uncertainty (Fig A3). The proportion of pixels with low
uncertainty (<50%) was highest in early autumn (39.7% of the total upland pixels) and lowest in early spring (5.7% of the total
upland pixels). In contrast, moderate uncertainty (50-100%) was predominant in most seasons, particularly in spring and
autumn, accounting for approximately 50% of the landscape. Moderate to high uncertainty (101-500%) was also predominant
at some measurement dates, reaching its highest contribution to the landscape in late spring (49.8%). Extreme uncertainty

(>500%) was very rare in all seasons, except for a small peak in late autumn (0.26%, Table A7).
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Figure 7. Uncertainty map of predicted soil CHs fluxes at each pixel of the study area for each measurement date. Values represent

the ratio of the interquartile range to the median of the prediction distribution for each pixel.

3.5 Predicted seasonal upland fluxes at the landscape level

The predicted upland CHy flux per hectare was calculated as the sum of the predicted fluxes at each pixel multiplied by pixel
area (25 m?), and the sum divided by the upland area. Across the landscape, the average CH4 uptake by upland soils during the
snow-free season was -0.66 (interquartile range: -0.94 to -0.44) g CHs ha™! hr''. Predicted median seasonal fluxes ranged from
-0.34 to0 - 0.60 g CH4 ha'! hr'! in spring, from -0.39 to -1.28 g CH4 ha! hr'! in summer, and from -0.48 to -0.89 g CH, ha™! hr!
in autumn (Fig. 8a). CH, uptake was low across the landscape in early (April 27) and late spring (May 31), while higher uptake
was predicted in mid-spring (May 12). CH, uptake remained low in the early wet summer (July 6) and increased toward the
mid (July 26) to late dry summer (Sep 4) when it reached its peaks. Net CH, uptake then decreased from early autumn (Oct 7)

and reached its lowest rate in late autumn (Nov 30).
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Figure 8: Predicted soil CHs fluxes, calculated as the mean of all pixels in the study area, and antecedent precipitation index (API).
(a) Seasonal variations in landscape-scaled predicted soil CH4 fluxes and (b) relationship between landscape-scaled predicted soil

CHjs fluxes and the 20-day API. Vertical bars indicate the uncertainty of the predicted fluxes.

This seasonal variation in predicted upland median fluxes was well explained by the 20-day antecedent precipitation index (R?
=0.70, p < 0.01) with a recession coefficient of 0.69 (Fig. 8b), followed closely by the 30-day (R = 0.69) and 7-day (R? =
0.68) API (Table AR).

4. Discussion

4.1 Selected variables

We employed quantile regression forest (QRF) models, driven only by topographic attributes, to upscale in-situ soil CHa flux
measurements from sampling points to the landscape level for each measurement date in all upland topographic positions, but
excluding wetlands (1% of our study area). Although selected twice, the inclusion of BA did not improve the accuracy and
performance of the model and was eventually not retained in any final models, while RBA con was never selected.

Among all tested topographic variables derived from the DEM, SWI, TPI, PrC, and VDCN were consistently selected in
different models across all measurement periods, emphasizing their importance in upscaling CH4 fluxes. Overall, the results
validated our first hypothesis, as the selected topographic attributes were related to water circulation and accumulation.
Among these variables, SWI, which positively influence CHy4 fluxes (low uptake in areas with high TWI), represents water
accumulation potential and is a common surrogate for soil moisture in mountainous regions. This key factor controls CH4
fluxes by affecting gas diffusion and microbial activity (Kaiser et al., 2018; Vainio et al., 2021; Warner et al., 2019), as SWI
integrates potential inflows and discharges through runoff and drainage (Agren et al., 2014; Beven and Kirkby, 1979). SWI
was selected in seven out of nine measurement periods but not on May 12 and October 7. These two periods correspond to
transitional seasons, i.e., mid-spring and early autumn, when the landscape is generally drier, and water does not accumulate.
TPI describes the elevation of a location relative to those of the surrounding terrain within a given radius, allowing the
identification of landform positions such as ridges, slopes, and valleys (Agren et al., 2014). TPI is generally calculated using
a non-filled DEM, which is also more representative of local-scale moist depression that SWI doesn’t capture, as SWI is
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calculated using the filled DEM (Kemppinen et al., 2018). In our study, TPI was consistently selected in all measurement
periods, and clearly related, highlighting that localized moisture, and potentially soil chemistry, are more influential parameters
in controlling the CHy4 fluxes at the landscape level. Areas with negative TPI values (e.g., valleys or depressions) typically
function as convergence zones, where water and nutrients accumulate due to gravitational flow and reduced drainage. In
contrast, positive TPI values (e.g., ridges and convex upper slopes) are more divergent, often characterized by increased
drainage and runoff, and limited water and nutrient retention. TPI negatively affected soil CHy4 fluxes (high uptake in areas
with high TPI).

PrC refers to the curvature of the land surface in the direction of the slope (along a flow line) which was selected three times
(April 27, Nov 7 and Nov 30) across the measurement dates. It influences the acceleration or deceleration of surface and
subsurface water flow (Agren et al., 2014). Negative values (concave slopes) tend to slow water movement, promoting water
and nutrient accumulation in soils. Conversely, positive values (convex slopes) accelerate flow, often reducing water retention
time and lowering nutrient accumulation due to leaching or erosion. Excluding PrC from the list of available variables for
selection decreased the model performance for these three dates, probably because PrC helps discriminate between plains and
slopes, both of which have near-zero TPI values.

VDCN is another important variable reflecting groundwater level conditions. Lower values typically observed near stream
channels with higher groundwater level (Bock and Kéthe, 2008). When the landscape was drier (May 12 and October 7), and
SWI was not selected, TPI and VDCN had more substantial explanatory power. VDCN was also selected several times with
SWI. Interestingly, VDCN has been shown to be useful in distinguishing well-drained from poorly drained soils (Bell et al.,
1992; Kravchenko et al., 2002). It may explain why excluding VDCN from the list of variables available for selection decreased
model performance. This highlights that SWI and TPI alone were not sufficient to reflect local soil moisture conditions, as
drainage conditions can potentially vary across the landscape, which controls soil microhabitat conditions and thus influences
CHy fluxes.

QRF modelling is non-parametric machine learning approach is particularly suited for handling non-linear relationships and
complex interactions among predictors (Meinshausen, 2006). However, although the topographic predictors have successfully
predicted CH4 fluxes, the QRF method, like other statistical methods, does not provide a mechanistic understanding of the

underlying biogeochemical processes, and the existence of confounding factors cannot be ruled out.

4.2 Model performance and uncertainty

Soil CHy fluxes predicted by QRF models were close to the measured fluxes for all measurement periods (Fig. 3; Table A4).
We recognize that our models, by forcing pixel-scale predictors (5 m resolution) to explain finer-scale chamber measurements
(20 cm diameter), may actually overestimated the predictive accuracy of the models at coarser scales. However, the predicted
soil CHy fluxes not only closely matched the individual measured fluxes, but also when the two were aggregated by topographic
position classes (ridge, slope, foot slope, and plain), vegetation density classes (high, medium, and low) or vegetation type
classes (coniferous, mixed, and broadleaf, Fig. 4; Table A5). This confirmed that our models did not only predict point-level
flux heterogeneity but was also able to capture the landscape-scale flux patterns and indicated that topographic attributes could
be used for upscaling CH4 fluxes in mountainous landscapes. Overall, the performance of the models developed for scaling
CHj; fluxes was comparable to previous studies using topographic data for similar purposes (Kaiser et al., 2018; Vainio et al.,
2021; Virkkala et al., 2024; Warner et al., 2019). However, it is important to note that direct comparisons between studies are
difficult due to variations in cross-validation approaches, as the choice of cross-validation technique can significantly influence
model performance (Roberts et al., 2017).

Unfortunately, it was not possible to accurately predict CH4 fluxes when measurements collected in wetland patches were
included in the training data, as the model accuracy decreased at all dates (Table A9). As a consequence, the marginal and

conditional coefficients of determination of the relationship between the predicted and measured fluxes decreased from 0.93
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and 0.94 respectively to 0.70 when wetland data were included. This is probably because neither the topographic features nor
the vegetation differed sufficiently between the large areas functioning as CH4 sinks and the small wetland patches in the plain
area functioning as CH4 sources (Fig. A1). Résénen et al. (2021) noticed that spatial patterns of CH4 fluxes could be accurately
predicted in a northern peatland-forest-mosaic landscape when they were modelled for sinks and sources separately. This
separation was not possible in our study due to the low number of measurement locations in wetlands, related to their small
extent (1%) in our upland-dominated landscape. Wetland exclusion, although acceptable in our 40-ha study area due to their
small extent, would overestimate CHy4 uptake if incorrectly applied at larger scales, i.e., to the entire upper Yura River
catchment in our case or to other hydrologically complex forest landscapes.

One advantage of the QRF approach is its ability to estimate prediction intervals (Meinshausen, 2006), thus offering insights
into the uncertainty associated with the predicted flux value at each pixel. The spatial distribution of the uncertainty associated
with the predicted soil CH4 fluxes varied seasonally (Fig. 7; Table A7) in agreement with our second hypothesis, reflecting
both spatial heterogeneity and temporal changes in model confidence. In our study, the spatial patterns of QRF-derived
uncertainties were consistently related to topographic position and flux magnitude. Predictions in ridge and steep slope pixels
generally exhibited low percentage uncertainties (often below 100%), likely because these well-drained upland areas were
well represented in the training data and exhibited relatively stable and high CH4 uptake across seasons. In contrast, extremely
high percentage uncertainties (exceeding 500%) were observed in some low-lying pixels during specific seasons, especially
where predicted CHy fluxes were close to zero. Our models did not predict median positive fluxes although positive fluxes
were occasionally measured. However, the possibility of positive fluxes is reflected in the large uncertainties associated with
near-zero fluxes. A crucial methodological point is that percentage uncertainty is a relative measure; even a small absolute
uncertainty around a near-zero prediction can yield a very large percentage (Warner et al., 2019). In addition, large absolute
uncertainties can result from large differences in fluxes measured at locations with similar topographic characteristics.

The lowest uncertainty was obtained in late summer and early autumn, i.e., under warm and dry conditions, indicating better
model performance when hydrological conditions were less variable. In contrast, larger uncertainties were produced by the
models in early spring and late autumn, as well as in late spring and early summer, when measured and predicted soil CH4
fluxes were lowest. The East Asian monsoon flow bringing warm and humid air mass and resulting in the rainy season in late
spring and early summer, as well as low evapotranspiration in early spring and late autumn, may have introduced greater
variability in soil hydrology, contributing to higher uncertainties. Nevertheless, low to moderate uncertainty (<100%) was the
most prevalent class across all seasons, consistently accounting for more than half the landscape—up to 80% in late summer
and early autumn—while extreme uncertainties (>500%) were very rare in all seasons. This suggests that the models performed
well overall. Although some areas remain challenging to model, the QRF approach provides generally reliable spatial

predictions of soil CH4 fluxes with quantifiable and interpretable uncertainties.

4.3 Spatial patterns of predicted soil CH4 fluxes

The models revealed clear spatial patterns in soil CH4 fluxes that were consistent across measurement dates, even though the
models selected different variables at each date. Predicted soil CH4 fluxes closely matched topographic gradients, consistent
with our third hypothesis. Ridges and upper slopes exhibited the highest net CH4 uptake, functioning as strong sinks for CHy4
across all seasons, whereas CH4 uptakes were lowest in plain and foot slope positions. These topographic patterns of CHy
uptake are consistent with previous studies. In a temperate forest in central Ontario, Canada, the highest CH4 uptake was
observed on slopes and ridges (Wang et al., 2013). Similarly, in a temperate forest in Maryland, USA, transition zones were
identified as hotspots for CH4 uptake (Warner et al., 2018). In a tropical forest in China, hillslopes exhibited the highest CH4
uptake, while lower uptake was observed at the foot slopes and in groundwater discharge areas (Yu et al., 2021). Similarly,

CHj4 uptake was greater on ridges than at valley bottoms in a subtropical forest in Puerto Rico (Quebbeman et al., 2022).
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In our studied landscape, we observed lower soil bulk density on ridges and slopes than on the plain area, indicating that ridge
and slope soils have higher porosity, which is consistent with higher soil CH4 oxidation rates due to higher diffusion rates of
O, and CH4 from the atmosphere through soil pores (Ishizuka et al., 2009). Although we did not assess the methanotroph
community structure, the greater atmospheric CHs uptake on slopes and ridges is consistent with the community structure
observed in a subalpine forest, with type I methanotrophs dominating in riparian soils, whereas type II methanotrophs were
more prevalent in upland soils (Du et al., 2015). The higher soil carbon (C) and nitrogen (N) contents observed on ridges and
slopes at our site may contribute to higher soil CH4 uptake, as soil CHs uptake has been found to be positively correlated with
soil organic matter content in subtropical and temperate forests (Lee et al., 2023). Possible explanations are that higher soil
carbon may increase the availability of labile substrates that stimulate methanotrophic activity by increasing CHa supply
through enhanced methanogenesis in anoxic microsites or by directly providing substrate for facultative methane-oxidizing
bacteria, thereby increasing their abundance (Jensen et al., 1998; Semrau et al., 2011; West and Schmidt, 1999). Soil nitrogen
was probably predominantly in organic form, and therefore the soil concentration of nitrate and ammonium, known to inhibit
CHj oxidation by methanotrophs at high concentration (King and Schnell, 1994; Mochizuki et al., 2012), likely remained low
(Aronson and Helliker, 2010; Bodelier and Laanbroek, 2004). Nitrogen is an essential nutrient for the growth of methanotrophs,
whose activity has been shown to be nitrogen-limited in forest soils (Bdrjesson and Nohrstedt, 2000; Martinson et al., 2021;
Veldkamp et al., 2013). Therefore, mineralization of these low levels of organic nitrogen could alleviate the nitrogen limitation
of CH4 oxidation and partly explain the higher soil CH4 uptake observed on ridges and slopes, where total nitrogen
concentration was higher than at the foot slopes and in the plain.

Although the effect-size of vegetation density was much smaller than that of topographic position, the predicted soil CHs
uptake was significantly lower in areas with low basal area. Vegetation density can also potentially be related to local moisture
conditions, as dense vegetation likely consume more water, thus increasing the soil air-filled porosity (Hakamada et al., 2020;
Vanclay, 2009). Unexpectedly, although a very small effect-size, our models predicted higher soil CH4 uptake in conifer-
dominated areas and lower uptake in broadleaf-dominated areas, contrary to previous evidence of greater soil CHs4 uptake in
plots containing only deciduous broadleaved tree species than in plots containing evergreen coniferous trees, either alone or in
mixture (Jevon et al., 2023). The discrepancy between this previous study and our results may be related to the fact that their
study area was ten times smaller and more topographically homogeneous than ours (4 versus 40 ha). Moreover, soil properties
that could explain the lower rate of CH4 oxidation in coniferous than in broadleaved stands, such as higher acidity (Borken et
al., 2003; Hiitsch, 1998; Ishizuka et al., 2000) did not differ significantly among the three types of vegetation cover at our site,
whereas they differed according to topographic position. However, vegetation types and density were not randomly distributed
among topographic positions (Table A9), meaning that the confounding effects of vegetation and DEM-derived variables on
the prediction soil CH4 uptake could make it difficult to separate the influence of vegetation and topography in our complex

mountain landscape.

4.4 Landscape-scaled soil CH4 fluxes and seasonal variation

The upland CH4 fluxes per hectare were calculated by aggregating pixel-level predictions and normalizing them to the total
upland area, allowing for standardized comparison across sites, although there are still very few comparable data available,
making it difficult to analyse the causes of differences across sites. Our highest CH4 uptake in late summer was -1.28 g CHy
ha! hr! (interquartile range -1.70 to -0.89), 2.6 times higher in absolute value than in a forested watershed in Maryland, USA
(-0.47 g CH4 ha! hr'!, Warner et al. 2019), but slightly lower than in a boreal pine forest in Finland (-1.59 g CHs ha! hr'!,
Vainio et al. 2021).

Consistent with our fourth hypothesis, the seasonal variation in landscape-scaled soil CH4 fluxes in the upland areas reflects
strong sensitivity to soil moisture dynamics, which were effectively captured using the Antecedent Precipitation Index (API).

The API, serving as a proxy for soil moisture dynamics, integrates precipitation over a defined period and includes a recession
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factor to account for evapotranspiration and drainage. Short durations (e.g., 7 days) reflect surface moisture, while longer
durations (e.g., 30 days) capture deeper soil moisture conditions (Schoener and Stone, 2020; Sidle et al., 2000; Yamao et al.,
2016). Among the API durations tested, the 20-day API with a recession coefficient of 0.69 showed the highest explanatory
power (R? = 0.70), although using either a 30-day or a 7-day API would provide similar goodness of fit with similar recession
coefficients, indicating that soil moisture conditions across different depths had similar influence on CH4 flux variability. The
consistently low recession coefficient (Kohler and Linsley, 1951) suggested that rainwater does not accumulate in our
watershed. High API values indicate wetter antecedent conditions, which can suppress CH4 uptake by reducing oxygen
availability and thus limiting methanotrophic activity, and by temporarily turning the subsoil condition to anoxic, promoting
methane production and reducing net CH4 uptake (Angel et al., 2012; Hu et al., 2023; Kruse et al., 1996). Conversely, drier
periods with low API values were observed in mid and late summer and earlier autumn, when soils were better acrated, creating

favourable conditions for atmospheric CH4 oxidation and leading to greater CHs4 uptake.

5 Conclusion

In conclusion, our study showed the dominant role of topography, compared to that of vegetation, on the spatial variation of
soil CH4 fluxes in upland forest landscapes throughout the snow-free season. The quantile regression forest models successfully
captured these ridge-to-plain spatial gradients in the upland area where the soil is almost always unsaturated, with strong
performance. However, our modelling approach was unable to accurately predict CH4 fluxes when including measurements
collected in three wetland patches functioning as CHs sources in the plain area (1% of the total landscape). CH4 uptake was
consistently highest on ridges and slopes, where well-drained soils with lower bulk density and higher porosity supported
enhanced methanotrophic activity. Furthermore, the seasonal dynamics of the landscape-scaled predicted soil CHs flux was
well-captured by the 20-day Antecedent Precipitation Index (API), with a significant positive relationship between API and
CHj4 uptake, emphasizing the sensitivity of CH4 uptake by upland soils to seasonal fluctuations in soil moisture conditions.
The integration of terrain-based predictors and moisture history provides a reliable framework for scaling soil CH4 fluxes
across complex landscapes, highlighting the importance of considering both static (topography, vegetation) and dynamic

(climate) controls in future assessments of CHy flux.
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Appendix A

Table Al. Spearman's rank correlation test between soil properties and topographic and vegetation attributes. Significant

590 coefficients are shown in bold and italic.

Mean SWC  Mean Tsoit  Total C  Total N pH BD Sand Silt Clay
PrC -0.21 0.14 0.27 0.23 -0.27 -0.14 0.24 -0.26 -0.06
Slope -0.17 -0.24 0.25 0.22 -0.51 -0.11 0.00 -0.02 0.01
TPI 20m -0.35 -0.11 0.45 0.39 -0.34 -0.26 0.05 -0.04 0.03
TPI 30m -0.31 -0.08 0.64 0.55 -0.46 -0.36 0.11 -0.14 0.03
TPI 50m -0.33 -0.08 0.59 0.50 -0.42 -0.31 0.11 -0.13 0.02
SWI 0.43 0.27 -0.62 -0.55 0.65 0.41 -0.03 0.04 -0.01
VDCN 0.5ha -0.24 -0.16 0.61 0.52 -0.51 -0.36 0.16 -0.20 0.04
VDCN 2.5ha -0.24 -0.20 0.71 0.62 -0.65 -0.42 0.18 -0.22 -0.02
VDCN 5ha -0.31 -0.29 0.65 0.56 -0.71 -0.47 0.16 -0.23 0.09
BA -0.37 -0.29 0.22 0.13 -0.25 -0.19 -0.03 0.08 0.00
RBAcoN -0.17 -0.56 0.30 0.19 -0.41 -0.17 0.03 0.02 -0.11

SWC: soil water content; Tsoii: soil temperature; BD: soil bulk density

Table A2. Selected variables for each measurement date, along with the R and root mean square error (RMSE) values of the quantile

595 regression forest models without wetland and with wetland. Note that the same variables were selected at all dates in both cases.
Measurement dates  Selected variables R? (RMSE, nmol m? s™!) R? (RMSE, nmol m? s")
Without wetland With wetland
2023/04/27 SWI, TPL, PrC 0.53 (0.52) 0.37 (0.86)
2023/05/12 TPI, VDCN 0.31 (0.82) 0.22 (1.27)
2023/05/31 SWI, TPI, VDCN 0.43 (0.48) 0.25 (1.07)
2023/07/06 SWI, TPI 0.40 (0.50) 0.34 (1.99)
2023/07/26 SWI, TPI 0.37 (1.02) 0.30 (1.60)
2023/09/04 SWI, TPI 0.40 (1.18) 0.38 (1.27)
2023/10/07 TPI, VDCN 0.67 (0.81) 0.42 (1.07)
2023/11/07 SWI, TPI, VDCN, PrC  0.59 (0.66) 0.47 (1.25)
2023/11/30 SWI, TPI, VDCN, PrC ~ 0.51 (0.56) 0.40 (0.57)
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Table A3: Comparison of the accuracy of the quantile regression forest (QRF) models without and with vegetation at the two dates

where BA was selected. Selected variables and their importance scores in parentheses, along with the R? and root mean square error

(RMSE) values (model with vegetation is in bold italic letters).

Date Selected variables R2 RMSE 405

SWI (0.57) PrC (0.58) TPI (0.67) 0.53 0.52
2023/04/27

SWI (0.64) BA(0.42) TPI (0.50) 0.51 0.52

TPI (0.88) VDCN (0.58) 0.67 0.81
2023/10/07

TPL(0.77) VDCN (0.39)  BA (0.27) 0.55 0.80

Table A4. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and

measured soil CH4 fluxes, where measurement periods were included as the random factor on both slope and intercept. The p-values

of the fixed effect were for testing if the intercept was different from zero and the slope different from 1. The statistics panel at the

bottom left shows the marginal (R?n) and conditional (R%) coefficients of determination, the root mean square error of the model,

and the overall significance of the model (p-value).

Fixed effect: predicted CH4 flux

Random effects: measurement dates

Estimate + SE p-values Intercept Slope
Intercept 0.15+0.03 from 0: 0.003 2023/04/27 -0.05 0.03
Slope 1.16 £ 0.02 from 1: 0.92 2023/05/12 -0.02 0.02
2023/05/31 -0.05 0.02
2023/07/06 -0.06 0.02
Statistics 2023/07/26 0.07 0.00
n 467 2023/09/04 0.14 -0.03
R%y 0.94 2023/10/07 0.02 -0.04
R2% 0.95 2023/11/07 -0.01 -0.04
RMSE 0.26 2023/11/30 -0.03 0.01

p-value 2.5x10°
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Table AS. Summary of the linear mixed model (LMMs) analysing the relationship between the predicted soil CH4 fluxes and
measured soil CH4 fluxes, where landscape units (positions, vegetation types, and vegetation density) were included as the random
factor on both slope and intercept. The p-values of the fixed effect were for testing if the intercept was different from zero and the
slope different from 1. The statistics panel at the bottom left shows the marginal (R*x) and conditional (R%) coefficients of

determination, the root mean square error of the model, and the overall significance of the model.

Fixed effect: Predicted CH4 flux Random effect: Positions

Estimate + SE p values Intercept Slope
Intercept -0.17 £ 0.04 from 0: 0.006  Plain 0.01 -0.02
Slope 0.94+£0.05 from 1: 0.99 Foot slope 0.01 0.01
Statistics Slope -0.05 0.1

n 36 Ridge 0.05 -0.09
R’m 0.93

R%c 0.98

RMSE 0.20

p-value 7.8 x 107

Fixed effect: Predicted CH4 flux Random effect: Vegetation type

Intercept -0.19 £ 0.07 from 0: 0.08 Broadleaf 0.02 0.02
Slope 0.82 +£0.09 from 1: 0.99 Coniferous -0.09 -0.14
Statistics Mixed 0.08 0.12
n 27

R’m 0.91

R%c 0.96

RMSE 0.17

p-value 0.01

Fixed effect: Predicted CH4 flux Random effect: Vegetation density
Intercept -0.13+0.05 from 0: 0.08 High -0.01 0.02
Slope 0.81+£0.08 from 1: 0.99 Medium 0.06 -0.14
Statistics Low -0.05 0.11
n 27

R’m 0.80

R%c 0.95

RMSE 0.19

p-value 0.01
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Table A6. Summary of the LMM analysing the effects of topographic position, vegetation type, and density on predicted soil CH4
fluxes. Pixel ID was included as a random effect, and spatial autocorrelation among residuals was eliminated. 1112, was calculated as

the effect size of each explanatory variable. Letters indicated the significance within each landscape unit.

Explanatory variables p-value Effect size (n%) [with 95% CI]

Position [df=3] <0.001 0.4310.42, 0.44]

Plain (a), Foot slope (b), Slope (c), Ridge (c)

Vegetation type [df=2] <0.001 0.006 [0.00, 0.01]
Broadleaf (a), Coniferous (b) and Mixed (c)

Vegetation density [df=2]  <0.001 0.11 [0.10, 0.12]
High (c), Medium (b), Low( a)

Table A7. Percentage of upland pixels in the study area distributed among four levels of predicted relative uncertainty for soil CH4

fluxes.

Measurement date Uncertainty
<50 % 50-99 % 100- 500 % > 500 %

2023/04/27 5.72% 53.29% 40.99% 0.01%
2023/05/12 19.93% 54.01% 26.06% -
2023/05/31 10.90% 39.29% 49.81% -
2023/07/06 27.76% 38.32% 33.92% -
2023/07/26 21.12% 40.66% 38.13% 0.09%
2023/09/04 30.19% 51.24% 18.58% -
2023/10/07 39.68% 38.13% 22.19% -
2023/11/07 17.50% 46.10% 36.4% -
2023/11/30 7.83% 43.65% 48.26% 0.26%

25



Table AS8. Statistics of the linear relationship between landscape-scaled soil CHs fluxes and antecedent precipitation indexes (API).

665 20 antecedent days provided the best fit. 30 and 7 antecedent days are shown as common metrics in hydrology. Adjusted recession

coefficients (k) and determination coefficients (R?) are shown.

Antecedent days k R?

20 0.69 0.70
30 0.69 0.69
7 0.67 0.68

670 Table A9. Proportion of vegetation density and type associated with the different topographic positions across the landscape.

Position Vegetation density Proportion (%) Vegetation type Proportion (%)
High 19.6 Broadleaf 91.8
Plain Medium 8.4 Coniferous 2.7
Low 72.0 Mixed 5.5
High 4.9 Broadleaf 12.9
Foot slope Medium 38.5 Coniferous 0.5
Low 56.6 Mixed 86.6
High 334 Broadleaf 4.5
Slope Medium 46.3 Coniferous 20.1
Low 20.3 Mixed 75.4
High 86.0 Coniferous 13.6
Ridge
Medium 14.0 Mixed 86.4
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Fig A2. Accumulated local effect plots for each model on each measurement date.
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