Editor and Reviewer’s comments

Editor

I have read your point-by-point rebuttal letter in response to the comments made by the two
reviewers. I am happy for you to proceed and post the revised version of the manuscript. In
your revision, identify the existing knowledge gaps that justify your machine learning approach
to upscale soil CH4 fluxes across topographically complex forest landscapes. Justify all the
methods used to test your hypothesis and address all the other issues raised by the reviewers,
including the need for model validation; how the model deals with hydrologically
heterogeneous landscape; variable choice; and scale mismatch in the validation approach.

We updated the last section of the introduction of our manuscript to better highlight
the current knowledge gaps on which our objective and hypotheses are based. The comments
of the two reviewers were useful to better justify the methods we used, our variable selection
strategy, as well as the model validation, especially to deal with the scale mismatch issue. We

sincerely thank them.

Reviewer 1

Overall Assessment

This manuscript presents a machine learning approach to upscale soil CH4 flux measurements
across a topographically complex forest landscape using quantile regression forest models with
topographic predictors. While the study addresses important questions about spatial controls
on soil CH4 fluxes, there is room to improve methodologies to better differentiate between
mechanistic and predictive statistics, and to contextualize the landscape-scale conclusions.
Major Comments:

1. The study assumes that topographic indices (TWI, TPI, VDCN) accurately represent soil
moisture patterns that drive CH4 fluxes, but never measures soil moisture or temperature at
sampling locations to validate this assumption. While the topographic predictors successfully
predict CH4 fluxes, the mechanistic pathway (topography — soil moisture — CH4 flux)
remains unverified. Without ground-truthing, it's unclear whether the correlations reflect the
proposed moisture mechanisms or other covarying factors.

Please either acknowledge this limitation more explicitly or provide basic validation by
measuring volumetric water content at a subset of locations to demonstrate that topographic

predictors correlate with actual soil moisture conditions.



We measured soil water content (and temperature) at each collar at each CH4
flux measurements but did not judge useful to include these data, which was not
sensible. We have added these measurements in the revised manuscript (lines 212-
213 and 329-301, Table 1, and Figure 2¢,d). In fact, prior to developing the model,
we examined the Spearman-rank correlation between measured soil features and
several topographic and vegetation variables. We found significant correlations
between soil moisture and chemistry in one hand, and TPI, TWI, VDCN, PrC, basal
area (BA) and conifer contribution to BA on the other. This supports the use of
topographic and vegetation variables as effective predictors of CH4 fluxes in our
landscape These correlations have been added to the manuscript (lines 135-136 and
Table A1). The vegetation variables were not included in the final model because they
did not improve model accuracy (lines 343-344 and Table A3).

However, incorporating soil moisture as an intermediate variable that would
need to be scaled up to the landscape level would introduce an additional layer of
uncertainty. Our strategy was to directly predict CH4 fluxes using topographic
variables as proxies for soil moisture and related environmental gradients. We
clarified this strategy in the revised manuscript (lines 88-90).

We nevertheless fully agree that no statistical method is mechanistic, and all
can be biased by the existence of confounding factors. We have highlighted this
limitation more explicitly in the revised manuscript (lines 459-462).
2. The study excludes wetlands from their predictive framework, leaving wetland pixels
unmapped, but provides insufficient guidance on how their upland-only predictions should be
applied to real forest landscapes. Most forests contain wet patches, seeps, or seasonally
saturated areas that may not be classified as "wetlands" in standard remote sensing products
but could function as significant CH4 sources. The authors' approach of simply excluding these
areas creates uncertainty about how their upland flux predictions should be applied when: (a)
wet patches exist but aren't formally classified as wetlands, (b) the boundary between "upland"
and "wetland" conditions varies seasonally or with precipitation, and (c) their results are used
to parameterize larger-scale models that need to handle mixed hydrologic conditions.
Provide clearer guidance on how to classify and handle hydrologically diverse areas when
applying these results. Discuss what topographic or hydrologic thresholds define the
boundaries of their "upland" predictions, and suggest approaches for handling wet patches that

fall between clear upland and wetland classifications. This would help users appropriately



apply their upland flux relationships while avoiding systematic underestimation of emissions
from hydrologically complex forest landscapes.

In our study, only permanent wetlands in the plain area were excluded (3 of 55 collars
for data, less than 1% of the landscape pixels). Wet patches, which had temporarily water-
saturated soils, were not excluded. Two collars were located in such wet patches, and positive
fluxes were measured once on both collars. Therefore, to answer comment (a), areas with non-
permanently saturated soil are included in the upland prediction and we clarified this point in
the revised manuscript (lines 233-234 and 304-305). We also acknowledged that our random
forest models did not predict median positive fluxes, but the possibility of positive fluxes is
reflected in the large uncertainties associated with near-zero fluxes (lines 495-497).

Regarding (b), we acknowledged that using a fixed boundary between "upland" and
"wetland" conditions, although these boundaries may vary seasonally depending on the balance
between precipitation and evaporation, can increase uncertainties in CHs flux prediction.
Predicting the temporal variations of these boundaries was beyond the scope of this work, and,
at our site, wetlands represent only 1% of the pixels, and their boundaries even less. We have
discussed the limitations of using static boundaries in more detail in the revised manuscript
(lines 166-170).

Regarding (c), wetland exclusion, although acceptable in our 40-ha study area, where
wetlands represent only 1% of the area, would overestimate CH4 uptake if incorrectly applied
at larger scales, i.e., to the entire upper Yura River catchment in our case, for example, or to
other hydrologically complex forest landscapes. We have already mentioned in our manuscript
that sinks and sources should be modelled separately in the case of larger areas with mixed
hydrological conditions. We have emphasized this point further in the revised discussion (lines
484-486).

For permanent wetland mapping, we collected additional GPS positions at the edges
and within the three wetland patches. We then used SWI, profile curvature, slope, and VDCN
to predict wetland locations. The method is detailed in a new supplementary file. Their
boundaries were refined by visual inspection. A posteriori, pixel classified as wetland had TWI
values above 8.1, profile curvature between -0.003 and 0.001, slope values below 6.8 for slope,
and VDCN values below 2.2. It has been illustrated by a plot comparing the distribution of
these topographic variables between upland and wetland pixels (lines 162-165, 170-171 and
Figure S1).

3. Table A2 shows a significant three-way interaction (Position x Vegetation x Date, p = 0.04),

yet the authors conclude that position and vegetation have no effects based on their lack of



selection in the later random forest models. This understates the importance of the interaction
effects in their mechanistic descriptive modeling, even if it does not provide additional
predictive power in the landscape scaling.
The authors should acknowledge that the significant interaction indicates vegetation and
position effects are present but depend on specific combinations and timing. In the discussion
of Jevon et al. (lines 372-382), note that while vegetation interactions were significant in the
LMM, vegetation wasn't selected in RF models because continuous topographic variables
captured relevant gradients more effectively for prediction.

We apologized but we should not have included interactions in the model, as
some of them are missing. For example, there are no “pure” broadleaved areas on the
ridge. Models with interactions would be rank-deficient. However, following the
suggestion of the second reviewer, we significantly expanded the analysis of the
influence of vegetation of CH4 fluxes, using not only the vegetation type but also its
density. As landscape attributes, we now have (i) topographic position (plain, foot
slope, slope, and ridge), (i1) vegetation type (broadleaf, coniferous, and mixed), and
(i11) vegetation density (high, medium, and low). The effect sizes of topographic
position, vegetation type, and vegetation density were 0.43, 0.006, and 0.11,
respectively, highlighting the dominant role of topography over vegetation in the
spatial variability of CH4 fluxes. The effect sizes have been added to the ANOVA
table in the revised manuscript (lines 269-270, 284-287, 376-377 and Table A6).
4. The LMM results (Table A2) report only p-values without effect sizes, making it impossible
to assess practical significance. Similarly, while RF variable importance scores are reported in
a table, the magnitude and direction of predictor effects aren't clear in text/discussion.
Please rreport standardized coefficients for LMM factors to show effect magnitudes alongside
statistical significance. For RF models, clarify the interpretation of relationships for key
predictors (e.g., whether higher TPI increases or decreases CH4 uptake).

We recognise that failing to consider the effect sizes of variables used in
linear models can lead to an underestimation of their potential mechanistic importance,
even if these factors do not improve the performance of the random forest models.
Effect size are now reported (see our response to your previous comment and lines
376-377 and Table A6).

For RF models, the direction of predictive effects is now illustrate using plots
of accumulated local effects (ALE), which is effective if predictors are correlated with

each other. The interpretation of the ALE analysis has been added to the revised



manuscript, as well as their graphical representation (lines 249-256 and Figure A2). In
summary, for the two most influential predictors, low CH4 uptake rates were associated with
high TWI values, while they were associated with low TPI values. We will discuss the
magnitude and direction of predictive effects in more detail in the revised manuscript (lines
340-342).

5. Scale mismatch in validation approach The authors validate their predictions by comparing
point measurements (20 cm diameter chambers) with pixel-level predictions (5m resolution),
despite using predictors calculated at even coarser scales (e.g., 30m radius for TPI). This scale
mismatch may actually understate the model's true predictive accuracy by forcing landscape-
scale predictors to explain fine-scale chamber measurements that inevitably include local
variability beyond what topographic indices can capture. The current validation approach tests
whether coarse-resolution environmental variables can predict point-level flux heterogeneity,
rather than testing the model's ability to capture the landscape-scale flux patterns it's designed
to represent. Consider validating at aggregated scales that better match the conceptual basis of
the predictors. Compare predicted vs. observed mean fluxes within topographic position
classes (ridge/slope/foot slope/plain) or other meaningful landscape units to test whether the
model captures the spatial patterns it's intended to represent. This approach would provide a
more appropriate assessment of model performance for landscape-scale applications.
Additionally, measuring soil moisture at chamber locations would help validate the
mechanistic assumption that topographic predictors accurately represent the moisture
conditions driving CH4 fluxes, allowing separation of prediction errors due to scale mismatch
from errors due to invalid mechanistic assumptions.

To clarify, all predictors are calculated at pixel size (5 by 5 m), including TPI. For
each 5 by 5 pixels, TPI is calculated based on the elevation of that pixel relative to the
surrounding pixels within a radius of 20, 30, or 50 m. That being said, we fully agree that there
is a scale mismatch between collar and pixel size. We appreciate your suggestion to validate at
aggregate scales by comparing predicted and observed mean fluxes within topographic position
classes. The R?m of linear mixed model between predicted and measured fluxes at the four
topographic position for 9 measurement dates (n=36) was 0.93. We did this not only using
topographic position classes, but also considering vegetation types and density classes. This
validation has been included in the revised manuscript (lines 362-365 , Tables AS and Figures
4) and the scale mismatch recognised in the discussion (lines 465-471).

As mentioned in the response to your first comment, we measured soil water content

(and temperature) at each collar at each time CH4 flux measurements but did not judge useful



to include these data. We have added these measurements in the revised manuscript

(lines 299-301, Table 1 and Figure 2¢,d).

Reviewer 2

The manuscript upscales soil methane fluxes with a digital terrain model in a forested landscape.
It is nicely written, and the topic is relatively novel and worth investigating. However, there
are certain issues that should be covered better.

1. The current analysis and methodology seems to have a double structure: there is a quantile
regression forest analysis for upscaling methane fluxes for different dates and then there is a
mix of different traditional statistical techniques (e.g., ANOVA, linear mixed models) for
looking at relationships between different environmental characteristics (including topography
and methane fluxes). I feel that this structure is a bit complex and some of the issues are done
twice but with different methods. Therefore, I suggest simplifying the methodological approach

and justifying better why certain analyses are conducted.

We appreciate the reviewer's observation regarding the complexity of our
initial analytical framework. In the revised manuscript, we simplify the analytical
approach. We first preselected terrain attributes (topography, vegetation) correlated
with measured soil features. Next, we upscaled measured CH4 fluxes to the landscape
level using a quantile regression forest (QRF) model and the preselected variables.
Then, we tested whether predicted CH4 fluxes differed among landscape positions,
vegetation types, and vegetation densities using a linear mixed model that accounted
for spatial autocorrelation. Finally, we analysed the temporal variations of the
upscaled fluxes. We believe that this streamlined approach reduces methodological
redundancy and maintains consistency between scaling analyses and subsequent
interpretations of spatial patterns. We have restructured the “methods” and “results”
sections accordingly.

For instance, why is linear regression conducted between measured and predicted fluxes? Isn’t

it sufficient to provide observed-predicted plots?

We understand that providing observed—predicted plots may seem sufficient;
however, we included linear regressions between measured and predicted fluxes to

quantitatively assess the performance of the QRF models. This provided an objective



description of these plots, allowing us to test for the absence of bias, i.e., an intercept not
significantly different from 0 and a slope not significantly different from 1. Furthermore, as the
first reviewer pointed out a scale mismatch between collar and pixel sizes, we followed his
suggestion and conducted additional analyses at aggregated scales by comparing predicted and
observed fluxes aggregated by topographic position classes, vegetation density classes and
vegetation type classes (lines 362-365 , Tables AS and Figures 4).

Why is there a need to conduct separate linear regression between topography and methane
fluxes in addition to quantile regression forests?

We agree with the reviewer that performing a separate linear regression between
topography and measured CH4 fluxes was not justified, as the quantile regression forest model
already captured nonlinear relationships. Therefore, we removed this analysis and instead
present a correlation table among topographic variables and vegetation attributes in one hand,
and soil moisture, temperature and chemistry on the other (lines 133-135 and Table A1). We
are now reporting differences in predicted fluxes at the landscape level across topographic and
vegetation classes, as mentioned above (lines 362-365 , Tables AS and Figures 4). In other
words, we deleted all statistical analyses done on measured CH4 fluxes (before QRF
modelling) and strengthened the statistical analysis on predicted CH4 fluxes at landscape level
(after QRF modelling).

2. In relation to the first point, there could also be additional analyses that have not been
conducted. It is a bit unclear to me what is the logic in predicting temporally dynamic methane
fluxes with temporally static topographic variables.

Why not to test also a model with both temporally static but spatially distributed topographic
variables and temporally dynamic but spatially uniform climate/weather variables such as API
(there could be possibilities for including also other weather-related variables)?

Because all pixels will have the same values for weather variables on a given date, it
would be pointless to include them in RF models to predict spatial heterogeneity of landscape-
scale fluxes. Previous works using similar RF modelling also run their models separately for
each season without including weather data (e.g. Warner et al, 2019, Agric For Meteorol
264:80-91; Vainio et al, 2021, Biogeosciences 18:2003-2025). We justified our choice in the
revised manuscript (lines 262-266).

Could the soil variables be included also in the quantile regression forest to test their strength
in addition to the topographic variables?

Soil variables could potentially be included in the RF model but then the RF could not

be used to predict flux at landscape level where only topographical and vegetation predictors



are available at pixel level. Of course, it would have been possible to use other RFs to

upscale soil variables at the landscape level and use the predicted soil variables to

predict methane fluxes, but it would add additional layers of uncertainties. We also
justified this choice in the revised manuscript (lines 88-90).

Why is vegetation (or actually tree) information condensed into one categorical variable (forest
type based on tree types? You could also have continuous variables about the tree species
presence and abundance.

Thank you for this suggestion. We agree that we should have used a
continuous variable for vegetation type in the model, and only used the categories for
post hoc statistical tests. We also agree that it is useful to include vegetation density
in addition to vegetation type. In the revised manuscript, in addition to topography,
we tested two continuous variables in the quantile regression forest model: basal area
for vegetation density and relative basal area of coniferous trees to basal area for
vegetation type (see lines 228-229). The vegetation variables were not included in the
final models because either they were not selected or did not improve model
performance (lines 343-344 and Table A3). After QRF modelling, we used (i)
topographic position (plain, foot slope, slope, and ridge), (ii) vegetation type
(broadleaf, coniferous, and mixed), and (iii) vegetation density (high, medium, and
low) to test the influence of these landscape attributes on the spatial variability of
predicted CH4 fluxes (lines 376-378). The effect sizes of these three categorical
variables have been added to the ANOVA table in the revised manuscript (Table A6).

3. The selection of the topographic variables for upscaling is relatively arbitrary. Why were
these specific variables chosen and not others (listed e.g., in Agren et al 2021,
https://doi.org/10.1016/j.eeoderma.2021.115280).

Many variables can be derived from DEM and selection is necessary to avoid

overparameterization due to redundancies. Our preselection was motivated by the fact
that methane fluxes are related to microbial activities (methanotrophic and
methanogenic in our case), which are controlled by soil moisture and chemistry (C, N,
pH), and, to a lesser extent, temperature. We examined the Spearman-rank correlation
between measured soil water content, temperature and chemistry (C, N and pH) on
the one hand, and several topographic and vegetation attributes on the other. We

included the rational of our variable pre selection and added a table with the


https://doi.org/10.1016/j.geoderma.2021.115280

correlation coefficient as an appendix in the revised manuscript (lines 131-136 and Table A1).
Furthermore, it is unclear why SAGA wetness index was not used instead of the traditional
topographic wetness index, as the SAGA version spreads high values in the flat areas.

We thank the reviewer for this insightful comment. In the revised analysis, we adopted
the SAGA Wetness Index instead of the traditional Topographic Wetness Index (TWI). This is
in lines 131-132. The reviewer’s suggestion helped us recognize that the SAGA version
provides a more accurate representation of wetness distribution, especially in flat areas, where
the traditional TWI may direct the flow in the wrong directions, thereby distorting the flow
accumulation.

Similarly, topographic position index should have been calculated with multiple neighborhood
radiuses and vertical distance to streams with multiple stream networks. Now it is even unclear
how the stream network was calculated and streams initiated when calculating the layer.

We acknowledge the reviewer's comment that multiple radii should be considered for
TPI and multiple stream network for VDCN, as these variables are highly scale-dependent. TPI
was calculated using neighborhood radii of 20, 30, and 50 m. To calculate VDCN, the DEM
was first filled, and then flow accumulation layers were generated using the multiple flow
direction method. The resulting flow accumulation raster was then used to create
topographically defined flow channel networks, applying flow initiation thresholds of 0.5, 2.5,
and 5 ha. VDCN was subsequently calculated for each threshold.

Finally, we chose the TPI with 30 m radii and VDCN with initiation thresholds of 5 ha,
as they had the highest Spearman correlations with the soil variables, as explain above.
However, the model performance in terms of its ability to predict measured fluxes were very
similar when using any of combinations of these three TPI and VDCN. Detailed explanation
and the correlation table have been added in the revised manuscript (lines 150-152 and 159-
160).
4.Research hypotheses and result section are not well aligned with each other. Particularly,
section 3.1 does not seem to address any of the hypotheses. I would suggest phrasing the
hypotheses/research questions so that they are answered one by one in the results section.

We have a slightly different opinion here. For us, the research hypothesis should be well-
aligned with the discussion, not with the result section, because hypotheses should be discussed
based on the results but also additional information available from the literature. The result
section follows a step-by-step organisation: the data, the model, the post hoc analysis.

Furthermore, also the methods section could be organized in the same way. Now result section

starts with research for such methods that were described in the end of the methods section.



Thank you, here we agree with you that methods and results should be better aligned. The

structure of these sections has been improved, to better align the method section with the

updated result section.

5. Novelty value of the research is not entirely clear yet. Is the main novelty about analyzing

the role of topography on methane fluxes at different times of snow-free season? If yes, this

could be highlighted more in the introduction and also in the conclusions section.

Yes, our objective was to analyse the role of terrain attributes (topography, vegetation) on

methane fluxes throughout the snow-free season in a topographically complex mountainous

landscape, and how the spatial heterogeneity of predicted flux at the landscape level vary over

time. We have stated this in the introduction (lines 80-85) and also in the conclusion (lines

574-575).

More detailed/minor comments:

o 114: “aimed to investigate” -> “investigated”; i.e., you can use stronger language

Thank you, we updated the sentence.

e 179: should it be “have been” instead of “were” to be more consistent with tenses. Also
otherwise, it is best to write the introduction in present tense.

We have replaced “were” by “have been” as suggested. This may be an old-fashioned

way of writing, but for us, the introduction should be in the present tense to describe

the context or state general knowledge, while the past tense is used for specific

knowledge related to previous experiences and our own work.

e 182: can the km?2 be written in ha so that same unit is used for all referenced studies

We have updated the units

e 185: Can you start just by writing “We assess”. Overall, it would be best if you would
use active voice throughout. Now, you use partly passive and partly active voice in the
methods section.

We have adopted active voice wherever it was possible

e Figure 1: Can you also show the location of the area within Japan/Honshu?

A map of Japan has been added to Figure 1

e 117: how were the coverages for the different land cover types estimated?

We have extended this section in the revised manuscript (lines 162-176). To distinguish

wetland and upland areas, we collected additional GPS positions at the edges and within each

wetland, in addition to the positions of the 55 sampling points. We then used SWI, PrC, slope,

and VDCN to predict the locations of wetlands using a machine learning approach now

described in the supplementary file (Note S1) . Finally, the boundaries between wetlands and



uplands were refined by visual inspection. For river mapping, pixels corresponding to rivers
were identified in the channel network raster, which was calculated using a 5-ha initiation
threshold. Slope angle and TPI at 30 m radius were used to partition the upland into ridges,
slopes, foot slopes, and the plain. Locations with TPI values of 5 or greater were defined as
ridges, representing locally elevated, convex surfaces. Locations with TPI values < -5 were
defined as foot slopes, representing concave or lower landscape positions. Areas with
intermediate TPI values (=5 < TPI < 5) were further divided according to slope angle: sites
with slope > 18° were defined as slopes, and those with slope < 18° were defined as plains.
This has been added in the revised manuscript (lines 162-179).

o How was the measurement point sampling designed? Purposeful sampling or somehow
randomized designed? How were the wetland measurement points sampled? Did you
use boardwalks when measuring methane fluxes from wetlands?

The sampling points were chosen along three transects perpendicular to the main river, from
the plain to the ridges covering two slopes (south-facing and north-facing), as well as in a
lateral canyon, and along transects parallel to the main river, on the plain, above the foot slope
and on a ridge. The sampling was designed to encompass the landscape heterogeneity, therefore
purposeful, while being constrained by the geography of the site and safety considerations. The
wetland patches were small enough that boardwalks were not required. When measuring fluxes
in wetland, we took care to avoid trampling the soil near the collars, taking advantage of the
abundant presence of stones and coarse woody debris. These additional information have been
added in the revised manuscript (lines 113-116).

o 1145/147: maybe better to use “spatial resolution”, “pixel size” or “grid” instead of
“mesh”

We replaced mesh by grid

o 1148: you write in parentheses both “less than” and “<”. Either or is sufficient. Actually,
it should be “less than or equal to”.

We removed “less than”

e 1161: What method was used to fill the DEM?

We used the Wang and Liu (2006) method, implemented by built-in DEM filling option in

QGIS. We added the reference (lines 145-146)

e Did you upscale the vegetation/tree classification for the whole study area?

Yes, we upscaled basal area of conifers and broadleaved trees separately for the entire study

area using SWI, TPI, VDCN, and the normalized vegetation index (NDVI) from of the 55



10-meter radius census plots (lines 182-192). We used a machine learning approach now

described in the supplementary file (Note S2).

e 1195: you can delete “In this study”. It is self-evident that you are describing “this study”

We deleted it.

o 1203: How were the vegetation types used as predictors? One categorical predictor with
three different values? Why not to use continuous predictors related to vegetation and
s0il?

We thank you for this suggestion. We re-evaluated the RF models using two continuous

predictor variables: vegetation type (relative basal area of coniferous trees to basal area)

and vegetation density (basal area) (lines 227-229). Vegetation type was never selected
while vegetation density (basal area) was selected twice, in April and October. However, it
turns out that excluding basal area from the initial list of variables increased the model
performance on both dates. We therefore did not include basal area in the final models used
to upscale fluxes to the landscape level, thus avoiding adding an additional layer of
uncertainty. We added a comparative table in the appendix A3 (see also in the ‘results’ and

‘discussion’ section, (lines 342-343, 423-424)

We continue to use categorical variables for post hoc statistical tests. For vegetation type

and vegetation density, the distribution of the variable was divided into three categories:

above the upper quartile, within the interquartile range, and below the lower upper quartile.

As previously mentioned, soil variables were not included in the RF model because they

are not available at pixel level. We could have used other RF models to upscale the soil

variables to the landscape level, but this would have added additional layer of uncertainties.

Soil variables are well correlated with topographical and vegetation variables, as previously

mentioned. Therefore, we consider them to be indirectly included in the final RF models.

e VSUREF: did you employ all three steps of the method?

Yes, we follow the method of Genuer et al. (2010) for variable selection. We provided more

details about the different steps of variable selection in the revised manuscript (lines 234-

239).

e 1217: Why did you use a separate package for variable importance? They can be
obtained from random forest directly. What metric was used to assess the importance?

Although variable importance can be obtained directly from the random forest algorithm,

we calculated variable importance using the vip package (Greenwell and Boehmke, 2020).

Variable importance scores were estimated using a permutation-based approach, in which

the values of each predictor in the training data were randomly permuted to assess the



resulting change in model performance, as quantified by the adjusted R-squared value. A
greater reduction in adjusted R2 indicated a higher importance of the predictor variable.
We provided more details in the revised manuscript (lines 246-249).
e 1235: How about temporal autocorrelation in the models?
We included pixel IDs as a random effect in the linear mixed model to account for repeated
prediction at the same location, as mentioned lines 280-283.
e 1242: What does “scaled” mean here?
For clarity, we have replaced “scaled soil CH4 fluxes” with “landscape-scale predicted soil
CH4 fluxes”
o 1288: How were the importance scores quantified?
As previously mentioned, importance scores were quantified using a permutation-based
approach developed by Greenwell and Boehmke (2020) and implemented in the VIF
package (see lines 246-249).
o Figure 3: Is the line 1:1-line?
Yes, we revised the caption of this figure.
e Figure 5: Can you have the measured fluxes in the same figure?
We modified Figure 5 by reporting the average of all flux measurements during the snow-
free season aggregated by topographic position, vegetation density, and forest type. We
added the average measured fluxes, as suggested (Figure 6 in the revised manuscript).
e 1458: Can you provide some results about the models including wetland points in the
supplementary material? Now this feels like speculation.
A comparison of model performance with and without wetland measurements has been
included in an appendix (Table A2).
e 1516: You did not really quantify the dominant role of topography as your quantile
regression models had mostly just topography predictors.
We agree that only topographical predictors were used in the previous data analysis. Because
we included vegetation in the post hoc statistical test, we can now safely conclude, based on
the effect size, on the dominant role of topography on the spatial variation of soil CH4 fluxes

(Table A6).



