
Editor and Reviewer’s comments 

 

Editor 

I have read your point-by-point rebuttal letter in response to the comments made by the two 

reviewers. I am happy for you to proceed and post the revised version of the manuscript. In 

your revision, identify the existing knowledge gaps that justify your machine learning approach 

to upscale soil CH4 fluxes across topographically complex forest landscapes. Justify all the 

methods used to test your hypothesis and address all the other issues raised by the reviewers, 

including the need for model validation; how the model deals with hydrologically 

heterogeneous landscape; variable choice; and scale mismatch in the validation approach. 

We updated the last section of the introduction of our manuscript to better highlight 

the current knowledge gaps on which our objective and hypotheses are based. The comments 

of the two reviewers were useful to better justify the methods we used, our variable selection 

strategy, as well as the model validation, especially to deal with the scale mismatch issue. We 

sincerely thank them. 

 

Reviewer 1 

Overall Assessment 

This manuscript presents a machine learning approach to upscale soil CH4 flux measurements 

across a topographically complex forest landscape using quantile regression forest models with 

topographic predictors. While the study addresses important questions about spatial controls 

on soil CH4 fluxes, there is room to improve methodologies to better differentiate between 

mechanistic and predictive statistics, and to contextualize the landscape-scale conclusions. 

Major Comments: 

1. The study assumes that topographic indices (TWI, TPI, VDCN) accurately represent soil 

moisture patterns that drive CH4 fluxes, but never measures soil moisture or temperature at 

sampling locations to validate this assumption. While the topographic predictors successfully 

predict CH4 fluxes, the mechanistic pathway (topography → soil moisture → CH4 flux) 

remains unverified. Without ground-truthing, it's unclear whether the correlations reflect the 

proposed moisture mechanisms or other covarying factors. 

Please either acknowledge this limitation more explicitly or provide basic validation by 

measuring volumetric water content at a subset of locations to demonstrate that topographic 

predictors correlate with actual soil moisture conditions. 



We measured soil water content (and temperature) at each collar at each CH4 

flux measurements but did not judge useful to include these data, which was not 

sensible. We have added these measurements in the revised manuscript (lines 212-

213 and 329-301, Table 1, and Figure 2c,d). In fact, prior to developing the model, 

we examined the Spearman-rank correlation between measured soil features and 

several topographic and vegetation variables. We found significant correlations 

between soil moisture and chemistry in one hand, and TPI, TWI, VDCN, PrC, basal 

area (BA) and conifer contribution to BA on the other. This supports the use of 

topographic and vegetation variables as effective predictors of CH4 fluxes in our 

landscape These correlations have been added to the manuscript (lines 135-136 and 

Table A1). The vegetation variables were not included in the final model because they 

did not improve model accuracy (lines 343-344 and Table A3). 

However, incorporating soil moisture as an intermediate variable that would 

need to be scaled up to the landscape level would introduce an additional layer of 

uncertainty. Our strategy was to directly predict CH4 fluxes using topographic 

variables as proxies for soil moisture and related environmental gradients. We 

clarified this strategy in the revised manuscript (lines 88-90). 

We nevertheless fully agree that no statistical method is mechanistic, and all 

can be biased by the existence of confounding factors. We have highlighted this 

limitation more explicitly in the revised manuscript (lines 459-462). 

2. The study excludes wetlands from their predictive framework, leaving wetland pixels 

unmapped, but provides insufficient guidance on how their upland-only predictions should be 

applied to real forest landscapes. Most forests contain wet patches, seeps, or seasonally 

saturated areas that may not be classified as "wetlands" in standard remote sensing products 

but could function as significant CH4 sources. The authors' approach of simply excluding these 

areas creates uncertainty about how their upland flux predictions should be applied when: (a) 

wet patches exist but aren't formally classified as wetlands, (b) the boundary between "upland" 

and "wetland" conditions varies seasonally or with precipitation, and (c) their results are used 

to parameterize larger-scale models that need to handle mixed hydrologic conditions. 

Provide clearer guidance on how to classify and handle hydrologically diverse areas when 

applying these results. Discuss what topographic or hydrologic thresholds define the 

boundaries of their "upland" predictions, and suggest approaches for handling wet patches that 

fall between clear upland and wetland classifications. This would help users appropriately 



apply their upland flux relationships while avoiding systematic underestimation of emissions 

from hydrologically complex forest landscapes. 

In our study, only permanent wetlands in the plain area were excluded (3 of 55 collars 

for data, less than 1% of the landscape pixels). Wet patches, which had temporarily water-

saturated soils, were not excluded. Two collars were located in such wet patches, and positive 

fluxes were measured once on both collars. Therefore, to answer comment (a), areas with non-

permanently saturated soil are included in the upland prediction and we clarified this point in 

the revised manuscript (lines 233-234 and 304-305). We also acknowledged that our random 

forest models did not predict median positive fluxes, but the possibility of positive fluxes is 

reflected in the large uncertainties associated with near-zero fluxes (lines 495-497). 

Regarding (b), we acknowledged that using a fixed boundary between "upland" and 

"wetland" conditions, although these boundaries may vary seasonally depending on the balance 

between precipitation and evaporation, can increase uncertainties in CH4 flux prediction. 

Predicting the temporal variations of these boundaries was beyond the scope of this work, and, 

at our site, wetlands represent only 1% of the pixels, and their boundaries even less. We have 

discussed the limitations of using static boundaries in more detail in the revised manuscript 

(lines 166-170).  

Regarding (c), wetland exclusion, although acceptable in our 40-ha study area, where 

wetlands represent only 1% of the area, would overestimate CH4 uptake if incorrectly applied 

at larger scales, i.e., to the entire upper Yura River catchment in our case, for example, or to 

other hydrologically complex forest landscapes. We have already mentioned in our manuscript 

that sinks and sources should be modelled separately in the case of larger areas with mixed 

hydrological conditions. We have emphasized this point further in the revised discussion (lines 

484-486).  

For permanent wetland mapping, we collected additional GPS positions at the edges 

and within the three wetland patches. We then used SWI, profile curvature, slope, and VDCN 

to predict wetland locations. The method is detailed in a new supplementary file. Their 

boundaries were refined by visual inspection. A posteriori, pixel classified as wetland had TWI 

values above 8.1, profile curvature between -0.003 and 0.001, slope values below 6.8 for slope, 

and VDCN values below 2.2. It has been illustrated by a plot comparing the distribution of 

these topographic variables between upland and wetland pixels (lines 162-165, 170-171 and 

Figure S1). 

3. Table A2 shows a significant three-way interaction (Position × Vegetation × Date, p = 0.04), 

yet the authors conclude that position and vegetation have no effects based on their lack of 



selection in the later random forest models. This understates the importance of the interaction 

effects in their mechanistic descriptive modeling, even if it does not provide additional 

predictive power in the landscape scaling. 

The authors should acknowledge that the significant interaction indicates vegetation and 

position effects are present but depend on specific combinations and timing. In the discussion 

of Jevon et al. (lines 372-382), note that while vegetation interactions were significant in the 

LMM, vegetation wasn't selected in RF models because continuous topographic variables 

captured relevant gradients more effectively for prediction. 

We apologized but we should not have included interactions in the model, as 

some of them are missing. For example, there are no “pure” broadleaved areas on the 

ridge. Models with interactions would be rank-deficient. However, following the 

suggestion of the second reviewer, we significantly expanded the analysis of the 

influence of vegetation of CH4 fluxes, using not only the vegetation type but also its 

density. As landscape attributes, we now have (i) topographic position (plain, foot 

slope, slope, and ridge), (ii) vegetation type (broadleaf, coniferous, and mixed), and 

(iii) vegetation density (high, medium, and low). The effect sizes of topographic 

position, vegetation type, and vegetation density were 0.43, 0.006, and 0.11, 

respectively, highlighting the dominant role of topography over vegetation in the 

spatial variability of CH4 fluxes. The effect sizes have been added to the ANOVA 

table in the revised manuscript (lines 269-270, 284-287, 376-377 and Table A6). 

4. The LMM results (Table A2) report only p-values without effect sizes, making it impossible 

to assess practical significance. Similarly, while RF variable importance scores are reported in 

a table, the magnitude and direction of predictor effects aren't clear in text/discussion. 

Please rreport standardized coefficients for LMM factors to show effect magnitudes alongside 

statistical significance. For RF models, clarify the interpretation of relationships for key 

predictors (e.g., whether higher TPI increases or decreases CH4 uptake). 

We recognise that failing to consider the effect sizes of variables used in 

linear models can lead to an underestimation of their potential mechanistic importance, 

even if these factors do not improve the performance of the random forest models. 

Effect size are now reported (see our response to your previous comment and lines 

376-377 and Table A6). 

For RF models, the direction of predictive effects is now illustrate using plots 

of accumulated local effects (ALE), which is effective if predictors are correlated with 

each other. The interpretation of the ALE analysis has been added to the revised 



manuscript, as well as their graphical representation (lines 249-256 and Figure A2). In 

summary, for the two most influential predictors, low CH4 uptake rates were associated with 

high TWI values, while they were associated with low TPI values. We will discuss the 

magnitude and direction of predictive effects in more detail in the revised manuscript (lines 

340-342). 

5. Scale mismatch in validation approach The authors validate their predictions by comparing 

point measurements (20 cm diameter chambers) with pixel-level predictions (5m resolution), 

despite using predictors calculated at even coarser scales (e.g., 30m radius for TPI). This scale 

mismatch may actually understate the model's true predictive accuracy by forcing landscape-

scale predictors to explain fine-scale chamber measurements that inevitably include local 

variability beyond what topographic indices can capture. The current validation approach tests 

whether coarse-resolution environmental variables can predict point-level flux heterogeneity, 

rather than testing the model's ability to capture the landscape-scale flux patterns it's designed 

to represent. Consider validating at aggregated scales that better match the conceptual basis of 

the predictors. Compare predicted vs. observed mean fluxes within topographic position 

classes (ridge/slope/foot slope/plain) or other meaningful landscape units to test whether the 

model captures the spatial patterns it's intended to represent. This approach would provide a 

more appropriate assessment of model performance for landscape-scale applications. 

Additionally, measuring soil moisture at chamber locations would help validate the 

mechanistic assumption that topographic predictors accurately represent the moisture 

conditions driving CH4 fluxes, allowing separation of prediction errors due to scale mismatch 

from errors due to invalid mechanistic assumptions.  

To clarify, all predictors are calculated at pixel size (5 by 5 m), including TPI. For 

each 5 by 5 pixels, TPI is calculated based on the elevation of that pixel relative to the 

surrounding pixels within a radius of 20, 30, or 50 m. That being said, we fully agree that there 

is a scale mismatch between collar and pixel size. We appreciate your suggestion to validate at 

aggregate scales by comparing predicted and observed mean fluxes within topographic position 

classes. The R2m of linear mixed model between predicted and measured fluxes at the four 

topographic position for 9 measurement dates (n=36) was 0.93. We did this not only using 

topographic position classes, but also considering vegetation types and density classes. This 

validation has been included in the revised manuscript (lines 362-365 , Tables A5 and Figures 

4) and the scale mismatch recognised in the discussion (lines 465-471). 

As mentioned in the response to your first comment, we measured soil water content 

(and temperature) at each collar at each time CH4 flux measurements but did not judge useful 



to include these data. We have added these measurements in the revised manuscript 

(lines 299-301, Table 1 and Figure 2c,d). 

 

 

Reviewer 2 

The manuscript upscales soil methane fluxes with a digital terrain model in a forested landscape. 

It is nicely written, and the topic is relatively novel and worth investigating. However, there 

are certain issues that should be covered better. 

1. The current analysis and methodology seems to have a double structure: there is a quantile 

regression forest analysis for upscaling methane fluxes for different dates and then there is a 

mix of different traditional statistical techniques (e.g., ANOVA, linear mixed models) for 

looking at relationships between different environmental characteristics (including topography 

and methane fluxes). I feel that this structure is a bit complex and some of the issues are done 

twice but with different methods. Therefore, I suggest simplifying the methodological approach 

and justifying better why certain analyses are conducted. 

We appreciate the reviewer's observation regarding the complexity of our 

initial analytical framework. In the revised manuscript, we simplify the analytical 

approach. We first preselected terrain attributes (topography, vegetation) correlated 

with measured soil features. Next, we upscaled measured CH4 fluxes to the landscape 

level using a quantile regression forest (QRF) model and the preselected variables. 

Then, we tested whether predicted CH4 fluxes differed among landscape positions, 

vegetation types, and vegetation densities using a linear mixed model that accounted 

for spatial autocorrelation. Finally, we analysed the temporal variations of the 

upscaled fluxes. We believe that this streamlined approach reduces methodological 

redundancy and maintains consistency between scaling analyses and subsequent 

interpretations of spatial patterns. We have restructured the “methods” and “results” 

sections accordingly. 

For instance, why is linear regression conducted between measured and predicted fluxes? Isn’t 

it sufficient to provide observed-predicted plots? 

We understand that providing observed–predicted plots may seem sufficient; 

however, we included linear regressions between measured and predicted fluxes to 

quantitatively assess the performance of the QRF models. This provided an objective 



description of these plots, allowing us to test for the absence of bias, i.e., an intercept not 

significantly different from 0 and a slope not significantly different from 1. Furthermore, as the 

first reviewer pointed out a scale mismatch between collar and pixel sizes, we followed his 

suggestion and conducted additional analyses at aggregated scales by comparing predicted and 

observed fluxes aggregated by topographic position classes, vegetation density classes and 

vegetation type classes (lines 362-365 , Tables A5 and Figures 4). 

Why is there a need to conduct separate linear regression between topography and methane 

fluxes in addition to quantile regression forests? 

We agree with the reviewer that performing a separate linear regression between 

topography and measured CH4 fluxes was not justified, as the quantile regression forest model 

already captured nonlinear relationships. Therefore, we removed this analysis and instead 

present a correlation table among topographic variables and vegetation attributes in one hand, 

and soil moisture, temperature and chemistry on the other (lines 133-135 and Table A1). We 

are now reporting differences in predicted fluxes at the landscape level across topographic and 

vegetation classes, as mentioned above (lines 362-365 , Tables A5 and Figures 4). In other 

words, we deleted all statistical analyses done on measured CH4 fluxes (before QRF 

modelling) and strengthened the statistical analysis on predicted CH4 fluxes at landscape level 

(after QRF modelling). 

2. In relation to the first point, there could also be additional analyses that have not been 

conducted. It is a bit unclear to me what is the logic in predicting temporally dynamic methane 

fluxes with temporally static topographic variables. 

Why not to test also a model with both temporally static but spatially distributed topographic 

variables and temporally dynamic but spatially uniform climate/weather variables such as API 

(there could be possibilities for including also other weather-related variables)? 

Because all pixels will have the same values for weather variables on a given date, it 

would be pointless to include them in RF models to predict spatial heterogeneity of landscape-

scale fluxes. Previous works using similar RF modelling also run their models separately for 

each season without including weather data (e.g. Warner et al, 2019, Agric For Meteorol 

264:80–91; Vainio et al, 2021, Biogeosciences 18:2003–2025). We justified our choice in the 

revised manuscript (lines 262-266). 

Could the soil variables be included also in the quantile regression forest to test their strength 

in addition to the topographic variables? 

Soil variables could potentially be included in the RF model but then the RF could not 

be used to predict flux at landscape level where only topographical and vegetation predictors 



are available at pixel level. Of course, it would have been possible to use other RFs to 

upscale soil variables at the landscape level and use the predicted soil variables to 

predict methane fluxes, but it would add additional layers of uncertainties. We also 

justified this choice in the revised manuscript (lines 88-90). 

Why is vegetation (or actually tree) information condensed into one categorical variable (forest 

type based on tree types? You could also have continuous variables about the tree species 

presence and abundance. 

Thank you for this suggestion. We agree that we should have used a 

continuous variable for vegetation type in the model, and only used the categories for 

post hoc statistical tests. We also agree that it is useful to include vegetation density 

in addition to vegetation type. In the revised manuscript, in addition to topography, 

we tested two continuous variables in the quantile regression forest model: basal area 

for vegetation density and relative basal area of coniferous trees to basal area for 

vegetation type (see lines 228-229). The vegetation variables were not included in the 

final models because either they were not selected or did not improve model 

performance (lines 343-344 and Table A3). After QRF modelling, we used (i) 

topographic position (plain, foot slope, slope, and ridge), (ii) vegetation type 

(broadleaf, coniferous, and mixed), and (iii) vegetation density (high, medium, and 

low) to test the influence of these landscape attributes on the spatial variability of 

predicted CH4 fluxes (lines 376-378). The effect sizes of these three categorical 

variables have been added to the ANOVA table in the revised manuscript (Table A6). 

 

3. The selection of the topographic variables for upscaling is relatively arbitrary. Why were 

these specific variables chosen and not others (listed e.g., in Ågren et al 2021, 

https://doi.org/10.1016/j.geoderma.2021.115280). 

Many variables can be derived from DEM and selection is necessary to avoid 

overparameterization due to redundancies. Our preselection was motivated by the fact 

that methane fluxes are related to microbial activities (methanotrophic and 

methanogenic in our case), which are controlled by soil moisture and chemistry (C, N, 

pH), and, to a lesser extent, temperature. We examined the Spearman-rank correlation 

between measured soil water content, temperature and chemistry (C, N and pH) on 

the one hand, and several topographic and vegetation attributes on the other. We 

included the rational of our variable pre selection and added a table with the 

https://doi.org/10.1016/j.geoderma.2021.115280


correlation coefficient as an appendix in the revised manuscript (lines 131-136 and Table A1). 

Furthermore, it is unclear why SAGA wetness index was not used instead of the traditional 

topographic wetness index, as the SAGA version spreads high values in the flat areas.  

We thank the reviewer for this insightful comment. In the revised analysis, we adopted 

the SAGA Wetness Index instead of the traditional Topographic Wetness Index (TWI). This is 

in lines 131-132. The reviewer’s suggestion helped us recognize that the SAGA version 

provides a more accurate representation of wetness distribution, especially in flat areas, where 

the traditional TWI may direct the flow in the wrong directions, thereby distorting the flow 

accumulation.  

Similarly, topographic position index should have been calculated with multiple neighborhood 

radiuses and vertical distance to streams with multiple stream networks. Now it is even unclear 

how the stream network was calculated and streams initiated when calculating the layer. 

We acknowledge the reviewer's comment that multiple radii should be considered for 

TPI and multiple stream network for VDCN, as these variables are highly scale-dependent. TPI 

was calculated using neighborhood radii of 20, 30, and 50 m. To calculate VDCN, the DEM 

was first filled, and then flow accumulation layers were generated using the multiple flow 

direction method. The resulting flow accumulation raster was then used to create 

topographically defined flow channel networks, applying flow initiation thresholds of 0.5, 2.5, 

and 5 ha. VDCN was subsequently calculated for each threshold.  

Finally, we chose the TPI with 30 m radii and VDCN with initiation thresholds of 5 ha, 

as they had the highest Spearman correlations with the soil variables, as explain above. 

However, the model performance in terms of its ability to predict measured fluxes were very 

similar when using any of combinations of these three TPI and VDCN. Detailed explanation 

and the correlation table have been added in the revised manuscript (lines 150-152 and 159-

160). 

4.Research hypotheses and result section are not well aligned with each other. Particularly, 

section 3.1 does not seem to address any of the hypotheses. I would suggest phrasing the 

hypotheses/research questions so that they are answered one by one in the results section.  

We have a slightly different opinion here. For us, the research hypothesis should be well-

aligned with the discussion, not with the result section, because hypotheses should be discussed 

based on the results but also additional information available from the literature. The result 

section follows a step-by-step organisation: the data, the model, the post hoc analysis. 

Furthermore, also the methods section could be organized in the same way. Now result section 

starts with research for such methods that were described in the end of the methods section. 



Thank you, here we agree with you that methods and results should be better aligned. The 

structure of these sections has been improved, to better align the method section with the 

updated result section. 

5. Novelty value of the research is not entirely clear yet. Is the main novelty about analyzing 

the role of topography on methane fluxes at different times of snow-free season? If yes, this 

could be highlighted more in the introduction and also in the conclusions section. 

Yes, our objective was to analyse the role of terrain attributes (topography, vegetation) on 

methane fluxes throughout the snow-free season in a topographically complex mountainous 

landscape, and how the spatial heterogeneity of predicted flux at the landscape level vary over 

time. We have stated this in the introduction (lines 80-85) and also in the conclusion (lines 

574-575). 

More detailed/minor comments: 

• l14: “aimed to investigate” -> “investigated”; i.e., you can use stronger language 

Thank you, we updated the sentence. 

• l79: should it be “have been” instead of “were” to be more consistent with tenses. Also 

otherwise, it is best to write the introduction in present tense. 

We have replaced “were” by “have been” as suggested. This may be an old-fashioned 

way of writing, but for us, the introduction should be in the present tense to describe 

the context or state general knowledge, while the past tense is used for specific 

knowledge related to previous experiences and our own work. 

• l82: can the km2 be written in ha so that same unit is used for all referenced studies  

We have updated the units 

• l85: Can you start just by writing “We assess”. Overall, it would be best if you would 

use active voice throughout. Now, you use partly passive and partly active voice in the 

methods section. 

We have adopted active voice wherever it was possible 

• Figure 1: Can you also show the location of the area within Japan/Honshu? 

A map of Japan has been added to Figure 1 

• 117: how were the coverages for the different land cover types estimated? 

We have extended this section in the revised manuscript (lines 162-176). To distinguish 

wetland and upland areas, we collected additional GPS positions at the edges and within each 

wetland, in addition to the positions of the 55 sampling points. We then used SWI, PrC, slope, 

and VDCN to predict the locations of wetlands using a machine learning approach now 

described in the supplementary file (Note S1) . Finally, the boundaries between wetlands and 



uplands were refined by visual inspection. For river mapping, pixels corresponding to rivers 

were identified in the channel network raster, which was calculated using a 5-ha initiation 

threshold. Slope angle and TPI at 30 m radius were used to partition the upland into ridges, 

slopes, foot slopes, and the plain. Locations with TPI values of 5 or greater were defined as 

ridges, representing locally elevated, convex surfaces. Locations with TPI values ≤ -5 were 

defined as foot slopes, representing concave or lower landscape positions. Areas with 

intermediate TPI values (−5 < TPI < 5) were further divided according to slope angle: sites 

with slope > 18° were defined as slopes, and those with slope ≤ 18° were defined as plains. 

This has been added in the revised manuscript (lines 162-179). 

• How was the measurement point sampling designed? Purposeful sampling or somehow 

randomized designed? How were the wetland measurement points sampled? Did you 

use boardwalks when measuring methane fluxes from wetlands? 

The sampling points were chosen along three transects perpendicular to the main river, from 

the plain to the ridges covering two slopes (south-facing and north-facing), as well as in a 

lateral canyon, and along transects parallel to the main river, on the plain, above the foot slope 

and on a ridge. The sampling was designed to encompass the landscape heterogeneity, therefore 

purposeful, while being constrained by the geography of the site and safety considerations. The 

wetland patches were small enough that boardwalks were not required. When measuring fluxes 

in wetland, we took care to avoid trampling the soil near the collars, taking advantage of the 

abundant presence of stones and coarse woody debris. These additional information have been 

added in the revised manuscript (lines 113-116). 

• l145/147: maybe better to use “spatial resolution”, “pixel size” or “grid” instead of 

“mesh” 

We replaced mesh by grid 

• l148: you write in parentheses both “less than” and “≤”. Either or is sufficient. Actually, 

it should be “less than or equal to”. 

We removed “less than” 

• l161: What method was used to fill the DEM? 

We used the Wang and Liu (2006) method, implemented by built-in DEM filling option in 

QGIS. We added the reference (lines 145-146) 

• Did you upscale the vegetation/tree classification for the whole study area? 

Yes, we upscaled basal area of conifers and broadleaved trees separately for the entire study 

area using SWI, TPI, VDCN, and the normalized vegetation index (NDVI) from of the 55 



10-meter radius census plots (lines 182-192). We used a machine learning approach now 

described in the supplementary file (Note S2). 

• l195: you can delete “In this study”. It is self-evident that you are describing “this study” 

We deleted it. 

• l203: How were the vegetation types used as predictors? One categorical predictor with 

three different values? Why not to use continuous predictors related to vegetation and 

soil? 

We thank you for this suggestion. We re-evaluated the RF models using two continuous 

predictor variables: vegetation type (relative basal area of coniferous trees to basal area) 

and vegetation density (basal area) (lines 227-229). Vegetation type was never selected 

while vegetation density (basal area) was selected twice, in April and October. However, it 

turns out that excluding basal area from the initial list of variables increased the model 

performance on both dates. We therefore did not include basal area in the final models used 

to upscale fluxes to the landscape level, thus avoiding adding an additional layer of 

uncertainty. We added a comparative table in the appendix A3 (see also in the ‘results’ and 

‘discussion’ section, (lines 342-343, 423-424) 

We continue to use categorical variables for post hoc statistical tests. For vegetation type 

and vegetation density, the distribution of the variable was divided into three categories: 

above the upper quartile, within the interquartile range, and below the lower upper quartile. 

As previously mentioned, soil variables were not included in the RF model because they 

are not available at pixel level. We could have used other RF models to upscale the soil 

variables to the landscape level, but this would have added additional layer of uncertainties. 

Soil variables are well correlated with topographical and vegetation variables, as previously 

mentioned. Therefore, we consider them to be indirectly included in the final RF models. 

• VSURF: did you employ all three steps of the method? 

Yes, we follow the method of Genuer et al. (2010) for variable selection. We provided more 

details about the different steps of variable selection in the revised manuscript (lines 234-

239). 

• l217: Why did you use a separate package for variable importance? They can be 

obtained from random forest directly. What metric was used to assess the importance? 

Although variable importance can be obtained directly from the random forest algorithm, 

we calculated variable importance using the vip package (Greenwell and Boehmke, 2020). 

Variable importance scores were estimated using a permutation-based approach, in which 

the values of each predictor in the training data were randomly permuted to assess the 



resulting change in model performance, as quantified by the adjusted R-squared value. A 

greater reduction in adjusted R2 indicated a higher importance of the predictor variable. 

We provided more details in the revised manuscript (lines 246-249). 

• l235: How about temporal autocorrelation in the models? 

We included pixel IDs as a random effect in the linear mixed model to account for repeated 

prediction at the same location, as mentioned lines 280-283. 

• l242: What does “scaled” mean here? 

For clarity, we have replaced “scaled soil CH4 fluxes” with “landscape-scale predicted soil 

CH4 fluxes” 

• l288: How were the importance scores quantified? 

As previously mentioned, importance scores were quantified using a permutation-based 

approach developed by Greenwell and Boehmke (2020) and implemented in the VIF 

package (see lines 246-249). 

• Figure 3: Is the line 1:1-line? 

Yes, we revised the caption of this figure. 

• Figure 5: Can you have the measured fluxes in the same figure? 

We modified Figure 5 by reporting the average of all flux measurements during the snow-

free season aggregated by topographic position, vegetation density, and forest type. We 

added the average measured fluxes, as suggested (Figure 6 in the revised manuscript). 

• l458: Can you provide some results about the models including wetland points in the 

supplementary material? Now this feels like speculation. 

A comparison of model performance with and without wetland measurements has been 

included in an appendix (Table A2).  

• l516: You did not really quantify the dominant role of topography as your quantile 

regression models had mostly just topography predictors. 

We agree that only topographical predictors were used in the previous data analysis. Because 

we included vegetation in the post hoc statistical test, we can now safely conclude, based on 

the effect size, on the dominant role of topography on the spatial variation of soil CH4 fluxes  

(Table A6). 


