This file contains figures and tables that will be included or updated in the revised manuscript. We apologize but their format is not yet finalized

Table 1: Spearman-rank correlation between topographic and vegetation variables and measured soil water content, temperature, and chemistry (C, N, and pH)

	Mean	Mean soil	C (%)	N (%)	рН
	SWC	temperature			
Aspect	-0.14	-0.10	-0.02	-0.07	-0.06
Profile curvature	-0.21	0.14	0.27	0.23	-0.27
Slope	-0.17	-0.24	0.25	0.22	-0.51
TPI 20m	-0.35	-0.11	0.45	0.39	-0.34
TPI 30m	-0.31	-0.08	0.64	0.55	-0.46
TPI 50m	-0.33	-0.08	0.59	0.50	-0.42
TWI saga	0.43	0.27	-0.62	-0.55	0.65
VDCN 0.5ha	-0.24	-0.16	0.61	0.52	-0.51
VDCN 2.5ha	-0.24	-0.20	0.71	0.62	-0.65
VDCN 5ha	-0.31	-0.29	0.65	0.56	-0.71
CSA	-0.37	-0.29	0.22	0.13	-0.25
CONpc	-0.17	-0.56	0.30	0.19	-0.41

Table: Selected variables for each measurement date, along with the R² and root mean square error (RMSE) values to evaluate the accuracy of the quantile regression forests (QRFs) model. Importance scores of the selected variables are shown in parentheses, indicating their contribution to predicting soil CH4 fluxes. At the two dates where vegetation was selected, the model without and with vegetation (CSA) are compared (model with vegetation is in italic letters).

Date		Selected	variables		\mathbb{R}^2	RMSE
	TWI_saga	PrC	TPI_30			
2023/04/27	(0.57)	(0.58)	(0.67)		0.53	0.52
2023/04/27	TWI_saga	CSA	TPI_30		0.51	0.52
	(0.64)	(0.42)	(0.50)			
2023/05/12	TPI_30	VDCN_5			0.31	0.82
2023/03/12	(0.80)	(0.66)			0.31	0.82
2023/05/31	TWI_saga	TPI_30	VDCN_5		0.43	0.48
2023/03/31	(0.55)	(0.57)	(0.42)		0.43	
2023/07/06	TWI_saga	TPI_30			0.40	0.50
	(0.73)	(0.60)			0.40	0.30
2022/07/27	TWI_saga	TPI_30			0.37	1.02
2023/07/26	(0.80)	(0.69)			0.57	1.02
2023/09/04	TWI_saga	TPI_30		0.40		1.18
2023/07/04	(0.74)	(0.85)			0.40	1.10
	TPI_30	VDCN_5				
2023/10/07	(0.88)	(0.58)			0.67	0.81
2023/10/07	TPI_30 (0.77)	VDCN_5	CSA (0.27)		0.55	0.80
	111_50 (0.77)	(0.39)				
2023/11/07	TWI_saga	TPI_30	VDCN_5	PrC (0.45)	0.59	0.66
2023/11/07	(0.32)	(0.84)	(0.12)	110 (0.73)	0.57	0.00

	TWI_saga	TPI_30	VDCN_5			
2023/11/30				PrC (0.28)	0.51	0.56
	(0.32)	(0.54)	(0.21)			

Table: Summary of the linear mixed model (LMMs) analyzing the relationship between the predicted soil CH₄ fluxes and measured soil CH₄ fluxes, where measurement periods were included as the random factor on both slope and intercept. The p-values of the fixed effect were for testing if the intercept was different from zero and the slope different from 1. The marginal (R²m) and conditional (R²c) coefficients of determination, and the root mean square error of the model are shown. Model without and with vegetation (CSA) are compared (model with vegetation is in italic letters).

Fixed effe	ect: Predicted CH ₄ flux		Random effect: measurement dates			
Estimate			p-values		Intercept	Slope
± SE		p-varues				
	0.15 ± 0.03		0.003		-0.05	0.03
Intercept	$[0.14 \pm 0.03]$	from 0	[0.003]	2023/04/27	[-0.05]	[0.02]
			2.25×10 ⁻⁹			
Slope	1.16 ± 0.02 $[1.16 \pm 0.02]$	from 0	[1.10×10 ⁻	2023/05/12	-0.02	0.02
			8]]			
		from 1	0.92 [<i>0.92</i>]	2023/05/31	-0.05	0.02
R^2m	0.94 [0.94]			2023/07/06	-0.06	0.02
R^2c	0.95 [0.95]			2023/07/26	0.07	0.00
				2023/09/04	0.14	-0.03
				2023/10/07	0.02	-0.04
				2023/10/0/	[0.02]	[-0.03]
				2023/11/07	-0.01	-0.04
				2023/11/30	-0.03	0.01

Figure: Comparison between predicted and measured CH₄ fluxes aggregated within topographic position classes, vegetation type, and vegetation density. The 1:1 line is drawn.

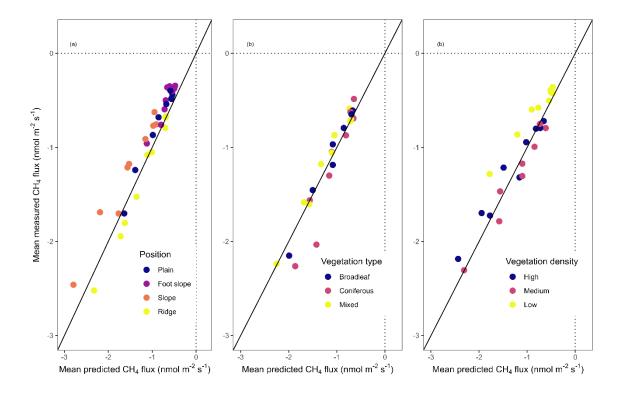


Table: summary for Position

Fixed effe	ect: Predicted C	H ₄ flux	Random effect: Positions			
Estimate ± SE		p values		Intercept	Slope	
Intercept	-0.17 ± 0.04	from 0	0.006	Plain	0.01	-0.02
Slope	0.94 ± 0.05	from 0	7.8E-05	Foot slope	0.01	0.01
		from 1	0.99	Slope	-0.05	0.10
R^2m	0.93			Ridge	0.05	-0.09
R^2c	0.98					
	0.50					

Table: summary for Vegetation type

Fixed effect: Predicted CH ₄ flux				Random effect: Vegetation type		
Estimate ± SE		p values		Intercept	Slope	
Intercept	-0.19 ± 0.07	from 0	0.08	Broadleaf	0.02	0.02
Slope	0.82 ± 0.09	from 0	0.01	Coniferous	-0.09	-0.14
		from 1	0.99	Mixed	0.08	0.12
R^2m	0.91					
R^2c	0.96					

Table: summary for Vegetation density

Fixed effect: Predicted CH ₄ flux				Random effect: Vegetation density		
Estimate ± SE		p values		Intercept	Slope	
Intercept	-0.13 ± 0.05	from 0	0.08	High	-0.01	0.02
Slope	0.81 ± 0.08	from 0	1.00×10 ⁻²	Medium	0.06	-0.14
		from 1	0.99	Low	-0.05	0.11
R^2m	0.80					
R^2c	0.95					

Table 2.

Summary of the LMM analyzing the effects of topographic position, vegetation type and vegetation density on predicted soil CH4 fluxes. Pixel ID was included as a random effect, and spatial autocorrelation among residuals eliminated. η_p^2 was calculated as the effect size of each explanatory variable

Response variable	Explanatory variables	p-value	Effect size (η_p^2) [with 95% CI]
Predicted CH ₄ fluxes	Position [df=3]	< 0.001	0.43 [0.42, 0.44]
	Vegetation type [df=2]	< 0.001	0.006 [0.00, 0.01]
	Vegetation density [df=2]	<0.001	0.11 [0.10, 0.12]

Figure: Comparison of measured and predicted fluxes by aggregating the temporal variation during the snow-free period (a) by topographic position classes, (b) by vegetation type classes, and (c) vegetation density classes. Grey boxplot indicates the distribution of the predicted soil CH4 fluxes, blue triangle indicates the mean of the predicted fluxes and green square with vertical bar indicates the mean of the measured fluxes with standard error.

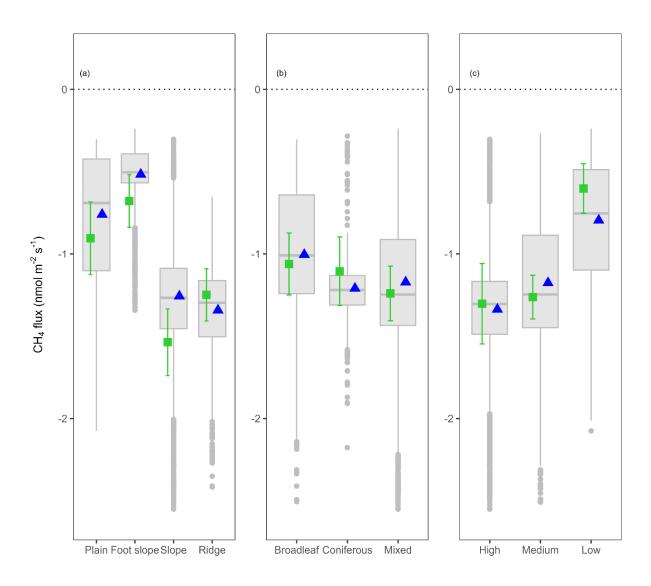


Figure: ALE plots for all variables selected at each measurement date

Figure: Plot comparing the distribution of topographic variables between upland and wetland pixels

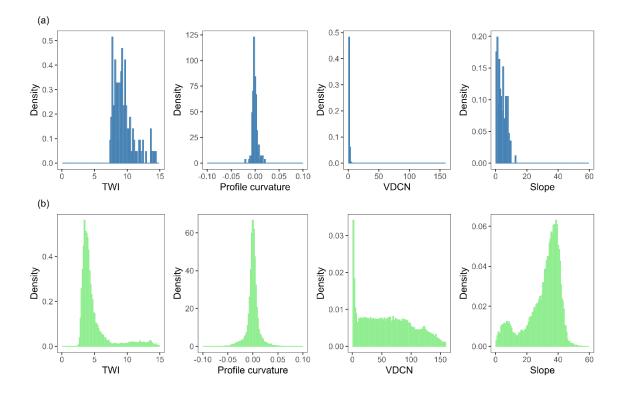


Table: Performance of model including wetland

Fixed effect: Predicted								
CH ₄ flux including								
wetland Random effect: measurement dates								
Estimate ±								
SE			p-values					
Intercept	0.24 ± 0.08	from 0	0.01	2023/04/27	0.04	0.02		
Slope	1.15 ± 0.05	from 0	2.05×10 ⁻⁸	2023/05/12	-0.14	-0.08		
		from 1	0.91	2023/05/31	0.11	0.07		
R^2m	0.70			2023/07/06	-0.19	-0.11		
R^2c	0.70			2023/07/26	0.07	0.04		
				2023/09/04	0.01	0.01		
				2023/10/07	0.05	0.03		
				2023/11/07	0.11	0.07		
				2023/11/30	-0.06	-0.04		