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Abstract. Accurately estimating greenhouse gas (GHG) emissions from atmospheric observations requires resolving the up-

wind influence of measurements via atmospheric transport
:::
and

:::::::::
dispersion

:
models. However, the computational demands of

full-physics
:::::::::::
physics-based

:
models limit the scalability of flux inversions, particularly for dense in situ and satellite-based

observations. Here, we present FootNet v3, a deep-learning emulator of atmospheric transport based on a U-Net++ architec-

ture, which improves generalization and inversion fidelity over prior U-Net-based models. FootNet v3 is trained on 500,0005

pseudo-observations
:::::::
footprint

::::::::
examples

:
across the contiguous United States. It predicts surface and column-averaged source-

receptor relationships at kilometer-scale resolution and operates 650× faster than traditional Lagrangian models. Critically,

FootNet learns the underlying physical relationship between meteorology and atmospheric transport. We show that it accu-

rately predicts source-receptor relationships when driven by GFS meteorology, despite being trained on HRRR data. FootNet

generalizes to unseen regions and meteorological regimes, enabling accurate flux inversions in domains withheld during train-10

ing. Case studies using GHG measurements in the San Francisco Bay Area and Barnett Shale show that FootNet matches or

exceeds the performance of full-physics
:::::::::::
physics-based

:
models when evaluated against independent GHG observations. This

is achieved despite FootNet having never seen meteorological inputs from Northern California or North Texas. Feature impor-

tance testing identifies physically meaningful drivers that are consistent across both surface and column models. These findings

show that machine learning models can learn the physics
::::::::
underlying

::::::::
physical

:::::::::::
relationships governing atmospheric transport,15

allowing them to extrapolate to out-of-sample scenarios and support real-time, high-resolution GHG flux estimation in novel

domains without the need for retraining or precomputed footprint libraries.

1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the two most important greenhouse gases (GHGs). Together, they account for

more than 85% of the cumulative radiative forcing since the pre-industrial era (IPCC, 2023). Accurate characterization of their20

sources and sinks across spatial scales is essential for constraining future climate trajectories. However, the computational bur-

den and data storage demands of full-physics
::::::::::::
physics-based atmospheric transport models limit the scalability of current inver-

sion frameworks, especially when leveraging dense GHG observations (Roten et al., 2021; Cartwright et al., 2023; Fillola et al., 2023)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Roten et al., 2021; Cartwright et al., 2023; Fillola et al., 2023, 2025). To overcome these limitations, He et al. (2025) and Dad-

heech et al. (2025) introduced FootNet, a machine learning emulator of atmospheric transport tailored for surface observations.25
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Here, we extend FootNet into a generalized framework (FootNet v3) trained over the Contiguous United States (CONUS),

enabling the emulation of both surface and column-averaged source-receptor relationships ("footprints") at kilometer-scale

resolution. Crucially, we demonstrate that FootNet v3 generalizes to previously unseen regions and meteorological conditions,

enabling accurate out-of-sample simulation of atmospheric transport. This capability represents a significant advance, as it

addresses a long-standing limitation in inversion systems: the reliance on site-specific, computationally intensive modeling.30

Recent work has underscored the value of dense, continuous GHG observations for quantifying and attributing emissions

(e.g., Turner et al., 2020; Varon et al., 2023; Hamilton et al., 2024; Asimow et al., 2024, 2025). Observation networks such

as INFLUX (Davis et al., 2017) and BEACO2N (Shusterman et al., 2016) have expanded the spatial and temporal resolution

of in situ CO2 and methane measurements, particularly in urban environments. Concurrently, satellite-based retrievals have

advanced dramatically: OCO-2 and OCO-3 provide column-averaged CO2 at 2.25 km × 1.29 km resolution on 16-day cycles35

(O’Dell et al., 2012; Eldering et al., 2019), TROPOMI offers daily methane retrievals at 5.5 km × 7 km (Veefkind et al., 2012),

and MethaneSAT will resolve emissions at 130 m × 400 m (Rohrschneider et al., 2021).

GHG inversion frameworks relate atmospheric observations to surface fluxes through a linear transport operator:

y =Hx+ b, (1)

where y is the vector of n observations, x the vector of m fluxes, b the background, and H the Jacobian matrix describing40

transport. Each row of H encodes the influence of surface fluxes on a specific observation, and each column reflects the impact

of a surface pixel on all observations. As the resolution of x or density of y increases, the cost of computing and storing H

becomes prohibitive.

Full-physics
::::::::::::
Physics-based models such as Eulerian transport solvers or Lagrangian Particle Dispersion Models (LPDMs)

are commonly used to construct H, which is then used to infer GHG fluxes within an inversion framework. For example, the45

Integrated Methane Inversion (IMI) is an Eulerian-based inversion framework focusing on regional scale at 25 km resolution

(Varon et al., 2022; Estrada et al., 2024). Eulerian-based frameworks struggle with high spatiotemporal resolutions as the

number of model simulations is proportional to the dimensions of x. Variational methods such as 4D-var are also popular in

the flux inversion, which requires
::::
flux

:::::::::
inversions,

:::::
which

::::::
require

:
an adjoint of the Eulerian model to compute the atmospheric

transport (Henze et al., 2007). LPDMs like STILT and X-STILT are often preferred at high resolution due to their flexibility50

and ability to resolve localized sensitivity patterns (Lin et al., 2003; Fasoli et al., 2018; Wu et al., 2018). However, these models

scale linearly with the number of observations, creating a computational bottleneck for dense observational datasets.

Several recent studies have explored the use of machine learning to emulate LPDM outputs and reduce computational

costs (Roten et al., 2021; Cartwright et al., 2023; Fillola et al., 2023). These approaches typically interpolate or approximate

LPDM simulations using learned surrogate models, but they often remain dependent on precomputed LPDM libraries or55

perform poorly outside of the training domain. FootNet eliminates this dependency by enabling direct inference of atmospheric

transport sensitivities without additional LPDM simulations. He et al. (2025) first demonstrated this approach for surface

footprints in two domains; Dadheech et al. (2025) improved near/far-field balance and showed that FootNet could support

high-resolution urban flux inversions. Here, we substantially broaden the scope of the model. FootNet v3 is trained on 500,000
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pseudo-observations
:::::::
footprint

::::::::
examples

:
spanning a wide range of locations, seasons, and meteorological conditions across60

CONUS. It comprises separate models for surface and column-averaged footprints and is trained using STILT and X-STILT

outputs, respectively.

We emphasize a key result: FootNet v3 enables out-of-sample simulation of atmospheric transport. We evaluate its gener-

alizability using flux inversion case studies in domains withheld from training, including CO2 inversions in the San Francisco

Bay Area and methane inversions over the Barnett Shale. In both cases, FootNet v3 matches or outperforms full-physics65

:::::::::::
physics-based

:
LPDMs. This result demonstrates, for the first time, that machine learning can replicate transport model perfor-

mance in novel regions without re-running expensive simulations. The ability to emulate atmospheric transport out-of-sample

is a foundational step toward operational, real-time flux inversions at continental scale.

2 Development of a generalizable machine learning emulator for atmospheric transport

FootNet v3 adopts a U-Net++ architecture (Zhou et al., 2018) with 37M parameters, replacing the U-Net architecture used in70

earlier versions (He et al., 2025; Dadheech et al., 2025). Figure 1 shows a schematic of the architecture. The U-Net++ is a

deep encoder-decoder model designed to preserve multiscale spatial features while improving feature fusion between encoder

and decoder layers. This nested, dense skip-connection design reduces the imbalance between near- and far-field footprint

sensitivity observed in prior versions. We trained two separate models within this framework: one for surface footprints and

one for column-averaged footprints. Both models share the same general architecture but differ in their input feature sets to75

reflect the physical drivers of transport relevant to surface and column observations.

To train FootNet v3, we constructed a training dataset of 500,000 pseudo-observations
::::::::
footprints across the CONUS domain

to support generalizable inference of transport sensitivity. Figure 2 illustrates the spatial
:::::::
receptors

:
sampling strategy, which

consists of two components: (1) uniformly distributed individual pseudo-observations
::::::::
receptors (gray dots) and (2) 400 km ×

400 km subdomains with enhanced sampling (red stars). Each individual observation
:
A

:::::::
receptor

:::::
refers

::
to

::
a

:::::::
specified

::::::::
location,80

::::
time,

::::
and

:::::::::::
measurement

::::
type

:::::::
(surface

::
or

:::::::::::::::
column-averaged)

:::
for

:::::
which

::
a
::::::::::::
corresponding

:::::::
footprint

::
is
:::::::::
simulated.

:::::
Each

:::::::
receptor is

randomly sampled across months, days, and hours in 2020 and 2021 to expose the model to diverse meteorological states. In

the enhanced sampling regions, we generated approximately 2,500 pseudo-observations
:::::::
footprints

:
per domain, capturing local

variation in winds, boundary layer dynamics, and terrain.

These 500,000 pseudo-observations
:::::::
footprints

:
were split into two training configurations. The first, which we refer to as85

the out-of-sample FootNet, excludes all data from
::::
2020

::::
and

:
two regions: the bulk of California and much of Texas.

:::
The

:::::::::::
out-of-sample

::::::::
FootNet

::::
uses

::::::::
footprints

:::::
from

:::::
2021

:::
for

:::::::
training.

:
Within these two regions are two case studies reserved for

later out-of-sample evaluation: the San Francisco Bay Area (Domain A) and the Barnett Shale region (Domain B).
:::::
These

:::::::::::
out-of-sample

::::::::::
evaluations

:::
are

:::::
done

::::
using

::::
the

::::::::::
observations

:::::
from

:::::
2020.

:
The second configuration, the in-sample FootNet, in-

cludes all 500,000 observations
::::
from

::::
both

:::::
2020

::
&

:::::
2021, and provides a high-capacity emulator suitable for deployment.

:::
For90

::::::::
validation

:::
and

:::::::
testing,

::
we

:::::::::
randomly

:::::
picked

::::::::
400×400

::::
km2

::::::::::
subdomains

:::::::
(similar

::
to

::::::
Figure

::
2)

::::
with

::::::::
enhanced

:::::::
temporal

:::::::::
sampling,
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Features Surface 
FootNet

Column 
FootNet

U10m, V10m ✓ ✓

PBL Height ✓ ✓

Surface Pressure ✓ ✓

U850hPa, V850hPa ✓

U500hPa, V500hPa ✓

Temperature 850hPa ✓

Gaussian Plume ✓ ✓

Linear distance 
from receptor ✓ ✓

Exponential Distance 
from receptor ✓ ✓

Gaussian Plume 
Network mask ✓ ✓
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Figure 1. Schematic of the UNet++ architecture used in FootNet v3.
:::
The

::::
green

:::::
circles

:::
and

:::::
green

:
&
::::
blue

:::::
arrows

:::::::
represent

:::
new

:::::
layers

:::
and

::::
their

:::::::
respective

:::::::::
connections

::::::::
compared

::
to

::
the

:::::
earlier

:::::
U-Net

:::::::::
architecture.

:
Input features include meteorological fields, Gaussian plumes, and spatial

context features. The model outputs the predicted footprint sensitivity for a given pseudo-observation
::::::::
observation. All meteorological inputs

include fields from 0hr, 6hr, 12hr,
:::
18hr,

:
and 24hr before the receptor time.

:::
The

::::::
U-Net++

:::::::::
architecture

::
is
::::::
adapted

::::
from

::::::::::::::
Zhou et al. (2018).

::
as

::::
well

::
as

::::::::
footprints

:::::::::
computed

::
for

:::::::::
randomly

:::::::
sampled

::::::::
receptors

:::::
across

:::::::
CONUS

::::
that

::
do

:::
not

::::::::::
correspond

::
to

:::
the

:::::::
training

:::::::
receptor

::::::::
locations.

:::
We

::::
used

::::::
50,000

::::::::
footprints

::::::::
randomly

::::::::
sampled

::
in

::::
2020

::::
and

::::
2021

:::
for

::::::
testing

:::
and

:::::::::
validation.

:

Each pseudo-observation was simulated using STILT (Lin et al., 2003; Fasoli et al., 2018) for surface footprints and X-

STILT (Wu et al., 2018) for column-averaged footprints, using NOAA High Resolution Rapid Refresh (HRRR) meteorology95

at 3 km resolution regridded to 1 km.
:::
The

:::::::::
trajectories

:::::
were

::::::::
simulated

:::::::::
backward

::
in

::::
time

:::
for

:::
72

:::::
hours,

:::
or

::::
until

:::
the

::::::::
particles

:::::
exited

:::
the

:::::::
domain,

:::::::::
whichever

:::::::
occurred

:::::
first. Surface and column simulations were co-located in space and time, providing a

matched training set across footprint types. The result is a comprehensive dataset enabling FootNet to learn robust mappings

from meteorological inputs to transport sensitivities across CONUS.

As mentioned above, we trained two models using the same general architecture: one for surface footprints and one for100

column-averaged footprints. Inputs to each model include meteorological fields interpolated from HRRR to 1 km resolu-

tion. These
:::
This

::
is
:::::

done
::
to

::::::
ensure

::::
that

::
all

::::
the

::::
input

:::::
fields

:::::
(e.g.,

:::::::::::
meteorology,

::::::::
Gaussian

::::::
plume,

:::::
etc.)

:::
are

::
at

:::
the

:::::
same

::::::
spatial

::::::::
resolution.

::::::
These

::::::::::
meteorology

:
fields include zonal and meridional wind components, temperature, surface pressure, and bound-

ary layer height sampled at 0hr, 6hr, 12hr,
::::
18hr,

:
and 24hr before the receptor time (i.e., backward in time).

::
We

::::::
found

:::::::
minimal

:::::::::::
improvement

::
in

:::::::::::
performance

:::::
when

::::::::
including

::::::::::::
meteorological

::::::
inputs

:::::
more

::::
than

:::
24

:::::
hours

::::::::
backward

::
in

:::::
time.

:
To guide spatial105

structure, we include the linear distance to the receptor and a simplified Gaussian plume estimate derived from surface winds.

Importantly, many of these fields do not need to be stored on disk and can be computed through a few floating point operations.
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Obs per month

SF BEACO2N Sites TROPOMI CH4 Obs

Figure 2. (Top panel) Pseudo-observation locations
::::::::
Receptors

:
for training

:::::::::::
out-of-sample

:
FootNet. Gray dots indicate individual

pseudo-observations
:::::::
receptors

:
sampled uniformly across CONUS. Red stars show centers of 400×400 km2 subdomains with enhanced

temporal sampling. Domains A and B are withheld in the out-of-sample training configuration. Supplemental Figure S1 shows the full train-

ing data used for the generalizable
:::::::
in-sample

:
FootNet model. (Bottom row ) Shows

::::
shows

:
the observational networks used in both case

studies. Background satellite imagery is taken from Google Maps.
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Table
:::
The

::::::::
“Inputs”

::::
table

:
in Figure 1 indicates the fields that must be loaded from disk and which are computed on-the-fly.

Column footprint
::::::
FootNet

:
models additionally incorporate winds at 850 and 500hPa, and temperature at 850hPa. These fea-

tures enable the model to learn sensitivity to both near-surface and free-tropospheric transport. The model outputs a footprint110

field matching the domain of the meteorological input grid. We use mean squared error as the primary loss function, with an

optional penalty on total footprint mass to encourage mass conservation (mass conservation is described later).

The size of the full training data set is 30 TB. Given the scale of the training set, we distributed training across 18 NVIDIA

A2 GPUs (16GB memory) using PyTorch’s Distributed Data Parallel (DDP) framework. Each GPU processes a distinct shard

of the data, with gradients synchronized through NVIDIA’s NCCL backend. This reduced training time from several months115

on a single GPU to under 10 days. Once trained, FootNet can compute a footprint in under a second on a single GPU. This rep-

resents a 650× speedup relative to the full-physics
:::::::::::
physics-based

:
model and enables near-real-time inference in flux inversion

workflows.

An important question we encountered while generalizing FootNet over the whole CONUS was “how many training samples

do we need to ensure generalizability of the FootNet model?” To quantify how training set size impacts model skill, we trained120

multiple versions of FootNet using subsets of the full 500,000-sample dataset. Each version was trained from scratch with

the same architecture, loss function, and training protocol. Figure 3 summarizes the evolution of validation loss over training

epochs and the minimum loss achieved for each subset size. Figure 3a shows that models trained on smaller datasets converge

more slowly and to higher final loss values. Increasing the number of training samples yields consistent gains in predictive

skill up to roughly 100,000 examples. Beyond this point, improvements begin to saturate, suggesting diminishing returns on125

validation loss for additional data. This asymptotic behavior is consistent for both surface and column-averaged footprint

models (Figure 3b). These results indicate that FootNet’s generalization benefits from large and diverse training data but

also suggest that moderately sized, region-specific training efforts may be sufficient to fine-tune for local applications. For

generalizable inference across CONUS, however, the full training set remains essential.

Mass conservation is a defining feature of physical transport models, and its absence can lead to artifacts in source-receptor130

relationships. This may be particularly problematic when used in a flux inversion as one may infer erroneous fluxes that

do not conserve mass. While traditional LPDMs enforce conservation through explicit particle tracking and boundary layer

diagnostics, machine learning models such as FootNet lack built-in physical constraints. Here, we explore whether a simple

regularization strategy can help enforce mass conservation without degrading predictive skill.

The footprint value for a pixel at a given timestep is directly proportional to the mass of the air parcel (Lin et al., 2003). As135

such, we modified the loss function used during training to include a penalty on the difference in total mass between the ith

predicted footprint hi and the reference footprint ĥi from STILT or X-STILT:

L(hi, ĥi) =MSE(hi, ĥi)+α

∣∣∣∑hi −
∑

ĥi

∣∣∣∑
ĥi

, (2)

where α is a tunable penalty weight and MSE is the mean squared error. The second term acts as a soft constraint, discouraging

total footprint biases without imposing strict conservation.140
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Figure 3. Training set size versus model performance. (A) Evolution of validation loss for surface footprint models trained with different

dataset sizes. (B) Minimum validation loss for surface and column models as a function of training set size.
:::::
Results

:::::
shown

:::
are

:::
for

:
a
:::::
single

:::::
random

:::::
seed.

We conducted a sensitivity analysis to assess how this constraint affects performance. Figure 4 shows the trade-off between

validation loss (MSE) and normalized footprint mass error for different values of α. For surface footprints, modest penalty

values (i.e., α= 1000) reduce mass conservation errors without significantly increasing validation loss. Larger values of α

overly constrain the network and degrade performance. For column footprints, we found no clear benefit to including a mass

penalty, and the final column model was trained with α= 0.145

Although this penalty is not a substitute for explicit mass-tracking, it offers a lightweight and computationally efficient way

to discourage unphysical footprint predictions. Other approaches for mass conservation could be explored in future work (e.g.,

Sturm and Wexler, 2020; Wang and Gupta, 2024; Meng et al., 2025). This approach may be especially useful in applications

where integrated footprint magnitude directly affects inversion results.

To evaluate how well FootNet generalizes across space and observation type, we compare predicted footprints against STILT150

and X-STILT outputs in regions and conditions not used during training. Figure 5 shows representative examples drawn from

the independent test set, including surface and column-averaged footprints across a range of meteorological states. In each case,

FootNet captures the dominant spatial structure of the reference footprint, including the directionality imposed by wind fields

and the localization associated with boundary layer mixing. For example, in Massachusetts, the model reproduces a classic

Gaussian plume aligned with surface winds for a hypothetical surface observation. In Michigan, we can see that the X-STILT155

column footprint hugs the shoreline of Lake Michigan and FootNet reproduces this complex spatial pattern with high fidelity.

Similarly, a column example from Utah shows a complex footprint shaped by topography and mesoscale flows, which is well-

approximated by FootNet. In Texas, the large-scale flow is consistent between FootNet and STILT, but STILT exhibits sharper,

more localized structures, whereas FootNet yields a smoother footprint. While STILT’s spatial structure is more physically

7



Figure 4. Trade-off between validation loss (mean squared error; MSE) and normalized
::::::::
percentage footprint mass difference for different

values of α in the surface
::::::
FootNet model.

realistic (as it directly solves the governing equations), it is not necessarily more accurate due to potential biases in the driving160

meteorological fields. Highly localized but biased footprints could introduce artifacts in GHG flux inversions. In this context,

the smoother prediction from FootNet may actually be preferable.
::::::::
However,

::
it

::
is

::::::::
important

::
to

::::
note

::::
that

:::::::
FootNet

::
is
:::::::

trained

::
on

::::::
STILT

:::
and

:::::::::
X-STILT.

:::
As

::::
such,

::::
the

::::::::
improved

:::::::::::
performance

::::::
against

::::::::::
independent

:::::::::::
atmospheric

::::::::::
observations

:::::::
implies

::::
that

:::
the

:::::::::
smoothness

::
is

:::::::::
mitigating

:::::::::
underlying

:::::
model

::::::
errors.

:::
We

:::
also

::::
note

::::
that

::::
other

:::::::::
approaches

:::::
have

::::
been

::::::::
developed

::
to

:::::::
mitigate

::::::::
transport

:::::
errors

:::::
within

::::::::::::
physics-based

:::::::
models

::::
and

::::::::
inversion

::::::::::
frameworks.

::::
For

::::::::
example,

:::::::::::
incorporating

:::::::::
stochastic

:::::
wind

::::::::::
uncertainties

:::
to165

:::::::
enhance

::::::::
dispersion

:::::::::::::::::::
(Lin and Gerbig, 2005)

:
,
:::
and

::::::::
explicitly

:::::::::
accounting

:::
for

:::::::::
correlated

:::::::
transport

:::::
errors

::::
over

:::
the

::::::::
footprint

:::::::
duration

:::::::::::::::
(Jones et al., 2021)

:
. Overall, Figure 5 shows that FootNet reproduces footprints with high fidelity across a wide range of

conditions.

As noted in Dadheech et al. (2025) and can be seen in Figure 5, FootNet outputs are often smoother than those from

LPDMs, which can exhibit sharp boundaries due to discrete particle trajectories.
:::::::
Machine

:::::::
learning

:::::::
models

:::::::::
generalize

:::
by170

::::::
finding

::
an

:::::::::
underlying

:::::
trend

::::::
instead

::
of

:::::
fitting

:::::
every

::::
noisy

::::
data

:::::
point

::::::::::::::::
(Shukla et al., 2021)

:
.
:::::::
FootNet

:::::
model

::::::::::
architecture

:::::::
consists

::
of

:::::::::::
Convolutional

::::::
Neural

::::::::
Network

::::::
(CNN)

:::::
layers

:::
that

:::::::
perform

::::::::::
convolution

:::::::::
operations

::
on

::::
local

:::::::::::::
neighborhoods

::::::
instead

::
of

:::::::::
processing

::::::::
individual

:::::
pixels

:::::::::::::
(Bishop, 2006).

:::::
These

:::
are

:::
the

::::
two

::::::
primary

:::::::
reasons

::::
why

:::
the

:::::::
FootNet

:::::
model

::::::::
produces

::::::::
smoother

::::::
outputs.

:
While

this smoothing can obscure fine-scale structure, it reduces sensitivity to meteorological noise and can improve stability in

inversion settings. These results demonstrate that FootNet reliably reproduces transport patterns across diverse regions and175
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Surface observations Column observations

Figure 5. Comparison of FootNet-predicted footprints (right column) with STILT or X-STILT footprints (left column) for randomly selected

test examples. Green stars mark receptor locations; blue arrows show instantaneous wind direction. Examples span both surface and column

footprints across multiple CONUS regions.

observation types. This generalization is essential for scaling inversion systems to new domains without re-running expensive

transport simulations.

To assess FootNet’s sensitivity to the meteorological inputs used in training and evaluation, we tested its ability to generate

footprints using meteorology from the Global Forecast System (GFS), which differs substantially from the HRRR fields on

which FootNet was trained. Specifically, we compared footprints generated by FootNet using GFS meteorology to STILT foot-180

prints computed with GFS meteorology. Figure 6 shows footprint comparisons for the same receptors in the San Francisco Bay

Area. We note that these footprints were withheld from the FootNet training process. FootNet predictions using HRRR meteo-

rology closely match STILT-HRRR footprints, as expected.
:::::::
Notably,

:::::
higher

::::
bias

::::::
occurs

:::
for

::::
small

::::::::
footprint

::::::
values,

::::::::::
particularly

::
in

::
the

::::::::
far-field,

:::::
where

:::
the

::::::::::
smoothness

::
of

:::::::
FootNet

::::::::
footprints

::::::
results

::
in

::::::::
deviations

:::::
from

:::
the

::::::
ground

::::
truth

::::::
STILT

::::::::
footprints.

:
When

driven with GFS meteorology, FootNet footprints still capture the overall structure and magnitude of the STILT-GFS footprints,185
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Figure 6. Comparison between FootNet and STILT footprints using different meteorological inputs. The x-axes show STILT-simulated

footprint values using HRRR (left) and GFS (right) meteorology. The y-axes show corresponding FootNet predictions using the same mete-

orological inputs. FootNet was trained exclusively on HRRR data and has never seen GFS meteorology. All predictions are made at the same

receptor locations and compared against independent test footprints withheld from training.
::::
Each

:::
data

::::
point

::
in

:::
the

:::
plot

::::::::
represents

:
a
:::::::
non-zero

:::::::
influence

::::
pixel

::::
from

:::
one

::
of

::
the

::::
5000

::::::::
randomly

::::::
sampled

::::::::
footprints

:
in
:::
the

:::
test

:::
set.

:::
The

:::
unit

::
of
:::
the

:::::::
footprints

::
is
:::::::::
ppm/(µmol

::::
m−2

::::
s−1).

despite being trained using meterology
::::::::::
meteorology

:
from HRRR. These results suggest that FootNet is learning the underlying

physical relationship between meteorology and the source-receptor relationship.

This further suggests that while FootNet is optimized for the meteorology on which it is trained, it maintains skill when

driven by alternate meteorological products. This
:
is

::::::::
important

:::::::
because

::::::
HRRR

::
is
::::
only

::::::::
available

::::
over

::::::::
CONUS,

:::::::
whereas

:::::
GFS

:
is
::

a
::::::
global

:::::::
product.

::::
This

:
means that FootNet could likely

:::
can

:
be used in domains outside of where it was trained

:::::::
CONUS190

::::
with

::::
GFS

::
or

::::
any

:::::
other

::::::
global

:::::::::::
meteorology

:::::::
products. Given the known discrepancies between meteorological models and

among LPDMs themselves, these differences seen in Figure 6 fall within expected tolerances. For instance, STILT and FLEX-

PART can produce larger disagreement
::::::
similar

::
or

:::::
larger

::::::::::::
disagreements than observed here when run under similar conditions

::::::::::::::::::::::::::::::::::
(Karion et al., 2019; Munassar et al., 2023). This flexibility allows FootNet to support flux inversions using multiple sources

of meteorology, including global reanalysis products, and implies that FootNet may perform well in simulating atmospheric195

transport in out-of-sample domains.
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3 Evaluating in-sample and out-of-sample flux inversion performance

A central aim of this study is to assess whether FootNet can enable high-resolution flux inversions in regions excluded from

training. To test this, we conducted flux inversion experiments using both surface and column observations in two held-out

domains: the San Francisco Bay Area (Domain A) and the Barnett Shale region in Texas (Domain B). For each domain, we200

performed three inversions using: (1) a full-physics
:::::::::::
physics-based

:
LPDM (baseline), (2) an in-sample FootNet model trained

on all of CONUS, and (3) an out-of-sample FootNet model trained with data from
::::
2021

::::
and the target domain withheld (see

Fig. 3). These experiments evaluate the generalizability of FootNet in practical inversion settings. The in-sample model was

trained on 500,000 samples, including data from Domains A and B, while the out-of-sample models excluded data from the

evaluation domain. In contrast, the out-of-sample models excluded all examples from the corresponding evaluation
::::
both

::
of

:::
the205

::::::::
evaluation

:
domains. Demonstrating accurate inversions under this setup is critical for scaling flux estimation frameworks to

other observation networks.

For Domain A (San Francisco Bay Area), we used hourly CO2 observations from the BEACO2N network between February

and May 2020. Inversions used three footprint configurations: STILT (baseline), in-sample FootNet, and out-of-sample FootNet

(with no Bay Area training data). All inversions used the same Bayesian framework and prior fluxes, based on previous work210

(McDonald et al., 2014; Turner et al., 2016, 2020; Dadheech et al., 2025). For Domain B (Barnett Shale), we performed daily

methane inversions using TROPOMI column data between February and April 2020. The same three configurations were

applied: X-STILT (baseline), in-sample FootNet, and out-of-sample FootNet (excluding Barnett Shale data). All inversions

used the same Bayesian framework and prior fluxes, with the Environmental Protection Agency (EPA) anthropogenic methane

emission inventory as the prior (Maasakkers et al., 2023). A detailed description of the inversion setup for Domain
:::::::
Domains

::
A215

::
& B is provided in Appendix A.

Figures 7 and 8 show inversion performance against CO2 and methane observations withheld from the inversions. All

statistics are computed using these independent observations. The out-of-sample FootNet setup (bottom rows in Figs. 7 and 8)

evaluates model performance in regions entirely excluded from training, constituting a rigorous test of spatial generalization.

Unlike previous work that included training data from the San Francisco Bay Area, albeit for different time periods (Dadheech220

et al., 2025). This configuration directly probes FootNet’s extrapolation capability.

Figure 7 summarizes the Bay Area inversion results. Both in-sample and out-of-sample FootNet models produce smoother

footprints than STILT, leading to broader cumulative influence. Consistent with the findings of Dadheech et al. (2025), FootNet

outperforms STILT when compared against independent CO2 observations. The key distinction here is that FootNet achieves

this performance even when trained exclusively on data outside of the region. All three configurations identify high emissions225

along freeways and around the Bay. Overall, the FootNet models exhibit better correlation and lower mean squared error

(MSE) than STILT. Notably, the out-of-sample model performs on par with the in-sample model and slightly better than

STILT, demonstrating successful generalization.
:::::
Fluxes

:::::::
inferred

:::::
using

:::::::
FootNet

::::::::
footprints

:::
are

::::::
slightly

:::::
more

:::::::
diffusive

::::
than

:::::
those

::::::
inferred

:::::
using

::::::
STILT

:::::::::
footprints,

::::::
though

:::
the

::::::::
difference

::
in

:::
the

:::::::::::
distributions

::
is

::::
small

::::
(see

::::::
Figure

::::
S6).
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Figure 7. CO2 inversion results in the San Francisco Bay Area using STILT, in-sample FootNet, and out-of-sample FootNet footprints. (Left

column) Cumulative footprint influence. (Middle column) Posterior CO2 flux inferred from the BEACO2 network. (Right column) Compari-

son of observed and simulated CO2 concentrations from an independent test set using the corresponding posterior fluxes. Observations were

drawn using a consistent seed across experiments. White contours in the left column represent the 60th percentile of the cumulative
:::::::
footprint

influence.
:::
The

:::::::::
percentage

::::::::
cumulative

:::::::
influence

::
is

:::::
relative

::
to
:::
the

::::::::
cumulative

:::::::
footprint

:::
sum

:::
for

::::
each

:::
grid

:::::
point.

12



Figure 8. Methane inversion results in the Barnett Shale, TX using X-STILT, in-sample FootNet, and out-of-sample FootNet footprints.

(Left column) Cumulative footprint influence. (Middle column) Posterior methane flux inferred from the TROPOMI observations. (Right

column) Comparison of observed and simulated methane concentrations from an independent test set using the corresponding posterior

fluxes. Observations were drawn using a consistent seed across experiments. White contours in the left column represent the 60th percentile

of the cumulative
::::::
footprint

:
influence.

:::
The

::::::::
percentage

:::::::::
cumulative

:::::::
influence

:
is
::::::
relative

::
to

:::
the

::::::::
cumulative

:::::::
footprint

:::
sum

:::
for

:::
each

::::
grid

::::
point.
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Figure 8 shows the inversion results for the Barnett Shale. As in the Bay Area, FootNet produces smoother footprints than230

X-STILT while preserving the key spatial structure and magnitude of the posterior fluxes. The inferred methane emissions from

both FootNet models are in close agreement with those from X-STILT. Evaluation against held-out TROPOMI observations

shows comparable correlation and slightly improved MSE. Again, the out-of-sample FootNet performs similarly to the in-

sample model and X-STILT.

Together, these results demonstrate that FootNet enables accurate, high-resolution flux inversions in regions entirely ex-235

cluded from training. This eliminates the need for site-specific retraining or precomputed footprint libraries, establishing Foot-

Net as a scalable solution for real-time greenhouse gas monitoring across broad spatial domains.

4 Interpreting model predictions: feature importance

To identify which inputs contribute most to model predictions, we applied the Permute-and-Predict (PaP; Fisher et al., 2019)

method to 5,000 examples from the test set. The PaP method estimates the feature importance by measuring the drop in model240

performance when each input feature is randomly shuffled within a sample. A greater drop in performance indicates the higher

importance of that feature to the model. This approach reveals the relative importance of each input to footprint prediction.

Figure 9 shows the six most influential features for both surface and column models. In both cases, the Gaussian plume proxy

is the top feature. This synthetic field encodes a directional prior based on surface winds and provides a strong initial guess of

footprint location and spread. Zonal and meridional wind components at the time of observation also rank highly, consistent245

with their role in advecting plumes.

Interestingly, distance to receptor is also among the most important features. This variable captures spatial proximity and

helps the model balance near- and far-field sensitivity. Other meteorological features such as boundary layer height, tempera-

ture, and pressure appear less influential but still contribute meaningfully to the full prediction. The overall ranking of features

is consistent across surface and column models, suggesting that both variants rely on similar transport-relevant signals. Supple-250

mentary Figures S2 and S3 provide a complete ranking of all inputs. Overall, the consistency of the identified features and their

importance in atmospheric transport indicates that FootNet is learning physically meaningful drivers of atmospheric transport.

Because FootNet is learning physically meaningful relationships, it is able to extrapolate to out-of-sample footprints with high

fidelity.

5 Conclusions255

Dense, high-resolution atmospheric GHG observations from surface networks and satellites offer the potential to constrain

regional emissions at unprecedented spatiotemporal scales. However, the computational demands of full-physics
:::::::::::
physics-based

atmospheric transport models have become a central bottleneck for flux inversion systems operating at these resolutions.

Previous work introduced FootNet as a proof-of-concept deep learning emulator of atmospheric transport (He et al., 2025;

Dadheech et al., 2025). In this study, we developed and evaluated FootNet v3, a machine learning emulator of atmospheric260
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Figure 9. Top six input features ranked by importance using the Permute-and-Predict (PaP) method. Features are sorted by their relative

impact on model loss when permuted. Surface and column models show consistent ranking patterns. Suffixes on the variable names indicate

the timestep (e.g., “V10M t0H” means the v-component of the 10-meter winds at the receptor time whereas “V10M t-6H” is from 6 hours

before the receptor time).

transport trained on half a million pseudo-observations
:::::::
footprint

::::::::
examples across the contiguous United States. FootNet v3 uses

a U-Net++ architecture and includes a soft mass-conservation constraint, enabling it to predict source-receptor relationships

for both surface and column-averaged observations. It generalizes to previously unseen regions and meteorological conditions

and is several orders of magnitude faster than traditional models, enabling it to function as a full surrogate for LPDMs without

site-specific retraining or full-physics
::::::::::::
physics-based simulations.265

We showed that FootNet replicates key structures in transport footprints across diverse terrain and weather conditions.

Its predictions maintain skill even when driven with out-of-sample meteorological forcing. This was demonstrated by FootNet

accurately simulating footprints using GFS meteorology despite being trained with HRRR meteorology. We argue that FootNet

is learning the fundamental relationship between meteorology and source-receptor relationships.
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Further, we conducted GHG flux inversions with hourly CO2 observations in the San Francisco Bay Area, and daily column-270

averaged methane observations in the Barnett Shale region. We conducted three GHG flux inversions for both of these regions:

first with full physics
:::::::::::
physics-based

:
LPDM footprints, the second with in-sample FootNet footprints, and the third with out-of-

sample FootNet footprints. In the Bay Area, both in-sample and out-of-sample FootNet outperformed STILT when evaluated

against withheld CO2 observations. In the Barnett Shale, FootNet performed comparably to X-STILT. These results demon-

strate that FootNet v3 generalizes robustly across the CONUS region and does not require retraining to support high-quality275

flux inversions. These results strongly suggest that the FootNet model is robustly trained and generalizes well across the entire

CONUS region and beyond. The consistency of the identified features and their importance in atmospheric transport indicates

that FootNet is learning physically meaningful drivers of atmospheric transport and, as such, it is able to extrapolate to out-

of-sample footprints with high fidelity. These findings show that machine learning models can learn the physics
:::::::::
underlying

:::::::
physical

:::::::::::
relationships governing atmospheric transport, which allows them to extrapolate to out-of-sample scenarios.

::::
This280

:::::::::
framework

::::
used

::
to

:::::::
develop

::
the

:::::::
FootNet

::::::
model

:::
can

::::::::::
conceivably

:::
be

::::
used

::
to

::::::
emulate

::::::
larger

::::::::::::::
continental-scale

::::::::
transport.

::::::::
However,

:
it
::::
may

::::::
require

:::::
other

::::
input

:::::::
features

::
to

:::::
better

::::::::
represent

:::::::::
large-scale

:::::::::
processes.

:

FootNet’s ability to compute footprints in near-real time opens the door to scalable, low-latency GHG inversion systems

capable of ingesting large volumes of in situ and remote sensing data. This work overcomes a critical computational bottleneck

and paves the way for widespread deployment of flux inversion frameworks to support timely, actionable GHG monitoring285

across sectors and regions. Future extensions may focus on improving model interpretability, supporting probabilistic footprint

estimates, and expanding training to include global domains. Nonetheless, the present results demonstrate that machine learning

emulators can enable high fidelity footprints on-the-fly within a flux inversion. These emulators can further meet the accuracy

and generalization demands of operational inversion systems and, for the first time, achieve out-of-sample transport fidelity

sufficient for scientific and policy applications.290

Code availability. The code for this study is available at https://github.com/nd349/FootNet and https://doi.org/10.5281/zenodo.16010441

(Dadheech and Turner, 2025a, last access: 16 July 2025). The basic tutorials on how to use the FootNet models are available at this website:

https://footnet-uw.github.io/index.html.

Data availability. CO2 data are available at http://beacon.berkeley.edu/Sites.aspx (Shusterman et al., 2016). TROPOMI methane data are

available at https://dataspace.copernicus.eu/ (Veefkind et al., 2012). NOAA HRRR data is available at https://rapidrefresh.noaa.gov/hrrr/. 50295

GB of example training was uploaded to https://doi.org/10.5281/zenodo.16011454 (Dadheech and Turner, 2025b, last access: 16 July 2025).

Appendix A: Description of the Barnett Shale flux inversion
:::::::::
inversions

We performed a high-resolution
:::::
hourly

:::::::
surface

::::
CO2::::

flux
:::::::
inversion

::::
over

:::
the

::::
San

::::::::
Francisco

::::
Bay

:::::
Area

::::
using

::::::
hourly

::::::::::
BEACO2N

::::
CO2 ::::

data
:::::
from

::::::::
February

:
2
:::

to
::::
May

::
5,
::::::

2020,
::::::::
including

::
a
:::
36

:::::
hours

:::::
buffer

:::
on

::::::
either

:::
end

:::
of

:::
the

:::::::
analysis

::::::::
window.

:::
We

:::::
used
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:
a
::::::::
Bayesian

:::::::::
framework

::::::
across

::
a
::::
1×1

::::
km2

::::
grid

:::
for

::::
this

:::::
CO2 :::::

urban
::::
flux

::::::::
inversion.

::::
The

:::::
prior

::::::::
emissions

:::::
were

:::::::
adapted

:::::
from300

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(McDonald et al., 2014; Turner et al., 2016, 2020; Dadheech et al., 2025).

::::
The

::::
state

:::::
vector

::::::::
consisted

::
of

::::::
15.4M

::::::::
elements,

::::::::::
representing

:::::
hourly

:::::::
average

:::::
fluxes

::::::
across

::::
space

::::
and

::::
time.

:::
We

::::
used

:::
the

:::::::::
Kronecker

::::::
product

::::::::::::
decomposition

::
of

:::::::::::::
spatiotemporal

:::::::::
covariance

::
to

::::::::
construct

:::
the

:::::
prior

::::
error

:::::::::
covariance

::::::
matrix

:::
B

:::::::::::::::::::::::
(Yadav and Michalak, 2013)

:
.
:::
We

::::::::
assumed

:
a
:::::
50%

::::::
relative

:::::
error

::
for

:::::
each

::::
state

::::::
vector

:::::::
element

::::
with

:::::::::
correlation

:::::::
lengths

::
of

::
5
::::::
hours,

:::
one

::::
day,

::::
and

::
5

:::
km.

::::
The

::::::::::::
measurement

:::::
error,

::::::::::
background

:::::::::::
concentration

::
&

:::::
error

:::
are

:::::::
adapted

::::
from

:::::::::::::::::
Turner et al. (2020).

::::
The

:::::::::
correlation

:::::::
lengths

::
of

::
1

::::
hour

::::
and

:
2
::::

km
::::
were

:::::
used

:::
for

:::
the305

::::::::::
off-diagonal

:::::
terms

::
of

:::
the

:::::::::::
observational

:::::
error

:::::::::
covariance

::::::
matrix.

:
A
:::::::::::::

high-resolution, column-averaged methane flux inversion
:::
was

:::::::::
performed

:
over the Barnett Shale using daily TROPOMI

retrievals from February 1 to April 30, 2020, including a 7-day buffer on either end of the analysis window. The inversion was

conducted using a Bayesian framework to optimize methane fluxes across a 1×1 km2 grid. The prior emissions were based on

the 2018 EPA gridded anthropogenic methane inventory (Maasakkers et al., 2023), downscaled from native resolution to 1 km310

using spatial disaggregation. These included emissions from fossil fuel production, waste, and agriculture. Biogenic or natural

sources were excluded. The state vector consisted of 7.4 million elements, representing daily average fluxes across space

and time. The prior error covariance matrix B was constructed as a separable spatiotemporal covariance using a Kronecker

product decomposition (Yadav and Michalak, 2013), with 50% relative error applied to each state vector element and 7-day

temporal and 5 km spatial correlation lengths. This setup yields a smooth and physically plausible prior while remaining315

computationally tractable.
:::
We

::::
used

::::::::::
TROPOMI

:::::::
methane

::::::
mixing

::::
ratio

::::::::
precision

::::
data

::
as

:::::::::::
measurement

::::::::::::
uncertainties,

:::
and

::
7

::::
days

::
&

::
50

::::
km

::
of

:::::::::
correlation

:::::::
lengths

:::
for

:::
the

:::::::::::
off-diagonal

:::::
terms

::
of

:::
the

::::::::::::
observational

::::
error

::::::::::
covariance

::::::
matrix.

::::
For

:::::::::
simplicity,

:::
we

:::::::
assumed

:::
the

::::::
model

::::
error

:::
is

:::::
equal

::
to

:::
the

::::::::::::
measurement

:::::
error.

:::
The

:::::::::
inversion

::::::
domain

::::::::
includes

:
a
::::::

buffer
::
to

::::::
reduce

::::
the

::::::
impact

::
of

:::
the

::::::::
boundary

::::::::::
conditions.

:
To estimate the background column concentration

:::
and

:::::::::::
uncertainties for each observation, we

implemented a directional sectoring scheme:320

– The inversion domain was surrounded by eight azimuthal sectors.

– For each TROPOMI observation, the sector aligned with the prevailing wind direction was selected based on HRRR-

derived wind fields.

– The mean methane concentration from TROPOMI pixels in that upwind sector (outside the inversion domain) was used

as the background.325

–
:::
The

::::::::
standard

::::::::
deviation

::
of

:::::::
methane

::::::::::::
concentration

::::
from

::::::::::
TROPOMI

::::::
pixels

::
in

:::
that

:::::::
upwind

::::::
sector

:::::::
(outside

:::
the

::::::::
inversion

:::::::
domain)

:::
was

::::
used

:::
as

:::
the

:::::::::
background

::::::::::
uncertainty.

:

Wind direction and trajectory length were determined using a simple back-trajectory estimate based on particle travel time at

the mean wind speed. Each TROPOMI ground pixel was divided into 1×1 km2 subpixels to account for its spatial footprint.

For each subpixel, we computed source-receptor relationships (footprints) using one of three models: X-STILT (baseline),330

in-sample FootNet, out-of-sample FootNet (see Figure 2). The subpixel-level footprints were then aggregated to the native
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TROPOMI pixel resolution. Figure A1 shows this process. All three inversions used identical observational and prior configu-

rations to isolate differences due to the transport model
:
.

Appendix B:
::::::::
Gaussian

::::::
plume

:::::
model

:::
The

::::::::
Gaussian

:::::
plume

::::::
model

::
is

::::::
adapted

:::::
from

::::::::::::::::
Nassar et al. (2017),

::::
and

:::::
below

:::
are

:::
the

::::::::
equations

:::
we

::::
used

::
to

:::::::
compute

:::
the

::::::::
Gaussian335

::::::
plume:

V (x,y) =
F√

2πσy(x)u
e

−1
2 ( y

σy(x)
)2

::::::::::::::::::::::::::::

(B1)

σy(x) = a(
x

xo
)0.894

::::::::::::::::

(B2)

:::::
where

::
V

::
is
:::

the
:::::::

vertical
:::::::
column

::
in

:::::
g/m2

::
at

::::
and

::::::
upwind

:::
of

:::
the

::::::::
receptor.

::::
The

:
x
::::::::

direction
::

is
:::::::

parallel
::
to
::::

the
:::::::
reversed

:::::
wind

::::::::
direction,

:::
and

:::
the

::
y
::::::::
direction

::
is

:::::::::::
perpendicular

::
to
:::
the

:::::
wind

::::::::
direction.

::
F
::

is
::::

the
:::::::
emission

::::
rate

::
in

:::
g/s,

::::::
which

:::
can

:::
be

:::::::
assumed

:::
as340

:
a
:::::::
constant

:::::
(here

:::
we

::::::::
assumed

::
F

::
=

::
1).

::
u
::
is
:::
the

:::::
wind

::::::
speed,

::
σy::

is
::::

the
:::::::
standard

::::::::
deviation

::
in

:::
the

::
y
::::::::
direction.

:::
xo::

=
::::::
1000m

::
is
::
a

:::::::::::
characteristic

::::::
length,

:::
and

::
a

:
is
:::
the

:::::::::::
atmospheric

::::::
stability

:::::::::
parameter,

::::::
which

:::
we

::::::::
determine

:::
by

:::::::::
classifying

:
a
::::::
source

::::::::::
environment

:::
by

::
the

::::::::::::::
Pasquill-Gifford

:::::::
stability

:::::::::::::::::::::::::::::
(Pasquill, 1961; Nassar et al., 2017).
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Figure A1. Construction of the TROPOMI footprint at 1×1 km2 spatial resolution. Red stars indicate the bounding box and center of the

TROPOMI pixel. Light blue boxes are 1×1 km2 grid cells within the TROPOMI bounding box. (Left panel) shows a X-STILT footprint

for a single 1×1 km2 subpixel within the TROPOMI bounding box. (Right panel) shows the average footprint for all subpixels within the

TROPOMI bounding box. The average footprint gives a lower maximum sensitivity but distributes it over a wide region. We also observe a

gradient across the TROPOMI bounding box with increased sensitivity on the upwind (Northern) edge.
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