We thank the reviewers for their time and constructive comments on our manuscript. Our
responses are color-coded in blue.

Reviewer 1

General Comments The paper addresses the emulation of footprints generated by atmospheric
Lagrangian Particle Dispersion Models (LPDMs), which is an important problem in the field of
trace gas inverse modelling, where the computational demands are increasing due to growing
dataset sizes. In this paper, the authors demonstrate the performance of a new architecture for
their Footnet algorithm (based on U-Net++). The model is evaluated in applications of inverse
modelling of CO2 and CH4 based on in situ and column data. These evaluations are conducted
in regions where the model has been trained as well as in “out-of-sample” regions. Therefore,
the main novelty of the work lies in the model’s ability to generalize to different meteorological
conditions and geographic locations. Overall, | think the paper tackles an important subject that
is within scope for ACP. It is generally well written and structured. However, before publication, |
think so some elements of the work need to be explored more thoroughly, as there is a danger
that the claimed generalizability is over-stated, particularly since the main claims are around the
performance of the model in “out-of-sample” regions. In particular:

1. 1 think it is misleading to claim that this data-driven model out-performs a physics-based
LPDM. The authors base this claim on an apparent improvement in fit to the mole
fraction data when comparing Footnet or STILT to observations, attributing an
improvement mainly to a tendency for the machine learning (ML) model to “smooth” the
footprints (L150-L156). The way that the model has been trained (i.e., penalising any
deviations from STILT footprints) means that perfect performance of the algorithm would
be the exact retrieval of STILT footprints. If the ML model does not fit the STILT output
perfectly (which, of course, it can never do), but better fits the independent observations,
this improvement must be coincidental. Put another way, any difference in performance
to STILT must be considered a degradation in emulator performance (even if it's better fit
to some other observational dataset). What the authors have found here is potentially
interesting, and it would imply that we should smooth LPDM outputs to improve the fit to
the data. But, to me, this points to a separate systematic model error or representation
issue, rather than some benefit that somehow comes from training an emulator.

We agree that FootNet, being trained to reproduce STILT footprints, cannot exceed
STILT’s physical fidelity. The ultimate goal is to simulate atmospheric observations
and infer fluxes from atmospheric observations. What we have shown is that
FootNet outperforms STILT in this objective. As we describe in the text, the
smoother output can reduce meteorological bias/noise sensitivity and yield more
stable inversion results when evaluated against independent GHG observations. The
improved fit to mole fraction data should therefore be interpreted as a practical
advantage stemming from reduced representation errors and smoother
source-receptor fields, not as a fundamental improvement in atmospheric transport
modeling. We have added/updated text:

Line 157: However, it is important to note that FootNet is trained on STILT and
X-STILT. As such, the improved performance against independent atmospheric
observations implies that the smoothness is mitigating underlying model errors.



2. To me, it seems that the claim of “out-of-sample” generalization has only been
partially demonstrated, since the tests in “unseen regions” were performed in 2020,
which is the time period during which the inversion was being trained. Therefore, the
model has “seen” similar footprints around the same time, within a few hundred km
of the left-out region. Meteorological variables have substantial spatial and temporal
correlations. To be more out-of-sample and strengthen the claims of the work, it
would be beneficial to demonstrate the model performance in these regions in a
different year (e.g., 2022)? Additionally, it could also be tested in another country, but
| accept that this would be more challenging to set up.

We thank the reviewer for this helpful comment. In response, we removed the 2020
data from the training set and retrained the out-of-sample FootNet model using only
2021 data, while keeping the spatial domains consistent with the previous
configuration. The updated inversion results are similar to those obtained previously,
supporting the generalization capability of FootNet. We have also revised the
manuscript text accordingly and updated Figures 7 and 8.

Line 83: These 500,000 footprints were split into two training configurations. The
first, which we refer to as the out-of-sample FootNet, excludes all data from 2020
and two regions: the bulk of California and much of Texas. The out-of-sample
FootNet uses footprints from 2021 for training. Within these two regions are two case
studies reserved for later out-of-sample evaluation: the San Francisco Bay Area
(Domain A) and the Barnett Shale region (Domain B). These out-of-sample
evaluations are done using the observations from 2020.

Figure 7
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Figure 8
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3. The authors claim that the model has also been demonstrated against out-of-sample

meteorology, but | think this is probably over-stating what has been achieved. The
two products (GFS and HRRR) are based on assimilated meteorological
observations, and, whilst | don’t have direct experience of these products, I'm
assuming that they must be extremely similar to each other, especially in the lower
troposphere. Therefore, can the GFS dataset really be considered “out-of-sample”?
It will surely be almost fully correlated with HRRR.

We thank the reviewer for this important clarification and agree that HRRR and GFS
will have strong similarities, as both assimilate meteorological observations.
However, many important parameters for LPDM models are not assimilated (e.g.,
PBL height). Further, the spatial resolution of these meteorological models differs by
more than a factor of 3. Specificallyy, HRRR operates at 3 km resolution and is
limited to CONUS, whereas GFS has a coarser (~10 km) global configuration. Our
intent was not to imply complete statistical independence between these products,
but rather to test FootNet's robustness to different meteorological forcings with
distinct resolutions and model physics. The experiment therefore demonstrates that
FootNet maintains skill when applied to a coarser, globally available meteorology
product, an important step toward extending FootNet’s applicability beyond CONUS.
We have also added this brief discussion to the manuscript.



Line 184: This is important because HRRR is only available over CONUS, whereas
GFS is a global product. This means that FootNet can be used in domains outside of
CONUS with GFS or any other global meteorology products.

4. The ML model performance has been demonstrated over relatively small scales
(~400km x 400km). At these scales, I'm assuming the inversions are strongly
influenced by potential errors in boundary conditions. | don’t think this is a problem
with the approach per se, but it does seem like a limitation that should be mentioned,
since it may limit the extension of the model to some regions.

The output of the FootNet model (the footprint) is independent of the boundary
conditions for the inversion. The FootNet domain (400km x 400km) is chosen to be
substantially larger than the domain typically used for urban flux inversions to reduce
the impact of the boundary conditions. However, the reviewer is correct that all
regional flux inversions are dependent on boundary conditions. This is true for
inversions using physics-based transport models and ML models.

In our work, we use identical boundary conditions for the inversions using STILT and
FootNet, therefore differences in the results are not due to boundary conditions.
Appendix A discusses the method we used for computing boundary conditions.

Line 311: The inversion domain includes a buffer to reduce the impact of the
boundary conditions.

5. The claim that the model has “learned the physics” governing atmospheric transport
also seems like it could be misconstrued (L14, L64 and elsewhere). | suspect that
some readers will assume this is an application of physics-informed machine
learning, where the model has been informed by some underlying physical
equations. In this case, it's a purely data-driven approach, so perhaps it's better
described as a having learned relationships between meteorology and LPDM
footprints.

We have updated instances in the text to from “learned the physics” to “learned the
relationship”.

Other general comments:

6. No details are provided on the testing/validation set or metrics, which is critical for
the evaluation of this kind of paper. This certainly needs addressing, with justification
provided for the test/train split and choice of metrics. L140 and Figure 5 seems to
imply that the testing set is from the same year and location(s) as the training set.
Given the above-mentioned strong spatial and temporal correlations in the
atmosphere, this seems to be a critical limitation. It seems imperative that the testing
set is at least temporally distinct (i.e., separated in time by more than synoptic
timescales) from the training set (and, if the authors want to demonstrate spatially
out-of-sample performance, spatially distinct too).

Thank you for the suggestion. We have now added the text on the train test split.



Line 88: For validation and testing, we randomly picked multiple 400x400 km2
subdomains (similar to Figure 2) with enhanced temporal sampling, as well as
footprints computed for randomly sampled receptors across CONUS that do not
correspond to the training receptor locations. We used 50,000 footprints randomly
sampled in 2020 and 2021 for testing and validation.

Specific comments:

7.

10.

11

Throughout, the authors use “observations” to describe the training footprints (L5
and elsewhere). | found this confusing, as, to me, this would imply mole fraction
data. Why not say that, e.g., “500,000 training footprints™?

Thank you for the suggestion. We have now replaced pseudo-observations with
receptors and footprints throughout the manuscript.

Are the results for one random seed only or is it a mean over several seeds? If it is a
mean over several seeds, could some measure of error or standard deviation be
shown on Figure 37?

The results are for one random seed only. Training both Surface and Column
FootNet models with several seeds can quickly become expensive, as it can take
more than a week to finish a single training, as the training data exceeds 100,000
examples.

Figure Caption 3: Results shown are for a single random seed.

In Figure 1, there are different circles for the arrows and the different convolutions,
what do the colors represent?

We have updated the text.

Figure Caption 1: The green circles and green & blue arrows represent new layers
and their respective connections compared to the earlier U-Net architecture.

Line 23: There is another preprint under consideration for GMD that covers very
similar themes using a different modelling approach, Fillola et al. (2025):
https://egusphere.copernicus.org/preprints/2025/egusphere-2025-2392/. It seems
that these two papers should cite each other in their revised forms.

We thank the reviewer for this suggestion. We have now cited this manuscript.

Line 21: However, the computational burden and data storage demands of
physics-based atmospheric transport models limit the scalability of current inversion
frameworks, especially when leveraging dense GHG observations (Roten et al.,
2021; Cartwright et al., 2023; Fillola et al., 2023, 2025).

. Line 133, is there any hypothesis on why there was no clear benefit to including a

mass penalty?



12.

13.

14.

15.

We investigated but, unfortunately, were unable to draw a meaningful conclusion as
to why and prefer not to speculate here.

Line 148 — 149: As mentioned above, | can’t see how the logic here holds up. Unless
you're bringing in some additional information, no matter what the biases in the
model you’re emulating, the best you can do is emulate that model, biases and all.

We thank the reviewer for raising this important point. We point to the response to
comment 1 and our updated text below:

Line 157: However, it is important to note that FootNet is trained on STILT and
X-STILT. As such, the improved performance against independent atmospheric
observations implies that the smoothness is mitigating underlying model errors.

Line 150: What do you propose is the reason for the smoothness?

Machine learning models generalize by identifying an underlying trend instead of
fitting every noisy data point. Additionally, FootNet models are built on U-Net and
U-Net++ architectures, which consist of Convolutional Neural Network (CNN) layers.
These layers contain convolution kernels that process the data by performing
convolution operations on local neighbourhoods instead of individual data points. We
have now added this text to the manuscript.

Line 165: Machine learning models generalize by finding an underlying trend instead
of fitting every noisy data point (Shukla et al., 2021). FootNet model architecture
consists of Convolutional Neural Network (CNN) layers that perform convolution
operations on local neighborhoods instead of processing individual pixels (Bishop,
2006). These are the two primary reasons why the FootNet model produces
smoother outputs.

Line 164, to make these claims, you'll need to explain what is substantively different
about these two meteorological products and demonstrate that the meteorological
variables are substantially different (see general comment above)

We thank the reviewer for this comment. As discussed in the response to comment
3, we agree with the reviewer that the HRRR and GFS meteorologies may have
similarities. However, as mentioned above, there are significant operational
differences between them. While HRRR operates at 3km spatial resolution, GFS
operates at 10km or greater spatial resolution. This analysis helped us investigate
that FootNet continues to have skill in its prediction even when we use coarser
meteorology to generate footprints at 1 km resolution.

Line 184: This is important because HRRR is only available over CONUS, whereas
GFS is a global product. This means that FootNet can be used in domains outside of
CONUS with GFS or any other global meteorology products.

For Figure 6, | understand that the results are similar for different types of
meteorology but | do not understand the axes, since they seem to be displaying
aggregated 2D quantities (footprints). Are these all of the gridded footprint values



from all locations aggregated together and compared? How is the r value computed
in this case? Can you clarity this?

Each data point represents one of the non-zero influence pixels of randomly
sampled 5000 footprints from the test dataset. The r value is computed using the
vectors of all non-zero influence pixels for STILT and FootNet. We have now added
this information in the figure 6 caption as well.

Figure Caption 6: Each data point in the plot represents a non-zero influence pixel
from one of the 5000 randomly sampled footprints in the test set.

16. Figure 7 and 8, can you clarify what the percentage is relative to and what quantile
the contour corresponds to?

We have updated the text to explain this:

Figure Captions 7 & 8: White contours in the left column represent the 60" percentile
of the cumulative footprint influence. The percentage cumulative influence is relative
to the cumulative footprint sum for each grid point.

17.Line 271: Presumably a standard analytical Gaussian inversion? Provide a few extra
details or a reference. How were model and measurement uncertainties (and
emulator uncertainties?) represented?

We thank the reviewer for this suggestion. We have now added the details on model
and measurement uncertainties in the manuscript.

Line 309: We used TROPOMI methane mixing ratio precision data as measurement
uncertainties, and 7 days & 50 km of correlation lengths for the off-diagonal terms of
the observational error covariance matrix. For simplicity, we assumed the model
error is equal to the measurement error.

Reviewer 2

This is a well-written manuscript of a nice study, and very well-organized. | especially
appreciate that the authors extended the comparison analysis through performing flux
inversions in order to understand the impact of using the FootNet footprints when deriving
fluxes. | have only skimmed the previous two papers by this same group on this topic, but it
seems that in this one they have extended the model to work on column (satellite) GHG
data, and that they have evaluated/validated the results for out-of-sample data, which is
probably the main contribution here. The editors can determine if perhaps the manuscript is
better suited for GMD, as it is very much a model development & validation study. |
recommend publication after addressing the comments below.

Overall comments:
18. In regional or city-scale inversions, particle trajectories from ATD models like STILT

are also often used to sample and/or optimize a background in some way. Can this
be done with Footnet?



19.

20.

21.

Unfortunately, FootNet only yields the time-integrated footprint. However, we use
input wind fields to compute the upwind region and boundary conditions. Appendix A
discusses the computation of upwind boundary conditions.

In the out-of-sample FootNet simulations (i.e. when the footprint was generated
using a model that did not use the Barnett region for training), were the simulations
also from a different year or month than what was used in training? l.e., | am
wondering how well Footnet performs for data (receptors) from a completely different
year than the training. | would think that transport is correlated across very large
spatial scales and it could be that if trained on data from the same time period, could
allow the model to perform better, even if the receptor is hundreds of km away from
the training data receptors? Now reading L 195, perhaps this was already done in
previous work, perhaps that could be mentioned either way.

We thank the reviewer for this comment. We have now revised the out-of-sample
FootNet training and evaluation. We now only use data from 2021 to train the
out-of-sample FootNet model and test it on data from 2020. We found that the model
performance does not change in both one-to-one comparisons of footprints and in
the inversion.

We have updated the text and figures with the revised out-of-sample FootNet
version. See response to comment 2.

Optional question for the authors to perhaps comment on in the Conclusion or future
work: How can FootNet can be used for larger continental-scale inversions. Will v4
simulate longer time periods (at coarser scales) to perform inversions for CONUS?

We thank the reviewer for this question. The FootNet model can conceivably be
trained on continental-scale transport with longer time periods and coarser spatial
resolutions. This may require additional input features to rigorously resolve
processes that dominate the transport at continental scales (e.g., convection).
However, we do not plan to do this in the near-term. Logistically speaking, the lead
author (Nikhil Dadheech) is now using FootNet for a science application as his final
PhD chapter.

Line 273: This framework used to develop the FootNet model can conceivably be
used to emulate larger continental-scale transport. However, it may require other
input features to better represent large-scale processes.

Lastly, it seems the code is available. Would the authors recommend that others use
the already-trained FootNet code to generate footprints for their own use? What
would be the caveats about the use of this model (where would it perform well or
not)?

Yes, we recommend others to use the already-trained FootNet as it has been trained
over the entire CONUS, and its generalization has been evaluated in this work. The
training code is also available for users who would like to fine-tune the FootNet for



any specific use. We have also developed a website and some basic tutorials. We
have added the website to the updated manuscript:

Line 285: The basic tutorials on how to use the FootNet models are available at this
website: https://footnet-uw.github.io/index.html.

Abstract

22.

23.

24.

25.

I would add “dispersion” to “atmospheric transport and dispersion models” here in
the abstract at least, as dispersion is a large part of the modeling that Hysplit/Stilt is
doing, along with transporting the tracer, and that is a common term in the literature
(ATD models).

We thank the reviewer for this suggestion. We have now updated the abstract.

Line 1: Accurately estimating greenhouse gas (GHG) emissions from atmospheric
observations requires resolving the upwind influence of measurements via
atmospheric transport and dispersion models.

L47-48 adjust grammar in this sentence appropriately — what does “which” refer to
(L48). Perhaps omit “the” prior to “flux inversion”?

We thank the reviewer for raising this grammatical mistake. We have now corrected
it in the text.

Line 48: Variational methods such as 4D-var are also popular in flux inversions,
which require an adjoint of the Eulerian model to compute the atmospheric transport
(Henze et al. 2007)

L75+ Perhaps the authors could clarify what they mean by “pseudo-observation” - is
this a simulated GHG concentration, or is it a footprint (i.e. gridded and varying in
space and time)? Readying on in L86, it seems the observations were simulated
with footprints but — | would think the observations are footprints themselves, right?
The output after all is a footprint.

We have now replaced “pseudo-observations” with “footprints” and “receptors”
throughout the manuscript.

L88 - why was HRRR re-gridded to 1-km? Using STILT does not require that even if
the STILT grid is at 1-km... does FootNet perform better when this is done— in which
case | would guess it depends how the interpolation is done?

Good question, this is something that was tested early on (i.e., He et al., GMD
2025). Our target was 1-km GHG flux inversions. Using 1-km input fields allowed
flexibility in which fields were used. For example, it meant that we could use
topography at 1-km resolution. Ultimately, we found better performance with 1km
regridded inputs compared to native 3km input fields. The primary reason for the
drop in performance is that the input fields will have different resolutions. We have
now updated the text.



26.

27.

28.

Line 100: This is done to ensure that all the input fields (e.g., meteorology, Gaussian
plume, etc.) are at the same spatial resolution.

L94- How far back were the particles traced in the training footprints? From this time
step list, it seems it would only be 24 hours. How does this affect the simulated
column footprints, especially the influence of the upper altitudes where the particles
may not have any footprint influence in the first 24 hours at times?

For STILT and X-STILT, we simulated the trajectories for 72 hours or until the
particles leave the domain. However, we only use 24 hours of meteorology before
the measurement time as input fields in the FootNet. We conducted a series of tests
using varying amounts of meteorological data including further than 24 hours back in
time. We found minimal improvement in performance beyond 24 hours. Including
additional meteorological data does increase the data loading time and, as such,
inference time.

Line 94: The trajectories were simulated backward in time for 72 hours, or until the
particles exited the domain, whichever occurred first.

Line 102: We found minimal improvement in performance when including
meteorological inputs more than 24 hours backward in time.

L169 - Is there a reference for how much uncertainty there is in the STILT footprints?
Thinking about the comparison between FootNet and STILT in the context of the
overall uncertainty in STILT may be a useful framing and can more quantitatively
make this point. The papers looking at differences between different models
probably only compare in certain places and times making extrapolation or
generalization difficult, but one could cite some here as a comparison- is the
uncertainty 10%, 20%, 50%7? (e.g., Karion et al, 2019,
https://doi.org/10.5194/acp-19-2561-2019 is in the Barnett so could be useful for
making this point?).

We thank the reviewer for suggesting Karion et al. 2019 as a supporting citation.
Munassar et al. (2023) observed STILT and FlexPart to have a relative difference of
61% in the flux inversions over Europe. We have now cited both of these studies in
our manuscript.

Line 187: For instance, STILT and FLEXPART can produce similar or larger
disagreements than observed here when run under similar conditions (Karion et al.,
2019; Munassar et al., 2023).

Fig 5 - regarding the smoother footprints generated by FootNet: Were the STILT
footprints run with the optional far-field smoothing (Gaussian Kernel method) that is
provided with the University of Utah STILT footprinting codebase? If so, how was it
set?

Yes, we used the default Gaussian Kernel smoothing parameters provided by the
STILT codebase.



29.

30.

31.

32.

33.

S| Fig S2 and Fig S3, perhaps note in the legend that GP refers to Gaussian Plume
or define in the table in Fig 1 next to “Gaussian Plume (GP)”, for example, for
consistency.

We thank the reviewer for this suggestion. We have now added this to the figure
captions.

Appendix A: It would be useful to include a similarly short description of the details of
the SF inversion so the reader does not need to refer to the previous papers, if
possible.

We have now added a description of the SF inversion in Appendix A.

Fig 6, units should be included - presumably these are summed over space and time
for each receptor (so each data point in the color scale is a full footprint?).

We have now added the units in Figure 6. Each data point in the color scale is a
non-zero pixel of a footprint from randomly sampled footprints from the test set. We
have updated the figure caption to emphasize the same.

Figure Caption 6: Each data point in the plot represents a non-zero influence pixel
from one of the 5000 randomly sampled footprints in the test set. The unit of the
footprints is ppm/(umol m? s™).

Fig 6A does indicate a high bias in the FootNet footprints - can the authors comment
on this?

The high bias in the FootNet footprints corresponds to small magnitudes of the
footprint, particularly in the far-field, where the smoothness of the footprint structure
causes a difference from the ground truth footprints from STILT. We have now added
this comment in the manuscript.

Line 178: Notably, higher bias occurs for small footprint values, particularly in the
far-field, where the smoothness of FootNet footprints results in deviations from the
ground truth STILT footprints.

Figs 7 & 8: Another figure or panel should indicate the difference between the
posterior fluxes for each case (relative to the STILT or XSTILT case, plus comparing
the in-sample vs. out-of-sample FootNet, either absolute units of percent perhaps).
As is, the second column really looks identical. Especially in Fig 7, the footprints
look quite different between panel A vs. D and G, so it would be useful to see the
magnitude of the flux difference.

We thank the reviewer for this suggestion. We have now added flux difference plots
(Figure S4 & S5) in the supplement. The magnitude difference is observed to be less
than 6% for both the SF Bay Area and Barnett inversions.



34.L215: given the importance of the Gaussian plume proxy, can the authors include the
basics of how this was calculated (equation?) — perhaps in the Sl or appendix. For
example, how was the stability class determined for each case? It is indeed
interesting that this is the most important input, showing that giving the model some
basic understanding of the relationship between the inputs helps it perform better,
rather than giving the model only the inputs to the GP proxy, for example. Perhaps
this points to the model not actually “learning” relationships, since the GP gives it the
basic expected relationship between wind, PBL, etc.

We have added an appendix section (Appendix B) discussing the Gaussian plume
model we used (Nassar et al. 2017). Here are the equations we used to compute
Gaussian plume:

F T( riy(x) )

Vi y) = —="——e
o, () = a(;)

o

Where V is the vertical column in g/m? at and upwind of the receptor. The x direction
is parallel to the reversed wind direction, and the y direction is perpendicular to the
wind direction. F is the emission rate in g/s, which can be assumed as a constant
(here we assumed F=1g/s), u is the wind speed, o, is the standard deviation in the y
direction. x, = 1000m is the characteristic length, and a is the atmospheric stability
parameter which we determine by classifying a source environment by the
Pasquill-Gifford stability.

Reviewer 3

General Comments

This paper introduces FootNet v3. FootNet is a deep learning emulator of atmospheric
transport that computes the sensitivity of passive atmospheric trace gas concentrations to
upwind emissions (the “footprint”). The footprint is a key component of inverse analysis for
emissions quantification, but is a computational bottleneck that limits the feasibility of the
analysis. FootNet promises to provide footprints with 650x less wall clock time per footprint
vs Lagrangian Particle Dispersion models or Eulerian transport models, while maintaining or
even improving model fidelity. FootNet v3 specifically promises to provide footprints for
locations and times outside the training data, allowing the model to be deployed to new
column and point concentration observations without re-training. This would represent a
major step forward in the field of inverse analysis for emissions quantification by greatly
decreasing cost and expanding access to more researchers.

FootNet v3 improves upon previous versions of FootNet by:
Using the improved U-Net++ architecture in place of the U-Net architecture of previous
FootNet versions.



Increasing the quantity of training footprints to 500,000 and increasing the breadth to cover
the entire Continental United States across seasons and meteorological conditions. These
training footprints were computed using XSTILT driven by HRRR meteorology with a

The paper makes the following key claim about FootNet v3 that must be justified:

FootNet v3 can produce footprints at locations and times outside the training data, towards
generalization to new observations.

To justify this claim, the authors train and run FootNet v3 in a “out-of-sample” configuration,
where training data from large regions in California and Texas are withheld and the resulting
model is used to compute flux inversions using real observations of 1) surface CO2
measurements from the BEACO2N network in San Francisco, and 2) TROPOMI XCH4
observations in the Barnett Shale of Texas. The authors find that FootNet v3 performs
comparably and even slightly better than STILT alone in the out-of sample inversions,
demonstrating that FootNet v3 could indeed be used for regions out of the training sample.
These experiments appear to be well done.

Additional claims include that the quantity of samples and sample strategy were sufficient to
constrain the model, which was demonstrated by a validation loss experiment, and that the
model appropriately conserved mass, which was tuned with a parameter for surface
footprints.

This paper is well written and technical comments about the writing are minor. | support
publication of this paper with minor revisions.

35. One question | do have: The authors demonstrate here and in their previous papers
that the added diffusivity of FootNet enhances some properties of the predicted
concentrations, but how does if affect the distributions of retrieved emitters? Does it
induce more diffuse posterior emissions patterns? What are the implications for
modeling emissions from the “fat tail” distribution of methane emissions from point
sources? This is one of the key questions that could be answered by high resolution
satellite data, which would benefit most from having such a computationally efficient
transport model.

We thank the reviewer for this insightful comment highlighting an important
implication of FootNet's enhanced diffusivity. We agree that FootNet's smoother
footprints could influence the spatial distribution of posterior emissions, potentially
leading to more diffuse flux estimates compared to those derived from highly
localized LPDM footprints. We attempt to quantify this by looking at cumulative
distribution function of the fluxes from STILT inversions and FootNet inversions for
the SF Bay Area. This is now included as Supplemental Figure S6 and shown
below. Fluxes inferred using FootNet footprints appear slightly more diffusive than
those inferred using STILT footprints, though the difference is minor.

Regarding the latter point on the implications for the “fat tail” of methane emissions,
this is something we plan to investigate in an inversion using TROPOMI satellite
observations for Dadheech’s final PhD chapter.
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Figure S6: Cumulative Distribution Functions (CDFs) of posterior and prior
differences for STILT and FootNet footprints in the San Francisco Bay Area.

Line 221: Fluxes inferred using FootNet footprints are slightly more diffusive than
those inferred using STILT footprints, though the difference in the distributions is
small (see Figure S6).

Specific Comments

36. How much influence in the out-of-sample footprints lies in the in-sample domain? If
this is significant it could taint the results. A stronger experiment would be to fully
separate the out of sample domain in time and space, though | suspect the
spatiotemporal domain was chosen to align with previous work to conserve limited
resources, which is understandable.

We thank the reviewer for this comment. First, we have revised the out-of-sample
model to train it solely on data from 2021 and test it on 2020. Second, the footprints
computed for the inversions have zero influence in the spatial domain in which the
out-of-sample FootNet model was trained. This ensures full separation of the
spatiotemporal domain for the out-of-sample tests.

Line 83: These 500,000 footprints were split into two training configurations. The
first, which we refer to as the out-of-sample FootNet, excludes all data from 2020
and two regions: the bulk of California and much of Texas. The out-of-sample
FootNet uses footprints from 2021 for training. Within these two regions are two case



37.

38.

39.

studies reserved for later out-of-sample evaluation: the San Francisco Bay Area
(Domain A) and the Barnett Shale region (Domain B). These out-of-sample
evaluations are done using the observations from 2020.

Line 116 “but also suggest that moderately sized, region-specific training efforts may
be sufficient to fine-tune for local applications” It is not obvious to me that this point
follows from the data provided.

We thank the reviewer for this helpful observation. We agree with the reviewer that
this statement can be confusing. We have now removed this line from the
manuscript.

Line 147: “While STILT’s spatial structure is more physically realistic (as it directly
solves the governing equations), it is not necessarily more accurate due to potential
biases in the driving meteorological fields. Highly localized but biased footprints
could introduce artifacts in GHG flux inversions. In this context, the smoother
prediction from FootNet may actually be preferable.” STILT has a feature that can
artificaially increase the dispersion and induces similar smoothness. See Lin and
Gerbig (2005) Accounting for the effect of transport errors on tracer inverrsions,
Geophys Res Lett 32 L01802 doi:10.1029/2004GL021127. Also, correlated errors
along the duration of a STILT footprint are implemented in Jones et al. (2021)
Assessing urban methane emissions using column-observing portable Fourier
transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Atmos. Chem. Phys., 21, 13131-13147, https://doi.org/10.5194/acp-21-13131-2021.

We thank the reviewer for pointing these papers out. We have updated the text to
mention additional approaches to mitigating transport errors.

Line 159: We also note that other approaches have been developed to mitigate
transport errors within physics-based models and inversion frameworks. For
example, incorporating stochastic wind uncertainties to enhance dispersion (Lin and
Gerbig, 2005) and explicitly accounting for correlated transport errors over the
footprint duration (Jones et al., 2021).

Line 167 “This means that FootNet could likely be used in domains outside of where
it was trained.” | thought that this was tested directly by excluding footprints in this
domain from the training set. | think that the conclusions that can be drawn from the
HRRR vs GFS comparison are analogous to those that would be drawn from
alternate  met products used in traditional observation system simulation
experiments.

We agree that the HRRR-GFS comparison is analogous to using alternate
meteorological forcings in traditional observation system simulation experiments. Our
intent here was to emphasize that although FootNet was trained using HRRR
meteorology at 3km native resolution, it retains skill when applied to GFS
meteorology, which has a coarser (~10 km) global resolution. This result is important
because HRRR is limited to CONUS, whereas GFS is available globally. Therefore,
this analysis demonstrates that FootNet can be applied with GFS to regions outside


https://doi.org/10.5194/acp-21-13131-2021

CONUS where HRRR data are unavailable. We have revised the text to clarify this
point.

Line 184: This is important because HRRR is only available over CONUS, whereas
GFS is a global product. This means that FootNet can be used in domains outside of
CONUS with GFS or any other global meteorology products.

Technical Corrections

40.In He et al., 2025, the FootNet version is named FootNet v1.0. In Dadheech et al

41.

2025 the version number is omitted. Should this not be FootNet v2.0? What is the
minor version number signifying in He et al., 20257

The minor version number signifying in “He et al., 2025” is a requirement of GMD.
Our original submission of the He et al. paper was “FootNet v1”. We were required
by the journal to change it to v1.0. The restrictions imposed by GMD are part of why
we did not submit later manuscripts there. The Dadheech paper referred to the
model used there as FootNet v2 because there were a few important changes
needed to enable the model to be used in flux inversions

Regarding versioning, these are the versions:
e FootNet v1 - He et al. GMD (2025): The paper was originally submitted in
2023 to GRL. It was ultimately published in 2025 in GMD.
e FootNet v2 - Dadheech et al. ACP (2025): This paper was submitted in 2024
and published in 2025.
e FootNet v3 - this manuscript

In this paper, Eulerian transport models and Lagrangian Particle Dispersion models
are referred to as “full-physics”. These models rely heavily on parameterizations to
simulate dispersion, which is a fundamental property of the output, and therefore
full-physics is not an appropriate term.

We thank the reviewer for this suggestion. We have now replaced “full-physics” with
“‘physics-based” throughout the manuscript.

42. The descriptions of the domains in the caption of figure 2 is confusing and | think an

error— It says that the gray dots indicate individual pseudo observations, and that the
Domains A and B are withheld from the out-of-sample training configuration, but
there is a wide margin of missing gray dots around Domains A and B. Should the full
set of pseudo-observations cover all of CONUS (as is given in the supplement) and
the out-of-sample set be the dots drawn? This would better align with the description
in the text. Also, this caption refers generically to FootNet when it should refer to
FootNet v3.

The reviewer is correct, we have updated the caption to better explain this and refer
to the model as FootNet v3.
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Figure Caption 2: (Top panel) Receptors for training out-of-sample FootNet. Gray
dots indicate individual receptors sampled uniformly across CONUS. Red stars show
centers of 400x400 km? subdomains with enhanced temporal sampling. Domains A
and B are withheld in the out-of-sample training configuration. Supplemental Figure
S1 shows the full training data used for the in-sample FootNet model.

Line 96 “Table in Figure 1” -> “The ‘Inputs’ table in Figure 1”?
We thank the reviewer for this suggestion. We have now revised the text.

Figure 4 caption: “the surface model” should be replaced with “Surface FootNet” so
that the figure stands alone.

We thank the reviewer for this suggestion. We have now revised the Figure 4
caption.

Figure Caption 4: Trade-off between validation loss (mean squared error; MSE) and
percentage footprint mass difference for different values of « in the surface FootNet
model.

Line 169: “For instance, STILT and FLEXPART can produce larger disagreement
than observed here when run under similar conditions. This flexibility allows FootNet
to support flux inversions using multiple sources of meteorology” citation required.
We have now added the citations to this.

Line 187: For instance, STILT and FLEXPART can produce similar or larger
disagreements than observed here when run under similar conditions (Karion et al.,
2019; Munassar et al., 2023).

Figure 6: What is the property being evaluated? Sum of footprint weight?

The property being evaluated is the non-zero influence pixels of randomly sampled
5000 footprints from the test set. We have now revised the Figure 6 caption.

Figure Caption 6: Each data point in the plot represents a non-zero influence pixel
from one of the 5000 randomly sampled footprints in the test set.



