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Abstract. Rebuilding soil organic carbon (SOC) on working lands plays a pivotal role in mitigating climate change and 

improving soil function, yet its accumulation is constrained by both management decisions and inherent soil properties. 

Scientists and farm advisors recommend that farmers plant cover crops, reduce tillage, and add organic amendments to increase 

SOC, yet the effectiveness of practices intended to improve soil health may be limited by underlying edaphic controls such as 15 

mineralogy, texture, and pH. Given that SOC consists of two distinct fractions—particulate organic matter (POM) and mineral-

associated organic matter (MAOM)—which differ in their stability and response to management, a critical question emerges: 

How much do inherent soil properties limit the effectiveness of recommended soil health practices in increasing SOC? Despite 

extensive research in controlled field settings, real-world farming contexts remain less understood, limiting our ability to 

predict SOC gains across diverse soil conditions. Here, we evaluate how in-season and recent (<5 yr) implementation of soil 20 

health management systems on working farms affects SOC fractions and stocks across 28 organic fields growing lettuce in the 

Central Coast of California. We find that continuous living cover (e.g., through cover cropping) increases three measured 

carbon pools - free POM, MAOM, and surface soil total carbon stocks - while reduced disturbance (i.e., less tillage) increases 

two - free POM and MAOM. Crop diversity enhances both free and occluded POM fractions. Surprisingly, organic matter 

amendments do not show any relationship with any of the measured carbon pools. On average, management variables explain 25 

3.7 times more variance than edaphic variables across carbon fractions, whereas, for carbon stocks, the opposite is true: edaphic 

variables explain ~2.1 times the variance compared to management. Our findings highlight that soil health practices, and in 

particular continuous cover, can significantly increase soil carbon levels, including both particulate and mineral-associated 

organic matter fractions, across diverse soil conditions. 
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1 Introduction  

Rebuilding soil organic carbon (SOC) on working lands has the potential to mitigate the negative impacts of climate change 

and create co-benefits like increased water and nutrient retention (Abbas et al., 2020; Desjardins et al., 2005; Kopittke et al., 

2022; Lal, 2016; Lessmann et al., 2022; Lorenz & Lal, 2012; Marland et al., 2003).  Soil health management practices promote 35 

SOC accrual by emphasizing several principles: 1) continuous living roots (e.g., crop rotation, perennial vegetation, and cover 

crops); 2) minimizing soil disturbance (e.g., reducing the intensity, frequency, and depth of tillage); 3) biodiversity (e.g., crop 

rotation, pollinator plantings, cover crops), and 4) soil cover (e.g., mulching and crop residues) (NRCS, 2024). Organic 

amendments like compost, green manure, and organic fertilizers can also support healthy soils and SOC accrual (Agarwal, 

2018; California Department of Food & Agriculture, 2021; Lal, 2016; Ryals & Silver, 2013). In this paper, soil health practices 40 

refer to this suite of management practices intended to build the organic matter and improve soil health.  

Soil organic carbon is composed of two distinct fractions, particulate and mineral-associated, which differ in their contribution 

to soil functions and in their responses to management and edaphic factors (Cotrufo & Lavallee, 2022; Lavallee et al., 2020a). 

Particulate organic matter (POM) consists of partially decomposed plant material with high C:N ratios (Von Lützow et al., 

2007, Bol et al., 2009). POM can be further classified into free POM (fPOM), which is unprotected, and occluded POM 45 

(oPOM), which is physically bound in soil aggregates, making it less accessible to microbial decay. POM is a faster cycling 

nutrient and energy source for microbes and decomposers, and contributes to improved soil structure (e.g., aggregate formation 

and stability, soil porosity, water infiltration) (Angst et al., 2023; Bu et al., 2015; Drinkwater & Snapp, 2022). Compared to 

mineral-associated organic matter (MAOM), POM tends to respond to management changes more rapidly. For example, 

increased plant biomass and incorporation of crop residue can increase POM. On the other hand, because it is physically and 50 

chemically more accessible to microbial decomposition, POM is also quite sensitive to disturbances that increase microbial 

activity, or that make oPOM physically accessible. (Drinkwater & Snapp, 2022; Prairie et al., 2023). Edaphic factors such as 

texture and mineralogy also control POM’s stability through factors such as soil moisture. For example, on the one hand, finer 

textured soils may hold increased moisture and therefore increase microbial activity and decomposition. On the other hand, 

finer textured soils may also increase aggregate formation and thus physical protection of OM, decreasing mineralization 55 

(Haddix et al., 2020; Li et al., 2022; Plante et al., 2006).  

Mineral associated organic matter (MAOM), in contrast, is composed of simpler carbon molecules that form chemical and 

physical associations with mineral surfaces. This protects MAOM from microbial decay, allowing it to persist for centuries to 

millennia (Kleber et al., 2015; Lehmann et al., 2020). The slower cycling of MAOM makes it an important pool for long-term 

carbon sequestration, soil fertility, and nutrient provisioning. MAOM formation requires smaller and simpler forms of carbon, 60 

and so its accrual is partially mediated by microbial decomposition of POM via oxidative and hydrolytic extracellular enzymes 

(Jilling et al., 2020; Salonen et al., 2023; Samson et al., 2020; Yu et al., 2022; Zhang et al., 2022). While increases tend to be 

smaller than for POM, MAOM has also been shown to increase with cover cropping, crop diversification, fertilization, and 

https://doi.org/10.5194/egusphere-2025-3440
Preprint. Discussion started: 3 September 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

tillage residue retention practices (Prairie et al., 2023; Romero et al., 2021). The ability for a soil to stabilize organic matter 

into MAOM is strongly influenced by its mineralogy, pH, texture, and the concentration of short-range order minerals and 65 

aluminum and iron oxides that provide reactive surfaces for carbon to sorb to. Thus, edaphic factors are thought to strongly 

influence MAOM formation, stability, and the carbon sequestration capacity of a soil (Heckman et al., 2018; Rasmussen et al., 

2018; Wagai et al., 2020). Edaphic controls may thereby limit the effectiveness of soil health practices in increasing total 

MAOM. 

Thus, POM and MAOM have distinct agronomic and environmental benefits, with POM relating more to near-term soil 70 

fertility and MAOM serving as a longer-term carbon reservoir. However, how POM and MAOM pools are affected by specific 

soil management practices across different soil types is not well understood. Generating this understanding of how soil health 

management influences these distinct soil carbon fractions across heterogeneous edaphic contexts would support management 

decisions that could prioritize the different functions of POM and MAOM, depending on farmer goals and their soil conditions.  

Additionally, much of the prior agricultural SOC research has used controlled field experiments to generate mechanistic 75 

insights and isolate effects of practices while controlling for edaphic context (Maat, 2011). While valuable, extrapolating these 

findings to real world farming contexts that vary considerably in the use and consistency of management practices and edaphic 

contexts can be challenging. On-farm research complements controlled experiments to provide an understanding of how 

diverse practices, soil types, and climate variables affect SOC dynamics (Karlen et al., 2017; Olimpi et al., 2024; Singh et al., 

2024; Sprunger et al., 2021; Williams et al., 2020).  80 

We conducted on-farm research across 28 fields on working farms growing leafy greens in the Central Coast region of 

California, spanning gradients of soil health management and key edaphic characteristics. We focused on organic farms to 

avoid potential confounding effects of synthetic fertilizers and pesticides on observed management impacts. Our work was 

guided by two inter-related questions:  

1) What are the relative impacts of continuous living cover, reduced soil disturbance, crop diversity, and organic 85 

amendments, on POM, MAOM, and total carbon stocks? To what extent is MAOM associated with soil enzyme 

activity?  

2) How do soil health practices compare to edaphic factors in influencing carbon fractions and overall stocks?  

Based on recent meta-analyses (Blanco-Canqui, 2022; Hu et al., 2023; Prairie et al., 2023; Vendig et al., 2023), we 

hypothesized that cover cropping, reduced tillage, organic amendments, and crop diversity would all increase SOC, with POM 90 

showing larger increases than MAOM. We also anticipated that increased enzyme activity would contribute to MAOM 

formation, while edaphic factors would primarily regulate SOC stocks via MAOM. We also expected that edaphic factors 
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would largely influence MAOM and carbon stocks, based on the importance of local mineralogy, but that POM would be 

influenced more by management factors.  

2 Methods 95 

2.1 Study region and sampling 

2.1.1 Study area and field sites 

Our work focused on 28 organic farms in San Benito, Santa Cruz, and Monterey Counties along the northern end of the 

California Central Coast region (Fig. 1). This region is characterized by a temperate Mediterranean climate with warm, dry 

summers, and wet winters (Köppen-Geiger Zone Csb: Warm-summer Mediterranean climate). Agriculture in the region 100 

consists of small-scale diversified farms, larger wholesale growers, and grazing lands (Olimpi et al., 2024). This is one of the 

most productive and economically significant agricultural regions in California and the United States, particularly for fresh 

produce (CDFA, 2022). Farms range in scale from ~0.5 ha of production to 600+ ha.  

Participating farmers were identified using the USDA Organic Integrity Database and in consultation with local technical 

assistance providers. All selected farms grew organic lettuce to some extent. This crop was selected because of its economic 105 

importance, with lettuce and leafy greens representing the most valuable crops in the region (County of Monterey Agricultural 

Commissioner, 2021; San Benito County Agricultural Commissioner, 2020; Santa Cruz County Agricultural Commissioner, 

2021). Given that many farmers grow lettuce, this selection allowed us to sample a wide area, explicitly selecting farms across 
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a gradient of implemented soil health practices. Lettuces have shallow root systems and low residue return, making carbon-

building management practices vital for rebuilding SOM in these systems.  110 

 
Figure 1: Map of soil sampling locations. 28 field sites span Santa Cruz, Monterey, and San Benito Counties.  
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2.1.2 Soil sampling  

At all 28 field sites, five soil samples were collected across a 100m transect, positioned in the middle of a given lettuce field 

and beginning at least 10 m in from field edges. Each sample was a composite of five sub-samples, each taken from the same 115 

depth and perpendicular to the transect, 1-2m apart from each other. Soils were kept cool in an iced cooler in the field and 

transferred to a fridge (~ 4o C) before analysis. All samples were collected during the 2020 growing season at three time points: 

transplant, mid-season to represent conditions at peak nutrient uptake and plant growth (defined as peak vegetative growth, 

approximately 3-6 weeks after transplant, depending on the lettuce variety), and at harvest. Soils were collected from 0-15 cm 

for transplant, mid-season, and harvest samplings. Samples for microbial and enzyme assays were kept cold, while the other 120 

samples were air- or oven-dried for other analysis. 0-15 cm is hereafter referred to as surface soil.  

Field sites were classified across four soil orders: Mollisols (20 sites), Alfisols (four sites), Entisols (three sites), and Vertisols 

(one site). Despite the constrained geographic area, California has a high level of soil heterogeneity as evidenced by the range 

of soil texture classification (Fig S1). 

2.2 Lab analyses 125 

2.2.1 Soil carbon and organic matter fractions 

Bulk soil samples from harvest were oven dried at 35o C and sieved to 2 mm, and then ball milled for elemental analysis. Total 

carbon (TC%) was analyzed by combustion on an Elementar varioEL Cube (Elementar, Ronkonkoma, NY) for each depth. 

The same samples were also analyzed by combustion with a temperature ramping procedure on an Elementar SoliTOC, which 

measures total inorganic carbon (TIC) in addition to TOC. TIC values were negligible (<0.1%), so we consider varioEL 130 

measurements as total organic carbon (TOC).  

Mid-season, 0-15 cm soil samples were air-dried, sieved to 2mm, and then fractionated by size and density into four 

functionally distinct pools: Dissolved organic matter (DOM), fPOM, oPOM, and MAOM.   

Fractionations followed the protocol described by Haddix et al. (2020), which separates POM before and after aggregate 

dispersion into fPOM and oPOM. Thus, it may provide information on how management decisions impact soil aggregates, 135 

which offer short-term protection of organic matter from microbial decay.  

We first separated dissolved organic matter by shaking sieved, then air-dried samples with 40 mL of DI water for 15 min 

before centrifuging at 2520 g for 15 min. DOM was extracted as the resulting supernatant. fPOM was then fractionated by 

resuspending the remaining soil pellet using sodium polytungstate solution prepared at 1.85 g cm-3. The remaining oPOM and 

MAOM were fractionated by size (oPOM >53μm and MAOM < 53 μm), via wet sieving. High-clay soils received an additional 140 
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DI rinse and centrifugation, with ten additional drops of flocculants 0.25 M CaCl2 and 0.25M MgCl2 to help clear excess 

sodium polytungstate solution.  

We ensured that fractions were recovered to +/- 5% of the original sample weight. Fraction samples were then oven-dried at 

60o C and ball milled. Carbon in fPOM, oPOM, and MAOM fractions was measured by combustion analysis on a varioEL 

cube (Elementar, Ronkonkoma, NY). 145 

2.2.2 Basic soil characteristics 

Air-dried mid-season soil samples from 0-15 cm were sent to Soiltest Labs (Moses Lake, WA, USA) for analysis of texture, 

pH, and cation exchange capacity (CEC). pH was measured using a 1:1 soil-water slurry and a Skalar SP2000 Robotic Analyzer 

(Skalar, Breda, Netherlands). CEC was measured by ammonium replacement, and texture was measured by hydrometer, both 

following protocols by Miller et al. (2013). 150 

Bulk density for surface soils (0 - 15 cm) was measured with 2-4 replicates per site, using a Hyprop cylindrical ring sampler 

with a sample volume of 250 mL (height = 12.34 cm, diameter = 5.08 cm). Samples were dried at 105 oC for 3 days. Dry soil 

sample mass was measured and divided by the volume of the cylindrical sampler. 

2.2.3 Extracellular enzyme potential activity 

Within 48 hours of soil sampling, potential extracellular enzyme activities were measured fluorometrically and photometrically 155 

using a microplate assay (Bach et al., 2013; German et al., 2011). Two grams of fresh, sieved soil were added to 100mL of 50 

mM sodium acetate buffer (pH=5.5) and blended for 30 seconds. For the fluorometric assays (hydrolytic enzymes), MUF (4-

methylumbelliferone) and AMC (7-amino-4-methylcoumarin) labeled substrates were used. Specifically, the enzymes 

glucanase/1,4-β-cellobiosidase (CBH), β-glucosidase (BG), exochitinase (NAG), and phosphatase (PHO) used the substrates 

MUF-cellobioside, MUF-β-glucopyranoside, MUF-N-acetyl-β-D-glucosaminide, MUF-phosphate, respectively. For the 160 

enzyme leucine-amino-peptidase (LAP), the substrate L-leucine-7-amido-4methylcoumarin was used. Samples were incubated 

at room temperature (22°C) in the dark and measured at 1.5 h and 3 h (excitation: 365 nm, emission: 450 nm).  

The oxidative enzymes peroxidase and phenoloxidase were analyzed from the same buffered soil solution. Briefly, 0.9 mL of 

20 mM L-3,4-dihydroxyphenylalanine (DOPA) was added to 0.9 ml of soil suspension in triplicates for a final concentration 

of 10 mM DOPA, shaken on high speed for 10 min, and centrifuged for 10 min at 14,000 g. Once plated, peroxidase samples 165 

received an additional 10 μL of 0.3% hydrogen peroxide. Absorption was measured at 450 nm at time 0 and after incubating 

microplates in the dark for 20 hours.  

2.2.4 Soil iron fractions 
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Soil iron fractions were isolated using pyrophosphate (iron complexed with organic matter), citrate-bicarbonate-dithionite 

(crystalline pedogenic iron), ammonium oxalate (poorly crystalline iron), and hydroxylamine hydrochloride (poorly crystalline 170 

microbially cycling iron) extractants. Pyrophosphate was extracted according to a method used by McKeague (1967). Oxalate 

and dithionite extractions followed protocols by Dominik & Kaupenjohann (2000) and hydroxylamine followed protocols by 

Lovley & Phillips (1987). The pyrophosphate, dithionite, and oxalate extractions were performed using 0.5 g of dry soil, while 

the hydroxylamine extraction used 1g. In brief, extractants for each fraction were added to the soils, shaken, and centrifuged, 

and the supernatant was diluted and measured colorimetrically using a plate reader to determine total Fe concentration. Wet 175 

extractions are not perfect in isolating their target compounds, yet in combination, they can provide meaningful insight into 

the different forms of iron present (Rennert, 2018). 

2.3 Soil Health Management 

2.3.1 Management survey 

Soil health management data were collected for each of our 28 focal fields using an in-depth survey instrument created in 180 

Qualtrics (see Supplement). To ensure that questions and terms used by the survey were interpreted consistently by farmer 

participants, we conducted surveys in person or on the phone. This way, farmers could ask questions about our prompts, and 

the surveyor could provide additional context and definitions as needed. The farm management survey collected data on cover 

cropping, crop diversity and rotation practices, tillage, and organic inputs used by farmers over the prior five years. Questions 

about irrigation practices, barriers and incentives to soil health practices, and the impacts of COVID-19 were also conducted 185 

in the same survey but were not utilized in this study. Relevant parts of the survey were then collated into numeric values (i.e., 

counting reported crops and cover crop varieties, conversion of fertilizer applied into C and N applied based on known values 

from composts and application amounts etc.) for analysis. Organic amendments included farm-produced composts, composted 

chicken manure, and commercial organic pellet fertilizers (often derived from chicken manure and bone meal).  

Notably, the management survey was specific to the field we sampled, where lettuce production was happening that season. 190 

Some sites had polycultures with multiple crops at any given time and/or cover crop mixes with high diversity. Additionally, 

a given field might have up to three cash crops each year.  

2.3.2 Remote sensing continuous cover 

To complement the management survey data about the historical use of cover cropping, we also used satellite imagery to assess 

continuous living cover at each farm field site via Google Earth Engine (Gorelick et al., 2017). While there was general 195 

alignment between farmer-reported cover data with the remotely sensed data, for model analyses, we defaulted to using the 

remote sensing metrics of continuous cover for consistency. To do so, we created a polygon for each of the 28 field sites that 

represented our field sampling locations. We then computed the proportion of the year with vegetation cover from 2015 until 
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2019, based on an NDVI threshold approach using Landsat and Sentinel imagery. An NDVI threshold value of 0.3 was used 

to separate bare soil versus sparse vegetation (Sobrino et al., 2001). From 2015 through 2019, we classified the field as having 200 

or not having vegetative cover on a monthly basis, based on this threshold. For each year, we created a proportion of cover by 

taking the number of months during which the mean monthly NDVI value was above the threshold and dividing this by 12. 

We also evaluated the presence of winter cover with NDVI values in January, though we could not distinguish winter cover 

versus cash crops using satellite imagery. Given that vegetation could be sparse in January, we increased the NDVI threshold 

to 0.5 for the ‘January Mean Cover’ variable. This increased NDVI threshold ensured that we only indicated winter cover crop 205 

presence when significant biomass was present. 

2.3.3 Farm management standardized scores 

To create interpretable management variables, we first categorized all management questions into four practice types based on 

Natural Resources Conservation Service soil health principles - continuous living cover, crop diversity, reduced disturbance, 

and organic amendments (Table 1). We did not include soil cover (i.e. mulching) as a category because it is not used in our 210 

regional lettuce production system. We then scaled individual management variables by creating a new variable, where a value 

of 1 indicated the highest value of a practice within our dataset. For tillage variables, such as tillage depth and frequency, we 

subtracted the scaled variable from 1 so that higher values indicated reduced disturbance. We then created a composite score 

by averaging all practices within each management category. Finally, for each category, we calculated a z-score, with a mean 

of 0 and a standard deviation of 1 to compare different management practices on the same scale. 215 

Soil health 
principle 

Management 
variable 

Unit/Description Min 
value  

Max 
value 

Mean  Median 

Maintain 
continuous living 
cover 

Winter cover  Mean presence of winter cover over prior 
5 years based on January NDVI 

0  1  0.44  0.40  

Continuous cover Fraction of continuous living cover (cash 
and cover crops) over 5 years based on 
monthly NDVI 

0.23  0.9  0.54  0.52  

Organic 
amendments 

Total carbon input Kg C ha-1; based on organic amendments 
applied during sampling season 2020 

4489 2991 1926 1786 

Crop rotational 
diversity 

Cash crop 
richness 

# of crops 3 16 5.4 5 

Crop families # of cash crop families 1 8 4.1 4 

Cover crop 
richness 

# of cover crop types 0  9 3 3 
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Cover crop 
functional 
richness 

Number of functional groups 0  3 1.5 2 

Reduced 
disturbance 

Bed permanence 0 = one season, 1= multiple seasons 1 0 0.1 0 

Deep tillage 
frequency 
(>12inches) 

0= more than 1x per year, 1 = once per 
year, 2= once every few years, 3= never 

3 0 1.1 0.5 

Tillage depth Inches 42 14 28 30 
 
Table 1: In-field management categories and included practices.  
 
2.3 Statistical analysis 

Our primary goal was to assess the relationships between management practices, soil organic carbon (SOC) fractions, and total 220 

organic carbon stocks, while accounting for site-specific edaphic variability. To do this, we used mixed-effects models, treating 

‘site’ as a random intercept. 

Since our goal was to assess drivers of SOC fractions rather than make predictions, we focused on hypothesis testing rather 

than best-fit model selection, following recommendations for similar datasets (Bradford et al., 2021; Holland, 1986; Olimpi et 

al., 2024). In other words, our interest was in identifying robust parameter estimates rather than maximizing explained variance. 225 

Consequently, we did not rely solely on p-values < 0.05 to interpret results (Wasserstein et al., 2019; Wasserstein & Lazar, 

2016). Non-significant variables were retained to control for potential confounding effects. 

First, we used random forest variable importance analyses to assess whether individual management practices (i.e., tillage 

depth, cash crop richness, 5-yr continuous cover; Table 1) might have a stronger impact when considered independently, rather 

than in a composite variable. For practices of high importance, we substituted them for composite variables in mixed models 230 

and compared results. These analyses were performed using the ‘party’ package in R (Hothorn et al., 2023).  

For model construction, we first needed to select carbon variables that could reasonably be altered by management. For 

mineral-associated organic matter, we analysed the %C for the MAOM fraction. This was chosen so that we could investigate 

how much carbon was adsorbed to mineral surfaces. While this is not equivalent to saturation, which accounts for texture and 

mineralogy, MAOM C% is the carbon concentration in the fine, high-density particles for a given soil (i.e., regardless of soil 235 

texture, how much carbon is present in this fraction?). This is in contrast to looking at, for example, total MAOM carbon stock, 

which we expect to be primarily driven by the percentage of silt and clay (though increasing MAOM C% would also increase 

stocks). 
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For the free and occluded POM fractions, we analysed the proportional contribution of POM to the total organic carbon pool. 

This allowed us to account for both the %C and the relative proportion, by mass, that each POM fraction represents in each 240 

sample. This was calculated as follows: 

𝑓𝑃𝑂𝑀!!"#!	 =	𝑓𝑃𝑂𝑀!% ∗ 	
𝑚𝑎𝑠𝑠#$%& 𝑚𝑎𝑠𝑠'(')*+ 	 (1) 

𝑜𝑃𝑂𝑀!!"#!	 =	𝑜𝑃𝑂𝑀!% ∗ 	
𝑚𝑎𝑠𝑠($%& 𝑚𝑎𝑠𝑠'(')* 	+ (2) 

These Cprop values and the total POM stock are related; thus, we also ran models with stock values to compare model results. 

Since no meaningful differences were found (see Supplement), we focused on Cprop values for POM fractions.  245 

MAOM C%, fPOM, and oPOM Cprop, were subsequently transformed using a logit function. Logit transformations are useful 

for proportion values falling between 0 and 1, making them appropriate here (Warton & Hui, 2011). Transformations also 

helped in improving subsequent model fit.  

Stocks were calculated assuming a depth of 15 cm as follows for MAOM, fPOM, and oPOM: 

𝐶𝑆𝑡𝑜𝑐𝑘&+%& = 𝑀𝐴𝑂𝑀!% ∗
𝑚𝑎𝑠𝑠&+%&
𝑚𝑎𝑠𝑠'(')*

∗ 𝐵𝐷
𝑔
𝑐𝑚, ∗ 15𝑐𝑚 ∗ 1𝑒8

𝑐𝑚-

ℎ𝑎 ∗ 0.000001
𝑀𝑔
𝑔 	 (4) 250 

We calculate bulk soil carbon stocks for surface soils, again to 15 cm, as follows: 

𝐶𝑆𝑡𝑜𝑐𝑘 = 𝐶% ∗ 𝐵𝐷
𝑔
𝑐𝑚, ∗ 15𝑐𝑚 ∗ 1𝑒8

𝑐𝑚-

ℎ𝑎 ∗ 0.000001
𝑀𝑔
𝑔 	 (5) 

2.3.1 Variable reduction 

We used principal components analysis to create groups of related covariates for further analysis, including soil edaphic 

characteristics (sand content, clay content, cation exchange capacity, and dry bulk density), soil iron phases (pyrophosphate, 255 

oxalate, hydroxylamine, and dithionite extractions, described above), and extracellular enzyme activities (phosphatase, β-

glucosidase, exochitinase, leucine-aminopeptidase, glucanase/ 1,4-β-cellobiosidase, peroxidase, and phenoloxidase). The first 

principal component axis, which captured 85.4%, 62.1% and 75.1% of variation for physical, iron, and enzyme data, 

respectively, was used for further analysis. PCAs were performed using the ‘ade4’ package in R (Dray et al., 2023). PCA 

figures and variable contributions to PC1 are reported in the Supplement (Fig. S5). 260 

2.3.2 Mixed models 
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We constructed mixed-effects models to analyze the relationship between soil carbon fractions and soil edaphic properties, 

soil enzymes (for MAOM), and soil health management. Site was included as a random intercept to account for site-level 

variability and to reflect our study design while avoiding pseudoreplication (Harrison et al., 2018; Zuur et al., 2009). Models 

followed the general structure: 265 

𝑀𝐴𝑂𝑀!%	/0 = 𝑃ℎ𝑦𝑠$!1/0 + 𝐼𝑟𝑜𝑛$!1/0 + 𝑝𝐻/0 + 𝐶𝑜𝑛𝑡𝐶𝑜𝑣𝑒𝑟2	/ +𝐷𝑖𝑠𝑡𝑢𝑟𝑏2	/ + 𝐶𝑟𝑜𝑝𝐷𝑖𝑣2	/ + 𝐶𝐼𝑛𝑝𝑢𝑡2	/ + 𝑢/ + 𝜀/0 	 (6) 

Where subscript PC1 indicates the use of the first principal component axis, Z reflects the use of summarized practice z-scores, 

and u is the random intercept for site i.   

We ran an additional MAOM model including soil extracellular enzymes PC1, hypothesizing their role in processing POM 

into MAOM. While enzymes were positively associated with POM fractions (Fig. S3), in this case, we believe that the increase 270 

in extracellular enzymes was a response to increased POM, but does not add explanatory power as a modelled variable  Cenini 

et al., 2016). 

The same model structure was used for fPOM and oPOM. An alternative fPOM model was also implemented that replaced 

two of the composite management z-scores with specific practices, namely 5-year continuous cover (whereas the composite 

continuous cover Z score also integrates winter cover) and deep tillage frequency, which were identified via random forest 275 

analysis. Only one oPOM model was presented, as top variables from RF did not significantly alter model results. Similarly, 

5-year continuous cover replaced the composite z-score in the C-stock model. The model using Continuous Cover Z is 

presented in the Supplement. 

Models were built using ‘lme4’ in R (Bates et al., 2023), assuming Gaussian errors. Interactions were not modelled due to 

dataset limitations. Model fit was assessed via QQ plots qqnorm and multicollinearity was always found to be minimal (VIF 280 

<3; James et al., 2021; see Supplement). Logit and box-cox transformations were used for fraction and bulk carbon values 

respectively. Missing values (e.g., negative lab results) were imputed using five rounds of mean substitution with the ‘mice’ 

package (Alice, 2015), affecting 15 microbial biomass C/N values and 40 enzyme activity data points. 

To compare effect sizes across variables on different scales, we report standardized coefficients (Gelman, 2008). We evaluate 

contributions of management versus edaphic variables through variance partitioning, estimating marginal R2 values and 285 

confidence intervals via parametric bootstrapping (1000 iterations) using the ‘partR2’ package in R (Stoffel et al., 2024). 

Sensitivity analysis involved iteratively removing variables to confirm result stability, with findings reported in the Supplement 

(Table S6). 

2.4 Estimated management outcomes 
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To facilitate interpretation of model coefficients on how management practices affect soil carbon fractions, we selected sites 290 

with contrasting use of management practices and calculated modelled changes in SOC fractions and stock. We chose these 

contrasting sites based on the practices that emerged as clear drivers for a given model. In all cases, these are sites that are not 

necessarily the highest or lowest scorers, but rather sites that have relatively high and low scores. This was done rather than 

selecting fixed z-scores for each practice because z-scores are a composite function of multiple practices (meaning there could 

be multiple practice combinations that yield the same z-score). By choosing scores from distinct farm sites, the comparisons 295 

reflect real practices rather than an arbitrary score.  

We first extracted the relevant parameter coefficients from our models and applied necessary back-transformations, and then 

used values from the relevant management variable to estimate modelled outcomes for contrasting management 

implementation. Lastly, we took the difference between the high and low implementation sites (Table 2). We calculate these 

changes for a single model and a single practice at a time. Thus, only one practice varies, and use of all other practices are 300 

assumed to be the same, cancelling out when the difference is taken. 

3 Results 

3.1 Site characteristics and bulk and fraction C% 

The 28 field sites encompassed a diverse range of soil edaphic characteristics and soil health practices, with practice Z-scores 

generally ranging between -2 and 2 (Fig. S2). Soil texture ranged from clay to loamy sand, with mean sand, silt, and clay 305 

content of 42%, 33%, and 26%, respectively (Table S2). CEC values ranged widely between 7.4 and 52.1, with a mean of 20.3 

(Table S2). The bulk density of surface soil (0-15 cm) ranged from 0.88 to 1.6 g cm-3, with a mean of 1.33 g cm-3 (Table S2). 

Surface soils (0-15 cm) had mean bulk soil organic carbon concentration of 1.50%, ranging from 0.74 to 3.95% (Table S2). 

pH values were more constrained, with a range of 6.4 to 8.4 and a mean of 7.5 (Table S2); these values are generally 

representative of local soil conditions that tend to be slightly alkaline. Having a similar climate across sites, with wide variation 310 

in soil physical properties and use of soil health practices allowed for identifying relationships with soil organic matter 

fractions. 

3.2 Soil health management and edaphic impacts on MAOM C% 

Mean MAOM C% was 1.73%, with MAOM-C accounting for 77.2% of the total estimated surface soil carbon stock (Fig. S3). 

This translates to ~19.72 Mg C ha-1. Reduced tillage and continuous cover emerged as drivers of MAOM C% across the two 315 

MAOM mixed models used: In MAOM model 1 (without extracellular enzymes), the positive effect of reduced disturbance 

on MAOM was statistically clear at p<0.1 (𝛽std= 0.21; p = 0.09), while continuous cover was slightly above this threshold 

(𝛽std= 0.20; p = 0.105). The concentration of iron phases (IronPC1) and soil physical characteristics also were clearly associated 

with MAOM C%, with increasing amounts of poorly-crystalline (oxalate and hydroxylamine HCl -extracted) and organic 
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complexed (pyrophosphate-extracted) iron (𝛽std = 0.13; p = 0.023), and increasing sand content (𝛽std= 0.19; p = 0.073), 320 

corresponding to higher MAOM C%. pH was negatively associated with MAOM C% (𝛽std= -0.11; p=0.064). Standardized and 

unstandardized coefficient values are presented in Tables S3 and S4, respectively, alongside standard errors and p-values. 

When extracellular enzyme activity was included in the model, continuous living cover and reduced disturbance remained the 

most important management practices (𝛽std-cover = 0.2, pcover= 0.073; 𝛽std-dist = 0.21, pdist = 0.068, respectively; Fig. 2). In this 

model, the concentration of iron phases (IronPC1 primarily associated with poorly crystalline and organo-mineral fractions; see 325 

supplement) remained a positively associated variable (𝛽std = 0.1; p=0.068), while the effect of pH and physical characteristics 

became less clear (ppH = 0.21; pphys= 0.18). Meanwhile, the association with enzyme activity was clear (𝛽std= 0.1; p= 0.042), 

with higher enzyme activities corresponding to increased MAOM C%.  

Moving from representative levels of low to high implementation of continuous living cover and winter cover increased the 

absolute MAOM carbon concentration (C%) by ~1.85% (Table 2; CI: 1.79 - 1.90). For tillage, low to high sites differed by 330 

absolute MAOM C% by ~1.86% (CI: 1.81 - 1.91). 

MAOM1 and MAOM2 models’ management variables explained approximately double the variance observed, relative to 

edaphic variables and enzyme activity (Fig. 3; Table S5). Edaphic variables explained less than 10% of the variance observed 

in our data (6.0% and 8.1%, respectively), whereas management variables explained around 20% (19% and 20%, respectively). 

Both MAOM models explained approximately the same amount of variance (total R2marginal = 0.3 and 0.32 for models 1 and 2, 335 

respectively). 
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Figure 2: Modeled regressions for carbon fraction and stock models holding all other variables constant at mean values. 
Significant relationships are darker with p-values listed. Unless otherwise indicated, x-axis uses z–scores for each 
management category. Models MAOM 2 and fPOM 2 are visualized. 340 
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Low Score Site High Score Site Modeled Increase 

MAOM C%       

Continuous cover 28% cover over 5 
years 
0% January cover 

90% cover over 5 years 
80% January Cover 

MAOM1 (No enzyme):  
1.85% C (1.79 - 1.90) 
MAOM2 (Enzyme): 
1.86% C (1.80 - 1.91) 

Reduced 
Disturbance 

One season beds 
Deep till 1x per year 
Tillage depth = 1.07 
m 
  (42 in) 

Multiple season beds 
Deep till 1x every few years; Tillage depth = 
0.38 m (15 in) 

MAOM1:  
1.86% C (1.81 - 1.91) 
MAOM2: 
1.86% C (1.77 - 1.95) 

fPOM stock        

Continuous cover 23% cover over 5 
yrs 

90% cover over 5 years 2.76 Mg C ha-1  
(0.67 - 11.46) 

Deep tillage 
frequency 

More than 1x per 
year 

Never  0.62Mg C ha-1  
(0.52 - 0.75) 

oPOM Stock       

Crop Diversity 3 cash crops, no 
cover 
  crops 

6 cash crops, 9 species 
  cover crop mix with 3 functional groups 

4.63 Mg C ha-1 
(4.31 - 4.97) 

C Bulk Stock       

Continuous cover 28% cover over 5 
years 
0% January cover 

90% cover over 5 years 
80% January Cover 

3.57 Mg C ha-1 
(3.55 - 3.58) 

Table 2: Modeled management outcomes on various carbon fractions and stocks based on back-transformed mixed-effects 
model coefficients, comparing high- and low-adoption sites. The sites selected are not the highest or lowest sites, but rather 
sites that are relatively high and low for each management category.  345 
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Figure 3: Marginal R2 values for edaphic variable groupings (Physical PC1 – texture, CEC, pH, and for MAOM2, enzyme 

activity) and management variables (continuous cover, reduced disturbance, C input, crop diversity Z scores) with confidence 350 

intervals from bootstrapping. R2 values and confidence intervals obtained using ‘partR2’ package in R. CIs estimated via 

parametric bootstrapping with 1000 iterations.  

3.3 Soil health management and edaphic impacts on fPOM Cprop 

Mean fPOM C% was 20.53%, with fPOM carbon accounting for 8.93% of the total estimated surface soil carbon stock (Fig. 

S4). This translates to ~3.54 Mg C ha-1.   355 

In the fPOM 1 model, using the model structure with all four management category scores, crop diversity and IronPC1 were 

statistically clear drivers of fPOM Cprop (𝛽std-crop div  = 0.34, pcrop div = 0.083 ; 𝛽std-iron = 0.33; piron = 0.045).  

As a result of Random Forest (RF) variable importance analysis (see Supplement), we ran a second model (fPOM 2) replacing 

continuous cover and reduced disturbance z-scores with the proportion of plant cover over the previous five years (hereafter 

Coverprop-5yr), and the frequency of deep tillage, respectively. In this model, these two variables both clearly associated with 360 

fPOM Cprop, with an increased proportion of cover and decreased deep tillage corresponding to increased fPOM Cprop (𝛽std-
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cover5yr =  0.46, pcover5yr = 0.017; 𝛽std-deep till = -0.40, pdeep till =0.022; Fig. 2). Iron’s relation was less clear in this model (p=0.13). 

Crop diversity drops out as a significant variable in this model (𝛽std-crop div =  0.05, pcrop div = 0.79). 

Contrasting these individual practices across high and low implementation sites, the model predicted that a shift from 23% to 

90% cover increased fPOM carbon stocks by ~2.76 Mg C/ha (CI: 0.67 - 11.46; Table 2). Going from using deep tillage more 365 

than once per year to never deep tilling increased surface soil fPOM carbon stocks by ~0.62 Mg C ha-1 (CI: 0.52 - 0.75).   

The marginal R2 value for the full fPOM model 1 (0.18) was lower than that of fPOM model 2 (0.31; Table S5). For the fPOM 

1 model, management explained 12% of the variance, while edaphic variables explained 3.9% (Fig 3). When we substituted 

‘Continuous Cover’ and ‘Reduced Disturbance’ management z-scores with individual practice variables, the management 

R2marginal increased to 0.25, and edaphic variables decreased slightly to 0.03 (Table S5). 370 

3.4 Soil health management and edaphic impacts on oPOM Cprop 

Mean oPOM C% was 0.87%, with oPOM carbon accounting for 2.28% of the total estimated surface soil carbon stock (Fig. 

S4). This translated to ~2.28 Mg C ha-1.   

For oPOM Cprop, crop diversity and IronPC1 were the two statistically clear driving variables (𝛽std-crop div = 0.36, pcrop div = 0.024; 

𝛽std-iron 0.40, piron = 0.001; Fig. 2). Like fPOM, we used two individual practice variables that emerged from RF analysis 375 

(Coverprop-5yr and tillage depth), but this did not notably change model results (see Supplement).  

Contrasting a low crop diversity field with 3 cash crops, to a high diversity site with 6 cash crops and 9 species of cover crops, 

the oPOM carbon stock had a modeled increase of 4.63 Mg C ha-1 (CI: 4.31 - 4.97; Table 2).  

Marginal R2 values showed the similar trend of management variables explaining more variance than edaphic variables 

(R2marginal-edaphic = 0.12, R2marginal-management = 0.17; Fig. 3), though the difference was not as pronounced as it was for MAOM or 380 

fPOM. The model as a whole, similar to other fractions, explained ~29% of the observed variance in our data (Table S5). 

3.5 C stock and management 

Continuous cover and PC1Phys emerged as clear drivers of bulk carbon stocks in the surface soil (𝛽std-cover=0.015, pcover =0.068; 

𝛽std-phys = -0.021, pphys = 0.0074; Fig. 2).  

Contrasting sites with high and low implementation of continuous cover, increasing the cover proportion from 23 to 90% and 385 

winter cover from 0 to 80% increases carbon stock in the top 15cm by ~3.57 Mg C ha-1 (CI: 3.55 - 3.58; Table 2). The marginal 

R2 value for carbon stocks is 0.25 for edaphic and 0.12 for management variables, and the total model R2 is 0.34 for the bulk 

carbon models (Fig. 3; Table S5).  
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4 Discussion 

4.1 Relative impacts of soil health management on POM, MAOM, and carbon stocks 390 

We found that that soil health practices, and in particular continuous living cover, significantly influenced multiple carbon 

fractions and overall carbon stocks across working organic farms spanning a wide range of edaphic conditions. Reduced 

disturbance also increased MAOM C% and fPOM, while crop diversity was linked to increases in oPOM. These results 

underscore the potential for various land management strategies to drive carbon accumulation in functionally distinct organic 

matter fractions across a range of agricultural soils.  395 

Continuous living cover emerged as a significant variable across most models, indicating importance for multiple carbon pools. 

We found that fields with higher levels of continuous living cover over the previous 5 years had significantly higher fPOM, 

MAOM, and overall carbon stocks. This may be mediated through increased aggregate stability, steady belowground carbon 

inputs via rhizodeposition, and above and belowground plant biomass that is incorporated into soils (Gentsch et al., 2024; 

White et al., 2020). These carbon inputs may support microbial activity and processing that is key for MAOM accumulation, 400 

and may also increase dissolved organic matter in soils, which can also sorb to minerals to form MAOM (Kallenbach et al., 

2016; Liang et al., 2017; Sokol et al., 2019). Recent global meta-analyses similarly found that cover crops increased POM by 

nearly 14.5 - 15% and MAOM carbon by 5.6 - 7% relative to bare soil controls (Wooliver & Jagadamma, 2023; Hu et al., 

2023). This increase in MAOM was accentuated in long-term experiments (>10 years), indicating that continuous cover over 

extended periods may be important for MAOM accrual in particular.  405 

Reduced tillage was also positively linked to increased MAOM C, and reducing deep tillage increased fPOM. Reducing tillage 

can help preserve soil structure and limit microbial degradation of physically protected POM and MAOM (Conceição et al., 

2013; Grandy & Robertson, 2007). While the increase in fPOM might be expected with decreased tillage intensity, it was less 

expected to see MAOM also significantly higher for fields with lower tillage intensity. Consistent with our findings, Samson 

et al. (2020) observed increased Fine Organic Matter (FOM)—analogous to MAOM—in reduced tillage systems. While 410 

Wooliver & Jagadamma (2023) found no direct tillage effect on MAOM in their meta-analysis, they suggest that overall SOC 

declines under tillage result from increased microbial decomposition of the MAOM pool. Decreased fPOM may result from 

accelerated decomposition due to disturbance, but it is also possible that deep tillage moves fPOM from surface soils down 

the soil profile, thus reducing the fPOM observed in surface soils (Angers & Eriksen-Hamel, 2008; Martins et al., 2015). 

Fractionations of deeper soil samples would be needed to confirm this hypothesis.  415 

Crop diversification also emerged as an important practice for POM fractions. This follows a recent meta-analysis which found 

that, while POM generally increases with cropping system intensification (eliminating fallows, increasing number of crops 

grown per year, planting cover crops, inclusion of perennials), this trend is not as clear for systems that incorporate multiple 
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crops (Prairie et al., 2023). That said, they still found that bi- and polyculture systems as well as perennial intercropping show 

increases for POM (Prairie et al., 2023). Importantly, diversified cropping systems contribute to the formation of stable 420 

macroaggregates, which are particularly important for oPOM (Gentsch et al., 2024; G. Li et al., 2024).  

Surprisingly, our analysis found no apparent influence of organic amendments on carbon fractions or stocks. While non-

significant, the coefficient values for all but MAOM are negative. This finding was unexpected since studies show increases 

in SOC following application of compost, manures, and other organic amendments (Aguilera et al., 2013; Bian et al., 2024; 

Bolinder et al., 2020; Samson et al., 2020; White et al., 2020). The discrepancy between the findings from our on-farm study 425 

and these experimental studies needs further investigation. We speculate that one reason for this discrepancy could be that the 

timescales and quantities required for amendments to increase SOC were not represented at our farm sites and study design. 

Further investigation of carbon inputs revealed negative bivariate correlations with POM fractions, suggesting a potential 

priming effect, wherein adding nutrient-rich amendments may increase microbial activity, leading to increased decomposition 

of POM fractions (Fig. S8). Nevertheless, we found that organic amendments correlate with lettuce yield (Esquivel et al., in 430 

prep; Supplement), affirming the importance of this practice for organic growers.  

This on-farm research complements manipulative experiments that have limited generalizability to real world conditions but 

greater causal inference. We addressed one limitation of observational studies that hampers causal interpretation, selection 

bias, by including key edaphic factors that not only impact soil organic matter outcomes of interest but also possibly decisions 

regarding soil health management (Larsen et al 2019). Repeated sampling over longer timescales would enable additional 435 

causal insight into relationships between soil health management and soil carbon dynamics from on-farm research. Future on-

farm work could also account for interactions between practices and between practices and edaphic conditions. While we 

account for all practices simultaneously in our models, it is possible that, for example, simultaneous increases in tillage and 

continuous cover might have an especially positive impact on carbon fractions. To do so would require more resources to 

sample more sites, with possible tradeoffs for the number and types of measurements collected.  440 

Additionally, it is important to note that these findings may not hold for different crop types, such as perennial or tree crops 

and non-vegetable systems with different rooting depths and soil residue inputs. Non-organic systems may also have different 

dynamics with the addition of synthetic pesticides and fertilizers, though we observe high SOC variability even within these 

organic systems. 

 445 
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4.2 Management versus edaphic impact on soil carbon  

While soil health management clearly influenced each of the focal carbon pools, we also find that edaphic characteristics, and 

in particular higher levels of soil iron, emerged as an important explanatory variable in most models. 

Poorly crystalline iron (oxalate and hydroxylamine HCl extracted) and organo-mineral (pyrophosphate extracted) complexes 

are well known to provide sorption sites to stabilize MAOM, as we confirmed in our MAOM models. We find that the 450 

pyrophosphate-extracted iron fraction has the strongest relationship with MAOM carbon concentration (Fig. S6), underscoring 

the importance of organo-mineral stabilization in these Central Coast soils. These metal phases, though imperfectly isolated 

by wet extraction, provide valuable insights into soil carbon stabilization and turnover (Masiello et al., 2004; Rennert, 2018). 

Mineral-organic associations protect low-molecular-weight carbon inputs and contribute to long-term carbon storage 

(Rasmussen et al., 2018; Wagai et al., 2020; Wu et al., 2023). Despite the known importance of iron and other minerals in 455 

associating with organic carbon, relatively few studies on agricultural soil carbon include this as a measured variable. This is 

likely because iron does not have a direct impact on the growth of most crops or on the agricultural suitability of soils, thus 

iron is not generally included in routine agronomic evaluations of soils (Zhu et al., 2013). 

Soil iron fractions also play a key role in fPOM and oPOM accumulation. Many of the studied soils contain high-activity 

smectitic soils and amorphous minerals such as short-range order iron minerals, which can encourage greater aggregate 460 

stability and physically protect both POM and MAOM (Six et al., 2004; Wu et al., 2023). Across ecosystem types, Yu et al. 

(2022) found oxalate-extractable Fe predicted POM contribution to total SOC. In our dataset, while iron mineralogy is 

significantly positive for almost all models, its positive relationship is especially clear (p = 0.001) for oPOM, suggesting that 

soil iron is critical for increasing the proportion of oPOM (Ren et al., 2024; Wang et al., 2019). This appears to be driven 

largely by a relationship with Pyrophosphate-extractable iron (Fig. S7). 465 

Despite the consistency of iron as an important variable in our models, we found that soil health management variables still 

explain more of the variance than edaphic variables across MAOM, fPOM and oPOM models. This finding was surprising, 

particularly for MAOM, given the importance of soil pH and texture in shaping sorption dynamics and drivers of SOC 

persistence (Rasmussen et al., 2018). While edaphic and climatic conditions govern the decomposition of the POM pool, our 

study finds that management variables that control POM inputs appear more important than inherent soil characteristics. A 470 

recent meta-analysis with pH values ranging from 4 to 8 similarly found that cover cropping impacts on POM and MAOM 

were not strongly influenced by soil texture and pH (Wooliver & Jagadamma, 2023). Altogether this finding demonstrates 

that, despite variable edaphic conditions (clay percentage ranges from 5-60% and sand from 5-77%; Table S2), on-farm 
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management practices have the potential to significantly increase POM and MAOM fractions in agricultural soils with benefits 

for soil health and fertility.  475 

The only model where edaphic variables explained more variance was for the carbon stock model. This is unsurprising as 

higher proportions of clay and silt in a soil increases the surface area for carbon sorption (Georgiou et al., 2022; Wu et al., 

2023). While our models indicate significant impacts of management on MAOM, which comprises the largest fraction of the 

overall carbon stock, this apparent discrepancy is explained by our use of carbon percentage for MAOM rather than MAOM 

carbon stock. Our result aligns with other work showing that SOM in agricultural soils is more related to soil texture than 480 

management factors (Williams et al., 2020). Interestingly, iron concentration is not quite significant for bulk soil carbon stock. 

This may indicate that, while important when looking at specific carbon fractions, that texture is a stronger edaphic factor 

driving overall carbon stocks.  

Importantly, while soil texture is a key predictor of carbon stocks, most agricultural soils are highly undersaturated – meaning 

that there is a lot of remaining surface area on which carbon could sorb – relative to uncultivated soils (Georgiou et al., 2022; 485 

Rasmussen et al., 2018). Thus, agricultural management is still essential for increasing soil carbon stocks.  

Finally, while enzyme activity was only considered for one of our MAOM models, we find that it correlates positively with 

MAOM-C%. This is likely due to the breakdown of plant polymers and subsequent microbial contributions to MAOM 

formation (Whalen et al., 2022). However, the directionality of enzyme activity is usually not clear for MAOM or POM 

fractions, and correlations tend to be stronger for POM fractions (Cenini et al., 2016; Grandy et al., 2007). In our dataset, 490 

enzyme activity strongly correlates with the fPOM fraction, but we omit enzymes as a predictor variable for POM models due 

to uncertainty in the direction of effects (Fig. S3). Although root exudates and extracellular enzymes can destabilize MAOM, 

their positive correlation with MAOM C% in our study suggests a net contribution to its formation (Jilling et al., 2021; H. Li 

et al., 2021). 

4.3 Implications for management and policy 495 

Our findings suggest that increasing continuous living cover and reducing deep tillage on working lands could significantly 

increase MAOM C%, POM, and overall carbon stocks. According to data from the U.S. Census of Agriculture, the percent of 

available cropland planted with cover crops nationally is 5.6%, and in California, 4.8% (LaRose & Myers, 2019). In our focal 

region of the Central Coast of California, a recent remote sensing analysis revealed that only ~6% of farmland had winter 

cover crops, and ~60% of farmers left their fields fallow through the winter (Thompson et al., 2023). Similarly, based on our 500 

survey and local knowledge of production systems in California, the use of reduced tillage practices is quite rare (Mitchell et 

al., 2007). The low use of continuous cover and reduced tillage across California and the US indicates a significant opportunity 

for increasing cropland carbon sequestration. Policy and conservation incentive programs should focus on supporting farmers 
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in adopting cover cropping practices, and other means of increasing living cover, while recognizing that the barriers that 

different groups of farmers face vary widely and that many barriers exist at structural levels beyond the farm requiring policies 505 

tailored to different farming contexts (Carlisle et al., 2022; Esquivel et al., 2021).   

In California, the Healthy Soils Program (HSP), whose goal is explicitly tied to increasing SOC in agricultural lands, has 

allocated over 2/3 of its grant funding towards carbon amendments like compost, amounting to nearly $56 million in 2021 

alone (Babin et al., 2025; California Department of Food and Agriculture, 2022). Our study suggests that the context and 

timescales of compost application may be critical in generating measurable changes in SOC and highlights the need for further 510 

research to understand the precise conditions under which such amendments may be a valuable strategy for carbon 

sequestration on working lands.   

4.5 Conclusion and future directions 

This on-farm study examined the impact of soil health management on mineral and particulate carbon fractions and surface 

soil carbon stocks across 28 actively managed farms. It provides valuable insights into real-world farming practices across 515 

diverse soil textures and their effects on carbon in different functional fractions. Sampling soils directly from working farms 

provides insight into the impacts of heterogeneous cropland management that are difficult to assess in controlled field 

experiments. The use of our management gradient provides a continuous measurement of the level of use of a given practice 

that allows for unique insights on the impact of various levels of management practice utilization. 

Ultimately, we found that cultivating continuous living plant cover, reducing tillage, and increasing crop diversity can enhance 520 

both the slower-cycling MAOM fraction and the more dynamic POM fraction. The dominance of the MAOM fraction in 

overall carbon stock suggests its potential for long-term carbon sequestration in agricultural soils. Notably, maintaining 

continuous cover emerged as a significant factor in increasing MAOM, fPOM, and overall soil carbon stocks in surface soils.  

Furthermore, across various soil textures, these management practices showed significant potential to boost carbon stored in 

MAOM, fPOM, and oPOM fractions. This research complements mechanistic and experimental trials, highlighting that soil 525 

health management is effective in increasing soil organic carbon fractions and stocks across a diverse range of soil types. This 

underscores the importance and potential of soil health management as a climate mitigation strategy across working 

agricultural lands.  
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