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Abstract. Air temperature (Ta) has critical implications for various socioeconomic sectors, yet its dynamics are particularly 

complex in urban areas due to heterogeneous built environments, landscapes, and diverse anthropogenic activities. Physics-10 

based models struggle with intra-city Ta forecasts due to inadequate urban representation and limited spatial resolution. 

While weather observation networks offer promising alternatives for direct local Ta modeling, an effective framework to 

leverage these intra-city data remains lacking. Here, we demonstrate that graph neural networks (GNNs) can harness 

observation network information to refine Ta prediction at individual locations and elucidate underlying mechanisms. Our 

novel Mix-n-Scale framework with GNNs achieves over 12% improvement in short-term Ta forecasts compared to 15 

conventional time-series approaches. Further model evaluation disentangles performance variations with local Ta variability 

in diverse spatiotemporal contexts, indicating distinct patterns of intra-city heterogeneity across seasonal and diurnal scales. 

Our findings establish graph-based approaches for leveraging proliferating urban sensor data and advancing understanding of 

Ta spatiotemporal dynamics in complex urban environments. 
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1 Introduction 

Air temperature (Ta) is a crucial meteorological variable that profoundly affects various facets of human welfare (Mora et al., 

2017; Yuan et al., 2025; Zhang et al., 2023), including health (Tuholske et al., 2021), energy consumption (Perera et al., 

2020; Wang et al., 2023a), and carbon emission (Li et al., 2024), to name a few. Its significance is particularly pronounced in 25 

urban areas, where 55% of the global population resides (UN Statistics Division, 2023). Rapid urbanization, characterized by 

extensive modifications in land use and land cover, has significantly altered the surface energy balance and the overlying 

climate (Arnfield, 2003; Oke et al., 2017). These transformations, in conjunction with the spatial heterogeneity of the built 

environment, anthropogenic activities and local landscapes, generate highly localized variations in Ta at scales of 

approximately 100–1000 meters (Stewart and Oke, 2012). The increasing frequency and intensity of anomalous events under 30 

changing climate further complicates Ta pattern in urban areas (Gao et al., 2024; Li and Bou-Zeid, 2013). Accurate and 

timely local-scale Ta forecasting within cities presents great challenges, despite its critical role in urban management systems 

(Chen et al., 2024). The conventional approach to Ta forecasting primarily relies on numerical weather prediction (NWP) 

models, which necessitate solving complex governing equations. However, generating high-resolution forecasts using this 

physics-based approach presents unique challenges due to urban characteristics, scales issues, and computational demand. 35 

First, existing NWP models often lack adequate parameterization schemes to represent complex processes within urban 

environments (Chen et al., 2011; Nogueira et al., 2022; Sharma et al., 2021). The requirement to specify numerous 

parameters for urban modules also introduces additional data challenges and uncertainties, which hinder their effective 

implementation (Chen et al., 2011). Second, substantial knowledge gaps persist in convective scale (<5 km resolution) 

modelling, including the absence of basic dynamical balances under nonhydrostatic formulations and the inherent 40 

complexity of resolving turbulent processes (Kendon et al., 2021; Schär et al., 2020; Yano et al., 2018). Third, the high 

computational demand of running NWP models, particularly when applying ensemble approaches to address forecast 

uncertainty, impede their feasibility for real-time operational use. These limitations constrain accurate local Ta forecasts 

within cities. 

Deep learning (DL) has emerged as a promising alternative approach for meteorological variables forecasting. These DL 45 

models can be primarily grouped into two paradigms: training with products of physics-based models or direct weather 

observations. The former paradigm typically relies on ECMWF’s ERA5 reanalysis datasets to learn relationships between 

atmospheric states across successive time steps, and has recently achieved overall superior performance to state-of-the-art 

operational NWP systems (Bi et al., 2023; Lam et al., 2023; Price et al., 2024). However, this modeling paradigm inevitably 

inherits issues in urban areas, as the models are trained on data with insufficient urban representations and coarse spatial 50 

resolution. The latter paradigm utilizes in situ observations from weather stations or sensors and thus enables models to learn 

from data that authentically reflect local meteorological conditions (Effrosynidis et al., 2023; Wang et al., 2023b). The 

typical modeling approach adopts a time-series regression framework, wherein sequences of measurements at each 

individual locations are used to predict their respective values at subsequent time steps (Haque et al., 2021; Salcedo-Sanz et 
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al., 2016; Wang et al., 2024; Yu et al., 2021). However, the forecast accuracy under this framework remains limited and has 55 

improved only marginally despite the progressive adoption of increasingly sophisticated DL methods (Elsayed et al., 2021; 

Wang et al., 2024; Zeng et al., 2022). These limitations may stem from modeling approaches that rely purely on local time-

series information, which on the one hand may fail to capture essential spatial contextual information, rendering the learning 

task underdetermined and semantically ambiguous (Iakovlev & Lähdesmäki, 2024). On the other hand, this inherently 

overlooks critical interactions with the surrounding environment that may be essential for accurate forecasting. Modeling 60 

observational data within cities provides a solution to deliver local-scale Ta forecasts, while its potential remains 

underexplored. 

With the development of graph neural networks (GNNs), which are capable of modeling discrete and irregularly distributed 

observation sites, pioneering studies have explored their use in connecting observations across locations to leverage spatial 

information for enhancing meteorological variable forecasting. Most existing efforts have focused on modeling large-scale 65 

observational networks sparsely distributed across broad regions, with the primary rationale being to address: 1) the 

atmospheric transport and advection processes among locations (Wang et al., 2020; Zhou et al., 2022); 2) weather 

propagation patterns (Wu et al., 2023); and (3) identify certain causal relationships among different cities (Li et al., 2023). 

Despite advances in understanding and modeling large-scale dynamics and their associated spatial interactions, it remains 

largely unknown whether observational network modeling approaches (i.e. incorporating spatial information) are effective at 70 

smaller intra-city scales. Furthermore, the underlying mechanisms and spatial dependencies that drive performance 

improvements in such scale remain unclear.  

To study potential interactions among intra-city observations, we implement two GNNs with distinct spatial information 

aggregation mechanisms (directed and undirected) for short-term (1-6 hours) Ta forecasting, using local measurements of Ta 

and wind vectors across 16 locations in Hong Kong (Fig. 1a). In support of these GNN’s implementation, we propose a 75 

novel framework Mix-n-Scale, which integrates optimization and ensemble processes to address the challenge in configuring 

graph topologies, particularly when prior knowledge of intra-city scale interactions is limited. Furthermore, we quantify the 

spatial information impacts on each location based on the GNN's information passing principle and compare the results with 

conventional time-series models where each location is modeled independently. This allows us to separate the contribution 

of intra-city spatial information on model behavior and understand the underlying mechanisms. This study offers critical 80 

insights into effective frameworks for modeling local observational data and sensor networks, which is increasingly 

important as crowd-sourced weather sensors continue to proliferate within urban environments (Chapman and Bell, 2018). 

The flexibility of this framework also makes it well-suited for adaptation to the modeling of similar environmental variables.  

This paper is organized as follows. Section 2 provides details of datasets, problem formulation, DL models and their training 

framework, and metrics used in this study. In section 3.1, we first present the overall spatial characteristics of intra-city Ta. 85 

Section 3.2 presents modeling results for overall performance and extreme values, followed by an analysis disentangling the 

impact of spatial information on forecasting in Section 3.3. The spatiotemporal dynamics of Ta forecast performance are 

further analyzed in Section 3.4. Section 4 presents the summary and conclusions. 
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2 Data and Methods 

2.1 Datasets 90 

Hong Kong, a densely populated coastal city at the southern edge of East Asia, features complex atmospheric circulation 

patterns due to its hilly terrain, land-sea contrasts, and heterogeneous urban morphology. make Hong Kong an ideal setting 

to examine a model’s ability to capture local heterogeneity and intra-city Ta dynamics. In this study, we use hourly 

meteorological data from 16 weather stations (Fig./ 1a) operated by the Hong Kong Observatory. Although more stations 

exist, we limit our selection to sites with both Ta and wind observations to ensure complete records for exploring the 95 

potential effects of wind. More specifically, three types of variables are incorporated into the model training. The first type 

includes local, spatially varying observations, including Ta and wind speed (both U and V components). The second type 

includes global observations that are spatially uniform across sites, such as solar radiation (direct and diffuse) and mean sea 

level pressure; details and statistics of these variables are provided in Table 1. Additionally, we include spatial and temporal 

stamps for each site to represent its spatiotemporal context, but we do not incorporate detailed land use or urban morphology 100 

data, as the focus of this study is time-series forecasting rather than spatial prediction (estimating Ta at unmeasured sites for 

concurrent time periods). The entire dataset is divided into three disjoint subsets for training, validation, and testing. The 

training set covers four full years from 2016 to 2019, while the validation and test sets use data from 2020 and 2021, 

respectively, for model tuning and final performance evaluation. 

 105 
Table 1 

Statistics of Variables Used for Model Training and Evaluation 

Type Input variable Range Mean Unit Abbreviation 

Global Direct solar radiation [0, 3.64] 0.38 MJ/m2 - 

Diffuse solar radiation [0, 2.24] 0.31 MJ/m2 - 

Mean sea level pressure [977.8, 1037.3] 1013.0 hPa - 

Local Zonal wind speed* [-13.7, 7.3] -0.2 m/s U 

Meridional wind speed* [-13.2, 5.5] -0.9 m/s V 

2-m Air temperature [-0.9, 38.2] 23.4 °C Ta 

Temporal Hour of day [0, 23] - - - 

Day of year [1, 366] - - - 

Month [1, 12] - - - 

Spatial Latitude [113.92, 114.42] 114.156 degree Lat 

Longitude [22.20, 22.55] 22.529 degree Lon 

Altitude [4, 955] 120 m Alt 
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Note. *Positive value of U and V denote the wind is from the west and south, respectively. 

 

2.2 Problem formulation and DL models 110 

The task of Ta forecasting at multiple locations is framed as a spatiotemporal prediction problem that uses existing 

observations to estimate the state of each location over several subsequent time steps. This is processed through a two-stage 

modeling approach. First, we embed the temporal dynamics at each location separately using Long Short-Term Memory 

(LSTM) networks, which are effective for encoding time-series information (Greff et al., 2017). We also employ LSTM 

combining with decoder as a benchmark for time-series modeling using purely local information (Fig. 1b). Based on the 115 

time-series embeddings for each location, we then use GNNs to aggregate spatial information from irregularly distributed 

neighboring locations (Fig. 1a and c). The forecast horizon is set to six hours in this study, as longer lead times would 

require capturing large-scale dynamics that fall outside the scope of our target domain. The details of these two stages are as 

follows: 

Temporal dynamics embedding: Let the input at a historical time step t as 𝑋𝑋𝑡𝑡 ∈ ℝ𝑁𝑁×𝐹𝐹, where N represents the number of 120 

nodes (i.e., weather stations) and F denotes the number of predictor features. The LSTM captures the temporal evolution by 

processing observations from 𝑇𝑇 previous time lags steps, yielding a set of temporal embeddings 𝒉𝒉 = {ℎ1,ℎ2, … ,ℎ𝑁𝑁}, with 

each ℎ𝑖𝑖 ∈ ℝ𝐹𝐹′where 𝐹𝐹′ is the dimensionality of the temporal embedding for nodes from 1 to 𝑢𝑢 (Hochreiter and Schmidhuber, 

1997). This can be conceptually denoted as: 

𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡+1, … ,𝑋𝑋𝑡𝑡+𝑇𝑇)   =   𝒉𝒉.                            (1) 125 

Spatial information aggregating: Let the spatial connections between weather stations as a graph 𝒢𝒢(𝒱𝒱,ℰ), with 𝒱𝒱 is the set of 

nodes with their respective temporal embeddings ℎ𝑖𝑖 as node features, and ℰ is the edge denotes the connection between the 

nodes. Each node 𝑖𝑖 ∈ 𝒱𝒱 aggregates the representations from its immediate neighbors, {ℎ𝑢𝑢𝑘𝑘 ,∀𝑢𝑢 ∈ 𝒩𝒩(𝑣𝑣)}, into a single vector 

ℎ𝒩𝒩(𝑖𝑖)
𝑘𝑘−1 . The k is the iteration of spatial aggregation (i.e., the depth of the GNN), and  𝑘𝑘 = 0 corresponds to the initial 

embeddings 𝒉𝒉 from the LSTM. We implemented two GNN architectures, GraphSAGE (GSAGE; Hamilton et al., 2017) and 130 

graph attention network (GAT; Brody et al., 2021), because they representing two distinct learning mechanism for spatial 

information. GSAGE employs an undirected graph structure where all neighboring nodes are weighted equally. In contrast, 

GAT learns directional influences by implementing an asymmetric attention mechanism that dynamically computes neighbor 

weights (Brody et al., 2021; Veličković et al., 2018), potentially identifying causal relationships and propagation patterns. 

The details of two models are described mathematically in Text 1 in supporting information S1. 135 

2.3 Mix-n-Scale framework 

Although GNNs offer a flexible modeling paradigm for integrating discrete local observations, determining appropriate 

graph structure remains an open and challenging problem. Specifically, defining appropriate connectivity patterns between 
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locations and selecting the optimal number of neighboring nodes represents a significant challenge. Such graph topologies 

are typically constructed through trial and error, involving extensive manual experimentation and iterative testing (Chen and 140 

Wu, 2022; Ma et al., 2023; Zheng et al., 2024). 

This study therefore treats graph formation, along with time lag T, as hyperparameters and uses a greedy sequential method 

to search for and optimize their optimal configuration. Moreover, one novelty of our approach is that we do not simply use 

the best-tuned model but additionally employ an ensemble-based approach to combine the top 10% of validated models 

composed of different graph topologies and time lags. We call this training framework Mix-n-Scale, and we refer to the 145 

trained model as a "hyper-model." To the best of our knowledge, such an ensemble-based approach using various graph 

structures for sensor network modeling has not been studied or examined. Our rationale for employing this framework is 

twofold: (1) the selection of neighboring stations to establish connections and the time-series length potentially incorporates 

information from different spatiotemporal scales, enriching the representation of existing information; (2) since DL model 

training accounts for the majority of computational resources in model development process (conventional trial and error or 150 

our optimization process), while each inference (i.e., forecast) can be completed within seconds with minimal computational 

cost compared to the training stage (Goodfellow et al., 2016), our proposed hyper-model approach incurs marginal additional 

computational overhead in real-world applications while more effectively leveraging the substantial resources already 

required for model development. 

Specifically, we use tree-structured Parzen estimator (Bergstra et al., 2011) based on the its loss on validation set, examining 155 

various edge formation strategies (from self-connection to connection across all neighbors) for the graphs, look-back lengths 

(from 1 to 200 time steps) for the input time-series, and varying model architecture hyperparameters. The selection process 

can be formulated as follows: 

𝜽̂𝜽(𝝀𝝀) ∈ argmin 𝔼𝔼(𝐱𝐱,𝑦𝑦)∈𝒟𝒟�ℓ�𝑓𝑓𝜃𝜃(𝐗𝐗,𝑦𝑦,𝜽𝜽,𝝀𝝀)��,                                                                                                                               (2) 

where ℓ represents the mean squared error loss. X and y denote individual features and labels, respectively, that comprise the 160 

dataset 𝒟𝒟. 𝑓𝑓𝜃𝜃  represents corresponding test DL architecture, where 𝜽𝜽 encompasses all the model trainable parameters; 𝝀𝝀 

represents hyperparameters determining the graph structure, time lags and a few learning hyperparameters including learning 

rate and hidden dimensions. 𝔼𝔼(𝐱𝐱,𝑦𝑦)∈𝒟𝒟[⋅] stands for the expectation with the distribution over 𝒟𝒟. The search process iterates 

100 times and selects the model based on the top 10% (10 out of 100) 𝝀𝝀 hyperparameter settings. 

2.4 Metrics 165 

2.4.1 Temperature variability metrics 

The daily Ta evolution pattern can be primarily described by two metrics, including the mean daily value and the magnitude 

of diurnal variation. In this study, we introduce diurnal temperature standard deviation (DTSD) to quantify and characterize 

the intensity of diurnal Ta fluctuations at each location, serving as an indicator to show local Ta pattern. For location i, the 

DTSD is defined as: 170 
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DTSD(i) = � 1
24𝐷𝐷

∑ ∑ �𝑇𝑇𝑎𝑎(𝑖𝑖,𝑗𝑗,ℎ) − 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗)�
224

ℎ=1
𝐷𝐷
𝑗𝑗=1 ,                                                                                                                       (3) 

where 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑗𝑗,ℎ) is the 𝑇𝑇𝑎𝑎at location I , on day j, at hour h; 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗) is the mean daily 𝑇𝑇𝑎𝑎 at location I on day j; D is the Total 

number of days in the datasets. 

2.4.2 Model evaluation metrics 

We calculate the root mean squared error (RMSE) and Bias to evaluate model performance. These metrics are calculated as 175 

follows: 

RMSE =   � 1
𝑁𝑁𝑇𝑇ℎ

∑ ∑ �𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖=1

𝑇𝑇ℎ
𝑡𝑡=1 ,                                                                                                                              (4) 

 

Bias = 1
𝑁𝑁𝑇𝑇ℎ

∑ ∑ �𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)�
𝑁𝑁
𝑖𝑖=1

𝑇𝑇ℎ
𝑡𝑡=1  ,                                                                                                                                    (5) 

where 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗) is the predicted Ta at location i at time t. 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) is corresponding true Ta. N is the total number of the locations, 180 

and 𝑇𝑇ℎ is the total number of hourly samples. Here, a positive bias indicates overestimation, and vice versa for a negative 

bias. 

2.4.3 Local oscillation index (LOI) 

LOI is a metric that we proposed based on the graph Laplacian (Hamilton et al., 2017) that quantifies the surrounding 

information inflow to each node. This is utilized to quantify the impact of spatial information from surrounding nodes on 185 

local forecasting. Mathematically, let 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) be the Ta observed at location 𝑖𝑖 at the time 𝑡𝑡, and 𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡) as the mean Ta of the 

neighboring stations of station 𝑖𝑖 at the same time is calculated as:  

𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡) = 1
𝑁𝑁
�  𝑇𝑇𝑎𝑎𝑢𝑢,𝑡𝑡

𝑢𝑢∈𝒩𝒩(𝑖𝑖)
,                                                                                                                                                          (6) 

where 𝒩𝒩(𝑖𝑖) represents the set of neighboring stations to 𝑖𝑖 , and 𝑁𝑁  is the number of neighbors. For each station 𝑖𝑖 , the 

deviation of Ta from its neighbors at any given time t is Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡): 190 

Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) = 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡).                                                                                                                                                            (7) 

Based on   Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) , one can calculate the historical normal deviation of one station from its neighbors by averaging the 

deviations over records across the training period. The historical normal deviations Δ𝑇𝑇����𝑎𝑎(𝑖𝑖,ℎ,𝑚𝑚)  for location 𝑖𝑖 at hour ℎ and 

month 𝑚𝑚 is calculated as follows: 

Δ𝑇𝑇����𝑎𝑎(𝑖𝑖,ℎ,𝑚𝑚) = 1
|𝑇𝑇ℎ,𝑚𝑚|

�  Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) ,
𝑡𝑡∈𝑇𝑇ℎ,𝑚𝑚

                                                                                                                                             (8) 195 

where 𝑇𝑇ℎ,𝑚𝑚 represents the set of all historical time points corresponding to hour ℎ and month 𝑚𝑚, and |𝑇𝑇ℎ,𝑚𝑚| is the number of 

time points. And then the LOI is calculated as follows: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡 = Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) − Δ𝑇𝑇����a(𝑖𝑖,ℎ,𝑚𝑚).                                                                                                                                                       (9) 

LOI essentially reflects how a node differs from its surroundings while eliminating climatological differences. This primarily 

captures the effect of the graph processing procedure and helps disentangle the impact of spatial information. Note that LOI 200 

is an hourly metric, rather than reflecting daily deviation. 

 

 
Figure 1. Schematic of the modelling framework. (a) Spatial distribution of weather observation stations across Hong Kong (basemap © 
Mapbox), with location IDs labeled. The edges between stations represent the schematic GNN structure, showing nine connections per 205 
node. (b, c) Conceptual diagrams comparing the local time-series modeling approach and the graph-based approach that incorporates 
spatial information from observation networks (d) Overview of the Mix-n-Scale framework, which leverages intra-city observations using 
diversely configured GNNs. 

3 Results and Discussions 

3.1 Intra-city Ta characteristics 210 

We first present the intra-city spatiotemporal dynamics of Ta within our study areas.  Overall, the mean Ta patterns is 

relatively homogeneous, with majority sites recording mean values within a narrow range of 23.2°C to 24.2°C. Two notable 

exceptions are high elevation sites, location 15 (elevation: 955 m) and location 13 (elevation: 572 m), which exhibit the 

lowest annual mean Ta of 17.6°C and 19.6°C, respectively. In contrast, Hong Kong International Airport, location 3, 

dominated by concrete structures with high thermal inertia, records the highest mean Ta of 24.8°C. 215 

In comparison, diurnal Ta fluctuation exhibits a more heterogenous pattern. The DTSD (Section 2.4.1) evenly distributed 

from 1.3°C to 2.5°C, indicating substantial relative spatial variability (Fig. 2b). The lowest DTSD of 1.3°C occurs at the 

mountain peak (location 15), while the highest value of 2.5°C is observed at location 14 in the northern inland suburban area. 
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Notably, diurnal fluctuations tend to be greater in northern areas at shown in the right panel of Fig. 2b, likely due to reduced 

oceanic thermal moderation and stronger influence from continental air masses (Scheitlin, 2013). The relative magnitude of 220 

variation among locations reveals similar mean value patterns but more pronounced differences in diurnal fluctuations. 

 

 
Figure 2. Spatial distribution of (a) mean Ta and (b) mean diurnal standard deviation (DTSD) over the six year datasets (basemap © 
Mapbox), with color indicating the magnitude at each location. The upper and right panels show corresponding values along longitude and 225 
latitude, respectively, with the solid line indicating a LOESS-smoothed value. 

3.2 Overall accuracy of DL models 

We evaluate the DL models based on their average performance for 1–6 hour forecasts across 16 weather stations in Hong 

Kong. The graph-based models consistently outperform approaches that model each local time series individually. The 

GSAGE achieved the lowest RMSE of 0.96°C, followed by the GAT with 1.03°C, both outperforming the LSTM with 230 

1.06°C. These results highlight the effectiveness of spatial information passed from neighboring stations for local Ta 

forecasting. For spatial information learning mechanisms, GSAGE's simpler mean aggregation method achieves better 

accuracy than GAT's adaptive attention approach. While GAT’s approach theoretically has higher flexibility by dynamically 

identifying relationships with neighboring nodes, it may suffer from overfitting problems, despite our inclusion of wind 

vectors at each location to address potential propagation patterns and our rigorous hyperparameter optimization. This also 235 

suggests that clear directed relationships for information propagation from specific "super-nodes" may not exist in Ta 

forecasting at the intra-city scale. Furthermore, we performed ablation experiments by systematically removing predictors to 

better understand their contributions. We observe that including wind reduces mean RMSEs from 0.98 to 0.96 °C, while 

global variables that are uniform across stations (solar radiation and MSLP) failed to further enhance forecast accuracy (Fig. 

S1 in Supporting Information S1). 240 

Our Mix-n-Scale framework achieves varying performance gains across different DL models (red triangles, Fig. 3a). Since 

simple LSTM do not involve graph structure, we therefore apply a naïve hyperparameter ensemble that includes models with 

varying learning rate and hidden dimensions and time lags. However, hyper-LSTM shows only marginal gains over the 
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single LSTM (Fig. 3a). In contrast, the Mix-n-Scale framework produced three times greater improvements when applied to 

GSAGE compared to LSTM, further indicating the suitability of the framework for graph-based tasks. Overall, Hyper-245 

GSAGE achieves a 12.5% improvement over the best LSTM model, with this superior performance remaining consistent 

across different ensemble configurations (Fig. S2 in Supporting Information S1). Across all forecast horizons, Hyper-

GSAGE consistently outperformed other models while reducing model uncertainty, particularly model spread at longer 

forecast horizons. 

 250 

 
Figure 3. Ta forecast accuracy for the next 6 hours over 16 studied weather stations by different models. (a) Overall results of three deep 
learning models. Each box contains the 10% best individual models (10 out of 100 trained models based on validation results). Box plots 
show the median (line), 25–75% range (box), and whiskers are drawn to the farthest datapoint within 1.5 inner quantile range. The red 
triangle denotes the model accuracy with the Mix-n-Scale framework based on the 10% best models. (b) Forecast accuracy at different 255 
lead times. Shaded areas denote the range of RMSEs among the 10% best models. 

Does Hyper-GSAGE preserve extreme values? Given that the model is essentially generated through a multi-model 

ensemble approach, a major concern is that the results tend to smooth predicted values and sacrifice the ability to capture 

extreme values (Knutti et al., 2010; Wilks, 2011). Therefore, we examine the distribution of the 5% most extreme values 

(both warmer and colder) in model forecasts. We find that predicting these values is highly challenging for all models, where 260 

we observe rightward-shifted forecasts for colder values and more pronounced leftward shifts for warmer values, reflecting 

overestimation of low and underestimation of high Ta (Fig. 4a). The greater cold bias for warmer values indicates inherent 

challenges in capturing extreme high temperatures. However, it is worth noting that Hyper-GSAGE demonstrates better 

alignment with distribution of observations. 

Furthermore, we compare model accuracy extreme conditions based on predicted and corresponding true values (Fig. 4b). 265 

For colder values, both GSAGE and Hyper-GSAGE reach comparable results, significantly outperform than LSTM model 
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by reducing RMSE from 1.76°C to ~ 1.50 °C. However, for warmer values, while GSAGE improved RMSE from 1.62°C to 

1.53°C, Hyper-GSAGE achieves clear better results (RMSE: 1.41°C) with additional bias reduction from -1.13°C to -0.99°C. 

These results demonstrate that Hyper-GSAGE enhances performance under both overall and extreme conditions. 

 270 

 
Figure 4. (a) Probability density distributions of the observed Ta and corresponding predictions (6-hour lead time) from the LSTM, 
GSAGE, and Hyper-GSAGE models for the coldest 5% (obs. ≤ 13.3 °C, left) and warmest 5% (obs. ≥ 31.6 °C, right) of samples. The 
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dashed blue line represents the observed distribution, while solid lines show predictions from each model. (b) Scatter plots comparing 
observed and predicted Ta (6-hour lead time) for the same extremes (coldest 5%, top row; warmest 5%, bottom row). Each column 275 
corresponds to a different model: LSTM (left), GSAGE (middle), and Hyper-GSAGE (right). The 1:1 line (dashed) indicates perfect 
prediction; solid black lines show the linearly fitted regression trend for each case. RMSE and Bias are provided to quantify model 
performance for the respective extremes. 

 

3.3 Impacts of intra-city scale spatial information 280 

The superior performance of graph-based models demonstrates the critical influence of spatial information, motivating 

investigation of the underlying mechanisms driving these improvements. This requires quantifying both spatial information 

inflow to each node and how model behavior changes after incorporating this information. The latter is relatively 

straightforward to identify by directly calculating the difference between predictions from graph-based models and local 

LSTM models. However, quantifying spatial information flows to individual nodes is challenging because these flows are 285 

learned as high-dimensional latent representations in an end-to-end manner by DL models. To explicitly quantify this 

information, we propose LOI, an index calculated based on GSAGE's message-passing process (Section 2.4.2) that allows us 

to track how spatial information influences model behavior. In our context, LOI can be interpreted as the extent to which a 

location's Ta anomaly deviates from the mean value of its neighboring nodes. 

We observe an inverse relationship between the LOI and its impact on Ta forecasts (Hyper-GSAGE minus LSTM, denote as 290 

∆𝑇𝑇�𝑎𝑎hereafter), as shown in Fig. 5a. This indicates that Hyper-GSAGE tends to adjust a node’s prediction upward (positive 

∆𝑇𝑇�𝑎𝑎) when its input Ta value is abnormally below its neighbors (negative LOI), as illustrated in Fig. 5b. In other words, this 

promotes convergence of mean Ta patterns across locations. The rationale behind is that daily mean Ta maintains similar 

patterns on intra-city scale as noted in Section 3.1, with a limited variance of 0.35°C² among locations (Fig. S3 in Supporting 

Information S1). The spatially stable mean Ta pattern therefore serves as a dynamic indicator that constrains and refine each 295 

node's diurnal amplitude rather than relying solely on local time-series trajectories. Graph regularization naturally enforces 

such adjustment through its smoothness property (Kipf and Welling, 2017), enhancing model’s capacity to modulating local 

heterogeneous response. We term this effect "mean state regularization" for Ta forecasting.  

Fig. 5c presents a case study in location 14 that clearly demonstrates this effect during January 12th-15th when weather starts 

turning to fine condition (The Weather of January 2021, 2025). The Ta pattern shifts to stronger fluctuation with higher 300 

cooling and heating rate. Since this location exhibits cooler Ta than its neighbors, Hyper-GSAGE produces additional upward 

adjustment in predictions during daytime compared to LSTM, effectively capturing the dynamics, especially for daily peak 

Ta across those days. However, it is still important to note that LOI provides only a conceptual depiction of relationships that 

enable us to understand the impact of spatial information. Our interpretation is unable to fully encapsulate the intricacy of 

DL models that involve propagations through multiple non-linear layers and high-order interactions. 305 
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Figure 5. Change in Ta forecast after incorporating spatial information with Hyper-GSAGE. (a) Negative relationship between LOI and 
∆𝑻𝑻�𝒂𝒂.  The difference (Δ) is defined as Hyper-GSAGE minus LSTM output at the lead time of 6-hour. Each point in the scatter denotes a 310 
daily mean value at a single station, with color indicating the point density. The trend is fitted by Gaussian process regression, with shaded 
areas denoting the 95% confidence interval of the probabilistic model. (b) A diagram illustrating how spatial information influences Ta 
forecasting at one specific location, where a negative LOI prompts the model to forecast a higher Ta, thereby refining the local magnitude. 
(c) A case study illustrating the temporal evolution of observed Ta and forecasts produced by the LSTM, Hyper-GSAGE models and their 
difference (ΔTa) at a 6-hour lead time. The LOI evolution is shown relative to the forecast initialization time to reflect the information can 315 
be received by the model. 
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3.4 Spatiotemporal dynamics of forecast performance 

Following the successful development of our Hyper-GSAGE model, we conducted evaluations of its spatiotemporal 

performance to better understand forecast characteristics and their variability. The forecast errors demonstrate clear diurnal 

contrast, with RMSEs increasing during daytime and peaking between 10:00–14:00 (1.60–1.80°C), coinciding with the 320 

warmer periods of day (Fig. S4 in Supporting Information S1). In contrast, nighttime forecasts, particularly between 0:00–

4:00, show the lowest errors (0.76–0.81°C). This pattern remains consistent when RMSEs are normalized by the mean 

hourly Ta of the corresponding periods (Fig. S5 in Supporting Information S1). The pronounced diurnal contrast can be 

primarily attributed to solar radiation-induced perturbations and consequent atmospheric-land interactions, highlighting the 

inherent challenges in capturing daily peak values. Seasonal error patterns show clear variation, with elevated RMSEs in 325 

both winter and summer (mean values of 0.90 and 0.92°C, respectively), peaking in January (0.95°C) and August (0.96°C). 

Meanwhile, we observe that diurnal profiles vary seasonally, with relatively uniform errors during winter but greater diurnal 

variations during warmer months (May–September). 

Forecast accuracy shows substantial spatial variability, with RMSEs ranging from 0.72 to 1.10 °C (Fig. 6b). Two locations 

within the most densely developed urban areas show the lowest RMSEs (0.72 and 0.76°C for location 4 and 7, respectively). 330 

These locations are surrounded by high-rise buildings in the urban core, where local areas typically have large thermal 

inertial and reduced ventilation. Location 3, which records the highest mean Ta at the airport, also demonstrates a relatively 

low RMSE of 0.82°C. In contrast, the highest RMSEs are found at locations 10 and 14 (1.07°C and 1.10°C, respectively), 

both situated in open areas. As noted in Section 3.1, location 14, situated in suburban northern Hong Kong, exhibits the 

largest diurnal Ta fluctuation. Location 10 is characterized by a highly complex local thermal environment, being adjacent to 335 

both the sea and Hong Kong’s largest freshwater reservoir, which likely generates intricate local breeze circulations and 

greater Ta variability. 

The magnitude of local error is highly correlated with the variability of Ta, as measured by the standard deviation (SD) Ta 

observations at each location. To prevent potential confounding effects arising from temporal variation, we further separated 

the results into four distinct periods. Across all periods, we observed a significant positive relationship whereby locations 340 

with greater Ta variability are associated with higher forecast errors (Fig. 6b). However, this pattern varies dynamically 

among periods. Summer patterns exhibit distinct diurnal differences. During daytime, local Ta variability diverges 

significantly across locations (SD from 1.6 to 3.0°C). We treat location 15 as a proxy for background weather conditions, as 

it is situated atop the city's highest mountain and is therefore minimally perturbed by atmosphere-land interactions. The 

mountain-top station shows the least local variability and forecast errors, which aligns with Hong Kong's stable summer 345 

weather patterns typically dominated by subtropical high-pressure systems. The remaining locations experience greater Ta 

variability and associated forecast errors during daytime, likely caused by intense solar radiation and subsequent thermal 

instability and convective turbulence. This variability, along with associated RMSEs, diminishes and converges at night, 
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highlighting the substantial uncertainties and challenges induced by solar radiation in generating Ta instability and spatial 

heterogeneity during summer. Winter presents a different scenario. Large spread and relatively high variability and RMSEs 350 

persist during nighttime, suggesting that non-solar factors predominantly govern winter Ta dynamics. This pattern likely 

relates to more variable background weather conditions, as evidenced by the mountain peak station (location 15) exhibiting 

drastically increased variability over this period (Fig. 6b). In this context, local ventilation conditions and thermal inertial 

likely play crucial roles in regulating local thermal environment exposure to background conditions. We also observed that 

locations experiencing prevailing northerly winds show elevated forecast errors and Ta variability during winter nighttime 355 

(Fig. S6 in Supporting Information S1). Despite this temporal dynamism, the most densely urbanized areas consistently 

demonstrate lower Ta variability and forecast errors across all periods. These complex spatiotemporal dynamics highlight the 

diverse driving factors at play, suggesting the need for targeted improvements in model representation and the necessity of 

period-specific analysis in both intra-city Ta studies and model evaluations. 

 360 
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Figure 6. (a) Temporal variation of forecast accuracy. The top and right panels display the mean hourly RMSE aggregated 

over hours and months, respectively. (b) Same as Fig. 2 but for Spatial distribution of RMSEs (basemap © Mapbox). (c) The 

relationship between local Ta variability and forecast RMSEs. Each point represents a location, and shaded areas indicate 95% 

confidence intervals derived from bootstrapping. Dense urban and mountain peak stations are denoted by squares and 365 

triangles, respectively. Three and two Asterisks in the legend for each period indicate that the relationship is significant at p 

≤ 0.001 and p ≤ 0.01, respectively. 
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4 Concluding remarks 

Our results highlight the necessity of graph-based approaches that connect intra-city observations to improve Ta forecasting 370 

at individual locations. This study contributes to a foundational understanding of effective graph formation and the 

underlying mechanisms through which spatial information enhances forecasts. We demonstrate that an undirected network, 

learned through a mean state of interaction with neighboring observations, can refine local forecasting by effectively 

enforcing constraints, a process naturally supported by the GSAGE architecture. With our proposed Mix-n-Scale framework 

for graph formation and model implementation, the Hyper-GSAGE model produces more accurate forecasts under both 375 

overall and extreme conditions and achieving an overall RMSE reduction of over 12.5% for 1–6 hours forecasts compared to 

the conventional time-series method.  

Local Ta exhibits substantial spatial heterogeneity in fluctuation patterns, which strongly correlates with forecast difficulty at 

corresponding locations. However, the characteristics and drivers of this spatial heterogeneity vary across different temporal 

periods. Summer exhibits distinct diurnal variations in spatial patterns, suggesting the critical role of solar radiation. In 380 

contrast, winter demonstrates more consistent diurnal patterns, where local ventilation and thermal inertia emerge as more 

critical factors under elevated background Ta variability. Further studies incorporating high-resolution computational fluid 

dynamics simulations hold great potential for elucidating intra-city airflow dynamics, which could better inform hybrid 

forecasting models. 

Given our focus on intra-city spatial interactions, our models are developed without incorporating meso-scale weather 385 

information. We acknowledge this limits the ability to address large-scale weather propagation and therefore constrain the 

forecast horizon to 6 hours in this study. The current Hyper-GSAGE serves as a foundational framework for modeling local 

observation networks while retaining the capability to be coupled with large-scale NWP/DL forecast systems for extended 

forecasts, thereby leveraging advantages from both physics-based and data-driven approaches. With the increasing 

deployment of IoT weather observation sensors in cities (Chapman and Bell, 2018), such models hold great potential for 390 

improving urban management at finer scales, offering a pathway toward more precise and intelligent oversight of urban 

environmental systems. 
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5 Open Research  

The meteorological data for Hong Kong were obtained from the Hong Kong Observatory, which can be acquired from 

https://www.hko.gov.hk/en/cis/climat.htm. The workflow, model files, and outputs generated during testing and validation 

are publicly available on Zenodo (Wang, 2025) under the Creative Commons Attribution 4.0 International License. 400 
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