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Text S1: Architecture of two graph neural networks (GNNs). They use directed and undirected 

learning mechanisms to aggregate spatial information from neighboring nodes. The details are 

as follows: 

GSAGE: A mean operator was utilized to aggregate surrounding information; the aggregation can be formulated as: 

𝐡𝐡𝒩𝒩(𝑖𝑖)
𝑘𝑘−1 = �  𝐡𝐡𝑗𝑗𝑘𝑘−1

𝑗𝑗∈𝒩𝒩(𝑖𝑖)
,                                                                 (1) 

where 𝐡𝐡𝑗𝑗𝑘𝑘−1is the representation of the nodes in node 𝑖𝑖’s immediate neighborhood. 

After aggregating neighboring feature vectors, GSAGE concatenates the node’s current representation 𝐡𝐡𝑖𝑖𝑘𝑘−1 with 

aggregated neighborhood vector 𝐡𝐡𝒩𝒩(𝑖𝑖)
𝑘𝑘−1 : 

𝐡𝐡𝑖𝑖𝑘𝑘 = 𝜎𝜎�𝑾𝑾𝑘𝑘 ⋅ �𝐡𝐡𝑖𝑖𝑘𝑘−1 ∥ 𝐡𝐡𝒩𝒩(𝑖𝑖)
𝑘𝑘−1 ��,                                                          (2) 

where 𝑾𝑾 are learned, and ∥ denotes vector concatenation, and this concatenation can be understood as the simple 

form of “skip connection”. The aggregation process is also illustrated in Figure 1c. 

GAT: Contrary to GSAGE, GAT can adeptly assign the importance of their neighbors. We applied this to examine 

whether there are super nodes that can provide more important information than other nodes. An improved version, 

GATv2, was applied to avoid static attention problems (Brody et al., 2021) in our study. A scoring function 𝑒𝑒: 

ℝ𝑑𝑑 × ℝ𝑑𝑑 → ℝ assigns the importance score 𝛼𝛼𝑖𝑖𝑖𝑖  for every edge (𝑗𝑗, 𝑖𝑖) , which indicates the importance of the features 

of the neighbor j to the node i: 

𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑗𝑗 �𝑒𝑒�𝒉𝒉𝑖𝑖 ,𝒉𝒉𝑗𝑗�� = softmaxj�𝒂𝒂⊤ LeakyReLU�𝑾𝑾𝑘𝑘 ⋅ �𝒉𝒉𝑖𝑖 ∥ 𝒉𝒉𝑗𝑗���,              (3) 

where 𝒂𝒂,𝑾𝑾 are learned, and 𝛼𝛼𝑖𝑖𝑖𝑖 usually is unequal with 𝛼𝛼𝑗𝑗𝑗𝑗.  

With edge weights, GAT computes the node representation as a weighted average over its neighbors: 

𝒉𝒉𝑖𝑖𝑘𝑘 = 𝜎𝜎�∑  𝑗𝑗∈𝒩𝒩(𝑖𝑖)  𝛼𝛼𝑖𝑖𝑖𝑖 ⋅ 𝑾𝑾𝒉𝒉𝑗𝑗𝑘𝑘−1�.                                                   (4) 

 

  



 

3 
 

 

 

Figure S1. Impact of predictors on Ta forecast accuracy. Performance of LSTM and GSAGE models with various combinations 
of predictors. ST represent spatial and temporal predictors. Global represents global meteorological predictors (uniform across 
stations) include direct and diffuse solar radiation, and mean sea level pressure. Wind includes zonal and meridional wind speed at 
individual stations. Detailed variable descriptions are available in Table 1. Box plots show the median (line), 25–75% range (box) 
based on the 10% best models, and whiskers are drawn to the farthest datapoint within 1.5 inner quantile range. 
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Figure S2. Variation in Hyper-GSAGE performance with different ensemble sizes. Each column represents the performance of an 
individual GSAGE model, sorted by ascending validation error. The green line denotes the Hyper-GSAGE performance with a 
corresponding number of best models. It should be noted that the observed increase in RMSE with large ensemble sizes beyond 13 
is primarily due to the inclusion of failure models. Conducting additional trials within the optimal hyperparameters range generally 
achieves a better performance, and this graph is only for illustrative purposes. 
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Figure S3. Variance of daily Ta anomalies and altitude at 16 studied stations. The red line shows the variance of daily mean Ta 
anomalies (left y-axis) for each station, calculated as the deviation of each station's Ta from the mean value across all stations (see 
equation (7) in Methods) while applied to daily scale. Lower variance indicates more synchronized Ta daily mean evolution 
between the local station and the global pattern. Blue crosses show the altitude of each station (right y-axis). Station numbers are 
shown on the x-axis. 
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Figure S4. Diurnal variation of Ta cross seasons. Solid lines represent the mean Ta, with shaded bands indicating 95% confidence 
intervals. 

  



 

7 
 

 
Figure S5. Same as Fig.3, but the RMSEs are normalized by mean values of the corresponding grids. 
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Figure S6. Local wind with corresponding Ta standard deviation (a) and forecast errors (b) during winter nighttime (basemap © 
Mapbox). The wind pattern at each site is denoted by Windrose map, where the length denotes the frequency, and color denotes 
the velocity. Consistent wind distributions in mountains peak (station No.15) and plain airport (station No.3) demonstrate the 
easterly background wind, while stations No.5, 11, 14 and 16 show larger variances and forecast errors with northern wind. 
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