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Abstract. Air temperature (Ta) has critical implications for various socioeconomic sectors, yet its dynamics are particularly 

complex in urban areas due to heterogeneous built environments, landscapes, and diverse anthropogenic activities. Physics-10 

based models struggle with intra-city Ta forecasts due to inadequate urban representation and limited spatial resolution. While 

weather observation networks offer promising alternatives for direct modeling with local Ta time-series, an effective framework 

to leverage these intra-city discrete sensor data remains lacking. Here, we demonstrate that graph neural networks (GNNs) can 

harness observation network information to refine Ta prediction at individual locations and elucidate underlying mechanisms. 

Our novel Mix-n-Scale framework with GNNs achieves over 12% improvement in short-term Ta forecasts compared to 15 

conventional local time-series approaches. Further model evaluation disentangles performance variations with local Ta 

variability in diverse spatiotemporal contexts, indicating distinct patterns of intra-city heterogeneity across seasonal and diurnal 

scales. Our findings establish graph-based approaches for leveraging proliferating urban sensor data and advancing 

understanding of Ta spatiotemporal dynamics in complex urban environments.  

 20 
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1 Introduction 

Air temperature (Ta) is a crucial meteorological variable that profoundly affects various facets of human welfare (Mora et al., 

2017; Yuan et al., 2025; Zhang et al., 2023), including health (Tuholske et al., 2021), energy consumption (Perera et al., 2020; 

Wang et al., 2023a), and carbon emission (Li et al., 2024), to name a few. Its significance is particularly pronounced in urban 25 

areas, where 55% of the global population resides (UN Statistics Division, 2023). Rapid urbanization, characterized by 

extensive modifications in land use and land cover, has significantly altered the surface energy balance and the overlying 

climate (Arnfield, 2003; Oke et al., 2017). These transformations, in conjunction with the spatial heterogeneity of the built 

environment, anthropogenic activities and local landscapes, generate highly localized variations in Ta at scales of 

approximately 100–1000 meters (Stewart and Oke, 2012). The increasing frequency and intensity of anomalous events under 30 

changing climate further complicates Ta pattern in urban areas (Gao et al., 2024; Li and Bou-Zeid, 2013). Accurate and timely 

local-scale Ta forecasting within cities presents great challenges, despite its critical role in urban management systems (Chen 

et al., 2024). The conventional approach to Ta forecasting primarily relies on numerical weather prediction (NWP) models, 

which necessitate solving complex governing equations. However, generating high-resolution forecasts using this physics-

based approach presents unique challenges due to urban characteristics, scales issues, and computational demand. First, 35 

existing NWP models often lack adequate parameterization schemes to represent complex processes within urban 

environments (Chen et al., 2011; Nogueira et al., 2022; Sharma et al., 2021). The requirement to specify numerous parameters 

for urban modules also introduces additional data challenges and uncertainties, which hinder their effective implementation 

(Chen et al., 2011). Second, substantial knowledge gaps persist in convective scale (<5 km resolution) modelling, including 

the absence of basic dynamical balances under nonhydrostatic formulations and the inherent complexity of resolving turbulent 40 

processes (Kendon et al., 2021; Schär et al., 2020; Yano et al., 2018). Third, the high computational demand of running NWP 

models, particularly when applying ensemble approaches to address forecast uncertainty, impede their feasibility for real-time 

operational use. These limitations constrain accurate local Ta forecasts within cities. 

Deep learning (DL) has emerged as a promising alternative approach for meteorological variables forecasting. These DL 

models can be primarily grouped into two paradigms: training with products of physics-based models or direct weather 45 

observations. The former paradigm typically relies on ECMWF’s ERA5 reanalysis datasets to learn relationships between 

atmospheric states across successive time steps, and has recently achieved overall superior performance to state-of-the-art 

operational NWP systems (Bi et al., 2023; Lam et al., 2023; Price et al., 2024). However, this modeling paradigm inevitably 

inherits issues in urban areas, as the models are trained on data with insufficient urban representations and coarse spatial 

resolution. The latter paradigm utilizes in situ observations from weather stations or sensors and thus enables models to learn 50 

from data that authentically reflect local meteorological conditions (Effrosynidis et al., 2023; Wang et al., 2023b). The typical 

modeling approach adopts a time-series regression framework, wherein sequences of measurements at each individual 

locations are used to predict their respective values at subsequent time steps (Haque et al., 2021; Salcedo-Sanz et al., 2016; 

Wang et al., 2024; Yu et al., 2021). However, the forecast accuracy under this framework remains limited and has improved 
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only marginally despite the progressive adoption of increasingly sophisticated DL methods (Elsayed et al., 2021; Wang et al., 55 

2024; Zeng et al., 2022). These limitations may stem from modeling approaches that rely purely on local time-series 

information, which on the one hand may fail to capture essential spatial contextual information, rendering the learning task 

underdetermined and semantically ambiguous (Iakovlev & Lähdesmäki, 2024). On the other hand, this inherently overlooks 

critical interactions with the surrounding environment that may be essential for accurate forecasting. Modeling observational 

data within cities provides a solution to deliver local-scale Ta forecasts, while its potential remains underexplored. 60 

With the development of graph neural networks (GNNs), which are capable of modeling discrete and irregularly distributed 

observation sites, pioneering studies have explored their use in connecting observations across locations to leverage spatial 

information for enhancing meteorological variable forecasting. Most existing efforts have focused on modeling large-scale 

observational networks sparsely distributed across broad regions, with the primary rationale being to address: 1) the 

atmospheric transport and advection processes among locations (Wang et al., 2020; Zhou et al., 2022); 2) weather propagation 65 

patterns (Wu et al., 2023); and (3) identify certain causal relationships among different cities (Li et al., 2023). Despite advances 

in understanding and modeling large-scale dynamics and their associated spatial interactions, it remains largely unknown 

whether observational network modeling approaches (i.e. incorporating spatial information) are effective at smaller intra-city 

scales. Furthermore, the underlying mechanisms and spatial dependencies that drive performance improvements in such scale 

remain unclear.  70 

To study potential interactions among intra-city observations, we implement two GNNs with distinct spatial information 

aggregation mechanisms (directed and undirected) for short-term (1-6 hours) Ta forecasting, using local measurements of Ta 

and wind vectors across 16 locations in Hong Kong (Fig. 1a). In support of these GNN’s implementation, we propose a novel 

framework Mix-n-Scale, which integrates optimization and ensemble processes to address the challenge in configuring graph 

topologies, particularly when prior knowledge of intra-city scale interactions is limited. Furthermore, we quantify the spatial 75 

information impacts on each location based on the GNN's information passing principle and compare the results with 

conventional time-series models where each location is modeled independently. This allows us to separate the contribution of 

intra-city spatial information on model behavior and understand the underlying mechanisms. This study offers critical insights 

into effective frameworks for modeling local observational data and sensor networks, which is increasingly important as 

crowd-sourced weather sensors continue to proliferate within urban environments (Chapman and Bell, 2018). The flexibility 80 

of this framework also makes it well-suited for adaptation to the modeling of similar environmental variables.  

This paper is organized as follows. Section 2 provides details of datasets, problem formulation, DL models and their training 

framework, and metrics used in this study. In section 3.1, we first present the overall spatial characteristics of intra-city Ta. 

Section 3.2 presents modeling results for overall performance and extreme values, followed by an analysis disentangling the 

impact of spatial information on forecasting in Section 3.3. The spatiotemporal dynamics of Ta forecast performance are further 85 

analyzed in Section 3.4. Section 4 presents the summary and conclusions. 
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2 Data and Methods 

2.1 Datasets 

Hong Kong, a densely populated coastal city at the southern edge of East Asia, features complex atmospheric circulation 

patterns due to its hilly terrain, land-sea contrasts, and heterogeneous urban morphology. make Hong Kong an ideal setting to 90 

examine a model’s ability to capture local heterogeneity and intra-city Ta dynamics. In this study, we use hourly meteorological 

data from 16 weather stations (Fig. 1a) operated by the Hong Kong Observatory. Although more stations exist, we limit our 

selection to sites with both Ta and wind observations to ensure complete records for exploring the potential effects of wind. 

More specifically, three types of variables are incorporated into the model training. The first type includes local, spatially 

varying observations, including Ta and wind speed (both U and V components). The second type includes globally uniform 95 

predictors across all sites, such as solar radiation (direct and diffuse) and mean sea level pressure; details and statistics of these 

variables are provided in Table 1. Additionally, we include spatial and temporal stamps for each site to represent its 

spatiotemporal context, but we do not incorporate detailed land use or urban morphology data, as the focus of this study is 

time-series forecasting at fixed observation sites rather than spatial prediction at unmeasured locations. Static variables are 

useful for spatial generalization, but their benefit is limited here, as the model focuses solely on short-range forecasts at the 100 

existing observation sites. It is worth noting that the final model performance is reported based on training without global 

predictors, as their inclusion did not yield improvement. These variables are retained only for ablation analysis (Section 3.2; 

Fig. 4b) to illustrate their potential influence on model performance. The entire dataset is divided into three disjoint subsets 

for training, validation, and testing. The training set covers four full years from 2016 to 2019, while the validation and test sets 

use data from 2020 and 2021, respectively, for model tuning and final performance evaluation. 105 

 
Table 1 

Statistics of Variables Used for Model Training and Evaluation 

Type Input variable Range Mean Unit Abbreviation 

Global Direct solar radiation [0, 3.64] 0.38 MJ/m2 - 

Diffuse solar radiation [0, 2.24] 0.31 MJ/m2 - 

Mean sea level pressure [977.8, 1037.3] 1013.0 hPa - 

Local Zonal wind speed* [-13.7, 7.3] -0.2 m/s U 

Meridional wind speed* [-13.2, 5.5] -0.9 m/s V 

2-m Air temperature [-0.9, 38.2] 23.4 °C Ta 

Temporal Hour of day [0, 23] - - - 

Day of year [1, 366] - - - 

Month [1, 12] - - - 
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Note. *Positive value of U and V denote the wind is from the west and south, respectively. 

 110 

2.2 Problem formulation and DL models 

The task of Ta forecasting at multiple locations is framed as a spatiotemporal prediction problem that uses existing observations 

to estimate the state of each location over several subsequent time steps. This is processed through a two-stage modeling 

approach. First, we embed the temporal dynamics at each location separately using Long Short-Term Memory (LSTM) 

networks, which are effective for encoding temporal information of time-series (Greff et al., 2017). We also employ LSTM 115 

combining with decoder as a benchmark for time-series modeling using purely local information (Fig. 1b). Based on the time-

series embeddings for each location, we then use GNNs to aggregate spatial information from irregularly distributed 

neighboring locations (Fig. 1a and c). The forecast horizon is set to six hours in this study, as longer lead times would require 

capturing large-scale dynamics that fall outside the scope of our target domain. The details of these two stages are as follows: 

Temporal dynamics embedding: Let the input at a historical time step t as 𝑋𝑋𝑡𝑡 ∈ ℝ𝑁𝑁×𝐹𝐹, where N represents the number of nodes 120 

(i.e., weather stations) and F denotes the number of predictor features. The LSTM captures the temporal evolution by 

processing observations over the previous T time steps (time lag), yielding a set of temporal embeddings 𝒉𝒉 = {ℎ1, ℎ2, … , ℎ𝑁𝑁}, 

with each ℎ𝑖𝑖 ∈ ℝ𝐹𝐹′ where 𝐹𝐹′  is the dimensionality of the temporal embedding for nodes from 1 to 𝑢𝑢  (Hochreiter and 

Schmidhuber, 1997). This can be conceptually denoted as: 

𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡+1, … ,𝑋𝑋𝑡𝑡+𝑇𝑇)   =   𝒉𝒉.                                                                                                                                        (1) 125 

Spatial information aggregating: Let the spatial connections between weather stations as a graph 𝒢𝒢(𝒱𝒱,ℰ), with 𝒱𝒱 is the set 

of nodes with their respective temporal embeddings ℎ𝑖𝑖 as node features, and ℰ is the edge denotes the connection between the 

nodes. Each node 𝑖𝑖 ∈ 𝒱𝒱 aggregates the representations from its immediate neighbors, {ℎ𝑢𝑢𝑘𝑘 ,∀𝑢𝑢 ∈ 𝒩𝒩(𝑣𝑣)}, into a single vector 

ℎ𝒩𝒩(𝑖𝑖)
𝑘𝑘−1 . The k is the iteration of spatial aggregation (i.e., the depth of the GNN), and 𝑘𝑘 = 0 corresponds to the initial embeddings 

𝒉𝒉 from the LSTM. We implemented two GNN architectures, GraphSAGE (GSAGE; Hamilton et al., 2017) and graph attention 130 

network (GAT; Brody et al., 2021), because they representing two distinct learning mechanism for spatial information. GSAGE 

adopts an undirected graph structure with uniform neighbor weighting via mean aggregation, which was selected over max/min 

pooling in preliminary testing. In contrast, GAT learns directional influences by implementing an asymmetric attention 

mechanism that dynamically computes neighbor weights (Brody et al., 2021; Veličković et al., 2018), potentially capturing 

directional influences and causal relationships where one node impacts another asymmetrically. However, GAT's greater 135 

modeling flexibility does not necessarily translate to superior performance. The details of two models are described formally 

in Text 1 in the Supplement. 

Spatial Longitude [113.92, 114.42] 114.156 degree Lon 

Latitude  [22.20, 22.55] 22.529 degree Lat 

Altitude [4, 955] 120 m Alt 
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2.3 Mix-n-Scale framework 

Although GNNs offer a flexible modeling paradigm for integrating discrete local observations, determining appropriate graph 

structure remains an open and challenging problem. Specifically, defining appropriate connectivity patterns between locations 140 

and selecting the optimal number of neighboring nodes represents a significant challenge. Such graph topologies are typically 

constructed through trial and error, involving extensive manual experimentation and iterative testing (Chen and Wu, 2022; Ma 

et al., 2023; Zheng et al., 2024). 

This study therefore treats graph formation, along with time lag T, as hyperparameters and uses a greedy sequential method 

to search for and optimize their optimal configuration. Moreover, one novelty of our approach is that we do not simply use the 145 

best-tuned model but additionally employ an ensemble-based approach to combine the top 10% of validated models composed 

of different graph topologies and time lags. We call this training framework Mix-n-Scale, and we refer to the trained model as 

a "hyper-model." To the best of our knowledge, such an ensemble-based approach using various graph structures for sensor 

network modeling has not been studied or examined. Our rationale for employing this framework is twofold: (1) the selection 

of neighboring stations to establish connections and the time-series length potentially incorporates information from different 150 

spatiotemporal scales, enriching the representation of existing information; (2) since DL model training accounts for the 

majority of computational resources in model development process (conventional trial and error or our optimization process), 

while each inference (i.e., forecast) can be completed within seconds with minimal computational cost compared to the training 

stage (Goodfellow et al., 2016), our proposed hyper-model approach incurs marginal additional computational overhead in 

real-world applications while more effectively leveraging the substantial resources already required for model development. 155 

Specifically, we use tree-structured Parzen estimator (Bergstra et al., 2011) based on the its loss on validation set, examining 

various edge formation strategies (from self-connection to connection across all neighbors) for the graphs, look-back lengths 

(from 1 to 200 time steps) for the input time-series, and varying model architecture hyperparameters. The selection process 

can be formulated as follows: 

𝜽̂𝜽(𝝀𝝀) ∈ argmin 𝔼𝔼(𝐱𝐱,𝑦𝑦)∈𝒟𝒟�ℓ�𝑓𝑓𝜃𝜃(𝐗𝐗, 𝑦𝑦,𝜽𝜽, 𝝀𝝀)��,                                                                                                                               (2) 160 

where ℓ represents the mean squared error loss. X and y denote individual features and labels, respectively, that comprise the 

dataset 𝒟𝒟 . 𝑓𝑓𝜃𝜃  represents corresponding test DL architecture, where 𝜽𝜽 encompasses all the model trainable parameters; 𝝀𝝀 

represents hyperparameters determining the graph structure, time lags and a few learning hyperparameters including learning 

rate and hidden dimensions. 𝔼𝔼(𝐱𝐱,𝑦𝑦)∈𝒟𝒟[⋅] stands for the expectation with the distribution over 𝒟𝒟. The search process iterates 100 

times and selects the model based on the top 10% (10 out of 100) 𝝀𝝀 hyperparameter settings. 165 

2.4 Metrics 

2.4.1 Temperature variability metrics 

The daily Ta evolution pattern can be primarily described by two metrics, including the mean daily value and the magnitude 

of diurnal variation. In this study, we introduce diurnal temperature standard deviation (DTSD) to quantify and characterize 
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the intensity of diurnal Ta fluctuations at each location, serving as an indicator to show local Ta pattern. For location i, the 170 

DTSD is defined as: 

DTSD(i) = � 1
24𝐷𝐷

∑ ∑ �𝑇𝑇𝑎𝑎(𝑖𝑖,𝑗𝑗,ℎ) − 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗)�
224

ℎ=1
𝐷𝐷
𝑗𝑗=1 ,                                                                                                                       (3) 

where 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑗𝑗,ℎ) is the 𝑇𝑇𝑎𝑎at location I , on day j, at hour h; 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗) is the mean daily 𝑇𝑇𝑎𝑎 at location I on day j; D is the Total number 

of days in the datasets. 

2.4.2 Model evaluation metrics 175 

We calculate the root mean squared error (RMSE) and Bias to evaluate model performance. These metrics are calculated as 

follows: 

RMSE = � 1
𝑁𝑁𝑇𝑇ℎ

∑ ∑ �𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)�
2

𝑁𝑁
𝑖𝑖=1

𝑇𝑇ℎ
𝑡𝑡=1 ,                                                                                                                              (4) 

Bias = 1
𝑁𝑁𝑇𝑇ℎ

∑ ∑ �𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)�
𝑁𝑁
𝑖𝑖=1

𝑇𝑇ℎ
𝑡𝑡=1 ,                                                                                                                                      (5) 

where 𝑇𝑇�𝑎𝑎(𝑖𝑖,𝑗𝑗)  is the predicted Ta at location i at time t. 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)  is corresponding true Ta. N is the total number of the locations, and 180 

𝑇𝑇ℎ is the total number of hourly samples. Here, a positive bias indicates overestimation, and vice versa for a negative bias. 

2.4.3 Local oscillation index (LOI) 

LOI is a metric that we proposed based on the graph Laplacian (Hamilton et al., 2017) that quantifies the surrounding 

information inflow to each node. This is utilized to quantify the impact of spatial information from surrounding nodes on local 

forecasting. Mathematically, let 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡)  be the Ta observed at location 𝑖𝑖  at the time 𝑡𝑡 , and 𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡)  as the mean Ta of the 185 

neighboring stations of station 𝑖𝑖 at the same time is calculated as:  

𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡) = 1
𝑁𝑁
�  𝑇𝑇𝑎𝑎𝑢𝑢,𝑡𝑡

𝑢𝑢∈𝒩𝒩(𝑖𝑖)
,                                                                                                                                                         (6) 

where 𝒩𝒩(𝑖𝑖) represents the set of neighboring stations to 𝑖𝑖, and 𝑁𝑁 is the number of neighbors. For each station 𝑖𝑖, the deviation 

of Ta from its neighbors at any given time t is Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡): 

Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) = 𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) − 𝑇𝑇𝑎𝑎𝒩𝒩(𝑖𝑖,𝑡𝑡).                                                                                                                                                           (7) 190 

Based on   Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡), one can calculate the historical normal deviation of one station from its neighbors by averaging the 

deviations over records across the training period. The historical normal deviations Δ𝑇𝑇����𝑎𝑎(𝑖𝑖,ℎ,𝑚𝑚)  for location 𝑖𝑖 at hour ℎ and month 

𝑚𝑚 is calculated as follows: 

Δ𝑇𝑇����𝑎𝑎(𝑖𝑖,ℎ,𝑚𝑚) = 1
|𝑇𝑇ℎ,𝑚𝑚|

�  Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡),
𝑡𝑡∈𝑇𝑇ℎ,𝑚𝑚

                                                                                                                                            (8) 

where 𝑇𝑇ℎ,𝑚𝑚 represents the set of all historical time points corresponding to hour ℎ and month 𝑚𝑚, and |𝑇𝑇ℎ,𝑚𝑚| is the number of 195 

time points. And then the LOI is calculated as follows: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡 = Δ𝑇𝑇𝑎𝑎(𝑖𝑖,𝑡𝑡) − Δ𝑇𝑇����a(𝑖𝑖,ℎ,𝑚𝑚) .                                                                                                                                                      (9) 

LOI essentially reflects how a node differs from its surroundings while eliminating climatological differences. This 

primarily captures the effect of the graph processing procedure and helps disentangle the impact of spatial information. Note 

that LOI is an hourly metric, rather than reflecting daily deviation. 200 

 
Figure 1. Schematic of the modelling framework. (a) Spatial distribution of weather observation stations across Hong Kong (basemap © 

Mapbox), with location IDs labeled. The edges between stations represent the schematic GNN structure, showing nine connections per node. 

(b, c) Conceptual diagram comparing the local time-series modeling approach with the graph-based approach, in which LSTM-based 

temporal embeddings are spatially aggregated using GNN across neighboring stations. (d) Overview of the Mix-n-Scale framework, which 205 
leverages intra-city observations using diversely configured GNNs. 
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3 Results and Discussions 

3.1 Intra-city Ta characteristics 

We first present the intra-city spatiotemporal dynamics of Ta within our study areas.  Overall, the mean Ta patterns is relatively 

homogeneous, with majority sites recording mean values within a narrow range of 23.2°C to 24.2°C. Two notable exceptions 210 

are high elevation sites, location 15 (elevation: 955 m) and location 13 (elevation: 572 m), which exhibit the lowest annual 

mean Ta of 17.6°C and 19.6°C, respectively. In contrast, Hong Kong International Airport, location 3, dominated by concrete 

structures with high thermal inertia, records the highest mean Ta of 24.8°C. 

In comparison, diurnal Ta fluctuation exhibits a more heterogenous pattern. The DTSD (Section 2.4.1) evenly distributed 

from 1.3°C to 2.5°C, indicating substantial relative spatial variability (Fig. 2b). The lowest DTSD of 1.3°C occurs at the 215 

mountain peak (location 15), while the highest value of 2.5°C is observed at location 14 in the northern inland suburban area. 

Notably, diurnal fluctuations tend to be greater in northern areas at shown in the right panel of Fig. 2b, likely due to reduced 

oceanic thermal moderation and stronger influence from continental air masses (Scheitlin, 2013). The relative magnitude of 

variation among locations reveals similar mean value patterns but more pronounced differences in diurnal fluctuations. 

 220 

 
Figure 2. Spatial distribution of (a) mean Ta and (b) mean diurnal standard deviation (DTSD) over the six-year datasets (basemap © Mapbox). 

Node colors indicate the magnitude at each location, and numbers denote location IDs using different colors for clearer visualization. The 

upper and right panels show corresponding values along longitude and latitude, respectively, with the solid line indicating a LOESS-

smoothed value. 225 

3.2 Overall evaluation of DL models  

We evaluate the DL models based on their average performance for 1–6 hour forecasts across 16 weather stations in Hong 

Kong. The graph-based models consistently outperform purely local time-series models. Specifically, GSAGE achieves the 

(b)(a)
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lowest RMSE of 0.96°C, followed by the GAT with 1.03°C, both outperforming the LSTM baseline (1.06°C). These results 

highlight the benefit of incorporating spatial information from neighboring stations for local Ta forecasting. 230 

Our Mix-n-Scale framework achieves varying performance gains across different DL models (red triangles, Fig. 3a). Since 

simple LSTM does not involve graph structure, we therefore apply a naïve hyperparameter ensemble that includes models with 

varying learning rate and hidden dimensions and time lags. While hyper-LSTM shows only marginal gains over the single 

LSTM (Fig. 3a), applying the Mix-n-Scale framework to GSAGE yields roughly threefold greater improvements, highlighting 

its suitability for our graph-based task. Overall, Hyper-GSAGE reduces RMSE from 1.06 °C to 0.92 °C, representing a 12.5% 235 

enhancement over the best LSTM. Its performance remains highly stable across different ensemble sizes, achieving optimal 

accuracy when incorporating the top ~10% of models from validated pool (10 out of 100; Fig. S1 in the Supplement). Building 

such a pool typically requires around 50 hyperparameter trials drawn from a broad initial search space (Fig. S2 in the 

Supplement), which can be completed within 10 hours on a single RTX 4090 GPU. Once finalized, the model generates 

forecasts within seconds, enabling efficient real-time applications.  240 

Across all forecast horizons, Hyper-GSAGE consistently outperformed the baseline models, exhibiting reduced errors and 

uncertainties. Moreover, compared with recent large-scale evaluations of multiple physics-based (e.g., ECMWF, GFS) and 

data-driven models (e.g., Pangu, Fuxi, Fengwu) against observations from over 2,000 stations across China, which reported 

near-surface temperature forecast errors typically exceeding 2 °C at a 3-hour lead time (Xu et al., 2025). In contrast, Hyper-

GSAGE achieve RMSEs ranging from 0.88–1.17 °C for 3–6 hour forecasts, demonstrating a clear advantage in local-scale Ta 245 

forecasting skill. 

 
Figure 3. Ta forecast accuracy for the next 6 hours over 16 studied weather stations by different models. (a) Overall results of three deep 

learning models. Each box contains the 10% best individual models (10 out of 100 trained models based on validation results). Box plots 

show the median (line), 25–75% range (box), and whiskers are drawn to the farthest datapoint within 1.5 inner quantile range. The red 250 
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triangle denotes the model accuracy with the Mix-n-Scale framework based on the 10% best models. (b) Forecast accuracy at different lead 

times. Shaded areas denote the range of RMSEs among the 10% best models. 

 

Between the two spatial information learning approaches, it is worth noting that GSAGE's simple mean aggregation of 

neighbor’s temporal embeddings outperforms GAT's adaptive attention mechanism, which assigns dynamic weights to 255 

neighbors. Although GAT theoretically offers greater flexibility by identifying variable inter-station relationships, and wind 

vectors are included to provide potential directional cues, this advantage does not manifest here and may instead lead to 

overfitting issues. This suggests that, at the intra-city scale, there may be no distinct “upstream” information flow or dominant 

“super-nodes,” or, if present, such relationships may occur at shorter timescales. We further examined this hypothesis from a 

statistical perspective by conducting cross-correlation analyses among station observations with varying time lags to assess 260 

whether Ta changes at one site could precede others. The lag-shifted results show that most inter-station correlations peak at 

zero lag (even for the most distant station pair), with only a few pairs exhibiting slightly higher correlations at ±1 h (Fig. S3 in 

the Supplement). 

Based on the GSAGE model, we further examine how graph construction affects model performance. We find that 

connecting each station to its nearest neighbor generally yields better performance than linking to the most distant ones (Fig. 265 

4a), even though the latter could capture broader meteorological context and longer-range propagation. This result is consistent 

with our cross-correlation analysis. Regarding edge formation, the GSAGE model tends to perform better when each node 

connects more neighbors, particularly larger than nine (Fig. 4a). Another key structural factor is graph depth, which determines 

how many hops of neighbor information each node can access. We observe more than a 5% RMSE reduction when using two 

GNN layers compared to a single layer (Fig. S4 in the Supplement). Although a single layer with full connectivity can 270 

theoretically access the entire graph, adding a second layer does not expand the receptive field but introduces additional 

nonlinearity and feature-transformation capacity, potentially improving model expressiveness. However, deeper architectures 

that repeatedly aggregate neighbor information do not provide further gains in our case and may instead lead to over-smoothing, 

making node representations less distinguishable. Collectively, these findings clarify the optimal GNN configuration for the 

Ta forecasting task and indicate that domain-wide spatial context is likely to play a key role in enhancing model performance, 275 

which will be further explored in Section 3.3. The remaining key hyperparameters and their optimal ranges are summarized in 

Text S2 in the Supplement. 

To understand the significance of each predictor, we perform ablation experiments by systematically removing predictors. 

Including wind vectors reduces RMSEs from 0.98 to 0.96 °C, whereas global variables that are uniform across stations (i.e. 

solar radiation and MSLP) do not further enhance forecast accuracy (Fig. 4b). This is likely because such variables are more 280 

physically meaningful when their spatial patterns and gradients are represented (e.g., pressure gradients that drive large-scale 

flows or synoptic features such as troughs and ridges). When incorporated as single-point values, they provide limited 

information and may even introduce noise.  
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 285 
Figure 4. (a) Variation of RMSE with the number of neighboring nodes used to form edge connection under two strategies. The solid curve 

denotes the mean RMSE, and the shaded area represents the standard deviation across models trained with different hyperparameter settings. 

(b) Impact of predictors on Ta forecast accuracy. Performance of LSTM and GSAGE models with various combinations of predictors. ST 

represent spatial and temporal predictors. Global represents global meteorological predictors (uniform across stations) include direct and 

diffuse solar radiation, and mean sea level pressure. Wind includes zonal and meridional wind speed at individual stations. Detailed variable 290 
descriptions are available in Table 1. Box plots show the median (line), 25–75% range (box) based on the 10% best models, and whiskers 

are drawn to the farthest datapoint within 1.5 inner quantile range. 

 

Does Hyper-GSAGE preserve extreme values? Given that the model is essentially generated through a multi-model 

ensemble approach, a major concern is that the results tend to smooth predicted values and sacrifice the ability to capture 295 

extreme values (Knutti et al., 2010; Wilks, 2011). Therefore, we examine the distribution of the 5% most extreme values (both 

warmer and colder) in model forecasts. We find that predicting these values is highly challenging for all models, where we 

observe rightward-shifted forecasts for colder values and more pronounced leftward shifts for warmer values, reflecting 

overestimation of low and underestimation of high Ta (Fig. 5a). The greater cold bias for warmer values indicates inherent 

challenges in capturing extreme high temperatures. However, it is worth noting that Hyper-GSAGE demonstrates better 300 

alignment with distribution of observations. 

Furthermore, we compare model accuracy under extreme conditions using the predicted and corresponding observed values 

(Fig. 5b). For colder values, both GSAGE and Hyper-GSAGE reach comparable results, significantly outperform than LSTM 

model by reducing RMSE from 1.76°C to ~ 1.50 °C. However, for warmer values, while GSAGE improved RMSE from 

1.62°C to 1.53°C, Hyper-GSAGE achieves clear better results (RMSE: 1.41°C) with additional bias reduction from -1.13°C 305 

to -0.99°C. These results demonstrate that Hyper-GSAGE enhances performance under both overall and extreme conditions. 

(b)(a)
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Figure 5. (a) Probability density distributions of the observed Ta and corresponding predictions (6-hour lead time) from the LSTM, GSAGE, 

and Hyper-GSAGE models for the coldest 5% (obs. ≤ 13.3 °C, left) and warmest 5% (obs. ≥ 31.6 °C, right) of samples. The dashed blue line 

represents the observed distribution, while solid lines show predictions from each model. (b) Scatter plots comparing observed and predicted 310 
Ta (6-hour lead time) for the same extremes (coldest 5%, top row; warmest 5%, bottom row). Each column corresponds to a different model: 

LSTM (left), GSAGE (middle), and Hyper-GSAGE (right). The 1:1 line (dashed) indicates perfect prediction; solid black lines show the 

linearly fitted regression trend for each case. RMSE and Bias are provided to quantify model performance for the respective extremes. 
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3.3 Impacts of intra-city scale spatial information 315 

The superior performance of graph-based models demonstrates the critical influence of spatial information, motivating 

investigation of the underlying mechanisms driving these improvements. This requires quantifying both spatial information 

inflow to each node and how model behavior changes after incorporating this information. The latter is relatively 

straightforward to identify by directly calculating the difference between predictions from graph-based models and local time-

series-based LSTM models. However, quantifying spatial information flows to individual nodes is challenging because these 320 

flows are learned as high-dimensional latent representations in an end-to-end manner by DL models. To explicitly quantify 

this information, we propose LOI, an index calculated based on GSAGE's message-passing process (Section 2.4.2) that allows 

us to track how spatial information influences model behavior. In our context, LOI can be interpreted as the extent to which a 

location's Ta anomaly deviates from the mean value of its neighboring nodes. 

We observe an inverse relationship between the LOI and its impact on Ta forecasts (Hyper-GSAGE minus LSTM, denote 325 

as ∆𝑇𝑇�𝑎𝑎hereafter), as shown in Fig. 6a. This indicates that Hyper-GSAGE tends to adjust a node’s prediction upward (positive 

∆𝑇𝑇�𝑎𝑎) when its current Ta value is abnormally below its neighbors (negative LOI), as illustrated in Fig. 6b. In other words, this 

promotes convergence of mean Ta patterns across locations. The rationale behind is that daily mean Ta maintains similar 

patterns within the city as noted in Section 3.1, with a limited variance of 0.35°C² among locations (Fig. S5 in the Supplement). 

The spatially stable mean Ta pattern therefore serves as a dynamic indicator that constrains and refine forecasts on each node's 330 

diurnal amplitude rather than relying solely on local time-series trajectories. Graph regularization naturally enforces such 

adjustment through its smoothness property (Kipf and Welling, 2017), enhancing model’s capacity to modulating local 

heterogeneous response. We term this effect "mean state regularization" for Ta forecasting. Fig. 5c presents a case study in 

location 14 that clearly demonstrates this effect during January 12th-15th when weather starts turning to fine condition (The 

Weather of January 2021 in Hong Kong, 2025), when Ta pattern shifts to stronger fluctuation with higher cooling and heating 335 

rate. Since this location exhibits abnormally cooler Ta than its neighbors during nighttime, Hyper-GSAGE produces additional 

upward adjustment in its subsequent daytime Ta forecasts compared with LSTM, effectively capturing the dynamics, especially 

the daily peak Ta across those days. In contrast, the LSTM forecasts largely replicate the time-series evolution from the 

preceding day (Fig. 5c).  

In essence, LOI reflects the heterogeneous local Ta response that are jointly shaped by environmental factors and 340 

background weather conditions. A more direct investigation of how these modulate local Ta diurnal variation amplitude, as 

well as how the performance gains of GSAGE vary across different cities, would be valuable directions for future work. It is 

also important to note that our current interpretation offers only a conceptual representation of the GSAGE model, as it cannot 

fully encapsulate the complexity of deep learning architectures involving multi-layer nonlinear propagation and higher-order 

feature interactions. 345 
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Figure 6. Change in Ta forecast after incorporating spatial information with Hyper-GSAGE. (a) Negative relationship between LOI and 

∆𝑻𝑻�𝒂𝒂.  The difference (Δ) is defined as Hyper-GSAGE minus LSTM output at the lead time of 6-hour. Each point in the scatter denotes a 

daily mean value at a single station, with color indicating the point density. The trend is fitted by Gaussian process regression, with shaded 

areas denoting the 95% confidence interval of the probabilistic model. (b) A diagram illustrating how spatial information influences Ta 350 
forecasting at one specific location, where a negative LOI prompts the model to forecast a higher Ta, thereby refining the local magnitude. 

(c) A case study illustrating the temporal evolution of observed Ta and forecasts produced by the LSTM, Hyper-GSAGE models and their 
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difference (ΔTa) at a 6-hour lead time. The LOI evolution is shown relative to the forecast initialization time to reflect the information can 

be received by the model. 

 355 

3.4 Spatiotemporal dynamics of forecast performance 

Following the successful development of the Hyper-GSAGE model, we further evaluate its spatiotemporal forecast 

performance to elucidate the variability and underlying dynamics of prediction errors. The results reveal a pronounced 

diurnal contrast, with RMSEs increasing during the daytime and peaking between 10:00–14:00 (1.27–1.40 °C), coinciding 

with the warmest period of the day (Fig. S6 in the Supplement). In contrast, nighttime forecasts, particularly between 00:00–360 

04:00, exhibit the lowest RMSEs (0.61–0.63 °C). This pattern remains consistent even when RMSEs are normalized by the 

mean hourly Tₐ of the corresponding periods (Fig. S7 in the Supplement). The distinct diurnal variation in forecast skill can 

be primarily attributed to differences in Tₐ evolution dynamics between day and night. During daytime, solar radiation–

induced surface heating and subsequent atmosphere–land interactions introduce strong perturbations, amplifying Tₐ 

variability and increasing forecast difficulty. After sunset, however, Tₐ evolves more smoothly under stable boundary-layer 365 

conditions, resulting in reduced variability and lower forecast errors. This diurnal contrast is further supported by the 

autocorrelation analysis (Fig. S8a in the Supplement), which indicates substantially higher nighttime persistence (~0.94) 

compared with daytime, particularly around 12:00–14:00 when persistence reaches a minimum (~0.84) at the 1-hour lag. A 

similar contrast is also observed for the 1-day lag (same hour on the previous day), with persistence values of ~0.75 at night 

and ~0.57 during midday. Collectively, these results demonstrate that daytime Tₐ variability is more dynamic and thus 370 

inherently less predictable from a statistical perspective. Seasonally, both summer and winter exhibit elevated forecast errors 

(RMSEs of 1.00 °C and 0.92 °C, respectively). While summer remains relatively stable under the control of the subtropical 

high-pressure system (24-h lag autocorrelation of 0.37 in summer, compared with −0.01 in winter; Fig. S8b in the 

Supplement), stronger radiative forcing and turbulent energy exchange within a more energetic atmosphere likely contribute 

to greater short-term Tₐ variability at hourly scales. This is reflected by the lower 1-hour autocorrelation (0.48 in summer 375 

compared with 0.72 in winter; Fig. S8b in the Supplement), presenting greater challenges for short-range forecasting. 

Forecast accuracy shows substantial spatial variability, with RMSEs ranging from 0.72 to 1.10 °C (Fig. 6b). Two locations 

within the most densely developed urban areas show the lowest RMSEs (0.72 and 0.76°C for location 4 and 7, respectively). 

These locations are surrounded by high-rise buildings in the urban core, where local areas typically have large thermal inertial 

and reduced ventilation. Location 3 records the highest mean Ta at the airport while demonstrating a relatively low RMSE of 380 

0.82°C. The highest RMSEs are found at locations 14 and 10 where they are in the most inland place (expect the mountain 

station) and interface of sea water and freshwater reservoir with RMSE of 1.10 and 1.07°C.  

Across all classified periods, we find that the heterogeneous spatial RMSEs within the city are highly positively correlated 

with corresponding observed local variability (Fig. 7c), as measured by the standard deviation (SD) Ta observations at each 
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location. While we find this pattern varies dynamically among periods. Summer patterns exhibit distinct diurnal differences. 385 

During daytime, local Ta variability diverges significantly across locations (SD from 1.6 to 3.0°C). We treat location 15 as a 

proxy for background weather conditions, as it is situated atop the city's highest mountain and is therefore minimally perturbed 

by atmosphere-land interactions. The mountain-top station shows the least local variability and forecast errors, which aligns 

with Hong Kong's stable summer weather patterns typically dominated by subtropical high-pressure systems. The remaining 

locations experience greater Ta variability and associated forecast errors during daytime, likely caused by intense solar radiation 390 

and subsequent thermal instability and convective turbulence. This variability, along with associated RMSEs, diminishes and 

converges at night, highlighting the substantial uncertainties induced by solar radiation in generating Ta instability and spatial 

heterogeneity during summer. Winter presents a different scenario. Although daytime still shows higher Ta variability and 

RMSEs, a wide spread persists throughout the nighttime. This pattern likely reflects the influence of more variable synoptic 

conditions, particularly monsoon surges and cold-front passages, as evidenced by the markedly increased variability at the 395 

mountain-top station (location 15) during this period (Fig. 7b). In this context, local ventilation conditions (e.g., building 

configuration and urban morphology) and thermal properties play crucial roles in modulating how local thermal environments 

respond to background forcing. Indeed, we observe that stations with higher forecast errors typically under prevailing northerly 

winds during winter nights (Fig. S9 in the Supplement). 

Despite the temporal variability, consistent spatial patterns emerge across periods. Location 10, situated at the interface 400 

between the sea and Hong Kong’s largest freshwater reservoir, consistently exhibits the largest forecast errors during daytime 

in both seasons. This behavior can be attributed to pronounced thermal contrasts induced by strong solar radiation and the 

resulting complex local sea–lake–land breeze circulations and turbulence. In contrast, its nighttime Ta remain relatively stable. 

At the most inland site (location 14), we observe persistently higher daytime Ta and lower nighttime Ta across both seasons 

(Fig. S10 in the Supplement). This pattern likely arises from reduced moderation by sea breezes and stronger advection of 405 

warm air towards the inland during the day, followed by more efficient cooling of land breezes at night. Such a amplification 

or diurnal contrast on the inland areas has also been documented in other coastal cities (Bauer, 2020; Yang et al., 2023). 

Conversely, the most densely urbanized areas display consistently lower Ta variability and smaller forecast errors across all 

periods. This stable pattern can be explained by that dense high-rise structures tend to suppress daytime heating while 

enhancing nocturnal heat retention (Oke et al., 2017; Shi et al., 2024). Collectively, these complex spatiotemporal dynamics 410 

underscore the diverse physical processes governing intra-urban temperature variability and forecast uncertainty, highlighting 

the need for refined model representations and period-specific evaluations in urban Ta prediction studies. 

 

 



18 
 

 415 
Figure 7. (a) Temporal variation of forecast accuracy. The top and right panels display the mean hourly RMSE of Hyper-

GSAGE aggregated over hours and months, respectively. (b) Same as Fig. 2 but for Spatial distribution of RMSEs (basemap 

© Mapbox). The light-blue area to the right of Location 10 represents a freshwater reservoir. (c) The relationship between 

local Ta variability and forecast RMSE. Each point represents a location, and shaded areas indicate 95% confidence intervals 

derived from bootstrapping. Key locations discussed in the text are highlighted using the shapes indicated in the legend. Three 420 

(***) and two (**) asterisks next to each period indicate that the relationship is significant at p ≤ 0.001 and p ≤ 0.01, 

respectively. 
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4 Concluding remarks 

This study highlights the importance of a graph-based approach for modeling intra-city observation networks collectively to 425 

improve short-range Ta forecasts at individual locations. We demonstrate that an undirected graph formation using the GSAGE 

model can refine local forecasting by effectively enforcing constraints captured from the mean states of neighboring 

observations, as revealed by our proposed LOI. Within the proposed Mix-n-Scale framework, the Hyper-GSAGE model 

produces more accurate forecasts under both general and extreme conditions, achieving an average RMSE reduction exceeding 

12.5% for 1–6 hour forecasts compared with the conventional time-series method. 430 

The spatial distribution of Ta forecast accuracy exhibits substantial heterogeneity that strongly correlates with local Ta 

variability, while these patterns vary considerably across temporal periods. Summer demonstrates distinct diurnal variations 

in spatial patterns, where daytime conditions substantially amplify both spatial heterogeneity and error magnitude, suggesting 

a critical role for solar radiation. In contrast, winter exhibits more consistent diurnal patterns, where local ventilation and 

thermal properties start emerging as critical factors under a more variable background condition. 435 

Given our focus on intra-city spatial interactions, our models are developed without incorporating meso-scale weather 

information. We acknowledge this design choice limits our ability to capture weather propagation beyond the domain 

boundaries, and we therefore constrain the forecast horizon to 6 hours in this study. Incorporating large-scale patterns, such as 

cold frontal passages propagating from outside the domain, through lateral boundary conditions or broader-scale atmospheric 

predictors could be critical for capturing overall trends, particularly during the more variable winter season. Nonetheless, as 440 

Ta patterns are influenced by various local circulations, integrating high-resolution computational fluid dynamics simulations 

holds great potential for elucidating intra-city airflow dynamics and further refining forecast accuracy through hybrid modeling 

approaches. Hyper-GSAGE serves as a foundational yet flexible framework for modeling local observation networks, with the 

capability to integrate this information with NWP systems or their DL-based surrogates, thereby leveraging advantages from 

both physics-based and data-driven approaches. With the increasing deployment of IoT weather observation sensors in cities 445 

(Chapman and Bell, 2018), such models offer substantial potential for improving urban environmental management at finer 

spatiotemporal scales, providing a pathway toward more precise and intelligent oversight of urban systems. 
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