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Abstract. Air temperature (Ta) has critical implications for various socioeconomic sectors, yet its dynamics are particularly 

complex in urban areas due to heterogeneous built environments, landscapes, and diverse anthropogenic activities. Physics-10 

based models struggle with intra-city Ta forecasts due to inadequate urban representation and limited spatial resolution. While 

weather observation networks offer promising alternatives for direct modeling with local Ta modelingtime-series, an effective 

framework to leverage these intra-city discrete sensor data remains lacking. Here, we demonstrate that graph neural networks 

(GNNs) can harness observation network information to refine Ta prediction at individual locations and elucidate underlying 

mechanisms. Our novel Mix-n-Scale framework with GNNs achieves over 12% improvement in short-term Ta forecasts 15 

compared to conventional local time-series approaches. Further model evaluation disentangles performance variations with 

local Ta variability in diverse spatiotemporal contexts, indicating distinct patterns of intra-city heterogeneity across seasonal 

and diurnal scales. Our findings establish graph-based approaches for leveraging proliferating urban sensor data and advancing 

understanding of Ta spatiotemporal dynamics in complex urban environments.  
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1 Introduction 

Air temperature (Ta) is a crucial meteorological variable that profoundly affects various facets of human welfare (Mora et al., 

2017; Yuan et al., 2025; Zhang et al., 2023), including health (Tuholske et al., 2021), energy consumption (Perera et al., 2020; 

Wang et al., 2023a), and carbon emission (Li et al., 2024), to name a few. Its significance is particularly pronounced in urban 25 

areas, where 55% of the global population resides (UN Statistics Division, 2023). Rapid urbanization, characterized by 

extensive modifications in land use and land cover, has significantly altered the surface energy balance and the overlying 

climate (Arnfield, 2003; Oke et al., 2017). These transformations, in conjunction with the spatial heterogeneity of the built 

environment, anthropogenic activities and local landscapes, generate highly localized variations in Ta at scales of 

approximately 100–1000 meters (Stewart and Oke, 2012). The increasing frequency and intensity of anomalous events under 30 

changing climate further complicates Ta pattern in urban areas (Gao et al., 2024; Li and Bou-Zeid, 2013). Accurate and timely 

local-scale Ta forecasting within cities presents great challenges, despite its critical role in urban management systems (Chen 

et al., 2024). The conventional approach to Ta forecasting primarily relies on numerical weather prediction (NWP) models, 

which necessitate solving complex governing equations. However, generating high-resolution forecasts using this physics-

based approach presents unique challenges due to urban characteristics, scales issues, and computational demand. First, 35 

existing NWP models often lack adequate parameterization schemes to represent complex processes within urban 

environments (Chen et al., 2011; Nogueira et al., 2022; Sharma et al., 2021). The requirement to specify numerous parameters 

for urban modules also introduces additional data challenges and uncertainties, which hinder their effective implementation 

(Chen et al., 2011). Second, substantial knowledge gaps persist in convective scale (<5 km resolution) modelling, including 

the absence of basic dynamical balances under nonhydrostatic formulations and the inherent complexity of resolving turbulent 40 

processes (Kendon et al., 2021; Schär et al., 2020; Yano et al., 2018). Third, the high computational demand of running NWP 

models, particularly when applying ensemble approaches to address forecast uncertainty, impede their feasibility for real-time 

operational use. These limitations constrain accurate local Ta forecasts within cities. 

Deep learning (DL) has emerged as a promising alternative approach for meteorological variables forecasting. These DL 

models can be primarily grouped into two paradigms: training with products of physics-based models or direct weather 45 

observations. The former paradigm typically relies on ECMWF’s ERA5 reanalysis datasets to learn relationships between 

atmospheric states across successive time steps, and has recently achieved overall superior performance to state-of-the-art 

operational NWP systems (Bi et al., 2023; Lam et al., 2023; Price et al., 2024). However, this modeling paradigm inevitably 

inherits issues in urban areas, as the models are trained on data with insufficient urban representations and coarse spatial 

resolution. The latter paradigm utilizes in situ observations from weather stations or sensors and thus enables models to learn 50 

from data that authentically reflect local meteorological conditions (Effrosynidis et al., 2023; Wang et al., 2023b). The typical 

modeling approach adopts a time-series regression framework, wherein sequences of measurements at each individual 

locations are used to predict their respective values at subsequent time steps (Haque et al., 2021; Salcedo-Sanz et al., 2016; 

Wang et al., 2024; Yu et al., 2021). However, the forecast accuracy under this framework remains limited and has improved 
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only marginally despite the progressive adoption of increasingly sophisticated DL methods (Elsayed et al., 2021; Wang et al., 55 

2024; Zeng et al., 2022). These limitations may stem from modeling approaches that rely purely on local time-series 

information, which on the one hand may fail to capture essential spatial contextual information, rendering the learning task 

underdetermined and semantically ambiguous (Iakovlev & Lähdesmäki, 2024). On the other hand, this inherently overlooks 

critical interactions with the surrounding environment that may be essential for accurate forecasting. Modeling observational 

data within cities provides a solution to deliver local-scale Ta forecasts, while its potential remains underexplored. 60 

With the development of graph neural networks (GNNs), which are capable of modeling discrete and irregularly distributed 

observation sites, pioneering studies have explored their use in connecting observations across locations to leverage spatial 

information for enhancing meteorological variable forecasting. Most existing efforts have focused on modeling large-scale 

observational networks sparsely distributed across broad regions, with the primary rationale being to address: 1) the 

atmospheric transport and advection processes among locations (Wang et al., 2020; Zhou et al., 2022); 2) weather propagation 65 

patterns (Wu et al., 2023); and (3) identify certain causal relationships among different cities (Li et al., 2023). Despite advances 

in understanding and modeling large-scale dynamics and their associated spatial interactions, it remains largely unknown 

whether observational network modeling approaches (i.e. incorporating spatial information) are effective at smaller intra-city 

scales. Furthermore, the underlying mechanisms and spatial dependencies that drive performance improvements in such scale 

remain unclear.  70 

To study potential interactions among intra-city observations, we implement two GNNs with distinct spatial information 

aggregation mechanisms (directed and undirected) for short-term (1-6 hours) Ta forecasting, using local measurements of Ta 

and wind vectors across 16 locations in Hong Kong (Fig. 1a). In support of these GNN’s implementation, we propose a novel 

framework Mix-n-Scale, which integrates optimization and ensemble processes to address the challenge in configuring graph 

topologies, particularly when prior knowledge of intra-city scale interactions is limited. Furthermore, we quantify the spatial 75 

information impacts on each location based on the GNN's information passing principle and compare the results with 

conventional time-series models where each location is modeled independently. This allows us to separate the contribution of 

intra-city spatial information on model behavior and understand the underlying mechanisms. This study offers critical insights 

into effective frameworks for modeling local observational data and sensor networks, which is increasingly important as 

crowd-sourced weather sensors continue to proliferate within urban environments (Chapman and Bell, 2018). The flexibility 80 

of this framework also makes it well-suited for adaptation to the modeling of similar environmental variables.  

This paper is organized as follows. Section 2 provides details of datasets, problem formulation, DL models and their training 

framework, and metrics used in this study. In section 3.1, we first present the overall spatial characteristics of intra-city Ta. 

Section 3.2 presents modeling results for overall performance and extreme values, followed by an analysis disentangling the 

impact of spatial information on forecasting in Section 3.3. The spatiotemporal dynamics of Ta forecast performance are further 85 

analyzed in Section 3.4. Section 4 presents the summary and conclusions. 
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2 Data and Methods 

2.1 Datasets 

Hong Kong, a densely populated coastal city at the southern edge of East Asia, features complex atmospheric circulation 

patterns due to its hilly terrain, land-sea contrasts, and heterogeneous urban morphology. make Hong Kong an ideal setting to 90 

examine a model’s ability to capture local heterogeneity and intra-city Ta dynamics. In this study, we use hourly meteorological 

data from 16 weather stations (Fig./. 1a) operated by the Hong Kong Observatory. Although more stations exist, we limit our 

selection to sites with both Ta and wind observations to ensure complete records for exploring the potential effects of wind. 

More specifically, three types of variables are incorporated into the model training. The first type includes local, spatially 

varying observations, including Ta and wind speed (both U and V components). The second type includes global observations 95 

that are spatiallyglobally uniform predictors across all sites, such as solar radiation (direct and diffuse) and mean sea level 

pressure; details and statistics of these variables are provided in Table 1. Additionally, we include spatial and temporal stamps 

for each site to represent its spatiotemporal context, but we do not incorporate detailed land use or urban morphology data, as 

the focus of this study is time-series forecasting rather than spatial prediction (estimating Ta at unmeasured sites for concurrent 

time periods).at fixed observation sites rather than spatial prediction at unmeasured locations. Static variables are useful for 100 

spatial generalization, but their benefit is limited here, as the model focuses solely on short-range forecasts at the existing 

observation sites. It is worth noting that the final model performance is reported based on training without global predictors, 

as their inclusion did not yield improvement. These variables are retained only for ablation analysis (Section 3.2; Fig. 4b) to 

illustrate their potential influence on model performance. The entire dataset is divided into three disjoint subsets for training, 

validation, and testing. The training set covers four full years from 2016 to 2019, while the validation and test sets use data 105 

from 2020 and 2021, respectively, for model tuning and final performance evaluation. 

 

Table 1 

Statistics of Variables Used for Model Training and Evaluation 

Type Input variable Range Mean Unit Abbreviation 

Global Direct solar radiation [0, 3.64] 0.38 MJ/m2 - 

Diffuse solar radiation [0, 2.24] 0.31 MJ/m2 - 

Mean sea level pressure [977.8, 1037.3] 1013.0 hPa - 

Local Zonal wind speed* [-13.7, 7.3] -0.2 m/s U 

Meridional wind speed* [-13.2, 5.5] -0.9 m/s V 

2-m Air temperature [-0.9, 38.2] 23.4 °C Ta 

Temporal Hour of day [0, 23] - - - 

Day of year [1, 366] - - - 
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Note. *Positive value of U and V denote the wind is from the west and south, respectively. 110 

 

2.2 Problem formulation and DL models 

The task of Ta forecasting at multiple locations is framed as a spatiotemporal prediction problem that uses existing observations 

to estimate the state of each location over several subsequent time steps. This is processed through a two-stage modeling 

approach. First, we embed the temporal dynamics at each location separately using Long Short-Term Memory (LSTM) 115 

networks, which are effective for encoding time-seriestemporal information of time-series (Greff et al., 2017). We also employ 

LSTM combining with decoder as a benchmark for time-series modeling using purely local information (Fig. 1b). Based on 

the time-series embeddings for each location, we then use GNNs to aggregate spatial information from irregularly distributed 

neighboring locations (Fig. 1a and c). The forecast horizon is set to six hours in this study, as longer lead times would require 

capturing large-scale dynamics that fall outside the scope of our target domain. The details of these two stages are as follows: 120 

Temporal dynamics embedding: Let the input at a historical time step t as 𝑋௧ ∈ ℝேൈி, where N represents the number of nodes 

(i.e., weather stations) and F denotes the number of predictor features. The LSTM captures the temporal evolution by 

processing observations from 𝑇over the previous T time lags steps, (time lag), yielding a set of temporal embeddings 𝒉 ൌ

ሼℎଵ,ℎଶ, … ,ℎேሽ , with each ℎ௜ ∈ ℝிᇲ where 𝐹ᇱ  is the dimensionality of the temporal embedding for nodes from 1 to 𝑢 

(Hochreiter and Schmidhuber, 1997). This can be conceptually denoted as: 125 

𝑓௅ௌ்ெሺ𝑋௧ ,𝑋௧ାଵ, … ,𝑋௧ା்ሻ   ൌ   𝒉..                                                                                                                                        (1) 

Spatial information aggregating: Let the spatial connections between weather stations as a graph 𝒢ሺ𝒱,ℰሻ, with 𝒱 is the set 

of nodes with their respective temporal embeddings ℎ௜ as node features, and ℰ is the edge denotes the connection between the 

nodes. Each node 𝑖 ∈ 𝒱 aggregates the representations from its immediate neighbors, ሼℎ௨௞ ,∀𝑢 ∈ 𝒩ሺ𝑣ሻሽ, into a single vector 

ℎ𝒩ሺ௜ሻ
௞ିଵ . The k is the iteration of spatial aggregation (i.e., the depth of the GNN), and 𝑘 ൌ 0 corresponds to the initial embeddings 130 

𝒉 from the LSTM. We implemented two GNN architectures, GraphSAGE (GSAGE; Hamilton et al., 2017) and graph attention 

network (GAT; Brody et al., 2021), because they representing two distinct learning mechanism for spatial information. GSAGE 

employsadopts an undirected graph structure where all neighboring nodes are weighted equallywith uniform neighbor 

weighting via mean aggregation, which was selected over max/min pooling in preliminary testing. In contrast, GAT learns 

directional influences by implementing an asymmetric attention mechanism that dynamically computes neighbor weights 135 

(Brody et al., 2021; Veličković et al., 2018), potentially identifying capturing directional influences and causal relationships 

and propagation patterns.where one node impacts another asymmetrically. However, GAT's greater modeling flexibility does 

Month [1, 12] - - - 

Spatial LongitudeLatitude [113.92, 114.42] 114.156 degree LatLon 

Latitude Longitude [22.20, 22.55] 22.529 degree LonLat 

Altitude [4, 955] 120 m Alt 
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not necessarily translate to superior performance. The details of two models are described mathematicallyformally in Text 1 

in supporting information S1the Supplement. 

2.3 Mix-n-Scale framework 140 

Although GNNs offer a flexible modeling paradigm for integrating discrete local observations, determining appropriate graph 

structure remains an open and challenging problem. Specifically, defining appropriate connectivity patterns between locations 

and selecting the optimal number of neighboring nodes represents a significant challenge. Such graph topologies are typically 

constructed through trial and error, involving extensive manual experimentation and iterative testing (Chen and Wu, 2022; Ma 

et al., 2023; Zheng et al., 2024). 145 

This study therefore treats graph formation, along with time lag T, as hyperparameters and uses a greedy sequential method 

to search for and optimize their optimal configuration. Moreover, one novelty of our approach is that we do not simply use the 

best-tuned model but additionally employ an ensemble-based approach to combine the top 10% of validated models composed 

of different graph topologies and time lags. We call this training framework Mix-n-Scale, and we refer to the trained model as 

a "hyper-model." To the best of our knowledge, such an ensemble-based approach using various graph structures for sensor 150 

network modeling has not been studied or examined. Our rationale for employing this framework is twofold: (1) the selection 

of neighboring stations to establish connections and the time-series length potentially incorporates information from different 

spatiotemporal scales, enriching the representation of existing information; (2) since DL model training accounts for the 

majority of computational resources in model development process (conventional trial and error or our optimization process), 

while each inference (i.e., forecast) can be completed within seconds with minimal computational cost compared to the training 155 

stage (Goodfellow et al., 2016), our proposed hyper-model approach incurs marginal additional computational overhead in 

real-world applications while more effectively leveraging the substantial resources already required for model development. 

Specifically, we use tree-structured Parzen estimator (Bergstra et al., 2011) based on the its loss on validation set, examining 

various edge formation strategies (from self-connection to connection across all neighbors) for the graphs, look-back lengths 

(from 1 to 200 time steps) for the input time-series, and varying model architecture hyperparameters. The selection process 160 

can be formulated as follows: 

𝜽̂ሺ𝝀ሻ ∈ argmin 𝔼ሺ𝐱,௬ሻ∈𝒟ൣℓ൫𝑓ఏሺ𝐗,𝑦,𝜽,𝝀ሻ൯൧,                                                                                                                               (2) 

where ℓ represents the mean squared error loss. X and y denote individual features and labels, respectively, that comprise the 

dataset 𝒟 . 𝑓ఏ  represents corresponding test DL architecture, where 𝜽 encompasses all the model trainable parameters; 𝝀 

represents hyperparameters determining the graph structure, time lags and a few learning hyperparameters including learning 165 

rate and hidden dimensions. 𝔼ሺ𝐱,௬ሻ∈𝒟ሾ⋅ሿ stands for the expectation with the distribution over 𝒟. The search process iterates 100 

times and selects the model based on the top 10% (10 out of 100) 𝝀 hyperparameter settings. 



 

7 
 

2.4 Metrics 

2.4.1 Temperature variability metrics 

The daily Ta evolution pattern can be primarily described by two metrics, including the mean daily value and the magnitude 170 

of diurnal variation. In this study, we introduce diurnal temperature standard deviation (DTSD) to quantify and characterize 

the intensity of diurnal Ta fluctuations at each location, serving as an indicator to show local Ta pattern. For location i, the 

DTSD is defined as: 

DTSDሺ୧ሻ ൌ ට ଵ

ଶସ஽
∑ ∑ ൫𝑇௔ሺ௜,௝,௛ሻ െ 𝑇ത௔ሺ௜,௝ሻ൯

ଶଶସ
௛ୀଵ

஽
௝ୀଵ ,                                                                                                                       (3) 

where 𝑇௔ሺ௜,௝,௛ሻ is the 𝑇௔at location I , on day j, at hour h; 𝑇ത௔ሺ௜,௝ሻ is the mean daily 𝑇௔ at location I on day j; D is the Total number 175 

of days in the datasets. 

2.4.2 Model evaluation metrics 

We calculate the root mean squared error (RMSE) and Bias to evaluate model performance. These metrics are calculated as 

follows: 

RMSE ൌ   ට
ଵ

ே்೓
∑ ∑ ቀ𝑇෠௔ሺ೔,೟ሻ െ 𝑇௔ሺ೔,೟ሻቁ

ଶ
ே
௜ୀଵ

்೓
௧ୀଵ ට ଵ

ே்೓
∑ ∑ ቀ𝑇෠௔ሺ೔,೟ሻ െ 𝑇௔ሺ೔,೟ሻቁ

ଶ
ே
௜ୀଵ

்೓
௧ୀଵ ,                                                                                               180 

(4) 

 

Bias ൌ
ଵ

ே்೓
∑ ∑ ቀ𝑇෠௔ሺ೔,೟ሻ െ 𝑇௔ሺ೔,೟ሻቁ

ே
௜ୀଵ

்೓
௧ୀଵ  ,∑ ∑ ቀ𝑇෠௔ሺ೔,೟ሻ െ 𝑇௔ሺ೔,೟ሻቁ

ே
௜ୀଵ

்೓
௧ୀଵ ,                                                                                                                 

(5) 

where 𝑇෠௔ሺ೔,ೕሻ is the predicted Ta at location i at time t. 𝑇௔ሺ೔,೟ሻ is corresponding true Ta. N is the total number of the locations, and 185 

𝑇௛ is the total number of hourly samples. Here, a positive bias indicates overestimation, and vice versa for a negative bias. 

2.4.3 Local oscillation index (LOI) 

LOI is a metric that we proposed based on the graph Laplacian (Hamilton et al., 2017) that quantifies the surrounding 

information inflow to each node. This is utilized to quantify the impact of spatial information from surrounding nodes on local 

forecasting. Mathematically, let 𝑇௔ሺ೔,೟ሻ  be the Ta observed at location 𝑖  at the time 𝑡 , and 𝑇௔𝒩ሺ೔,೟ሻ
 as the mean Ta of the 190 

neighboring stations of station 𝑖 at the same time is calculated as:  

𝑇௔𝒩ሺ೔,೟ሻ
ൌ

ଵ

ே
෍  𝑇௔ೠ,೟

௨∈𝒩ሺ௜ሻ
,                                                                                                                                                          

(6) 

where 𝒩ሺ𝑖ሻ represents the set of neighboring stations to 𝑖, and 𝑁 is the number of neighbors. For each station 𝑖, the deviation 

of Ta from its neighbors at any given time t is Δ𝑇௔ሺ೔,೟ሻ: 195 
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Δ𝑇௔ሺ೔,೟ሻ ൌ 𝑇௔ሺ೔,೟ሻ െ 𝑇௔𝒩ሺ೔,೟ሻ
.                                                                                                                                                            

(7) 

Based on   Δ𝑇௔ሺ೔,೟ሻ, one can calculate the historical normal deviation of one station from its neighbors by averaging the 

deviations over records across the training period. The historical normal deviations Δ𝑇തതതത௔ሺ೔,೓,೘ሻ
 for location 𝑖 at hour ℎ and month 

𝑚 is calculated as follows: 200 

Δ𝑇തതതത௔ሺ೔,೓,೘ሻ
ൌ

ଵ

|்೓,೘|
෍  Δ𝑇௔ሺ೔,೟ሻ ,

௧∈்೓,೘

                                                                                                                                             

(8) 

where 𝑇௛,௠ represents the set of all historical time points corresponding to hour ℎ and month 𝑚, and |𝑇௛,௠| is the number of 

time points. And then the LOI is calculated as follows: 

𝐿𝑂𝐼௜,௧ ൌ Δ𝑇௔ሺ೔,೟ሻ െ Δ𝑇തതതതୟሺ೔,೓,೘ሻ
.                                                                                                                                                       205 

(9) 

LOI essentially reflects how a node differs from its surroundings while eliminating climatological differences. This 

primarily captures the effect of the graph processing procedure and helps disentangle the impact of spatial information. Note 

that LOI is an hourly metric, rather than reflecting daily deviation. 

 210 
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Figure 1. Schematic of the modelling framework. (a) Spatial distribution of weather observation stations across Hong Kong (basemap © 

Mapbox), with location IDs labeled. The edges between stations represent the schematic GNN structure, showing nine connections per node. 

(b, c) Conceptual diagramsdiagram comparing the local time-series modeling approach andwith the graph-based approach that incorporates 215 

spatial information from observation networks, in which LSTM-based temporal embeddings are spatially aggregated using GNN across 

neighboring stations. (d) Overview of the Mix-n-Scale framework, which leverages intra-city observations using diversely configured GNNs. 

3 Results and Discussions 

3.1 Intra-city Ta characteristics 

We first present the intra-city spatiotemporal dynamics of Ta within our study areas.  Overall, the mean Ta patterns is relatively 220 

homogeneous, with majority sites recording mean values within a narrow range of 23.2°C to 24.2°C. Two notable exceptions 

are high elevation sites, location 15 (elevation: 955 m) and location 13 (elevation: 572 m), which exhibit the lowest annual 
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mean Ta of 17.6°C and 19.6°C, respectively. In contrast, Hong Kong International Airport, location 3, dominated by concrete 

structures with high thermal inertia, records the highest mean Ta of 24.8°C. 

In comparison, diurnal Ta fluctuation exhibits a more heterogenous pattern. The DTSD (Section 2.4.1) evenly distributed 225 

from 1.3°C to 2.5°C, indicating substantial relative spatial variability (Fig. 2b). The lowest DTSD of 1.3°C occurs at the 

mountain peak (location 15), while the highest value of 2.5°C is observed at location 14 in the northern inland suburban area. 

Notably, diurnal fluctuations tend to be greater in northern areas at shown in the right panel of Fig. 2b, likely due to reduced 

oceanic thermal moderation and stronger influence from continental air masses (Scheitlin, 2013). The relative magnitude of 

variation among locations reveals similar mean value patterns but more pronounced differences in diurnal fluctuations. 230 

 

 

 

Figure 2. Spatial distribution of (a) mean Ta and (b) mean diurnal standard deviation (DTSD) over the six -year datasets (basemap © 

Mapbox), with color indicating). Node colors indicate the magnitude at each location, and numbers denote location IDs using different colors 235 
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for clearer visualization. The upper and right panels show corresponding values along longitude and latitude, respectively, with the solid line 

indicating a LOESS-smoothed value. 

3.2 Overall accuracyevaluation of DL models  

We evaluate the DL models based on their average performance for 1–6 hour forecasts across 16 weather stations in Hong 

Kong. The graph-based models consistently outperform approaches that model eachpurely local time -series individually. 240 

Themodels. Specifically, GSAGE achievedachieves the lowest RMSE of 0.96°C, followed by the GAT with 1.03°C, both 

outperforming the LSTM with baseline (1.06°C.). These results highlight the effectivenessbenefit of incorporating spatial 

information passed from neighboring stations for local Ta forecasting. For spatial information learning mechanisms, GSAGE's 

simpler mean aggregation method achieves better accuracy than GAT's adaptive attention approach. While GAT’s approach 

theoretically has higher flexibility by dynamically identifying relationships with neighboring nodes, it may suffer from 245 

overfitting problems, despite our inclusion of wind vectors at each location to address potential propagation patterns and our 

rigorous hyperparameter optimization. This also suggests that clear directed relationships for information propagation from 

specific "super-nodes" may not exist in Ta forecasting at the intra-city scale. Furthermore, we performed ablation experiments 

by systematically removing predictors to better understand their contributions. We observe that including wind reduces mean 

RMSEs from 0.98 to 0.96 °C, while global variables that are uniform across stations (solar radiation and MSLP) failed to 250 

further enhance forecast accuracy (Fig. S1 in Supporting Information S1). 

Our Mix-n-Scale framework achieves varying performance gains across different DL models (red triangles, Fig. 3a). Since 

simple LSTM dodoes not involve graph structure, we therefore apply a naïve hyperparameter ensemble that includes models 

with varying learning rate and hidden dimensions and time lags. However,While hyper-LSTM shows only marginal gains over 

the single LSTM (Fig. 3a). In contrast,), applying the Mix-n-Scale framework produced three timesto GSAGE yields roughly 255 

threefold greater improvements when applied to GSAGE compared to LSTM, further indicating the, highlighting its suitability 

of the framework for our graph-based taskstask. Overall, Hyper-GSAGE achievesreduces RMSE from 1.06 °C to 0.92 °C, 

representing a 12.5% improvementenhancement over the best LSTM model, with this superior. Its performance remaining 

consistentremains highly stable across different ensemble configurations (sizes, achieving optimal accuracy when 

incorporating the top ~10% of models from validated pool (10 out of 100; Fig. S1 in the Supplement). Building such a pool 260 

typically requires around 50 hyperparameter trials drawn from a broad initial search space (Fig. S2 in Supporting Information 

S1). Across all forecast horizons, Hyper-GSAGE consistently outperformed other models while reducing model uncertainty, 

particularly model spread at longer forecast horizons.the Supplement), which can be completed within 10 hours on a single 

RTX 4090 GPU. Once finalized, the model generates forecasts within seconds, enabling efficient real-time applications.  

 265 

Across all forecast horizons, Hyper-GSAGE consistently outperformed the baseline models, exhibiting reduced errors and 

uncertainties. Moreover, compared with recent large-scale evaluations of multiple physics-based (e.g., ECMWF, GFS) and 

data-driven models (e.g., Pangu, Fuxi, Fengwu) against observations from over 2,000 stations across China, which reported 
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near-surface temperature forecast errors typically exceeding 2 °C at a 3-hour lead time (Xu et al., 2025). In contrast, Hyper-

GSAGE achieve RMSEs ranging from 0.88–1.17 °C for 3–6 hour forecasts, demonstrating a clear advantage in local-scale Ta 270 

forecasting skill. 

 

Figure 3. Ta forecast accuracy for the next 6 hours over 16 studied weather stations by different models. (a) Overall results of three deep 

learning models. Each box contains the 10% best individual models (10 out of 100 trained models based on validation results). Box plots 

show the median (line), 25–75% range (box), and whiskers are drawn to the farthest datapoint within 1.5 inner quantile range. The red 275 

triangle denotes the model accuracy with the Mix-n-Scale framework based on the 10% best models. (b) Forecast accuracy at different lead 

times. Shaded areas denote the range of RMSEs among the 10% best models. 

 

Between the two spatial information learning approaches, it is worth noting that GSAGE's simple mean aggregation of 

neighbor’s temporal embeddings outperforms GAT's adaptive attention mechanism, which assigns dynamic weights to 280 

neighbors. Although GAT theoretically offers greater flexibility by identifying variable inter-station relationships, and wind 

vectors are included to provide potential directional cues, this advantage does not manifest here and may instead lead to 

overfitting issues. This suggests that, at the intra-city scale, there may be no distinct “upstream” information flow or dominant 

“super-nodes,” or, if present, such relationships may occur at shorter timescales. We further examined this hypothesis from a 

statistical perspective by conducting cross-correlation analyses among station observations with varying time lags to assess 285 

whether Ta changes at one site could precede others. The lag-shifted results show that most inter-station correlations peak at 

zero lag (even for the most distant station pair), with only a few pairs exhibiting slightly higher correlations at ±1 h (Fig. S3 in 

the Supplement). 

Based on the GSAGE model, we further examine how graph construction affects model performance. We find that 

connecting each station to its nearest neighbor generally yields better performance than linking to the most distant ones (Fig. 290 
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4a), even though the latter could capture broader meteorological context and longer-range propagation. This result is consistent 

with our cross-correlation analysis. Regarding edge formation, the GSAGE model tends to perform better when each node 

connects more neighbors, particularly larger than nine (Fig. 4a). Another key structural factor is graph depth, which determines 

how many hops of neighbor information each node can access. We observe more than a 5% RMSE reduction when using two 

GNN layers compared to a single layer (Fig. S4 in the Supplement). Although a single layer with full connectivity can 295 

theoretically access the entire graph, adding a second layer does not expand the receptive field but introduces additional 

nonlinearity and feature-transformation capacity, potentially improving model expressiveness. However, deeper architectures 

that repeatedly aggregate neighbor information do not provide further gains in our case and may instead lead to over-smoothing, 

making node representations less distinguishable. Collectively, these findings clarify the optimal GNN configuration for the 

Ta forecasting task and indicate that domain-wide spatial context is likely to play a key role in enhancing model performance, 300 

which will be further explored in Section 3.3. The remaining key hyperparameters and their optimal ranges are summarized in 

Text S2 in the Supplement. 

To understand the significance of each predictor, we perform ablation experiments by systematically removing predictors. 

Including wind vectors reduces RMSEs from 0.98 to 0.96 °C, whereas global variables that are uniform across stations (i.e. 

solar radiation and MSLP) do not further enhance forecast accuracy (Fig. 4b). This is likely because such variables are more 305 

physically meaningful when their spatial patterns and gradients are represented (e.g., pressure gradients that drive large-scale 

flows or synoptic features such as troughs and ridges). When incorporated as single-point values, they provide limited 

information and may even introduce noise.  

 

 310 

Figure 4. (a) Variation of RMSE with the number of neighboring nodes used to form edge connection under two strategies. The solid curve 

denotes the mean RMSE, and the shaded area represents the standard deviation across models trained with different hyperparameter settings. 

(b) Impact of predictors on Ta forecast accuracy. Performance of LSTM and GSAGE models with various combinations of predictors. ST 

represent spatial and temporal predictors. Global represents global meteorological predictors (uniform across stations) include direct and 
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diffuse solar radiation, and mean sea level pressure. Wind includes zonal and meridional wind speed at individual stations. Detailed variable 315 

descriptions are available in Table 1. Box plots show the median (line), 25–75% range (box) based on the 10% best models, and whiskers 

are drawn to the farthest datapoint within 1.5 inner quantile range. 

 

Does Hyper-GSAGE preserve extreme values? Given that the model is essentially generated through a multi-model 

ensemble approach, a major concern is that the results tend to smooth predicted values and sacrifice the ability to capture 320 

extreme values (Knutti et al., 2010; Wilks, 2011). Therefore, we examine the distribution of the 5% most extreme values (both 

warmer and colder) in model forecasts. We find that predicting these values is highly challenging for all models, where we 

observe rightward-shifted forecasts for colder values and more pronounced leftward shifts for warmer values, reflecting 

overestimation of low and underestimation of high Ta (Fig. 4a5a). The greater cold bias for warmer values indicates inherent 

challenges in capturing extreme high temperatures. However, it is worth noting that Hyper-GSAGE demonstrates better 325 

alignment with distribution of observations. 

Furthermore, we compare model accuracy under extreme conditions based onusing the predicted and corresponding 

trueobserved values (Fig. 4b5b). For colder values, both GSAGE and Hyper-GSAGE reach comparable results, significantly 

outperform than LSTM model by reducing RMSE from 1.76°C to ~ 1.50 °C. However, for warmer values, while GSAGE 

improved RMSE from 1.62°C to 1.53°C, Hyper-GSAGE achieves clear better results (RMSE: 1.41°C) with additional bias 330 

reduction from -1.13°C to -0.99°C. These results demonstrate that Hyper-GSAGE enhances performance under both overall 

and extreme conditions. 
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Figure 45. (a) Probability density distributions of the observed Ta and corresponding predictions (6-hour lead time) from the LSTM, GSAGE, 335 

and Hyper-GSAGE models for the coldest 5% (obs. ≤ 13.3 °C, left) and warmest 5% (obs. ≥ 31.6 °C, right) of samples. The dashed blue line 

represents the observed distribution, while solid lines show predictions from each model. (b) Scatter plots comparing observed and predicted 

Ta (6-hour lead time) for the same extremes (coldest 5%, top row; warmest 5%, bottom row). Each column corresponds to a different model: 

LSTM (left), GSAGE (middle), and Hyper-GSAGE (right). The 1:1 line (dashed) indicates perfect prediction; solid black lines show the 

linearly fitted regression trend for each case. RMSE and Bias are provided to quantify model performance for the respective extremes. 340 
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3.3 Impacts of intra-city scale spatial information 

The superior performance of graph-based models demonstrates the critical influence of spatial information, motivating 

investigation of the underlying mechanisms driving these improvements. This requires quantifying both spatial information 

inflow to each node and how model behavior changes after incorporating this information. The latter is relatively 345 

straightforward to identify by directly calculating the difference between predictions from graph-based models and local time-

series-based LSTM models. However, quantifying spatial information flows to individual nodes is challenging because these 

flows are learned as high-dimensional latent representations in an end-to-end manner by DL models. To explicitly quantify 

this information, we propose LOI, an index calculated based on GSAGE's message-passing process (Section 2.4.2) that allows 

us to track how spatial information influences model behavior. In our context, LOI can be interpreted as the extent to which a 350 

location's Ta anomaly deviates from the mean value of its neighboring nodes. 

We observe an inverse relationship between the LOI and its impact on Ta forecasts (Hyper-GSAGE minus LSTM, denote as 

∆𝑇෠௔hereafter), as shown in Fig. 5a6a. This indicates that Hyper-GSAGE tends to adjust a node’s prediction upward (positive 

∆𝑇෠௔) when its inputcurrent Ta value is abnormally below its neighbors (negative LOI), as illustrated in Fig. 5b6b. In other 

words, this promotes convergence of mean Ta patterns across locations. The rationale behind is that daily mean Ta maintains 355 

similar patterns on intra-within the city scale as noted in Section 3.1, with a limited variance of 0.35°C² among locations (Fig. 

S3S5 in Supporting Information S1the Supplement). The spatially stable mean Ta pattern therefore serves as a dynamic 

indicator that constrains and refine forecasts on each node's diurnal amplitude rather than relying solely on local time-series 

trajectories. Graph regularization naturally enforces such adjustment through its smoothness property (Kipf and Welling, 

2017), enhancing model’s capacity to modulating local heterogeneous response. We term this effect "mean state regularization" 360 

for Ta forecasting.  

Fig. 5c presents a case study in location 14 that clearly demonstrates this effect during January 12th-15th when weather 

starts turning to fine condition (The Weather of January 2021, 2025). The(The Weather of January 2021 in Hong Kong, 2025), 

when Ta pattern shifts to stronger fluctuation with higher cooling and heating rate. Since this location exhibits abnormally 

cooler Ta than its neighbors during nighttime, Hyper-GSAGE produces additional upward adjustment in predictions during its 365 

subsequent daytime Ta forecasts compared towith LSTM, effectively capturing the dynamics, especially forthe daily peak Ta 

across those days. However, it is still important to note that LOI provides only a conceptual depiction of relationships that 

enable us to understand the impact of spatial information. Our interpretation is unable to fully encapsulateIn contrast, the 

intricacy of DL models that involve propagations through multiple non-linear layers and high-order interactions.LSTM 

forecasts largely replicate the time-series evolution from the preceding day (Fig. 5c).  370 
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In essence, LOI reflects the heterogeneous local Ta response that are jointly shaped by environmental factors and 

background weather conditions. A more direct investigation of how these modulate local Ta diurnal variation amplitude, as 375 

well as how the performance gains of GSAGE vary across different cities, would be valuable directions for future work. It is 

also important to note that our current interpretation offers only a conceptual representation of the GSAGE model, as it cannot 

fully encapsulate the complexity of deep learning architectures involving multi-layer nonlinear propagation and higher-order 

feature interactions. 
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 380 

Figure 56. Change in Ta forecast after incorporating spatial information with Hyper-GSAGE. (a) Negative relationship between LOI and 

∆𝑻෡𝒂.  The difference (Δ) is defined as Hyper-GSAGE minus LSTM output at the lead time of 6-hour. Each point in the scatter denotes a 

daily mean value at a single station, with color indicating the point density. The trend is fitted by Gaussian process regression, with shaded 

areas denoting the 95% confidence interval of the probabilistic model. (b) A diagram illustrating how spatial information influences Ta 

forecasting at one specific location, where a negative LOI prompts the model to forecast a higher Ta, thereby refining the local magnitude. 385 

(c) A case study illustrating the temporal evolution of observed Ta and forecasts produced by the LSTM, Hyper-GSAGE models and their 
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difference (ΔTa) at a 6-hour lead time. The LOI evolution is shown relative to the forecast initialization time to reflect the information can 

be received by the model. 

 

3.4 Spatiotemporal dynamics of forecast performance 390 

Following the successful development of ourthe Hyper-GSAGE model, we conducted evaluations of further evaluate its 

spatiotemporal forecast performance to better understand forecast characteristics and their elucidate the variability. The 

forecast  and underlying dynamics of prediction errors demonstrate clear. The results reveal a pronounced diurnal contrast, 

with RMSEs increasing during the daytime and peaking between 10:00–14:00 (1.6027–1.8040 °C), coinciding with the 

warmer periodswarmest period of the day (Fig. S4S6 in Supporting Information S1).the Supplement). In contrast, nighttime 395 

forecasts, particularly between 0:00–4:00, show–04:00, exhibit the lowest errors (RMSEs (0.61–0.76–0.8163 °C). This 

pattern remains consistent even when RMSEs are normalized by the mean hourly TaTₐ of the corresponding periods (Fig. 

S5S7 in Supporting Information S1).the Supplement). The pronounceddistinct diurnal contrastvariation in forecast skill can 

be primarily attributed to differences in Tₐ evolution dynamics between day and night. During daytime, solar radiation-–

induced perturbations and consequent atmospheric-surface heating and subsequent atmosphere–land interactions, 400 

highlighting the inherent challenges in capturing daily peak values. Seasonal error patterns show clear variation, with 

elevated RMSEs in both winter and summer (mean values of 0.90 and 0.92°C, respectively), peaking introduce strong 

perturbations, amplifying Tₐ variability and increasing forecast difficulty. After sunset, however, Tₐ evolves more smoothly 

under stable boundary-layer conditions, resulting in January (0.95°C)reduced variability and August (0.96°C). Meanwhile, 

we observe that diurnal profiles vary seasonally,lower forecast errors. This diurnal contrast is further supported by the 405 

autocorrelation analysis (Fig. S8a in the Supplement), which indicates substantially higher nighttime persistence (~0.94) 

compared with daytime, particularly around 12:00–14:00 when persistence reaches a minimum (~0.84) at the 1-hour lag. A 

similar contrast is also observed for the 1-day lag (same hour on the previous day), with persistence values of ~0.75 at night 

and ~0.57 during midday. Collectively, these results demonstrate that daytime Tₐ variability is more dynamic and thus 

inherently less predictable from a statistical perspective. Seasonally, both summer and winter exhibit elevated forecast errors 410 

(RMSEs of 1.00 °C and 0.92 °C, respectively). While summer remains relatively uniform errors during stable under the 

control of the subtropical high-pressure system (24-h lag autocorrelation of 0.37 in summer, compared with −0.01 in winter 

but; Fig. S8b in the Supplement), stronger radiative forcing and turbulent energy exchange within a more energetic 

atmosphere likely contribute to greater diurnal variations during warmer months (May–September).short-term Tₐ variability 

at hourly scales. This is reflected by the lower 1-hour autocorrelation (0.48 in summer compared with 0.72 in winter; Fig. 415 

S8b in the Supplement), presenting greater challenges for short-range forecasting. 

Forecast accuracy shows substantial spatial variability, with RMSEs ranging from 0.72 to 1.10 °C (Fig. 6b). Two locations 

within the most densely developed urban areas show the lowest RMSEs (0.72 and 0.76°C for location 4 and 7, respectively). 
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These locations are surrounded by high-rise buildings in the urban core, where local areas typically have large thermal inertial 

and reduced ventilation. Location 3, which records the highest mean Ta at the airport, also demonstrates while demonstrating 420 

a relatively low RMSE of 0.82°C. In contrast, the The highest RMSEs are found at locations 1014 and 14 (1.07°C and 1.10°C, 

respectively), both situated10 where they are in open areas. As noted in Section 3.1, location 14, situated in suburban northern 

Hong Kong, exhibitsthe most inland place (expect the largest diurnal Ta fluctuation. Location 10 is characterized by a highly 

complex local thermal environment, being adjacent to both themountain station) and interface of sea water and Hong Kong’s 

largest freshwater reservoir, which likely generates intricate local breeze circulations and greater Ta variability. with RMSE of 425 

1.10 and 1.07°C.  

The magnitude of local error is Across all classified periods, we find that the heterogeneous spatial RMSEs within the city 

are highly positively correlated with the corresponding observed local variability of Ta,(Fig. 7c), as measured by the standard 

deviation (SD) Ta observations at each location. To prevent potential confounding effects arising from temporal variation, we 

further separated the results into four distinct periods. Across all periods,While we observed a significant positive relationship 430 

whereby locations with greater Ta variability are associated with higher forecast errors (Fig. 6b). However,find this pattern 

varies dynamically among periods. Summer patterns exhibit distinct diurnal differences. During daytime, local Ta variability 

diverges significantly across locations (SD from 1.6 to 3.0°C). We treat location 15 as a proxy for background weather 

conditions, as it is situated atop the city's highest mountain and is therefore minimally perturbed by atmosphere-land 

interactions. The mountain-top station shows the least local variability and forecast errors, which aligns with Hong Kong's 435 

stable summer weather patterns typically dominated by subtropical high-pressure systems. The remaining locations experience 

greater Ta variability and associated forecast errors during daytime, likely caused by intense solar radiation and subsequent 

thermal instability and convective turbulence. This variability, along with associated RMSEs, diminishes and converges at 

night, highlighting the substantial uncertainties and challenges induced by solar radiation in generating Ta instability and spatial 

heterogeneity during summer. Winter presents a different scenario. Large spread and relatively high Although daytime still 440 

shows higher Ta variability and RMSEs persist during , a wide spread persists throughout the nighttime, suggesting that non-

solar factors predominantly govern winter Ta dynamics.. This pattern likely relates to reflects the influence of more variable 

background weathersynoptic conditions, particularly monsoon surges and cold-front passages, as evidenced by the markedly 

increased variability at the mountain peak-top station (location 15) exhibiting drastically increased variability over during this 

period (Fig. 6b7b). In this context, local ventilation conditions (e.g., building configuration and urban morphology) and thermal 445 

inertial likelyproperties play crucial roles in regulatingmodulating how local thermal environment exposureenvironments 

respond to background conditions. We also observedforcing. Indeed, we observe that locations experiencingstations with 

higher forecast errors typically under prevailing northerly winds show elevated forecast errors and Ta variability during winter 

nighttimenights (Fig. S9 in Supporting Information S1). Despite this temporal dynamism, the most densely urbanized areas 

consistently demonstrate lower Ta variability and forecast errors across all periods. These complex spatiotemporal dynamics 450 

highlight the diverse driving factors at play, suggesting the need for targeted improvements in model representation and the 

necessity of period-specific analysis in both intra-city Ta studies and model evaluations.Supplement). 
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Despite the temporal variability, consistent spatial patterns emerge across periods. Location 10, situated at the interface 455 

between the sea and Hong Kong’s largest freshwater reservoir, consistently exhibits the largest forecast errors during daytime 

in both seasons. This behavior can be attributed to pronounced thermal contrasts induced by strong solar radiation and the 

resulting complex local sea–lake–land breeze circulations and turbulence. In contrast, its nighttime Ta remain relatively stable. 

At the most inland site (location 14), we observe persistently higher daytime Ta and lower nighttime Ta across both seasons 

(Fig. S10 in the Supplement). This pattern likely arises from reduced moderation by sea breezes and stronger advection of 460 

warm air towards the inland during the day, followed by more efficient cooling of land breezes at night. Such a amplification 

or diurnal contrast on the inland areas has also been documented in other coastal cities (Bauer, 2020; Yang et al., 2023). 

Conversely, the most densely urbanized areas display consistently lower Ta variability and smaller forecast errors across all 
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periods. This stable pattern can be explained by that dense high-rise structures tend to suppress daytime heating while 

enhancing nocturnal heat retention (Oke et al., 2017; Shi et al., 2024). Collectively, these complex spatiotemporal dynamics 465 

underscore the diverse physical processes governing intra-urban temperature variability and forecast uncertainty, highlighting 

the need for refined model representations and period-specific evaluations in urban Ta prediction studies. 

 

 

 470 

Figure 67. (a) Temporal variation of forecast accuracy. The top and right panels display the mean hourly RMSE of Hyper-

GSAGE aggregated over hours and months, respectively. (b) Same as Fig. 2 but for Spatial distribution of RMSEs (basemap 
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© Mapbox). The light-blue area to the right of Location 10 represents a freshwater reservoir. (c) The relationship between 

local Ta variability and forecast RMSEsRMSE. Each point represents a location, and shaded areas indicate 95% confidence 

intervals derived from bootstrapping. Dense urban and mountain peak stationsKey locations discussed in the text are denoted 475 

by squares and triangles, respectively.highlighted using the shapes indicated in the legend. Three (***) and two Asterisks in 

the legend for(**) asterisks next to each period indicate that the relationship is significant at p ≤ 0.001 and p ≤ 0.01, respectively. 

 

4 Concluding remarks 

Our results highlightThis study highlights the necessityimportance of a graph-based approaches that connectapproach for 480 

modeling intra-city observationsobservation networks collectively to improve short-range Ta forecastingforecasts at individual 

locations. This study contributes to a foundational understanding of effective graph formation and the underlying mechanisms 

through which spatial information enhances forecasts. We demonstrate that an undirected network, learned through a mean 

state of interaction with neighboring observations, graph formation using the GSAGE model can refine local forecasting by 

effectively enforcing constraints, a process naturally supported captured from the mean states of neighboring observations, as 485 

revealed by the GSAGE architecture. With our proposed LOI. Within the proposed Mix-n-Scale framework for graph 

formation and model implementation, the Hyper-GSAGE model produces more accurate forecasts under both overallgeneral 

and extreme conditions and, achieving an overallaverage RMSE reduction of overexceeding 12.5% for 1–6 hourshour forecasts 

compared towith the conventional time-series method.  

Local The spatial distribution of Ta forecast accuracy exhibits substantial spatial heterogeneity in fluctuation patterns, which 490 

that strongly correlates with forecast difficulty at corresponding locations. However, the characteristics and drivers of this 

spatial heterogeneity local Ta variability, while these patterns vary considerably across different temporal periods. Summer 

exhibitsdemonstrates distinct diurnal variations in spatial patterns, where daytime conditions substantially amplify both spatial 

heterogeneity and error magnitude, suggesting thea critical role offor solar radiation. In contrast, winter demonstratesexhibits 

more consistent diurnal patterns, where local ventilation and thermal inertia emergeproperties start emerging as more critical 495 

factors under elevateda more variable background Ta variability. Further studies incorporating high-resolution computational 

fluid dynamics simulations hold great potential for elucidating intra-city airflow dynamics, which could better inform hybrid 

forecasting modelscondition. 

Given our focus on intra-city spatial interactions, our models are developed without incorporating meso-scale weather 

information. We acknowledge this design choice limits theour ability to address large-scale capture weather propagation 500 

andbeyond the domain boundaries, and we therefore constrain the forecast horizon to 6 hours in this study. The 

currentIncorporating large-scale patterns, such as cold frontal passages propagating from outside the domain, through lateral 

boundary conditions or broader-scale atmospheric predictors could be critical for capturing overall trends, particularly during 

the more variable winter season. Nonetheless, as Ta patterns are influenced by various local circulations, integrating high-
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resolution computational fluid dynamics simulations holds great potential for elucidating intra-city airflow dynamics and 505 

further refining forecast accuracy through hybrid modeling approaches. Hyper-GSAGE serves as a foundational yet flexible 

framework for modeling local observation networks while retaining, with the capability to be coupledintegrate this information 

with large-scale NWP/DL forecast systems for extended forecastsor their DL-based surrogates, thereby leveraging advantages 

from both physics-based and data-driven approaches. With the increasing deployment of IoT weather observation sensors in 

cities (Chapman and Bell, 2018), such models hold greatoffer substantial potential for improving urban environmental 510 

management at finer spatiotemporal scales, offeringproviding a pathway toward more precise and intelligent oversight of urban 

environmental systems. 
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