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Abstract.
As part of the ICOS Cities project, a network of low-cost NDIR (non-dispersive infrared) CO2 sensors was set up
across the city of Zurich (Switzerland), known as ZiCOS-L. The network consists of 56 sites with paired low-cost
sensors spread out over the urban area of Zurich. This publication focuses on the period from August 2022 to
July 2024. The sensors require in-field training for model calibration before deployment and further post-processing5

steps to account for drift and outliers. After data processing, the hourly mean root mean squared error (RMSE)
was 13.6±1.4 ppm and the mean bias 0.75±1.67 ppm when validated against parallel reference measurements from
the mid-cost sensor network ZiCOS-M. CO2 concentrations were highly variable with site means in Zurich ranging
from 438 to 465 ppm. These differences can largely be explained by the nearby surroundings, with vegetation,
traffic density and human activity being dominant factors while altitude and distance from the city centre had a10

minor effect. Vegetation (mainly grassland) amplified the morning concentration in summer by up to 20 ppm due to
ecosystem respiration, while heavy traffic increased the morning rush hour concentration by 15 ppm. Human activity
was shown to locally enhance CO2 concentrations during two public events. Despite its lower measurement accuracy,
the ZiCOS-L network enables the study of concentration dynamics at a spatial and temporal scale that could only
be achieved at much higher cost with mid-cost or high-precision instrumentation. The observations generated by15

ZiCOS-L will be further used in ICOS Cities activities to validate CO2 emission inventories with inversion modelling
systems.
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1 Introduction

The Earth’s atmosphere has been exposed to approximately 1 degree of warming compared to pre-industrial times
due to anthropogenic emissions of greenhouse gases (GHGs) such as carbon dioxide (CO2) (IPCC, 2023b). Cities20

are by far the largest contributors to climate change (Duren and Miller, 2012). While urban areas only make up
2 % of the earth’s surface, they are responsible for up to 70 % of global anthropogenic emissions (IPCC, 2023a;
United Nations, 2011). It is for this reason that many cities are taking action by joining the "race to zero" campaign,
with the goal of reducing their GHG emissions to net zero by 2050 or earlier (C40 Cities, 2025). To achieve such
targets, it is important to check the efficiency of policy plans, which can be done by use of a monitoring network.25

Monitoring CO2 concentrations in urban areas is particularly challenging due to large spatial and temporal
variability of emissions and the complex topology of the urban landscape. Cities usually rely on annual bottom-
up emission inventories based on a combination of activity data, emission factors, and behavioural assumptions.
These inventories can be verified using top-down inversion modelling, which need ground-level observations as an
input.30

Until recently, observations were usually made by a small number of expensive high precision instruments, usually
on tall towers measuring background concentrations. Despite the high accuracy of such measurements, they only
give limited insights into spatial variability of concentrations at a local scale (World Meteorological Organization,
2024; Shusterman et al., 2016; Hernández-Paniagua et al., 2015). This highlights the need for lower-cost real-time
CO2 monitoring systems that measure at the scale of local emissions. As a response, the availability of low-cost35

atmospheric trace gas monitoring tools is on the rise (World Meteorological Organization, 2024). Of course, lower
cost limits data quality, so a trade-off should be made between cost and quality, depending on the purpose of use
(World Meteorological Organization, 2024). Low-cost observations need extensive calibration and data processing,
and uncertainties and limitations of the measurements must be considered during the interpretation of the data.
However, the advantage of low-cost sensors is that they can be deployed at higher density, enabling CO2 concentration40

patterns to be resolved at a much smaller scale (Castell et al., 2017).
The definition of a low-cost sensor differs between users. In Zurich, lower-cost sensors are therefore divided into

two tiers: low- and mid-cost. The Zurich ICOS Cities Mid-cost (ZiCOS-M) network contains sensors which are at
an order of 7–14 times lower price than a high-cost, high-precision cavity ring-down analyser (Grange et al., 2025;
Shusterman et al., 2016). Another example of a network of similar cost is the Berkeley Environmental Air-quality45

& CO2 Observation network (BEACO2N), operating in the San Francisco Bay area since 2013 (Shusterman et al.,
2016, 2018; Delaria et al., 2021). BEACO2N has recently extended towards Los Angeles and Providence (United
States) and Glasgow (United Kingdom) (Kim et al., 2025). Additionally, as part of the ICOS Cities project, a
mid-cost network has been deployed in Paris (Lian et al., 2024) and Munich (Aigner et al., 2024).

In this study, we present a network at another order of magnitude lower cost which we therefore refer to as the50

Zurich ICOS Cities Low-cost network (ZiCOS-L). Sensors of the same price point have previously been installed
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in the Carbosense network which extended across the whole of Switzerland (Müller et al., 2020). ZiCOS-L is an
extension to the Carbosense network, with a local focus on the city of Zurich comprising 56 valid CO2 monitoring
sites distributed over an urban area of around 170 km2. A CO2 monitoring network using this price-class of sensors
in such a high density is so far unprecedented, making ZiCOS-L a valuable addition to the existing range of low-55

and mid-cost CO2 monitoring networks by providing insights into CO2 dynamics at a high spatial and temporal
resolution.

1.1 ICOS Cities

This work is part of the ICOS Cities project, funded by the European Union’s Horizon programme (https://www.
icos-cp.eu/projects/icos-cities, last access: 16.06.2025). The project supports the European Green Deal by developing60

and testing tools and services for cities, supporting their climate action plans to reduce GHG emissions. The project
entails 15 cities in Europe of which three cities of different sizes have been selected as pilot cities. From large to
small, the pilot cities are Paris, Munich and Zurich, and they are used to test the effectiveness and feasibility of
various monitoring techniques. A network similar to ZiCOS-L has been installed in the medium-sized city of Munich
(Kühbacher and Chen, 2024). Differences and similarities between these two networks can give valuable insights into65

the usefulness and usability of low-cost CO2 networks to other cities.

1.2 Objectives

The aim of this work is to evaluate the potential of a dense low-cost CO2 monitoring network in a European city of
relatively small size. The objectives are to:

1. describe the network design, sensor deployment and data processing,70

2. evaluate measurement performance of the network,

3. present spatial variability and temporal dynamics that can be detected by the network.

The first objective can aid other cities with the intention of setting up a similar monitoring network because most
of the data processing steps can be applied to other network settings. The second objective is important for the
interpretation of the data, with a specific focus on inversion modellers who can potentially use the observations in75

their models to validate emission inventories. The last objective can be of interest to city stakeholders to identify
CO2 hotspots and sources and adapt their policies to reduce GHG emissions accordingly.

The goal of the network is not to produce high quality data to accurately resolve regional patterns, but rather to
give insights into short-term and highly local CO2 dynamics close to emission sources and sinks.

This paper is a follow-up on the ZiCOS-M publication on Zurich’s mid-cost CO2 sensor network presented in80

Grange et al. (2025). As highlighted earlier, the low-cost network largely depends on the mid-cost network, and the
two papers therefore go hand-in-hand, following a similar structure.
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2 Methodology

2.1 Network design

Zurich’s ICOS Cities CO2 sensor network (ZiCOS) is composed of a total of 234 sensors of different price points that85

cover the urban area of the city of Zurich (Fig. 1). The network is an extension of the national CarboSense project
described by Müller et al. (2020) with a local focus on the urban area of the city of Zurich.
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Figure 1. A map of the ZiCOS network. The colors indicate the sensor type. At locations with low-cost sensors (both low-cost
(blue) and co-located (green) sites), the marker indicates the site category.
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Paired low-cost sensors are deployed at 61 different sites, of which 56 sites produced valid observations in our
study period. The low-cost sensors are generally mounted to light poles or traffic signs and thus located in street-
level environments. Together, these sensors make up Zurich’s ICOS Cities low-cost CO2 sensor network (ZiCOS-L).90

Additionally, there is a mid-cost sensor network (ZiCOS-M) deployed, consisting of 21 sensors in the urban area,
which are installed in climate-controlled indoor environments and generally sample at rooftop level. A full description
of the ZiCOS-M network can be found in Grange et al. (2025). There are six sites where the two networks overlap,
with parallel measurements of a mid-cost sensor and a low-cost sensor pair. At these locations, both mid-cost and
low-cost sensors are installed at near-ground level. Lastly, Empa-Dübendorf’s air quality monitoring site acts as the95

reference site hosting a high-cost and high-accuracy cavity ring-down spectroscopy (CRDS) gas analyser (Picarro
G2302).

Deployment of the ZiCOS-L network started in June 2022, and the full network was running from mid-July 2022
onward. Currently, the network is still in operation and is expected to continue for a few more years. This study
focuses on the two-year period between beginning of August 2022 and end of July 2024.100

All sites were carefully selected to capture as much of the spatial variability of the city as possible. Site details
are documented, including exact coordinates, latitude, aerial photographs and a description of the surroundings
(Appendix A). Consequently, the sites are classified based on potential sources and sinks in their nearby surroundings
that can affect the concentration. This classification will be used to analyse the effect of vegetation, traffic and human
activity on the local concentration.105

For traffic, the sites are divided into four groups of traffic intensity: ‘heavy’, ‘moderate’, ‘light’ and ‘none’. A site
will be referred to as a traffic site when the traffic intensity is either moderate or heavy. For vegetation, a distinction
is made for densely or sparsely vegetated sites. In turn, the densely vegetated sites are split up into three vegetation
types: ‘grassland’, ‘forest’ and ‘mixed’, whereas the sparsely vegetated sites are split up into ‘some’, ‘single tree’ and
‘none’. The group ‘single tree’ refers to a site where there is little vegetation, but the sensor is mounted right next110

to a single tree which can affect the measured concentration. A site is defined as vegetated when the vegetation is
dense (so, belonging to ‘grassland’, ‘forest’ or ‘mixed’). Thanks to this classification framework, a site can be both
vegetated and a traffic site at the same time. An example of the classification of four monitoring sites is depicted
in Table 1. Lastly, to examine the effect of human activity, two individual sites were selected: Langstrasse, a busy
nightlife street, and Limmatquai, a site in the city centre with many daytime visitors.115

2.2 LP8 CO2sensor

The low-cost sensor units used in this network are manufactured by Decentlab GmbH and consist of a SenseAir LP8
CO2 sensor and an ancillary Sensiron SHT21 Temperature (T ) and Relative Humidity (RH) sensor (± 0.3 ºC T ,
± 2 % RH). The sensor unit is identical to the one presented and described by Müller et al. (2020). Both the LP8
and the SHT21 sensors are mounted close to the opening to ensure quick response times (Fig. 2b).120
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Table 1. Photographs and metadata of four low-cost CO2 monitoring sites in Zurich. Sensor positions are circled in red.

Stampfenbachstrasse Katzensee Irchelpark Schule Seefeld

Area Urban Rural Suburban Suburban

Vegetation Some Grassland Forest Single tree

Traffic Heavy None Moderate Moderate

a) b)

Figure 2. CO2 (a) The integrated low-cost sensor unit (back) and the SenseAir LP8 CO2 sensor and LoRaWAN data
transmission technology (front) and (b), a schematic overview of the interior of the sensor unit. The LP8 and SHT21 sensors
are mounted close to the opening. Picture: Müller et al. (2020)
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The LP8 sensor is not actively ventilated and relies on diffusive processes to detect changes in ambient CO2

concentrations. The accuracy of the CO2 measurement based on factory calibration is ± 50 ppm with an additional
±3 % of reading, which is insufficient to capture the typical variability of CO2 in ambient air. The sensor unit runs
on the power of two ‘C’ alkaline batteries, which ensure sensor operation of around five years without replacement
(Müller et al., 2020). Decentlab recently brought out a newer version of this unit under the name DL-LP8P which125

additionally includes an atmospheric pressure (P ) sensor and is also commercially available (Decentlab, 2025).
The per-unit price of the SenseAir LP8 low-cost CO2 sensor is around EUR 50. However, with additional costs

for deployment, low-power integration, maintenance and processing, the cost is estimated at EUR 500 per sensor. In
comparison to the mid-cost sensors presented in Grange et al. (2025) costing around EUR 5 000–10 000, the low-cost
sensors are at a significantly lower price point.130

2.3 Data transmission, processing and storage

Data is transmitted using a Low Power Wide Area Network (LPWAN) named LoRaWAN (LoRaWAN® Aliance,
2015). The data transmission (data packet en- and decoding, database management) is provided by Decentlab as
a service. Measurements are made approximately every minute and averaged into 10-minute intervals onboard the
LP8 sensor unit, after which they are transmitted. Due to the low-power integration, no data storage is possible135

on-board, therefore, if data transmission fails, the data is lost. However, the long lifetime of the sensors at their
monitoring sites can largely be attributed to the low power transmission made possible by LoRaWAN, making it a
key element for the ZiCOS-L network.

Measurement data is hosted on Decentlab’s InfluxDB database and can be accessed through an API. Scheduled
tasks, running on Empa local machines, maintain regular (i.e. daily) data processing as will be described in the140

following section. For local storage during computations, an Empa-internal MySQL database serves as temporary
storage and to store metadata such as information concerning location, deployment and sensor IDs. Processed data is
then re-uploaded to Decentlab’s InfluxDB for long-term storage and allowing simple data visualisation using Grafana
Dashboards (Grafana Labs, 2025). The same architecture for data transmission, processing and storage was used for
the ZiCOS-M network as described in Grange et al. (2025).145

2.4 Data processing

In preparation for field deployment, all sensors were first tested in a climate chamber (Appendix C) and then co-
located in ambient field conditions at the Dübendorf-Empa reference air quality monitoring site for varying timespans
within a one-month period. Subsequently, the low-cost sensors were deployed in the field without reference gases and
were generally left without maintenance until a failure or a clear issue was observed, thus adhering to the low-cost150

requirements.
The sensors are known to be dependent on environmental factors and susceptible to temporal drift (Cai et al.,

2025; Delaria et al., 2021; Müller et al., 2020). These drawbacks were managed after deployment with post-processing
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procedures to improve the sensor’s accuracy. The methods we propose are thus entirely based on in situ corrections
after the co-location period at the reference site. The post-processing was done in a sequential stepwise manner,155

with each step increasing the accuracy of the observations. Firstly, the reported measurement is converted to dry air
mole fraction. Secondly, the measurements are calibrated using a multi-linear regression model, after which they are
corrected for drift. Finally, the data is filtered for conditions during which the measurements might be compromised
by the environment. The next sections will elaborate further upon each of the post-processing steps that were carried
out.160

2.4.1 Water dilution correction

The LP8 sensors report CO2 in moist air. However, we prefer to express CO2 as dry air mole fraction as this quantity is
preserved during atmospheric transport and phase changes. The reported CO2 was converted to dry air mole fraction
using the amount of water vapour in the air based on RH and the T dependent saturation vapour pressure following
the August-Roche-Magnus formula, an approximation of the Clausius-Clapeyron equation (Alduchov and Eskridge,165

1996). T and RH data are measured by the Sensirion SHT21 sensor in the sensor unit of each low-cost sensor, so
they are local observations. This conversion will be referred to as the water dilution correction. Throughout this
article, we will refer to the dry air mole fraction as ‘concentration’.

2.4.2 Calibration models

The factory calibration provided by the manufacturer is insufficient for the accurate monitoring of ambient air170

(accuracy of ± 50 ppm) and thus requires additional calibration. For this step, a collection of nine calibration models,
including five multivariate linear regression models, two Lambert-Beer models and the two more complex models (full
and restricted) used in the previous Carbosense project as described by Müller et al. (2020), were tested. Each model
was once trained on the climate chamber data and tested on the reference gas analyser observations at Dübendorf,
and once trained on the reference gas analyser and tested on both the gas analyser at Dübendorf before deployment175

and the mid-cost sensors in the field after deployment.
As described above (Sect. 2.2), each sensor unit also measures T and RH, making them the most obvious features

for the regression models. Additionally, ambient pressure (P ) measured by the reference gas analyser or mid-cost
sensors was used. However, since RH itself is T dependent, we decided to additionally test a model using specific
humidity (q) (derived from RH and P ).180

The tested linear regression models started from a basic model using CO2 as the only feature, which was stepwise
extended by introducing new features in the following order: T , RH or q and finally P . The Lambert-Beer and
the models proposed by Müller et al. (2020) used the sensors’ raw infrared measurement, while the (multi-) linear
models used CO2 mole fraction after the water dilution correction.

Comparison of the different model training and testing methods demonstrated that training with climate chamber185

data was not representative of field conditions, which is in line with findings of many other studies (Cui et al., 2021;
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Malings et al., 2019; Topalović et al., 2019; Castell et al., 2017). Consequently, the calibration models were finally
trained on 3–12 weeks of ambient reference gas analyser observations at Dübendorf-Empa before deployment and
tested on mid-cost sensor observations at their field location right after deployment. Note that the models could
only be tested for the paired low-cost sensors that are co-located in the field with a mid-cost sensor, and that these190

mid-cost sensors are an imperfect reference with a known uncertainty of about ±1 ppm (Grange et al., 2025).
The model formulation that consistently performed best was the multi-linear model that included CO2, sensor T ,

and sensor RH. It should be mentioned that the model using q instead of RH performed equally well, but since RH
is measured directly by the sensor, this model was preferred. The calibrated concentrations ([CO2]cal) are calculated
from the reported concentration ([CO2]rep) following Equation 1:195

[CO2]cal = [CO2]rep +α[CO2]rep · [CO2]rep +αT ·T +αRH ·RH (1)

in which α[CO2]rep , αT and αRH are the sensor-specific correction coefficients for [CO2]rep, T and RH respectively.
Each sensor thus has a coupled calibration model with sensor-specific coefficients.

2.4.3 Outlier removal

After calibration, the calibrated low-cost sensors’ observations [CO2]cal were passed through a Hampel identifier200

algorithm to identify measurement spikes. The Hampel identifier is a windowed median and median absolute de-
viation (MAD) scale identifier (Pearson et al., 2016). The identifier evaluates a value’s distance from the median,
and if it is larger than the MAD scale implied, it will be replaced by the median value of the window. The Hampel
identifier is a ‘despiking’ algorithm that effectively removes outliers and reduces noise. For the low-cost sensors, a
large window of 20 hours was applied to invalidate large spikes which represented sensor measurement errors. The205

despiking was done at 10-minute level, and after aggregation back to hourly level 16 % of data was invalidated. A
similar but more strictly tuned Hampel identifier was also used for the mid-cost sensors’ observations to identify
possible local contamination events (Grange et al., 2025).

2.4.4 Drift correction

The low-cost sensors often suffered from severe drift over time. The drift primarily manifested in changes in the210

sensors’ baseline concentrations and was, for some sensors, up to one ppm per day. This caused an issue where the
sensor-calibration model system (Sect. 2.4.2) was not stable over time, requiring an additional adjustment accounting
for the network baseline. A large number of network calibration methods have been documented and used for gas
sensing sensor networks (Weissert et al., 2020, 2019; Delaria et al., 2021; Müller et al., 2020; Bigi et al., 2018; Miskell
et al., 2018, 2016; Shusterman et al., 2016). Most of these methodologies rely on a single or a few reference sites215

with high accuracy observations that are robust against drift. For example, Müller et al. (2020) used wind as a
proxy for homogenous conditions and then rely on three remote Picarro sites, depending on the wind direction, to
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correct the drift during these conditions. In our case, we took advantage of the high spatial resolution of the mid-cost
network for more local references. Therefore, we present a novel approach for drift correction using local mid-cost
measurements.220

To correct for drift, we subtract a time series of offsets from the low-cost observations ([CO2]LC):

[CO2]LC,drift
corrected(t) = [CO2]LC(t)−∆[CO2](t) (2)

The offset ∆[CO2](t) is the difference between the low-cost observation and the reference network baseline.
The network baseline refers to a time series of reference minimum concentrations, in our case from the coupled

mid-cost sensor network. The mid-cost sensors are equipped with reference gas cylinders which are used to internally225

calibrate the measurements, resulting in more accurate observations compared to the low-cost sensors. The uncer-
tainty of the mid-cost sensors is an RMSE of 1 ppm with a bias of -0.09 ppm (Grange et al., 2025), and can thus be
considered as an in-field reference. Full discussion of the mid-cost sensor performance can be found in Grange et al.
(2025).

Since not all low-cost sensors are co-located with a mid-cost sensor, the network baseline first needs to be derived230

from a spatial interpolation of mid-cost baselines, so an estimate can be extracted at each low-cost sensor site. This
was done as follows: The daily minimum concentration was calculated for 22 sites across Zurich city (21 mid-cost
sensor sites and the reference gas analyser site). Daily minima are defined as the minimum hourly concentration
([CO2]min) experienced between 14:00 and 17:00 (local time). These daily minima were interpolated using an inverse
distance weighting algorithm to build daily minimum concentration surfaces with a resolution of 500 m for the spatial235

extent in which the low-cost sensors are deployed, which corresponds to an area of about 170 km2. As a heuristic,
the second lowest CO2 concentration of the 22 mid-cost sites was used as the surface’s baseline to omit potential
anomalies. An example of such a daily minimum concentration surface is shown in Fig. 3. This surface represents
the network baseline CO2 concentration at a given day.

A drawback of this method is that the (co-located) mid-cost sensors are also used for validation, making the240

processed data dependent on the validation data. Consequently, the surface interpolation was also computed by
withholding the six co-located sites as a check. The surfaces with withheld sites returned virtually identical values.
Therefore, we concluded that the initial interpolated surfaces are safe to use for further data processing and the
surface with withheld sites was not used.

Initially, ∆[CO2] is made up of two components: a variable daily offset (∆[CO2]daily) and a static starting increment245

(∆[CO2]start):

∆[CO2]init(t) = ∆[CO2]daily(t)−∆[CO2]start (3)

where t is time in days.
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Figure 3. Daily CO2 minimum naive concentration surface for December 20, 2022. The domain of the surface is the low-cost
sensor network extent (170 km2) and concentrations for this day were especially variable among the sites.

Firstly, a time series of daily offsets (∆[CO2]daily(t)) is computed by taking the difference between the daily
minimum low-cost observation ([CO2]LC

min) and the baseline estimate from the mid-cost network ([ĈO2]MC
min):250

∆[CO2]daily(t) = [CO2]LC
min(t)− [ĈO2]MC

min(t) (4)

The baseline estimate [ĈO2]MC
min is computed at each low-cost site by extracting the daily minimum mid-cost con-

centration from the interpolated surface at the spatial location of the low-cost site for each day of the study period.
In addition to the daily offsets, a key difference in the placement of the low-cost and mid-cost sensors needs to

be taken into account: mid-cost sensors are generally installed on rooftops, while low-cost sensors are installed at255

street-level. Therefore, a baseline estimate based on mid-cost sensors is limited in its representativeness for the low-
cost network. Even at the same site (same spatial location but different height), a low-cost sensor can be expected
to experience different (usually higher due to closer proximity to emission sources) concentrations than the mid-cost
sensor. To solve this issue, we introduce ∆[CO2]start which represents this difference at the start of deployment.

Since the low-cost sensors were first co-located with a reference gas analyser for calibration at the testing site260

(Dübendorf-Empa) and deployed at their field sites immediately after, it was assumed that the sensors’ calibration
was “correct” at the start of the deployment. Accordingly, the starting increment was calculated by taking the
average value of the difference between the low-cost observation and the baseline estimate during the second and
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third day of field deployment:

∆[CO2]start = meant∈{2,3}
(

[CO2]LC
min(t)− [ĈO2]MC

min(t)
)

(5)265

The starting increment and daily offsets together made up the initial offset coefficient (Equation 3), which was
slightly smoothed using a three-day rolling mean, and finally subtracted from the calibrated low-cost concentration
(Equation 2). However, after several months of monitoring, it was determined that the starting increment logic was
too simple to capture the low-cost sensor sites’ CO2 dynamics. The initial offset was inadequate to represent the
sensors’ behaviour during the entire monitoring period, including different seasons. This led to persistent biases for270

some sensors. Therefore, another layer on top of the correction steps above was needed, to create an additional
component of the offset coefficient (∆[CO2]homog) during homogeneous network conditions:

∆[CO2](t) = ∆[CO2]daily(t)−∆[CO2]start + ∆[CO2]homog(t) (6)

Homogeneous conditions were defined as days with small horizontal gradients in CO2 concentration. Such condi-
tions generally occur when atmospheric dispersion and transport are high, i.e., during windy conditions. In contrast275

to the Carbosense network, in which homogenous conditions were identified based solely on wind speed (Müller et al.,
2020), we directly assessed the homogeneity by considering the network gradient. The network gradient (G(t)) was
assessed between daily minima at Lägern Hochwacht (‘laeg’), a gas analyser background site located just outside
the urban area (Appendix B), and Schimmelstrasse (‘zsch’), a co-located mid-cost and low-cost sensor site in the
city next to a busy road and therefore with generally high concentrations (Fig. 1):280

G(t) = [CO2]MC,zsch
min (t)− [CO2]GA,laeg

min (t) (7)

These two sites were selected because they consistently measured the lowest and highest concentrations in the
network, and had continuous data availability throughout the study period.

A sensitivity analysis showed that network gradients were always higher in autumn and winter compared to
summer and spring due to stronger emissions and lower dispersion. A fixed gradient threshold would thus lead to285

updates being spread irregularly throughout the year. To make updates more evenly spread, season-based afternoon
CO2 gradient thresholds (θs) were applied:

θs =





15ppm, winter

9ppm, spring

9ppm, summer

14ppm, autumn

(8)

To ensure that the updates were only executed when the low-cost sensors were unlikely to be compromised by
environmental conditions, some thresholds were set. Cold (T ≤ 2◦C), hot (T ≥ 28◦C), and/or humid days (RH ≥290
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95%; defined between 08:00 and 19:00 local time) were classed as inappropriate as updating days. A homogenous
day (H) suitable for updates is thus defined as:

t ∈H if





G(t)< θs
2◦C< T (t)< 28◦C
RH(t)< 95%

(9)

Once a reliable and homogeneous day was detected, the difference between the gas analyser at Dübendorf and
the low-cost observations after initial offset correction ([CO2]LC,init

min ) was used to create ∆[CO2]homog at each homo-295

geneous day. Similar to the previous components of the offset coefficient, this was done for the minimum afternoon
(between 14:00 and 17:00) CO2 concentration, but this time at 10-minute level:

∆[CO2]homog(H) = [CO2]LC,init
min (H)− [CO2]GA,due

min (H)

= ([CO2]LC
min(H)− (∆[CO2]daily(H)−∆[CO2]start))− [CO2]GA,due

min (H) (10)300

Homogeneous days suitable for updates occurred approximately once per month and the resulting offset components
∆[CO2]homog(H) were interpolated in time to get daily offset components (∆[CO2]homog(t)). Several sensitivity tests
with different time periods and anchor points showed that this approach led to the best predictions. Ultimately, the
low-cost baseline is adjusted using the final coefficient ∆[CO2](t) (Equation 6), and the final drift-corrected low-cost
concentration is calculated according to Equation 2:305

[CO2]LC,drift
corrected(t) = [CO2]LC(t)−∆[CO2](t) = [CO2]LC(t)− (∆[CO2]daily(t)−∆[CO2]start + ∆[CO2]homog(t)) (11)

A schematic visualisation of the drift correction using the network baseline and the different offset components is
outlined in Figure D1.

2.4.5 Environmental filtering

According to the manufacturer, the LP8 sensor’s operation is limited by high RH and low T (Sect. 2.2). It is thus310

necessary to disregard systematic errors caused by sensor malfunctioning during low T and high RH. The T and RH
measured by the low-cost sensor unit (Sect. 2.2) can be used to filter out conditions that cause malfunctioning. Note
that sensor T and RH are not the same as ambient conditions. For example, moisture accumulation in the sensor
unit or exposure to direct radiation during the day can result in higher sensor T or RH than ambient conditions.
However, these are the conditions inside the sensor unit, to which the LP8 sensor is exposed.315

An analysis of the relation between observed CO2 and T showed abnormal sensor behaviour below 0 ◦C for all
sensors. Therefore, 0 ◦C was chosen as the T threshold below which observations are disregarded. For RH, however,
the relation differs significantly between individual sensors. This is in line with Müller et al. (2020), who found RH
thresholds ranging between 82–94 %. We disregarded observations as soon as RH< RHtrsh. In order to remove as
few observations as possible, it is essential to identify RHtrsh as precisely as possible for each sensor individually.320
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Müller et al. (2020) determined these thresholds by comparing to a reference, and looking at the standard deviation
of these residuals. However, using the standard deviation will also filter out some of the natural variability that is
not driven by humidity effects. Another method is presented by Delaria et al. (2021), who used the slope of the
difference between the 10th percentile of their Vaisala instrument observations and Picarro supersite to correct for
the Vaisala’s T dependency.325

Alternatively, we propose a new method, in which the sensor-specific RH threshold is determined based solely on
the low-cost CO2 observations, by assessing the (5-bin rolling) slope of its relation with RH. As Fig. 4a–c depict,
this slope generally ranges between -2 and 2 ppm/% for most sensors. However, for most of the LP8 sensors (e.g.
sensors 1156 and 1046 in Fig. 4), the measured CO2 starts to rapidly increase with increasing RH after a certain
RH threshold, resulting in a slope well above 2 ppm/% (Fig. 4a and b).330

A sensitivity analysis was performed by varying the slope threshold within a range of 1–8 with 0.5 ppm/% intervals.
The point where the slope exceeds the slope threshold determines the RH threshold. Observations during which the
RH was higher than the threshold were disregarded and resulting changes in error metrics were calculated. Finally,
RHtrsh = 4ppm/% was chosen as the optimal slope threshold resulting in good data quality with a rejection rate of
15 %. A distribution of the RH thresholds of all low-cost sensors corresponding to this slope threshold is depicted335

in Fig. 4d.
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Figure 4. CO2 observations of sensor units (a) 1156 at Loorenkopf, (b) 1046 at Friedhof Sihlfeld, and (c) 1027 at Meierhofplatz
Höngg, binned in 1 % RH intervals. The blue lines indicate the observed CO2 concentration, and the green line shows the
5-bin rolling slope of the relation between the concentration and the RH. The dotted green line indicates the slope threshold,
and the dashed red line the RH threshold of the sensor. The red area shades the observations that are disregarded as a result
of this threshold. Panel d) shows a histogram of the distribution of RH thresholds of all low-cost sensors. When no threshold
is needed, it is set to 100 % RH.
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3 Results and discussion

After tandem deployment, the low-cost sensors were left in the field without any maintenance, only being replaced
when they were malfunctioning. After around two years of measurements, the data was processed as described in
the previous section. In total 56 sites with reliable data between 1 August 2022 and 31 July 2024 were selected340

for further analysis. In this section we will first evaluate the measurement performance, and subsequently present
spatial variability and temporal dynamics that were detected by the network.

3.1 Sensor performance

Since low-cost sensors are always deployed in tandem, the agreement between the two sensors already provides some
information on the accuracy of the sensors, and thus the data quality of the monitoring site. Figure 5 shows an345

example of how each data processing step described in the section above improves the agreement between the time
series of two paired low-cost sensors at the same site. Notably, the low-cost sensors’ reported and unprocessed CO2

concentrations were shown to be unsuitable for use in the field (Fig. 5a). After ambient calibration, the low-cost
sensors still demonstrated significant baseline drift (Fig. 5b) which required drift-correction at the field monitoring
sites (Fig. 5c). Finally, filtering for environmental thresholds removes some outliers and the final data of the two350

sensors are in satisfactory agreement.
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Figure 5. The time series CO2 concentration after each processing step for the two paired low-cost sensors at the Platzspitz
(PLAS) monitoring site. The improvement in agreement between the two sensors can be seen when moving from left to right,
from the reported data to the final data.

As a more robust measure of accuracy, the final, calibrated, drift-corrected and cleaned CO2 concentration was
tested independently at six sites (with 17 low-cost sensors) in the network where both mid- and low-cost sensors were
deployed in tandem (Fig. 1, green sites). The six sites consist of three traffic sites (zhrg, zsch and zsta), one urban
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background site (zue) and two vegetated sites, one with grassland (reck), and one with forest (zhbr) (Appendix A).355

To asses the performance of the low-cost sensors at these sites, the cylinder-adjusted mid-cost CO2 observations
were used as a reference (Grange et al., 2025). Three statistical metrics were analysed: bias, root mean squared error
(RMSE) and the Pearson correlation coefficient (r-value). Figure 6 shows the improvement in data quality compared
to the mid-cost sensors after each processing step at all co-located sites.
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Figure 6. Error statistics of stepwise processing for low-cost CO2 measurements when compared to parallel measurements of
reference mid-cost sensors at their field monitoring sites. Going from left to right in each subplot illustrates the improvement
after each processing step. Each point represents a single sensor, some of them collocated at the same site.

Finally, the data quality of the calibrated, drift-corrected and cleaned CO2 concentration was assessed. The360

performance was assessed at multiple levels: for the full network, per site, and per sensor. Compared to the mid-cost
network, the low-cost weighted mean network bias, RMSE, and r-value averaged over all observations at co-located
sites during the entire two-year study period are evaluated at 0.75±1.67 ppm, 13.61±1.38 ppm and 0.88 respectively,
with the uncertainty indicating the standard error. The means are weighted by the number of observations per
sensor. However, since the reference mid-cost sensors also have a known RMSE of 1 ppm (Grange et al., 2025), the365

RMSE stated above is the RMSE of the low-cost and mid-cost sensors combined. After error variance subtraction of
the mid-cost RMSE for each low-cost sensor, we end up with a network mean RMSE of 13.57± 1.39 ppm. Averaged
per site, the values ranged between a bias of -3.81 and 9.42 ppm, RMSE of 8.3 and 18.5 ppm and r-value of 0.82 and
0.95, and for individual sensors between a bias of -16.81 and 14.12 ppm, RMSE of 6.6 and 22.7 ppm and r-value of
0.83 and 0.96, with one outlier of 0.67.370
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In addition, the final data quality was assessed per season (Fig. 7). Especially the bias shows a strong seasonal
dependence, with the best performance in spring and fall. This is likely because the calibration models were trained
in spring, resulting in best model performance under spring-time weather conditions. Some weather dependency
of the drift correction methodology could also play a role. The largest bias was found during winter and summer,
during which low-cost sensors respectively under- and overestimated the CO2 concentration compared to the mid-375

cost sensors. On average, the yearly bias of all co-located sites was close to zero, indicating the network systematic
error is small. However, for site averages, the bias still reached up to ± 9.4 ppm, and for individual sensors up to
± 16.8 ppm.

The RMSE showed slightly elevated values in summer and fall, when diurnal variations are generally larger,
resulting in a larger data spread. The RMSE appears to be the largest when the fluxes are high (e.g. ‘reck’ in380

summer, and ‘zsch’ in winter).
The average yearly correlation ranging from 0.80 to 0.93 between sites (Fig. 7c) indicates that low-cost sensors

generally follow the same patterns as the mid-cost sensors. For individual sensors, the spread is around the same
range, with one outlier at ’zhbr’. Especially at the grassland site ‘reck’ with distinct CO2 dynamics, the low-cost
sensors are in agreement with the mid-cost sensors. However, at the forest site ‘zhbr’, there seem to be substantial385

differences in observed patterns, which is likely related to the sensor’s placement near a building wall. The difference
in correlation suggests that the placement of a sensor is crucial to its performance, and the sensor’s are best placed
in a ventilated location away from obstructions or other distinct sources.

At individual sensors, much stronger biases, larger RMSE’s and lower r-values occur. When we would only look
at the network uncertainty, these large differences per sensor would be neglected. By taking the average of the two390

paired sensors, some of the random error is ruled out and the data quality of the given site is improved. We will
therefore use site averages for further analysis in Sect. 3.2 and 3.3.

The averaged time series of all co-located low-cost sensors shows that these sensors are in good agreement with the
mid-cost sensors (Fig. 8). Again, the time series demonstrate an overestimation of the low-cost sensors in summer
(by up to + 10 ppm) and an underestimation in winter (by up to -15 ppm). However, since the timespan only entails395

two years, it is difficult to allocate this bias to a seasonal cycle. Individual sensor errors still fluctuate substantially
between -50 and 50 ppm. Especially at the vegetated site ‘reck’ and the traffic site ‘zsta’, the low-cost sensors show
large deviations from the mid-cost observations.

The measurement uncertainty of 13.6± 1.4 ppm implies that the ZiCOS-L network is suitable for detecting CO2

fluctuations at scales larger than 13.6 ppm. This uncertainty of ZiCOS-L is slightly larger than the RMSE of 10 ppm400

found for the Carbosense network by Müller et al. (2020). A major difference with Müller et al. (2020) is that they
evaluated the uncertainty with respect to Picarro reference analysers outside the city. In our study, the uncertainty
is evaluated at six field sites in the city, which are directly exposed to local sources and sinks. Cai et al. (2025)
found an RMSE of 6 ppm for their SenseAir K30 sensors, which are in a similar price class as our LP8 sensors.
This substantially lower uncertainty was obtained in a setup at a single site where three sensors were measuring405
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Figure 7. Error statistics for low-cost CO2 sensors when compared to parallel measurements of reference mid-cost sensors
at their field monitoring sites after the final processing step. The two years of observations are aggregated per season left of
the vertical black line, and the total is shown right of this line. Filled dots show site means and empty circles show sensor
means. Sample means of all sensors for each season or the total are presented by a black diamond. All averages are weighted
averages, taking into account the number of observations (hourly) per sensor.

simultaneously inside a box in an indoor environment, but next to a window to simulate field conditions, which is
thus not comparable with the true field evaluation in our study.

With an RMSE of 13.6± 1.4 ppm, ZiCOS-L clearly exceeds the extended compatibility goal of 0.2 ppm for the
interpretation of CO2 data defined by the World Meteorological Organization (WMO) within their Global Atmo-
sphere Watch framework (World Meteorlogocial Organization, 2014). This compatibility goal is set for data usability410

for resolving regional gradients and for regional inversion modelling. However, the goal of ZiCOS-L is to provide
insights into local and short-term CO2 dynamics close to emission sources, which are often in the order of tens of
ppm. Our results, thus, suggest that the network is suitable to detect CO2 dynamics at high spatial and temporal
resolution, despite the high measurement uncertainty.
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3.2 CO2 spatial gradients415

The mean concentrations of the 56 sites in the ZiCOS-L network varied between 438 and 465 ppm (Fig. 9a, which
is comparable to the values found for ZiCOS-M (Grange et al., 2025). Differences in mean concentrations between
the sites are, to some extent, explained by environmental conditions of the sites. The lowest concentration was
measured at the vegetated site ‘zhbr’, which is located at roughly 200 m above the city, adjacent to the Zürichberg
forest (Fig. 1). Strikingly, some of the highest concentrations were also measured at vegetated sites (‘reck’, ‘zbrc’420

and ‘rctz’). Opposed to ‘zhbr’, these sites are in rather flat terrain and close to agricultural grassland where strong
nighttime respiration causes high CO2 accumulation. For better site comparisons, we take the mean afternoon
concentrations (i.e. daily minima), when turbulent mixing is strongest and the sensors therefore are least influenced
by local sources and sinks. The highest daily minima concentrations are measured close to the city centre (near
Zürich Hauptbahnhof; main railway station) and at low altitude (Fig. 9b). There are some exceptions for traffic425

sites where high concentrations are measured outside the city centre or at higher altitude, and for some vegetated
or unspecified sites that measure low concentrations close to the city centre.
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Figure 9. (a) Average CO2 concentrations during the entire study period (August 2022 to July 2024) per monitoring site,
with error bars indicating the 5th to 95th percentile. (b) Mean afternoon (14:00–17:00 local time) CO2 concentrations at
each site plotted against altitude above sea level (a.s.l.) and distance to Zurich Hauptbahnhof (HB). Colours and marker size
indicate the afternoon CO2 concentration. In both panels, marker shapes specify the site category.

Interpolated CO2 concentration maps give insights into the spatial variability of CO2 and allow for quick detection
of sites with high concentrations (hotspots) in the city. For that, we used the mean afternoon (14:00–17:00 local time)
concentrations at each site and applied an inverse distance weighting (IDW) interpolation to obtain concentration430

maps for each season (Fig. 10). Spatial gradients within the city were smallest during summer and spring (10 ppm)
and largest in autumn and winter, when the differences in concentration were 16 and 18 ppm respectively (Fig. 10).
Furthermore, the spatial plots display that some sites measure high concentrations year-round, while other sites only
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show high concentrations during a specific season (Fig. 10). Especially during spring, some sites that show lower
concentrations in the other seasons show enhanced concentrations. Most interestingly, hotspots are predominantly435

made up of traffic sites while vegetated sites typically act as a local sink.

Figure 10. Inverse Distance Weighting (IDW) interpolation of mean afternoon (14:00—17:00 local time) CO2 concentration
per season.

3.3 CO2 temporal dynamics

The previous section already showed that spatial patterns in CO2 concentrations can, to some extent, be explained
by dominant sources or sinks in the surroundings such as vegetation or traffic. In this section, more detail is added
by analysing the different groups of vegetation type and density, traffic intensity and human activity based on the440

21

https://doi.org/10.5194/egusphere-2025-3425
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



classification framework described in Sect. 2.1. Diurnal cycles of the different classification groups are presented in
Fig. 11.

Figure 11. Diurnal CO2 cycles grouped by: (a–d) vegetation, (e, f) traffic intensity, and (g, h) human activity. The top row
shows vegetation classes split by season; solid lines represent densely vegetated sites (grassland, mixed, or forest), dashed
lines indicate sparsely vegetated sites (some, single tree, or none). The bottom row shows traffic sites and sites influenced by
human activity split by weekdays and weekend days, using winter data only. Shading indicates variability across sites (5th –
95th percentile). For human activity, two individual sites are selected and shading indicates variability at the site.

General seasonal and diurnal patterns in CO2 concentration can be deduced from the regional background mea-
sured at selected sites around the city (Appendix B). The background signal in Fig. 11a–d shows that the diurnal
range is smallest in winter and largest in summer. During the growing season, and especially in summer, the back-445

ground concentration peaks in the morning due to biogenic respiration combined with a confined boundary layer,
and is reduced to the daily minimum in the afternoon (14:00–15:00) by increased atmospheric dispersion and bio-
genic uptake (Crawford et al., 2016). In winter, when the vegetation is less active, the concentration is high due
to the combination of higher emissions, a confined boundary layer and little uptake by vegetation. Winter diurnal
CO2 cycles in the city are generally dominated by anthropogenic emissions with peak concentrations during morn-450
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ing and afternoon rush hour (Ward et al., 2015; Velasco and Roth, 2010). In the background concentration, these
anthropogenic effects are diluted.

Vegetation dynamics locally amplify general seasonal patterns. The densely vegetated sites (Fig. 11a–d, solid lines)
experience strongly elevated morning peaks and nighttime concentrations during the growing season, whereas for
sparsely vegetated sites (Fig. 11a–d, dashed lines) this enhancement is much less pronounced. This is known as455

the rectifier effect, which is caused by covariance in boundary layer dynamics and biogenic CO2 fluxes. Nighttime
respiration in a stable atmosphere accumulates at the surface, while the effect of daytime CO2 absorption is diluted
due to strong vertical mixing (Denning et al., 1999). This results in an apparent CO2 source in the morning, while
over the entire day, the site is a net sink. This effect was already observed in the ZiCOS-M network for a single
vegetated site (Grange et al., 2025), and is now confirmed for various vegetation types and densities thanks to the460

large number of sites in the ZiCOS-L network.
The rectifier effect is largest in summer when the morning respiration peak is around 10 ppm higher than at

non-vegetated sites (Fig. 11c). The effect is even stronger for grassland (around 20 ppm), which is consistent with
the higher respiration rates over lawns compared to tree sites in the city of Zurich reported by Stagakis et al. (2025).
The sparsely vegetated sites are in agreement with each other, but in summer, the sites with ‘some’ vegetation465

experience a slightly higher (< 5 ppm) morning peak and nighttime concentration than the sites without vegetation.
Another interesting observation is that sites with a single tree in proximity to the sensor closely follow the pattern
of sites without vegetation, suggesting that the biogenic effects of a single tree on the surrounding concentration are
negligible.

To explore effects of anthropogenic activities, the data is split by weekday (Monday to Friday) and weekend470

(Saturday and Sunday), as this strongly affects behavioural patterns of citizens (Fig. 11e and f). Because the
vegetation effect is dominating the concentration levels during the rest of the year, the effects of anthropogenic
activities were analysed only during winter months when the vegetation is less active. Figure 11e shows that during
winter weekdays, sites with heavy and moderate traffic intensity show distinct CO2 peaks during the morning (7:00–
9:00 local time) and evening (16:00–19:00 local time) rush hours, corresponding to typical commuting times. These475

peaks are amplified due to boundary layer confinement before sunrise and after sunset. The largest concentration
increase due to traffic was found at heavy traffic sites during the morning rush hour peak, resulting in a concentration
enhancement of 15 ppm compared to sites with light or no traffic. At sites with moderate traffic intensity, the traffic
caused CO2 concentrations of around 5 ppm higher throughout the day. Such a response to rush hour traffic was also
found by Shusterman et al. (2018), who showed a strong correlation between local CO2 concentration and traffic flow480

during the morning rush hour in the BEACO2N network in San Francisco. During weekends, leisure travel caused
the morning rush hour peak to spread over a broader time window, while the evening peak remained distinct, despite
being less intense than during the week.

The busy nightlife street ‘Langstrasse’ shows elevated concentrations compared to the average of the other sites
throughout the monitoring period. Figure 11h shows the largely elevated concentration at nighttime during the485
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weekend. The results suggest that nightlife at this site causes a local CO2 enhancement of around 15 ppm due to
human activity (including traffic). During both weekdays and weekends, we see evening (18:00-22:00) concentrations
elevated by around 10 ppm. It should be noted that Friday evening is counted as ‘weekday’, even though it is expected
to reflect weekend behaviour, whereas for Sunday evening it is the other way around.

Interestingly, concentrations at ‘Limmatquai’ show a different diurnal pattern than all other sites, with CO2490

concentration peaking around noon. This can be linked to the large number of daytime visitors in the city centre of
Zurich and is caused by both traffic and human respiration. Additionally, Fig. 11g shows that this effect is similar
throughout the week and thus not enhanced during the weekend. Overall, Fig. 11 demonstrates that low-cost sensors
effectively capture temporal variations that are characteristic of certain types of emissions, at a profoundly detailed
and local scale.495

3.4 Case study: Public events

In addition to the generalised spatial patterns, hotspots and temporal dynamics due to different sources, the low-cost
sensors are also able to detect certain public events. In this section, we analyse two events: Züri Fäscht and Zurich
Street Parade.

Züri Fäscht is a two-and-a-half-day summer festival occurring every three years in the city centre and around500

Lake Zurich, with the last edition held on Friday, July 7 until Sunday, July 9 2023. In 2023, the festival attracted an
estimated two million visitors and included music stages, fairground activities and fireworks. Due to environmental
reasons, the traditional air squadrons show has been suspended since 2019, and some of the fireworks were replaced
by drone shows in 2023. During the festival, there is a 72-hour car curfew in the city centre, and most of the city
centre turns into a pedestrian zone (Tages-Anzeiger, 2023a).505

Zurich Street Parade is an annual techno music parade around Zurich’s lake basin, drawing nearly one million
visitors to the city. The route starts on the east side of the lake and goes along the lake basin, stopping by several
music stages and finishes on the west side of the lake (Tages-Anzeiger, 2023b).

Both the Streetparade and Züri fäscht draw large crowds, which goes hand in hand with elevated human respiration
emissions. Figure 12 shows the spatial distribution and temporal dynamics of the CO2 concentration during these510

events. The maps (Fig. 12a and d) show the CO2 anomalies compared to the mean summer CO2 concentrations
during the same time of day. For both events, the event location is consistent with dark red areas in the concentration
maps (Fig. 12a and d), indicating CO2 concentrations up to 45 ppm higher than mean summer concentration. What
specifically stands out during Züri Fäscht, is the strong local decrease in concentration (Fig. 12a, highlighted in blue)
at a site just outside the event area. This is the traffic site ‘zsta’ where CO2 concentration (Fig. 9) is usually high515

due to traffic emissions. During the car curfew implemented during Züri fäscht, the site experienced a concentration
of around 32 ppm lower than during other summer evenings. A large part of this signal is likely caused by the traffic
reduction, but since meteorological conditions are not investigated, they might also play a role. The car curfew in
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Start (12:00)Finish (17:00)

(a)
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Measurement site Event site City boundary

Figure 12. CO2 anomalies during two public events in Zurich: Züri Fäscht (panel a, b) and Street Parade (panel c, d). Maps
in panel (a) and (d) show spatially interpolated mean CO2 concentrations during the events normalized against the mean
summer concentration during the same event hours. Panel (b) and (c) show time series at two sites in the event areas, with
shaded areas marking the event duration.

the city centre also suggests that almost all of the CO2 enhancement can be attributed to human respiration, aside
from some other sources like the fair attractions or fireworks.520

In addition to the concentration maps, the CO2 time series measured at two sites at the event locations also show
elevated concentrations during the time of the event (Fig. 12b and c). During Züri fäscht, the concentration peaks
on Saturday evening, which is the busiest night of the event with two firework shows. A closer look at the CO2

time series during the Street Parade, in combination with the parade route, reveals extremely local and short-term
fluctuations corresponding to the passage of the parade. Firstly, a distinct peak can be detected at ‘belv’, near the525

start of the route, followed by a peak at ‘rewi’, which is nearing the end of the route. These two case studies suggest
that the ZiCOS-L network is well suited to detect local and short-term events.

4 Conclusions

In this study, we have described the design and deployment of the ZiCOS-L network and outlined the data processing
steps required to obtain the final CO2 data. The sensor performance has been evaluated and insights into the spatial530

variability and temporal dynamics of the network have been presented.
The measurement performance of the ZiCOS-L network was assessed by comparing it to the reference ZiCOS-M

network at six co-located sites. After several processing steps including calibration, drift correction and filtering,
the network bias was assessed at 0.75±1.67 ppm, and the RMSE at 13.6±1.4 ppm at the mid-cost sensor sites. For
individual sensors, the bias ranged between -16.8 and 14.1 ppm, and the RMSE between 6.6 and 22.7 ppm. Averaged535
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per site, some of the random error is removed and the values ranged between a bias of -3.8 and 9.4 ppm and an RMSE
of 8.3 and 18.5 ppm. For further analyses, we decided to use the site averages. An alternative to taking site means
would be to select the best performing sensor based on a performance evaluation prior to deployment. Additionally,
we would recommend future networks to deploy low-cost sensors in triplets instead of pairs, to facilitate the detection
of malfunctioning sensors.540

The mean CO2 concentration during the study period (August 2022 to July 2024) varied from 438 to 465 ppm
between sites and differences can largely be explained by the sites’ surroundings. Higher altitude and larger distance to
the city centre correlated with lower concentrations, whereas vegetation, traffic and human activity largely influenced
the CO2 level at some sites, independent of altitude and distance to the city centre. Spatial interpolation between
the sites allowed for the detection of CO2 hotspots. During the afternoon, when the atmosphere is well mixed, all545

local hotspots were found at traffic sites, while most vegetated sites acted as a sink.
A detailed classification of vegetation type and density, traffic intensity, and human activity demonstrated the

network’s ability to effectively capture local processes. Densely vegetated sites had an amplified rectifier effect of
around 10 ppm in summer, with an additional 10 ppm for grassland sites where respiration is even stronger. The
effect of a single tree on the local CO2 concentration was shown to be negligible. On the other hand, heavy traffic550

sites clearly measured a peak in concentration during morning rush hours of up to 15 ppm higher than at sites with
light or no traffic. Lastly, at sites with a distinct pattern of human visitors, the CO2 concentration closely followed
the behavioural pattern of the people, resulting in high concentrations during peak visitor hours.

Besides the spatial variability and the temporal dynamics due to local processes, the network was also able to
detect specific events. Two major public events in the city of Zurich (Züri fäscht and the Street Parade) were shown to555

locally enhance CO2 concentrations at the time of the event. During Züri fäscht, when a car curfew was implemented,
a strong local CO2 decrease due to reduced traffic was also observed. Localized CO2 dynamics could also be detected
during the Street Parade, causing short-term concentration peaks as the parade passed by two of the measurement
sites.

Most interestingly, the detailed insights into local CO2 dynamics detected by the low-cost network are much560

smaller than 13.6 ppm. This suggest that averaging over time or sites brings down the uncertainty considerably. As a
result, useful information can be extracted from the low-cost network at a scale well below the determined network
uncertainty of 13.6 ppm.

Our study showed that low-cost networks like ZiCOS-L can be a cost-effective alternative to high-cost networks
to obtain information about CO2 dynamics in a city. However, our results also suggest that useful observations565

can only be obtained after careful data processing, which requires the use of higher-cost measurement equipment.
The combination of these different tiers of monitoring systems brings up the total cost. However, extending existing
networks with low-cost sensors can be an affordable way to add insights into local dynamics.

While the ZiCOS-L network does not achieve the precision required to meet the extended compatibility goal as
defined by the WMO (World Meteorlogocial Organization, 2014), it provides valuable insights into the spatial and570
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temporal variability of CO2 in the city of Zurich. The data analyses provided information about distinct emission
patterns associated with various surrounding such as vegetation or traffic, which is crucial to better understand CO2

sources and sinks within the city. Moreover, these findings are also relevant for city stakeholders because they offer
valuable information on CO2 hotspots or the impact of urban vegetation. Such information is essential to support
cities in reducing GHG emissions and implementing their climate action plans. The usefulness of the ZiCOS-L575

observations in estimating city emissions within an atmospheric inversion framework will be investigated in a future
study.
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Appendices

Appendix A: Site names

Table A1: Overview of all low-cost sensor site, stating their site abbreviation, sitename, site category, site area type,
spatial location and elevation (a.s.l.)

site site full name site category site area latitude longitude elevation
albi Albisriederdörfli Traffic suburban 47.375445 8.485062 429.6
belv Bellevueplatz Traffic urban 47.36733 8.54427 407.7
buch Bucheggplatz Traffic urban 47.398067 8.533654 473.2
fluk Kirche Fluntern Other suburban 47.376665 8.559698 517.8
frat Frankental Höngg Traffic suburban 47.406174 8.481087 435.2
fris Friedhof Sihlfeld Vegetated suburban 47.376353 8.506247 411.9
gold Goldbrunnenplatz Wiedikon Traffic suburban 47.370362 8.514015 418.9
hdgt Hardgutstrasse Other urban 47.38529 8.50414 405.2
hebp Hegibachplatz Traffic suburban 47.361984 8.560806 437.4
hoen Meierhofplatz Höngg Other suburban 47.402851 8.499296 466.5
irwi Irchelpark Both urban 47.396261 8.545072 491.1
kbrl Breitloostrasse Kilchberg Vegetated suburban 47.325834 8.537545 510.5
lang Langstrasse Traffic urban 47.378964 8.526948 408.6
leub Leutschenbach Vegetated suburban 47.418815 8.563832 424.5
manp Manesseplatz Wiedikon Traffic suburban 47.365711 8.521442 415.5
nied Niederdorf Hirschenplatz Other urban 47.37317 8.54383 411.3
pfiw Pfingstweidstrasse Hardturm Traffic urban 47.392454 8.503088 401.5
plas Platzspitz Vegetated urban 47.381507 8.539678 405.8
rctz Katzensee Vegetated rural 47.434222 8.506875 440.1
reck Reckenholz Vegetated rural 47.427839 8.517464 442.6
rewi Rentenwiese Vegetated urban 47.363611 8.5368 407.4
ritr Oerlikon Riedgrabenweg Other suburban 47.408618 8.558584 425.7
sefq Seefeldquai Chinagarten Vegetated urban 47.354748 8.550541 407.8
sma1 Fluntern Krähbühlstrasse Other suburban 47.378333 8.566353 571.8
smhk Schlieren Mühleackerstrasse Other suburban 47.394408 8.445823 404.3
toed Tödistrasse Enge Traffic urban 47.365992 8.534961 408.4
tril In der Ey Triemli Other suburban 47.371064 8.490861 431.6
ulgw Ringlikon Langwiesstrasse Vegetated rural 47.357384 8.469371 628.4
werd Blaue Werdinselbrücke Vegetated suburban 47.399959 8.484743 399.2
zall Allmendstrasse Brunau Traffic urban 47.352494 8.524758 422.3
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Table A1: Overview of all low-cost sensor site, stating their site abbreviation, sitename, site category, site area type,
spatial location and elevation (a.s.l.)

site site full name site category site area latitude longitude elevation
zazg Schule Auzelg Vegetated suburban 47.413856 8.57215 428.6
zbad Badenerstrasse Altstetten Traffic urban 47.387394 8.488266 403.8
zblg Bullingerhof Vegetated urban 47.379055 8.51228 410.4
zbrc Birchstrasse Seebach Vegetated suburban 47.425738 8.542765 436.0
zdam Dammweg Sihlquai Other suburban 47.388802 8.526714 404.0
zdlt Döltschiweg Wiedikon Vegetated suburban 47.365775 8.503296 447.6
zfbl Eichrain Seebach Vegetated suburban 47.42826 8.55042 444.7
zghd Gerhardstrasse Wiedikon Other urban 47.370449 8.52326 413.3
zgla Gladbachstrasse Oberstrass Traffic suburban 47.383309 8.549973 501.1
zhbr Heubeeribüel Vegetated suburban 47.381469 8.565916 615.4
zhrgc Rosengartenstrasse (container) Traffic urban 47.39517 8.5261 432.7
zhro Herostrasse Altstetten Other urban 47.393928 8.48667 397.9
zhrz Schule Hirzenbach Schwammendingen Other suburban 47.403619 8.587727 428.8
zlmt Limmatquai Helmhaus Other urban 47.369227 8.543297 408.3
zpfw Pfingstweid Vegetated urban 47.388008 8.513537 403.1
zprd Paradeplatz Other urban 47.370135 8.539081 409.4
zrdh Schule Riedenhalden Vegetated suburban 47.418834 8.511141 463.0
zrth Rütihofstrasse Oberengstringen Vegetated suburban 47.411963 8.466966 458.9
zsbn Stampfenbrunnerstrasse Altstetten Other suburban 47.385854 8.477936 415.1
zsbs Seebahnstrasse Aussersihl Traffic suburban 47.378328 8.519075 409.9
zsch Schimmelstrasse Traffic urban 47.37098 8.523579 413.0
zsef Schule Seefeld Traffic suburban 47.357166 8.555189 414.5
zsta Stampfenbachstrasse Traffic urban 47.386738 8.539802 440.2
ztbn Turbinenplatz Other urban 47.389714 8.51776 402.7
zue Zürich Kaserne Other urban 47.377576 8.530397 408.6
zwch Wachtelstrasse Wollishofen Vegetated suburban 47.343035 8.527064 449.7

Appendix B: Background sites580

The names and locations of the reference analysers outside the Zurich city boundaries are shown in Fig. B1. The back-
ground concentration depicted in Fig. 11 is composed of the concentration of either ‘Lägern Hochwacht’, ‘Birchwil Turm’ or
‘Beromünster’, depending on the wind direction.
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Figure B1. Zoomed-out map showing the reference sites part of the network outside the Zurich city area.

Appendix C: Climate chamber testing

Extensive climate chamber experiments have been conducted to determine environmental factors that influence the final585
measurement, response times and offset concentration values of the sensors. The goal was to characterize the individual
sensors before deployment in the field. The sensors were put in a climate chamber (Feutron KPK800) equipped with an
additional custom valve controller able to control T (0–60 °C T ), RH (0–100 %) and CO2 (range between 400 ppm and
4000 ppm).

A calibrated, high precision reference instrument (Picarro G2401) was used to control the CO2 in the climate chamber590
and also to compare the signals against. The climate chamber was equipped with a ventilator that ensured a well-mixed
atmosphere within.

A measurement cycle (between each change in parameter) was always separated into the two phases "startup" and "mea-
surement". Normally, the "startup" phase lasted approx. 3 h if T and RH were changed (and 6 h if CO2 concentration was
changed) and the "measurement" phase normally lasted 3 h. Only one parameter was changed in between measurements, and595
at least 4 different set points (in a range deduced by normal to extreme real-world environmental occurrences) per parameter
were measured. Additionally, to measure the effects of different absolute humidity values, experiments were conducted where
T and RH set points were changed at the same time to explore the humidity effects with various different absolute humidities
also experienced during field deployment.
T was varied in a range between 2 °C to 32 °C in intervals of 10 °C. Absolute humidity RH was changed in a range of600

5 g H2O/kgdry air to 14 g H2O/kgdry air in intervals of 3 g H2O/kgdry air. RH was changed in a range between 35 % to 93 %
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in intervals of 19 %. CO2 was changed in a range of 400 to 700 ppm in intervals of 75 ppm CO2. Further measurements
were conducted with dynamic changes of temperature, humidity and CO2 concentrations to emulate different daily cycles at
different seasonalities. T and RH were cycled in a sine profile while the CO2 was cycled in a cosine profile. This pattern was
reflecting the fact that under environmental conditions, CO2 is normally low (afternoon) when T and RH is high. The cycle605
was run with a period of 12 h, halved after two complete cycles, down to a period of 3 h. The speed-up was carried out to
determine the sensors’ step responses. Zero air experiments to determine the sensors’ response to the absence of CO2were
tried but not conducted successfully, as the climate chamber could not be evacuated and flushed properly to achieve near-zero
CO2 concentration values. As near-zero CO2 concentrations do not occur in environmental conditions, this experiment was
not pursued further.610

During evaluation of the climate chamber dataset it was found that the real environmental data (during co-location of the
sensors with a reference instrument) proved to be more reliable for initial baseline calibration of the sensors, as described in
the sections above. Therefore, the climate chamber data was not used any further for sensor calibration. Nevertheless, the
climate chamber experiments allowed a profound analysis and exploration of the sensors’ behaviour to changes of different
environmental parameters if changed isolated but also combined.615

Appendix D: Drift correction

Figure D1 presents a schematic of the drift correction described in Sect. 2.4.4.
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𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Figure D1. A schematic of how a typical low-cost sensor (in blue) suffers from drift over time and how it is corrected. The
solid lines indicate the baseline (daily minima) of the low-cost observations (blue), extracted mid-cost prediction (orange) and
reference gas analyser (pink). The multiple components of the offset coefficient (Equation 6) are indicated with black arrows.
Panel (a) shows the initial correction towards the mid-cost network baseline, in which the baselines follow the minimum hourly
concentration. Panel (b) shows how the initial correction is updated during homogenous days, in which the baselines follow
the minimum 10-minute concentration.
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Data availability. The mid-cost data and the calibrated and drift corrected low-cost data are available via the ICOS Cities
data portal (https://citydata.icos-cp.eu/portal). Low-cost data for which the additional step of environmental filtering
was applied are available at C (Creman, 2025).620
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