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Abstract. We provide a reduced complexity climate model (RCM) evaluation of how the IPCC WG Sixth Assessment Report
(ARO6) updates to the time series of the future atmospheric concentrations of GHGs, the effective radiative forcing (ERF) of
GHGs, and the ERF of tropospheric aerosols (ERFagr) affect attributable anthropogenic warming rate, climate sensitivity, and
the likelihood of achieving either the goal (1.5 °C) or upper limit (2 °C) global warming thresholds of the Paris Agreement.
This evaluation is conducted for four selected Shared Socioeconomic Pathway (SSP) scenarios: SSP1—-1.9, SSP1-2.6,
SSP4-3.4, and SSP2—-4.5. Throughout, we compare and contrast these AR6 updates to the state of knowledge that existed prior
to the publication of AR6, and provide probabilistic model simulations based on an evaluation of the impact in the uncertainty
of ERFagr and climate feedback. Our most important findings are that the rate of human-induced warming between 1975 and
2014 is 0.18 [0.13 to 0.21] °C decade™" within the AR6 framework (range reflects the 5™ and 95" percentiles), which is
considerably lower than values found by many Earth System Models (ESMs) that participated in Phase 6 of the Coupled Model
Intercomparison Project (CMIP6). Effective Climate Sensitivity (EffCS) inferred from the historical Global Mean Surface
Temperature (GSMT) record was found to be 2.29 [1.54 to 3.11] °C using the ERF datasets from AR6 as model inputs. Upon
adoption of the AR6 best estimate for the pattern effect (that is, 0.5 W m™2 °C '), we find values for Equilibrium Climate
Sensitivity (ECS) of 3.24 [1.92 to 5.15] °C, which is quite similar to the AR6 assessment of 3.0 [2.0 to 5.0] °C for ECS. The
hallmark of our RCM is the ability to conduct large (here, 160,000 member) ensemble forecasts of global warming. These
calculations show that AR6 updates to the ERF of GHGs and aerosols result in a considerable decline in the likelihood of
limiting warming to either 1.5 or 2 °C, compared to prior knowledge, for the same future emissions scenarios of GHGs. The
likelihood of limiting global warming to 2.0 °C by end-of-century is found to be 100%, 85%, 40%, and 8%, for the SSP1-1.9,
SSP1-2.6, SSP4-3.4, and SSP2—4.5 scenarios, respectively, based on the AR6 ERF datasets. Similarly, the ensembles run
using the AR6 updates yield likelihoods of 70%, 32%, 3%, and 0% of limiting warming to 1.5 °C by end-of-century, for the

same four SSPs.
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1. Introduction

Reduced Complexity Models (RCMs) that compute the response of the global mean surface temperature (GMST) to a
prescribed radiative forcing (RF) due to anthropogenic greenhouse gases (GHGs) and tropospheric aerosols are becoming
increasingly important for evaluating important climate metrics, such as the likelihood of limiting global warming to either the
goal (1.5 °C) or upper limit (2.0 °C) of the Paris Agreement (Hope et al., 2017; McBride et al., 2021; Smith et al., 2018a;
Nicholls et al., 2020; Nicholls et al., 2021). There are various types of RCMs, including some with interactive carbon cycles
capable of computing atmospheric concentrations of CO, and CH4 from emissions (Meinshausen et al., 2020). Typically,
RCMs represent the global mean energy balance between the atmosphere and the world’s oceans on either a monthly or annual
timescale, using various types of parameterizations that provide significant computational efficiency compared to three-
dimensional Earth System Models (ESMs) (Nicholls et al., 2020; Nicholls et al., 2021). The computational efficiency of RCMs
allows for the impact on GMST to be quantified for ensembles with hundreds of thousands of combinations for the RF due to
GHG:s, aerosols, and climate feedback. Of course, ESMs are essential for providing comprehensive simulations of the changes
in the climate system in response to rising anthropogenic RF, such as the spatial distribution of warming, which is a key
indicator for the impacts of climate change on local communities (Eyring et al., 2016). Furthermore, ESMs provide a more
sophisticated treatment of atmospheric and oceanic interactions than is possible to achieve with RCMs (Nicholls et al., 2020;
Nicholls et al., 2021).

We use a multiple linear regression (MLR) energy balance model, termed the Empirical Model of Global Climate
(EM—GC) (Canty et al., 2013; Mascioli et al., 2012; Hope et al., 2017; McBride et al., 2021), to provide data-driven,
probabilistic forecasts of GMST. The model is constrained by the Hadley Centre Climatic Research Unit version 5
(HadCRUTS) record for GMST over 1850-2019 (Morice et al., 2021), as described by McBride et al. (2021). In the McBride
et al. (2021) paper, our projections of GMST were based on the time series for the atmospheric concentration of GHGs and
the RF of tropospheric aerosols from Shared Socioeconomic Pathway (SSP) scenarios published in between the time of the
fifth (ARS) Working Group 1 (WG1) Intergovernmental Panel on Climate Change (IPCC) report (IPCC, 2013) and the sixth
(AR6) WG1 IPCC report (IPCC, 2021b). We had used formulations for the RF of GHGs from AR5 in McBride et al. (2021).
Here, we rely upon formulations for the RF of GHGs given in AR6, which as detailed in Sect. 2.1.2 differ from the earlier
formulations due to several new considerations within AR6. Similarly, we rely on updated time series of the atmospheric
concentrations of GHGs given in AR6 for four selected SSP scenarios (that is, SSP1-1.9, SSP1-2.6, SSP4-3.4, and
SSP2—-4.5), which also differ from the pre-AR6 time series of GHGs due to the use of an updated model to compute
atmospheric concentrations from prescribed emissions (Sect. 2.1.1). Finally, we use the AR6 update for the RF due to

tropospheric aerosols, which also differs considerably from the ARS5-based values used by McBride et al. (2021) (Sect. 2.1.3).
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Section 2 provides a brief overview of the EM-GC model. Section 3 describes the simulations of GMST, the attributable
anthropogenic warming rate, climate sensitivity and global warming projections found using our reduced complexity model.
Throughout, we focus on comparing results found using the model inputs of McBride et al. (2021) (that is, the pre-AR6
estimates termed “Baseline simulations”) with results found using the AR6 values of the model inputs. We show that
considerable differences are found for the end-of-century GMST and the probability of achieving either the goal (1.5°C) or
upper limit (2.0°C) of the Paris Agreement, between the Baseline and the AR6 values for model inputs, despite the fact that
for any given SSP scenario, both formulations are based upon the same time series of GHG emissions (Sect. 3.2). We conclude
by comparing our GMST projections to output from ESMs that participated in Phase 6 of the Coupled Model Intercomparison
Project (CMIP6) (Eyring et al., 2016). A brief set of concluding remarks are given in Section 4.

2 Data and methods

Our EM-GC is designed to quantify the influence of a variety of anthropogenic and natural influences on GMST, using a
multiple linear regression (MLR), energy balance approach. The anthropogenic contribution to GMST is simulated by the
energy balance component of the model from the radiative forcing due to GHGs, tropospheric aerosols, and land use change
(LUC), while also accounting for the export of heat from the atmosphere to the world’s oceans (ocean heat export or OHE).
The MLR component of the model is responsible for quantifying the influence of various natural factors on the GMST in a
manner similar to other MLR-based analyses of the climate system (Lean and Rind, 2008, 2009; Foster and Rahmstorf, 2011;
Zhou and Tung, 2013). Natural factors include increases in stratospheric aerosols due to major volcanic eruptions, the
approximate 11-year variation in total solar irradiance (TSI), as well as interactions between the ocean and the atmosphere due
to the El Nifio—Southern Oscillation (ENSO), the Atlantic Meridional Overturning Circulation (AMOC), the Pacific Decadal
Oscillation (PDO), and the Indian Ocean Dipole (IOD). The reader is directed towards Sect. 2.1 of McBride et al. (2021) for
a more complete description of the model, as well as the governing equations.

Here, we examine four policy-relevant SSP scenarios: SSP1—-1.9, SSP1-2.6, SSP2—-4.5, and SSP4-3.4 from Tier 1 and
Tier 2 of the ScenarioMIP protocol (O'Neill et al., 2016). These were chosen because SSP2—4.5 is the SSP scenario most
consistent with recent trends in the anthropogenic emissions of GHGs and aerosols (Meinshausen et al., 2024), while the other
three SSPs we have chosen all offer more aggressive means for climate mitigation than the SSP2—4.5 scenario. The second
number in the name of the SSP scenario is the target RF at the end of the century in units of W m2, commonly referred to as
the “nameplate RF”” (O'Neill et al., 2014). We show model results for two frameworks: a Baseline that represents the state of
knowledge prior to AR6, and one that is based upon data given in Chapter 7 and Annex III of AR6 (Forster et al., 2021; IPCC,
2021c; Smith et al., 2021a; Smith et al., 2021b).
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2.1 Model Inputs
2.1.1 Atmospheric Concentrations of Greenhouse Gases

Our EM-GC uses prescribed abundances of GHGs, including CO,, CHs, N>O, tropospheric O3, chlorinated and/or brominated
ozone depleting substances, as well as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, as described in Sect.
2.2.3 of McBride et al. (2021). Here, we focus on describing changes in the atmospheric abundances of CO,, CH4, and N,O
that occurred within the four SSP scenarios of our study, before and after the publication of AR6, since this change drives the
differences central to this study.

Before and after publication of AR6, the atmospheric concentrations of GHGs were computed by other groups using the
Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC) RCM (Meinshausen et al., 2011a;
Meinshausen et al., 2011b; Meinshausen et al., 2020). These times series rely on emissions data from various Integrated
Assessment Models (IAMs), as described by Riahi et al. (2017). The Baseline (that is, pre-ARG6) projections, which we obtained
from the SSP database (Riahi et al., 2017; van Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Calvin et al.,
2017; Kriegler et al., 2017; Rogelj et al., 2018), were found using version 6.8 of MAGICC. The AR6 projections, which we
obtain from Annex III of AR6 (IPCC, 2021¢), are based upon model runs with version 7 of MAGICC. MAGICC?7 includes
important updates relative to MAGICC6.8, such as a permafrost feedback module that results in additional emissions of CO,
and CHj4 from the melting of permafrost (Meinshausen et al., 2020).

The top three panels of Fig. S1 compare time series of the concentrations of CO,, CHa, and N,O for the Baseline and AR6
frameworks. All of the GHG projections were found for the same underlying emissions scenarios. The impact of updates to
MAGICC?7 are modest but noticeable for CO,, quite small for N,O, and substantial for CHs. The MAGICC7 updates result in
the atmospheric concentration of CH4 projected in 2100 to be higher by 180 ppb and 400 ppb for SSP2—4.5 and SSP4-3.4,
respectively, compared to the projections provided in the SSP database (Riahi et al., 2017).

2.1.2 Radiative Forcing of Greenhouse Gases

The EM-GC relies on time series of the RF due to GHGs, computed from time series of the atmospheric abundance of each
gas. For the Baseline framework, each RF term is found using parameterizations from the AR5 report, as described in Section
2.2.3 of McBride et al. (2021). These ARS formulations, termed effective radiative forcing (ERF), allow for stratospheric
temperature adjustments to the instantaneous RF for many GHGs. The AR5 ERF formulas are based on the analysis by Myhre
et al. (1998) of output found using line-by-line models (Edwards, 1992; Myhre and Stordal, 1997), and are identical to those
given in the third WG1 IPCC report (IPCC, 2001) as well as the fourth report (IPCC, 2007).

Chapter 7 of the AR6 report introduced two important changes to the parameterizations of ERF due to GHGs (Forster et
al., 2021). First, the parameterizations were updated to reflect the spectral overlaps of CO, and N,O, the shortwave RF due to
CHa, and a new representation of the H,O continuum (Etminan et al., 2016; Meinshausen et al., 2020). Second, the AR6 values

of ERF accounts for both stratospheric and tropospheric temperature adjustments (Smith et al., 2018b). Consequently, while
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ARS considers stratospheric temperature adjusted RF (SARF) to be equal to ERF, these two quantities differ in the AR6
formulation of RF. The ARS and AR6 formulas for the ERF due to CO,, CH4, and N>O are given in the Supplement.

The middle row of Fig. S1 compares time series of ERF due to CO,, CH4, and N»O, for the Baseline (dotted lines) and
ARG (solid lines) frameworks. The results shown in this middle row reflect the AR6 updates to both the ERF and the future
atmospheric abundances of GHGs. Values of ERF are higher in the AR6 framework compared to Baseline, with particularly
large increases found for the ERFs of CO;, and CH4 for the SSP4—3.4 and SSP2—4.5 scenarios. Finally, Fig. S1Th compares
ERF due to all GHGs, for the Baseline and AR6 frameworks. The largest increase in ERF, among the four SSP scenarios
considered, is found for SSP4—-3.4 and SSP2—4.5, with end-of-century increases of 0.6 and 1.0 W m™2, respectively. A similar
qualitative conclusion was reached by Fredriksen et al. (2023), who contrasted projections of ERF from CMIPS5 models with
those from CMIP6 models, and found that CMIP6 models project higher levels of ERF by the end of the century relative to
CMIP5 models.

2.1.3 Radiative Forcing of Tropospheric Aerosols

Time series of the RF due to tropospheric aerosols (hereafter, aerosols) is another very important input to our EM-GC. Figure
S1g compares the total ERF of aerosols (ERFagr), for the Baseline and AR6 frameworks, which is the sum of direct cooling
by aerosols and the effect of aerosols on clouds (that is, the indirect effect). A summary of the ERFagr time series for the
Baseline framework, which considers a range of acrosol types such as sulphate, dust, organic carbon, black carbon, and biomass
burning products, is given in Sect. 2.2.4 of McBride et al. (2021). These time series, published prior to the AR6 report,
originate from the Potsdam Institute of Climate Research (PICR) website (https://www.pik-potsdam.de/~mmalte/rcps/, last
opened: May 21, 2024) and are based on future emissions of aerosol precursors in the SSP database (Riahi et al., 2017; van
Vuuren et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; Calvin et al., 2017; Kriegler et al., 2017; Rogelj et al., 2018).

Considerably stronger aerosol cooling is evident in the AR6 time series of ERFagr, compared to the Baseline time series
(Fig. S1g). Further, the temporal evolution (that is, the shape) of the historical cooling differs substantially between the AR6
and Baseline. Finally, AR5 and AR6 each provide best estimates, and possible ranges for ERFagr, over the time periods
1750-2011 and 1750-2019, respectively. These estimates were assessed to be —0.9 W m™ with a possible range of —0.1 to
—1.9 W m 2 in AR5 (Myhre et al., 2013), and to be —1.1 [-0.4 to —1.7] W m 2 in AR6 (Forster et al., 2021). Formally, the
possible range limits correspond to 5" and 95" percentiles.

It is beyond the scope of this paper to delve deeply into the cause of the differences between the ARS and AR6 estimates
of ERF agr. It is somewhat surprising that the AR6 update to the best estimate of ERFgr in the year 2019 exhibits more cooling
than the ARS best estimate that reflected conditions out to 2011, because individual time series of ERFagr in both AR5 and
ARG (Fig. S1g) exhibit a considerable decline in the absolute value of ERFagr over the 2011 to 2019 period of time. This
decline was driven by successful efforts to reduce the emissions of aerosol precursors, by various entities throughout the world,
due to the public health concerns of aerosols (Smith and Bond, 2014; Fu et al., 2021). The primary reason for larger aerosol

cooling in the ARG best estimate of ERFagr, despite the 8-year extension in end year, is the nearly factor of two increase in
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the assessed value of cooling due to the aerosol indirect effect from ARS5’s best estimate of —0.45 [0.0 to —1.2] W m to the
ARG best estimate of —0.84 [-0.25 to —1.45] W m™2. A significant decline in the best estimate of black carbon warming in
ARG6 (0.11 [-0.20 to 0.42] W m2) compared to AR5 (0.4 W m2 [0.05 to 0.80] W m2) also contributes to the decline in the
absolute value of ERFagr in AR6, compared to ARS. There are other updates in the AR6 approach for ERFgr, as summarized
in Sect. 7.3.3 of Forster et al. (2021).

Recently, Zelinka et al. (2023) pointed out two coding errors in the Smith et al. (2020) paper that influenced the AR6
evaluation of ERFagr. These two errors largely cancel for the evaluation of ERFagr. The Zelinka et al. (2023) best estimate
and standard deviation of ERFgr, over 1750 to 2014, is —1.09 + 0.24 W m™2, which is slightly less aerosol cooling than the
ARG estimate of —1.3 [-0.6 to —2.0] W m™? for the same time period. Given the “medium confidence” associated with the
assessed value of ERFagr noted in Chapter 7 of AR6 (Forster et al., 2021), the lack of evaluation of ERFagr by Zelinka et al.
(2023) for the 1750 to 2019 time period that is central to our study, and the focus within Zelinka et al. (2023) on the evaluation
of the various components of ERFagr for contemporary periods of time rather than the historical evolution of ERFagr, we have
decided to use the ARG historical time series for aerosol cooling as presented in the assessment.

Time series of ERFagr are vitally important inputs to our EM—GC. A hallmark of our approach is to span a wide range of
possible time series of ERFagr, as well as a model parameter As that represents the sum of all climate feedbacks, retaining for
further analysis the members of this ensemble that satisfy three goodness-of-fit constraints, to the: 1) 170-year GMST record;
2) GMST record over the past 8 decades (formally, 1940 to 2019); 3) the ocean heat content record that begins in 1955. Further
details of this ensemble approach are given in Sect. 2.1 of McBride et al. (2021). Figure S2 illustrates our approach for
generating an ensemble of ERFgr time series for the SSP2—4.5 scenario, within the AR6 framework. The solid black line
shows the AR6 assessed best value of the time series of ERFagr. An ensemble is created by scaling this time series by various
constant multiplicative factors, with the color scheme chosen to highlight the numerical value of ERFagr in 2019. A similar
approach is used for the Baseline framework, relying upon time series of ERFagr obtained from the aforementioned PICR
website, as detailed in Sect. 2.5 and Fig. S7 of McBride et al. (2021). While one can envision a more sophisticated approach
that allows for the alteration of the shape of ERFagr, in addition to the magnitude, the actual ERFagr responds quickly to
changes in precursor emissions due to the short lifetime of tropospheric aerosols. Generally, historical aerosol precursor
emissions are fairly well known (e.g. Hoesly et al. (2018)). The more sophisticated approach of Smith and Bond (2014), which
relied upon a RF parametrization tied to the emission of sulfate, black carbon, and organic carbon aerosols, resulted in an
ensemble of time series for ERFagr that exhibit nearly the same shape, with quite different peak cooling.

Figure S1i shows time series of total anthropogenic ERF (ERFantH). As noted above, the design of the SSPs was
predicated on the end-of century RF due to all human activity being close to the last numerical value in the scenario (that is,
4.5 W m? for SSP2—4.5) (O'Neill et al., 2014; Tebaldi et al., 2021). Close agreement of end-of-century ERFantn and the SSP
nameplate is found using GHG concentrations together with ERF formulations for the Baseline framework. Conversely, within
the AR6 framework, ERFantr in 2100 exceeds the nameplate values, with the difference being particularly large for SSP4-3.4

(0.6 W m?) and SSP2—4.5 (0.9 W m™?). One final, important difference between the two frameworks is the steeper rise in
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ERFantH between about 1960 and present within AR6 compared to Baseline, which is attributable to an assessed best value of

much stronger aerosol cooling over the latter part of the prior century in ARG relative to the Baseline (Fig. S1g).

2.1.4 Other Model Inputs

The EM-GC output shown below relies entirely on simulations constrained to match the HadCRUTS GMST anomaly (AT)
record (Morice et al., 2021) over the years 1850-2019. Model simulations are also constrained by observations of Ocean Heat
Content (OHC) that start in 1955. Here, we use the average OHC from data provided by five groups: Levitus et al. (2012),
Balmaseda et al. (2013), Cheng et al. (2017), Ishii et al. (2017), and Carton et al. (2018). Further details, including our
evaluation of the uncertainties in observed AT and OHC, are given in Sect. 2.2 of McBride et al. (2021).

The EM—GC simulations consider a variety of natural factors alongside the anthropogenic component of warming. The
ENSO time series used during the training period (1850—2019) is based on Version 2 of the Multivariate ENSO Index (MEIL.v2)
(Wolter and Timlin, 1993; Zhang et al., 2019). The MEI.v2 dataset provides data starting in 1979. For 1850 to 1978, a historical
extension based on Wolter and Timlin (2011) and the HadSST3 dataset (Kennedy et al., 2011) is used, as detailed in Sect.
2.2.6 of McBride et al. (2021). The input time series that is used to reflect changes in the strength of the AMOC is based on
sea surface temperature (SST) data from HadSST4 (Kennedy et al., 2019) between the Equator and 60 °N in the Atlantic
Ocean, detrended using the magnitude of global anthropogenic radiative forcing, then Fourier-filtered to remove frequencies
above 1/9 yr ! as descried in Sect. 3.2.3 and 4.1.2 of Canty et al. (2013), as well as Sect. 2.2.7 of McBride et al. (2021). Input
time series for the PDO and the IOD, which are found to have little effect on our historical simulations of AT, are the same as
described by McBride et al. (2021). Indices for all of the oceanic proxies after 2019, which marks the end of the training period,
are set to zero.

Our model also considers the impact on AT of variations in total solar irradiance (TSI) and major volcanic eruptions. The
input time series for TSI anomalies is constructed from CMIP6 model data between 1850 and 2014 (Matthes et al., 2017),
while values for 2015—-2019 are obtained from the Solar Radiation and Climate Experiment (SORCE) (Dudok de Wit et al.,
2017). The input time series for stratospheric aerosol optical depth (SAOD), for 1850 to 1978, is based on extinction
coefficients obtained from the Volcanic Forcing Dataset (Arfeuille et al., 2014) that had been prepared for CMIP6 GCM runs.
For 1979 to 2018, we use a time series of SAOD at 550 nm from the Global Space-based Stratospheric Aerosol Climatology
(GloSSAC v2.0) (Thomason et al., 2018). For the earlier time period (1850 to 1978), the extinction coefficients from the
Volcanic Forcing Dataset were integrated from the tropopause to 39.5 km, to obtain a globally averaged SAOD, weighted by
the cosine of latitude from 80 °S to 80 °N. For the latter time period (1979 to 2018), we calculate globally averaged SAOD
from the GloSSAC dataset using cosine-latitude weighting over the same range of latitudes. For the year 2019, level 3 gridded
SAOD product from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al.,
2004) is used to obtain a global average SAOD, which is then offset by the average difference between the GloSSAC and
CALIPSO datasets for the period of overlap (2006—2018) between the two datasets, as described in Sect. 2.2.5 of McBride et
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al. (2021). Values of the TSI anomaly beyond 2019 are set to zero, while for SAOD we use the value from December 2019 for

2020 to 2100. The input time series for all natural and anthropogenic factors are archived on Zenodo (Farago et al., 2025).

2.2 Model Outputs

Here we provide a brief overview of various outputs of the EM-GC simulations that will be described in Sect. 3.

2.2.1 Attributable Anthropogenic Warming Rate and Effective Climate Sensitivity

Attributable Anthropogenic Warming Rate (AAWR) is defined as the rate of change of the GMST anomaly (AT) due to
anthropogenic activity, between 1975 and 2014. This time interval spans a 40-year period in which AT rose in a near-linear
manner due to human activity (McBride et al., 2021). AAWR is determined as the slope of a linear fit to the anthropogenic
component of global warming, defined by Eq. (9) of McBride et al. (2021). Our method for the evaluation of AAWR is similar
to earlier, MLR based studies (Lean and Rind, 2008, 2009; Foster and Rahmstorf, 2011; Zhou and Tung, 2013), except that
we quantitatively account for the impact of the uncertainty in the RF of aerosols and the strength of climate feedback on the
possible range of AAWR.

Equilibrium Climate Sensitivity (ECS) is defined as the rise in AT after climate has equilibrated to a theoretical doubling
of the pre-industrial concentration of CO, (IPCC, 2001, 2021a; Forster et al., 2021). Since equilibrium can take centuries to
reach due to the slow transfer of heat to the deep oceans (Hansen et al., 2011; Church et al., 2013; Tokarska et al., 2020a),
often the more short-term Effective Climate Sensitivity (EffCS) is used (Gregory et al., 2020; Tokarska et al., 2020a; Spencer
and Christy, 2023). We compute EffCS from the ERF due to the doubling of the pre-industrial CO; concentration (AERF2xco2)
as shown in Eq. (1),

1

EffCS = =

X AERF;xc02 (1)

where A, is a constant equal to 3.2 W m™2 °C!, Ay represents the sum of all feedbacks that varies for different members of the
ensemble, and AERFaxcos is the rise in RF due to a doubling of CO». This methodology, based on the terminology of Bony et
al. (2006) is consistent with Box 7.1 of AR6 (Forster et al., 2021). Within the Baseline framework, we use the RF formula of
Myhre et al. (1998), which leads to AERF,, 0, = 5.35 X In(2) = 3.71 Wm™2. For the AR6 Framework, we use a value for
AERF2xcoz2 0f 3.93 W m ™2, which is the best estimate for AERFaxco2 given in Sect. 7.3.2.1 and 7.SM.1.2 of AR6 (Forster et al.,
2021; Smith et al., 2021a). Consequently, EffCS computed using the AR6 formula is 6% larger than that found using the
Myhre et al. (1998) formula, for a given value of As. Finally, we note that climate sensitivity deduced from historical warming
may be different from true ECS, as the historical climate feedback could differ from the climate feedback under an abrupt
4xCO, forcing scenario that is often used to evaluate ECS in ESMs (Andrews et al., 2018; Andrews et al., 2019; Winton et al.,
2020; Forster et al., 2021).
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2.2.2 Future Temperature Projections

Projections of AT, for various SSP scenarios, are central to assessing the likelihood of achieving either the Paris Agreement
goal (1.5 °C) or upper limit (2.0 °C) for the rise of GMST relative to pre-industrial (Hope et al., 2017; McBride et al., 2021;
Smith et al., 2018a; Nicholls et al., 2020; Nicholls et al., 2021). An important aspect of EM-GC simulations is the ability to
compute probabilistic forecasts of the rise in AT, taking into account the uncertainty in the radiative forcing of climate due to
tropospheric aerosols.

To consider the uncertainty in the magnitude of net climate feedback and the strength of aerosol cooling, we use a 160,000
member ensemble, comprised of 400 possible values for the parameter Az, each combined with 400 time series for ERF agr.
This ensemble serves as the basis for the probabilistic forecasts of AT, as well as the numerical evaluations of AAWR and
EffCS. We consider only the members of the ensemble that satisfy three y? based metrics given by Eqs. S1-S3 (that is, each
y? value must be < 2), which serve as the observational constraints of the model. Two of these metrics quantify how well the
modelled GMST anomaly represents the observed temperature anomaly of the atmosphere for the entire training period (1850
—2019, y’atm) and over the last 80 years (1940 — 2019, y’recent). The third metric (3%ocean) is a goodness-of-fit value between
the observed and modeled ocean heat content. The ’recent metric is used because without this constraint, some solutions with
values of y?atm < 2 have a visually poor simulation of the rise in GMST over the past 4 to 5 decades, due to the large uncertainty
associated with early measurements of AT (McBride et al., 2021).

For the results shown in Section 3, the observationally constrained ensemble is then weighted by an asymmetrical Gaussian
function, shown in Fig. 1a—b, centered around the IPCC best estimate of ERFagr in the reference year (—0.9 Wm 2 in 2011 for
the Baseline framework and —1.1 Wm™ in 2019 for the AR6 framework). The 1o and 26 boundaries of the Gaussians are
derived from the possible and likely ranges for ERFagr provided by the AR5 (Baseline framework) and AR6 (AR6 framework)
reports (Table S3). The Gaussians are asymmetrical because the likely and possible ranges of ERFagr specified in ARS and
ARG are not symmetric around the respective best estimates. The weighted ensemble is then used to compute probabilistic
estimates of AAWR and EffCS (Sect. 3.1), as well as probabilistic forecasts on the GMST anomaly (Sect. 3.2).

The projections of AT shown in Section 3 assume that the climate feedback parameter, Az, is constant over time. Support
for this assumption is given by the temporal invariance of the residual between measured and modeled values of AT, over the
past century and a half, as shown in Fig. 14 of McBride et al. (2021). If the true value of Az varies over time, as has been
suggested based on analysis of CMIP5 (Marvel et al., 2018; Rugenstein et al., 2020) and CMIP6 (Dong et al., 2020; Salvi et
al., 2023), then the analysis conducted by McBride et al. (2021) indicates that our end-of-century projections of global warming
could be biased low by a few tenths of the degree Celsius. Regardless, the primary contributor to the uncertainty in end-of-

century warming is the imprecise knowledge of ERFgr.
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3. Results
3.1 Attributable Anthropogenic Warming Rate and Effective Climate Sensitivity

We begin by analyzing values of AAWR found from the EM-GC ensemble simulation of AT over the 1850 to 2019 time
period. As noted above, our estimates of AAWR quantify the human contribution to the rate of global warming from 1975 to
2014. Figure 1 shows the values of AAWR (panels c—d) and EffCS (panels e—f), as the function of climate feedback (vertical
axis) and the strength of aerosol cooling (horizontal axis) for the Baseline (left column) and AR6 frameworks (right column).
Colors corresponding to values of AAWR and EffCS are only shown for combinations of As and ERFagr for which a good fit
to the historical GMST and OHC record was obtained, defined by the values of all three reduced 2 indicators being < 2. Panels
a—b show the asymmetrical Gaussian functions used to weight the EM—GC output, described in Sect. 2.2.2. Notably, the
highest values of As for which the model can achieve a good fit to the historical climate record is lower for the AR6 framework
relative to Baseline, which allows for a tighter constraint on the upper limit of EffCS. This difference is driven by the
considerable variation in the shape of the best estimate of the ERFagr associated with each framework (Fig. S1g), that drives
considerable variations in the value of total anthropogenic ERF between about 1960 and 2000 (Fig. S1i).

The weighted median estimate and 5-95% range for AAWR are 0.16 [0.12 to 0.20] °C decade™ and 0.18 [0.13 to 0.21]
°C decade™" for the Baseline and AR6 frameworks, respectively. The probability distribution function (PDF) of AAWR, for
both frameworks, is shown in Fig. S3a. Our estimates of AAWR are quite similar for the two frameworks, which is of course
to be expected since both estimates result from observations of the GMST anomaly that are identical for both sets of ensembles.
The slightly higher median value of AAWR in the AR6 framework is due to a larger slope of ERFantu over 1975 to 2014,
0.47 W m2 per decade, compared to the 0.36 W m 2 per decade slope of ERFanty in the Baseline framework. Our values of
AAWR within both frameworks are considerably lower than the median and 5-95% range of 0.221 [0.151 to 0.299] °C
decade™ from the CMIP6 multi-model ensemble derived by McBride et al. (2021). This finding is consistent with Samset et
al. (2023), who found that “virtually all CMIP6 simulations have higher 50—year warming rates than the observations”, using
an ensemble of 119 ESM simulations from CMIP6. Our empirical estimates of AAWR align well with several other recent
empirical estimates, suggesting that our quantification of the natural and anthropogenic drivers of the variations in AT is
consistent with other studies. Recent estimates of AAWR are between 0.17 to 0.20 °C decade ! based upon the 1973-2022
period (Samset et al., 2023) and the 1980—2020 period (Table 2.4 of AR6 Chapter 2 (Gulev et al., 2021; Forster et al., 2023)).
Finally, the rate of warming has likely accelerated since 1990 at a rate of 0.008 to 0.025 °C decade™! per decade (Samset et al.,
2023), with Forster et al. (2023) finding a rate of 0.2 °C decade™! for human—induced warming for the 2013-2022 period,
while Ribes et al. (2021) found this rate to be 0.23 °C decade™" over the 2010—19 period.
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Figure 1: Aerosol weighting method and EM—GC computed values of AAWR and EffCS for combinations of ERFagr and Az. (Left):
Simulations using the Baseline framework. (Right): Simulations using the AR6 framework. (a—b) Asymmetrical Gaussians used to
weight aerosol scenarios for probabilistic forecasts, as described in Sect. 2.2.2. Points marked on the Gaussians represent specific
EREF values used as the central values, as well as 16 and 26 boundaries of each Gaussian (Table S3). The Gaussians are overlaid for
visual comparison. The Gaussians shown with the solid black line are used to weight the EM—GC output in each column. (c—d)
EM-GC computed values of AAWR for the Ax — ERFagr ensemble. Colors denote the specific values of AAWR as indicated by the
color bar on the right, and are only shown for the combinations of ERFagr and 1z for which a good fit to the HadCRUTS historical
climate record was found. (e-f) EM—GC computed values of EffCS for the Az — ERFagr ensemble.

Figure le and 1f show values of EffCS obtained for the Baseline and AR6 frameworks. The median EffCS is nearly
identical for the Baseline and AR6 frameworks, at 2.26 and 2.29 °C, respectively. However, the corresponding 5—95% ranges
of EffCS differ considerably, with the Baseline range of [1.45 to 4.37] °C being considerably larger than that found using the
ARG6 framework [1.54 to 3.11] °C. This difference is readily apparent in the PDFs of EffCS for both frameworks, as shown in
Fig. S3b. Simulations based on the AR6 framework allow for a tighter constraining of the upper estimate of EffCS, due to the
fact that within this ensemble, we are not able to obtain good fits to the historical GMST and OHC records with values of As
greater than about 2.0 W m ™2 °C ™!, In contrast, simulations in the Baseline framework can achieve good fits for stronger levels
of climate feedback, upwards to about 2.5 W m2 °C"!, that also correspond to higher amounts of aerosol cooling (Fig. 1e—f).
Our estimate for EffCS 0f2.29 [1.54 to 3.11] °C within the AR6 Framework exhibits close agreement with the results of Skeie
et al. (2024), who found the best estimate and 90% uncertainty range for EffCS to be 2.2 [1.6 to 3.0] °C using a Bayesian
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estimation model and ERF datasets from AR6, while assuming climate feedback to be constant over the historical period,
similar to our approach.

We now discuss the relationship between the estimates of EffCS from our model simulations and ECS. Values of ECS
can be approximated from observationally constrained estimates of EffCS by applying a correction factor to the strength of
the climate feedback term, termed o’, as shown in Eq. (2). Here, o’ represents the difference between climate feedback inferred
from historical warming and the climate feedback consistent with an equilibrated climate following an abrupt doubling of the
pre-industrial concentrations of CO; (hereafter abrupt2xCQ), as described in Sects. 7.4.4.3 and 7.5.2 of Forster et al. (2021).
This difference in climate feedback is associated with differences in the spatial pattern of warming over the historical period

and the equilibrium warming pattern, termed the pattern effect.
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Section 7.4.4.3 of AR6 assessed o to have a value of 0.5 £ 0.5 W m2°C !, at a low confidence level. The large uncertainty
is due to the fact that estimates for the value of o’ vary greatly between individual studies and specific CMIP models (Armour,
2017; Proistosescu and Huybers, 2017; Andrews et al., 2018; Andrews et al., 2019; Dong et al., 2020; Winton et al., 2020).
The black symbols in Fig. 2 show ECS found using Eq. (2) as a function of the value of o’ for the AR6 ensemble EM-GC
simulation. The dots and error bars represent the median and 5-95% range of ECS, respectively. The green dashed line and
shaded area correspond to the central value and very likely range of ECS given in Table 7.13 of the AR6 report (Forster et al.,
2021).
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Figure 2: Equilibrium Climate Sensitivity (ECS) as the function of the pattern effect (o, see text). Black vertical bars and circles
correspond to the EM-GC 5-95% range, and 50% probability, respectively. The green shaded area and horizontal dashed line
represent the ARG very likely range, and central estimate of ECS respectively, from Table 7.13 of Forster et al. (2021). All results
shown in this figure are based on simulations that use inputs from the AR6 framework.
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For o> =0 W m2 °C ! (corresponding to no pattern effect), EffCS is equal to ECS and we obtain the median and range
for ECS of 2.29 [1.54 to 3.11] °C , which had been given above. For the AR6 best estimate of o’ = 0.5 W m™2 °C !, we find
ECS to be 3.24 [1.92 to 5.15] °C, which is in very good agreement with the AR6 assessment of ECS (green shaded region).
The AR6-based upper limit of o’ = 1.0 W m™2 °C ! yields a median and 5-95% range of 5.39 [2.52 to 13.54] °C, which tends
to exceed the assessed value of ECS from AR6. These results highlight the sensitivity of ECS to the pattern effect, a concept
first introduced in the latest WG1 IPCC report. Our value of ECS found for &’ = 0.5 W m™2 °C ! is consistent with Skeie et al.
(2024), who performed a similar analysis and found their estimate of ECS to be “almost identical” to the AR6 central value
and very likely range of 3.0 [2.0 °C to 5.0 °C], upon using the AR6 best estimate for the value of a’. Finally, our estimates of
ECS for o> = 0.5 W m 2 °C ! also show good consistency with the range for ECS of 2.42 to 5.83 C obtained from millennial-
long CMIP model simulations (Rugenstein et al., 2020) performed under the auspices of the LongRunMIP protocol
(Rugenstein et al., 2019).

Figure 2 shows that the 5" percentile values of ECS vary between about 1.5 to 2.5 °C depending on the magnitude of o,
consistent with the AR6 assessment of ECS being greater than 1.5 °C at a virtually certain level of confidence (Forster et al.,
2021). Further, the 50 percentile estimates for ECS (black dots) fall into the range of ECS assessed by AR6 (green shading),
except for a” = 1.0 W m™2 °C . Conversely, our 95" percentile estimates for ECS vary greatly with o’, and exhibit a
substantially larger level of variation than the 5™ and 50% percentile estimates. These findings are consistent with Chapter 7 of
ARG6, which stated that “warming over the instrumental record provides robust constraints on the lower end of the ECS range
(high confidence), but owing to the possibility of future feedback changes it does not, on its own, constrain the upper end of
the range, in contrast to what was reported in AR5 (Forster et al., 2021). Finally, numerous studies have linked strong, positive
feedback between clouds and anthropogenic RF as being a causal factor in the tendency of some ESMs to exhibit values of
ECS that are considerably higher than our median value of 3.24 °C found for o’ = 0.5 W m2 °C ! (Gettelman et al., 2019;
Zelinka et al., 2020; Wang et al., 2021).

We now discuss how the rate of warming in recent decades relates to EffCS/ECS and the spatial pattern of global warming.
Armour et al. (2024) found that the rate of warming between 1981 and 2014 of 0.18 [0.15 to 0.21] °C decade™ inferred from
the HadCRUTS record corresponds to ECS of 2.7 [1.5 to 3.9] °C and EffCS of 2.3 [1.9 to 2.7] °C within a set of CMIP5/6
models. The rate of warming obtained by Armour et al. (2024) is in close agreement with our AAWR estimate of 0.18 [0.13
to 0.21] °C decade™" between 1974 and 2014. Furthermore, our EffCS estimate of 2.29 [1.54 to 3.11] °C closely matches that
of Armour et al. (2024), albeit with a wider 5-95% range. Finally, our ECS estimate of 3.24 [1.92 to 5.15] °C for o’ = 0.5 W
m 2 °C™! is broadly consistent with the Armour et al. (2024) value. The ECS in Armour et al. (2024) was computed from the
first 150 years of the CMIP model simulation, which on average, is about 17% lower than ECS in full equilibrium (Rugenstein
et al., 2020); a 17% increase to the ECS values of Armour et al. (2024) brings their estimates closer to our values of ECS for
o’ =0.5Wm?2°C". Consequently, our estimates of EffCS and ECS are consistent with values obtained from CMIP models

that accurately capture the observed rate of rise in GMST over the recent decades.
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3.2 Probabilistic forecast on future warming

Here we quantify the magnitude of future warming based on projections of ERF from four SSP scenarios, for both the Baseline
and AR6 frameworks. We first briefly discuss the simulated GMST anomalies at the end of the 21st century, followed by the
analysis of the projected temporal evolution of warming in this century. Finally, we quantify the likelihood of accomplishing
the goals of the Paris Agreement under the four SSP scenarios, based on the simulations within both the Baseline and AR6
frameworks. Unless otherwise stated, all GMST anomalies are relative to an 1850—1900 pre-industrial baseline.

Figures S4 and S5 show the GMST anomaly in year 2100 (ATzi00) as a function of climate feedback and ERFagg, in a
manner similar to Fig. 1, for the Baseline and AR6 frameworks, respectively. Probabilistic projections of AT2100 are obtained
using the same weighting technique that was used for AAWR and EffCS, as described in Section 2.2.2. Table 1 provides
median as well as 5" and 95" percentile values of AT21¢0, for the four SSP scenarios considered throughout. Median projections
of AT2100 within the AR6 framework are about 0.2 °C (SSP1-1.9, SSP1-2.6), 0.3 °C (SSP4-3.4), and 0.4 °C (SSP2—4.5) greater
than found using the Baseline framework. This difference originates from the fact that projected ERF at the end of the century
is higher in the AR6 framework than in Baseline, for all four SSPs, which is driven by higher end-of-century atmospheric
concentrations of CO; and CH4 in AR6 (Fig. S1i).

Table 1: Probabilistic projections of AT2100 for the four SSP scenarios studied.

SSP Scenario Baseline Framework (°C) ARG6 Framework (°C)
AT SSP1-1.9 1.14 [0.81 to 1.87] 1.34[0.93 to 1.72]
2100
) SSP1-2.6 1.46 [1.05 to 2.28] 1.67 [1.18 to 2.13]
Median [5—95% range]
SSP4-3.4 1.80 [1.31 to 2.77] 2.10[1.54 to 2.62]
SSP2-4.5 2.18[1.62 to 3.14] 2.60[1.92 to 3.20]

Next, we examine the temporal evolution of AT under the four SSP scenarios. Figure 3 shows time-dependent,
probabilistic forecasts of AT for the AR6 framework. Time-dependent projections of AT for the Baseline framework are shown
in Fig. S6. The colors in Fig. 3 correspond to the probability that AT would be equal to or greater than the given numerical
value, as indicated by the color bar. Each panel of Fig. 3 also shows the multi-model mean (solid line), and minimum and
maximum (dashed lines) for AT obtained from the CMIP6 ESM archive, normalized to zero over 1850 to 1900. These CMIP6
values of AT are based on our analysis of output from 10, 34, 6, and 32 models, for SSP1-1.9, SSP1-2.6, SSP4-3.4, and
SSP2—4.5, as described in Section 3.3.1 of McBride et al. (2021). Figure 3 also shows the HadCRUTS GMST observations in
black, as well as a green trapezoid that represents the likely range of warming between 2016 and 2035 provided by Chapter 11
of the ARS report (Kirtman et al., 2013). This trapezoid was placed on Fig. 11.25b of AR5 due to the recognition, by the
chapter authors, that the CMIP5 models central to ARS tended to overestimate the observed rate of global warming. Gold

horizontal lines in Fig. 3 represent the 1.5 °C and 2.0 °C GMST anomalies relative to pre-industrial, while gold circles
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correspond to the years where the 1.5 °C and 2 °C thresholds are crossed with 5, 50 and 95% probability (hereafter termed
crossover years). Table 2 provides the years at which the temperature anomaly thresholds are projected to be crossed for the
median as well as the 5" and 95 percentiles.

Our probabilistic projections of AT are in excellent agreement with the assessed likely range of global warming provided
by Chapter 11 of AR5 (Kirtman et al., 2013). Our projections of AT fall within the bottom half of those obtained from the
CMIP6 ESMs. Numerous studies have similarly concluded that many of the ESMs central to CMIP6 tend to provide estimates
of the rate of global warming due to human activity (that is, AAWR) that exceeds empirically based estimates of AAWR
(Tokarska et al., 2020b; Nijsse et al., 2020; McBride et al., 2021; Chylek et al., 2024), which Hausfather et al. (2022) have
termed the “hot model problem”. Armour et al. (2024) suggested that the high estimates of AAWR exhibited by some of the
CMIP6 historical simulations are due to the inability of these models to reproduce observed SST patterns, particularly an
observed cooling of the eastern tropical Pacific and a warming of the western Pacific that affects the distribution of clouds in
the tropics. Weaver et al. (2024) reached the same conclusion based on an analysis of top of the atmosphere albedo of clouds

and aerosols, from radiances observed by NASA and NOAA satellite instruments.
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Figure 3: Time-dependent probabilistic forecasts of the GMST anomaly within the AR6 framework. The black line shows the
HadCRUTS GMST anomaly, which was used (along with OHC) to constrain the simulations. Colors represent the probability of
reaching a certain temperature or higher at a given time, as indicated by the color bars on the right. The green trapezoid represents
the likely range of warming as shown in Fig. 11.25b of the IPCC ARS report (Kirtman et al., 2013). The target and upper limit of
the Paris Agreement are shown by gold-colored horizontal dotted lines. Circle markers on these lines correspond to the projected
GMST anomaly crossing these thresholds, with the probability indicated by the colors. The grey lines denote the multi-model mean
(solid), as well as the minimum and maximum (dashed) projections of AT from CMIP6 ESMs as described in Sect. 3.3.1 of McBride
et al. (2021). All values of AT shown in this figure are with respect to an 1850—1900 pre-industrial baseline. (a) GMST projections
for SSP1-1.9. (b) GMST projections for SSP1-2.6. (¢) GMST projections for SSP4-3.4. (d) GMST projections for SSP2—4.5. Results
for the Baseline Framework are shown in the same fashion in Fig. S6.
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For all four SSP scenarios, the 1.5 °C and 2.0 °C thresholds are projected to be crossed much earlier based on the
simulations of the AR6 framework, relative to those of the Baseline. For example, for SSP2—4.5, the 2.0 °C threshold is
projected to be crossed in the years 2059 and 2082 within the AR6 and Baseline frameworks, respectively. The AR6 updates
to the ERF from GHGs and aerosols result in nearly a quarter of a century shift forward in crossover year. This finding is
consistent with the increases in end-of-century warming (AT2100) obtained from the simulations using the AR6 framework,
relative to those of Baseline (Table 1). Comparing to the literature, our crossover years found using the AR6 framework fall
on the latter end of the projected crossover years for the 1.5 °C and 2.0 °C thresholds given in Table 4.5 of AR6 (Lee et al.,
2021), and are much later than projected based on the analysis of CMIP5 and CMIP6 output shown in Table 1 of Tebaldi et
al. (2021). The values in their table are based on an analysis of an unconstrained ESM ensemble, which projects higher levels

of future warming than observationally constrained models, as evidenced by Table A6 of Tebaldi et al. (2021).

Table 2: Years of crossing the 1.5 °C and 2.0 °C GMST anomaly thresholds for the four SSP scenarios studied. For each entry, we
present the 50% probability as our central estimate, as well as the 5—95% range. The label “n.c” is used in a manner similar to Table
4.5 of ARG (Lee et al., 2021) and corresponds to a given threshold not being crossed in the 2020—2100 period.

1.5 °C Crossover 2.0 °C Crossover
Baseline ARG6 Baseline ARG6
SSP1-1.9 n.c [2028 to n.c] n.c [2029 to n.c] n.c [n.c to n.c] n.c [n.c to n.c]
SSP1-2.6 n.c [2029 to n.c] 2043 [2029 to n.c] n.c [2059 to n.c] n.c [2065 to n.c]
SSP4-3.4 2048 [2030 to n.c] 2038 [2029 to 2079] n.c [2050 to n.c] 2083 [2051 to n.c]
SSP2-4.5 2042 [2030 to 2080] 2035 [2028 to 2055] 2082 [2047 to n.c] 2059 [2046 to n.c]

Figure 4 shows the PDF of AT2100 found with EM—GC for the four SSP scenarios, using the AR6 and Baseline frameworks.
The height of the bars corresponds to the probability of AT»100 being in the range defined by the width of each column. Figure
4 also shows PDFs derived from a CMIP6 ESM ensemble, as detailed by McBride et al., (2021). As expected, based on the
“hot model problem” described above, our projections of ATzi90 within both the Baseline and AR6 frameworks fall on the
lower end of the projections from the CMIP6 ensemble. Furthermore, the EM—GC based PDF for the AR6 framework tends
to be shifted towards higher values of AT»i00 than found for Baseline, with a smaller tail, behaviors that are consistent with
higher end of century RF of the climate within the AR6 framework (Fig. S1i), as well as the ability to fit the climate record

with higher values of climate feedback (model parameter As) in the Baseline framework (Fig. 1).
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Figure 4: Probability Distribution Functions (PDFs) for AT2100 obtained from EM—-GC simulations trained on the HadCRUTS
temperature dataset. Model runs for the Baseline and AR6 frameworks are shown in blue and red, respectively. Grey color
represents the PDFs obtained from a CMIP6 multi-model ensemble as described in Sect. 3.3.1 of McBride et al. (2021), and are
shown for comparison with EM—GC results. The left-hand y axis corresponds to the EM—GC probabilities, and the right-hand y
axis is for the CMIP6 probabilities. The PA target and upper limit are shown as solid and dashed vertical lines, respectively. (a)
PDFs for SSP1-1.9. (b) PDFs for SSP1-2.6. (c) PDFs for SSP4-3.4. (d) PDFs for SSP2—4.5.

We now further compare our projections of AT2190 from the AR6 framework with results based on CMIP6 model output.
Tokarska et al. (2020b) reported that observationally constrained CMIP6 projections of end-of-century warming are 9% to
13% lower than unconstrained CMIP6 projections for SSP1-2.6 and SSP2—-4.5, respectively. Tokarska et al. (2020b) found
the median and 5-95% ranges of end-of-century warming relative to a 1995-2014 baseline to be 0.94 [0.41 to 1.46] °C and
1.84 [1.15t0 2.52] °C for SSP1-2.6 and SSP2—4.5, respectively, using observationally constrained CMIP6 models. Our values
of ATz100 in Table 1, relative to 19952014, are 0.81 [0.32 to 1.27] °C and 1.74 [1.06 to 2.34] °C for SSP1-2.6 and SSP2—4.5.
Consequently, our quantification of ATz is in very good agreement with the empirically constrained CMIP6 projections of
Tokarska et al. (2020b). Chylek et al. (2024) recently found end-of-century warming to be 2.41 °C relative to pre-industrial
conditions, for SSP2—4.5 using a set of CMIP6 models that accurately reproduce the 2014—-2023 warming, which is about 0.5
OC smaller than the value of ATzi00 obtained from their unconstrained CMIP6 ensemble. Consequently, their empirically

constrained value of ATz is in good agreement with our median estimate of 2.6 °C for SSP2-4.5 (Table 1).
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Table 3: EM—GC computed probabilities of achieving the Paris Agreement target (1.5 °C) and upper limit (2.0 °C). Columns with
the “Baseline” header represent EM—GC simulations using the Baseline Framework, while “AR6” represents simulations of the
ARG6 Framework. The values presented in this table are derived from the PDFs shown in Fig. 4.

Paris 1.5 °C Paris 2.0 °C
Baseline AR6 Baseline AR6
SSP1-1.9 81% 70% 98% 100%
SSP1-2.6 54% 32% 87% 85%
SSP4-3.4 21% 3% 64% 40%
SSP2-4.5 1% 0% 35% 8%

We conclude by evaluating the probability of achieving both the target (1.5 °C) and upper limit (2.0 °C) of the Paris
Agreement (PA). Table 3 provides the probability that end-of-century warming will be below either the target or the upper
limit of the PA, relative to pre-industrial conditions. These estimates were obtained from our probabilistic forecasts of AT, for
both the Baseline and AR6 frameworks (Fig. 4). As shown in Table 1, median projections of AT are larger within the AR6
framework relative to the Baseline for all four SSPs, which leads to a decline in the probability of accomplishing the PA within
the AR6 framework (Table 3). For the SSP1—1.9 and SSP1-2.6 scenarios, the probability of limiting global warming to 2.0 °C
is high (at least 85%) for both model frameworks. For SSP4—3.4, the probability of limiting warming to 2.0 °C falls from 64%
(Baseline) to 40% (AR6). Most notably, the 2.0 °C probability drops from 35% to 8% for the SSP2—4.5 scenario. The 1.5 °C
warming probabilities for the AR6 framework are all uniformly lower than found for the Baseline framework, with the
SSP1-2.6 scenario dropping from 54% (Baseline) to 32% (ARG). The takeaway message from Table 3 is that, for society to
have high confidence in achieving at least the upper limit of the PA, the radiative forcing of climate due to GHGs must be
placed close to the SSP1-2.6 pathway over the coming decades. More aggressive reductions in GHG radiative forcing are
needed to achieve the target of the PA, such as those of the SSP1—1.9 scenario. This message stands in stark contrast to our
prior statement in McBride et al. (2021), that SSP4-3.4 would provide about a two-thirds chance of limiting global warming

to 2 °C by end-of-century, since our earlier work relied upon the Baseline framework.

4. Conclusions

The extent of global warming is proportional to the ERF from greenhouse gases and tropospheric aerosols. In this work, we
use a multiple linear regression energy balance model (EM—GC) to quantify how updates to the projections of effective
radiative forcing (ERF) due to GHGs and tropospheric aerosols given by the IPCC ARG6 report impact estimates of attributable
anthropogenic warming, climate sensitivity, and projected future increases in GMST. We focus on four policy-relevant SSP

scenarios: SSP1-1.9, SSP1-2.6, SSP4—3.4 and SSP2—4.5 (O'Neill et al., 2014; O'Neill et al., 2016).
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We show that projected total anthropogenic ERF (ERFantu) computed from AR6 forecasts of the atmospheric
concentrations of GHGs, AR6 changes to the parameterizations of ERF due to GHGs, and AR6 updates to the radiative effects
of tropospheric aerosols (termed the AR6 framework) results in considerably larger values of projected ERFantu compared to
values in our Baseline framework, which represents the state of knowledge prior to ARG6. It is important to note that ERFantu
found in both the AR6 and Baseline frameworks relies on the same emission time series for GHGs. The higher values of
ERFantn in the AR6 framework relative to Baseline is driven by updates to future atmospheric concentrations of CO, and CHy
due to the use by AR6 of a new version of the Model for the Assessment of Greenhouse Gas Induced Climate Change
(MAGICC) model (Meinshausen et al., 2011a; Meinshausen et al., 2011b; Meinshausen et al., 2020), updates to the
mathematical formulations of ERF due to GHGs in ARG that results in about a 6% increase in the radiative forcing of climate
for “doubled CO,” relative to the AR5 parameterization (Forster et al., 2021), as well as major changes in the assessed values
of the magnitude and temporal evolution of ERF due to tropospheric aerosols by AR6. The combination of these factors results
in about a 0.9 W m? increase in the end-of-century value of ERFantu for the SSP2—4.5 scenario, for AR6 compared to
Baseline. While some minor deviation of end-of-century ERFanti from the nameplate RF value of SSP scenarios is expected
(that is, 4.5 W m? radiative forcing for SSP2—4.5) (van Vuuren et al., 2014), the AR6 updates increase ERFanty such that
end-of-century values are now considerably larger than the nameplate RF, for each of the four SSP scenarios we have
examined.

The rate of human-induced warming between 1974 and 2014 (AAWR) was found to be 0.18 [0.13 to 0.21] °C decade™!
within the AR6 framework, a slight increase relative to the central estimate and range of 0.16 [0.12 to 0.20] °C decade™' for
the Baseline framework (the range reflects the 5% and 95" percentiles). Our estimate of AAWR within the AR6 framework
was shown to be consistent with other recent studies that adopt various means to separate human and natural influence on
GMST (Gulev et al., 2021; Forster et al., 2023; Samset et al., 2023). Most importantly, our estimate of AAWR is lower than
values found by many of the free-running (that is, unconstrained by observed GMST) CMIP6 Earth System Models (ESMs)
(Tokarska et al., 2020b; McBride et al., 2021; Tebaldi et al., 2021; Hausfather et al., 2022; Chylek et al., 2024)

The magnitude of Effective Climate Sensitivity (EffCS) inferred from the historical GMST record was found to be 2.29
[1.54 to 3.11] °C within the AR6 framework and 2.26 [1.45 to 4.37] °C for the Baseline framework. Although the median value
of EffCS is nearly identical between the two frameworks, there is a narrower range within the AR6 framework. The narrower
range is driven by the ability to obtain good fits to the historical GMST record for a larger values of climate feedback within
the Baseline framework compared to AR6, which we have shown is driven by large differences in the assessed temporal
evolution of cooling by tropospheric aerosols in AR6 compared to Baseline. Using the AR6 best estimate for the pattern effect
(o in Eq. (2)) of 0.5 W m2°C ! (Forster et al., 2021), we find values for Equilibrium Climate Sensitivity (ECS) of 3.24 [1.92
to 5.15] °C for the AR6 framework. This estimate of ECS is quite similar to the AR6 assessment of 3.0 [2.0 to 5.0] °C given
in Table 7.13 of Forster et al. (2021). Overall, our estimates of EffCS and ECS within the AR6 framework compare quite well
with values reported by several other recent analyses of the climate system (Rugenstein et al., 2020; Skeie et al., 2024; Armour

et al., 2024).
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The computational efficiency of the EM-GC allows for probabilistic projections on future warming that rely on
consideration of the uncertainty in the magnitude of ERF from tropospheric aerosols as well as climate feedback. Median
projections on end-of-century warming (AT2100) found using our model are higher, by 0.2 °C to 0.4 °C, for the AR6 framework
relative to projections found in the Baseline framework. Both frameworks rely upon the same time series for the future
emissions of GHGs. The larger projected warming within the AR6 framework is driven by AR6 updates to projections of the
atmospheric concentrations of GHGs, the ERF of GHGs, and the temporal evolution of aerosol cooling.

Finally, we evaluate the likelihood of achieving either the goal (1.5 °C) or upper limit (2 °C) warming thresholds of the
Paris Agreement (PA). The AR6 updates to GHGs and aerosols result in a decline in the likelihood of limiting warming to
either 1.5 or 2 °C, compared to Baseline. Below, we give numerical results for only the AR6 framework. Model simulations
using SSP2—4.5 (designed to reflect trends in the absence of further climate policies) and SSP1-2.6 (full implementation of
currently proposed emission targets (Meinshausen et al., 2024)), are found to offer no chance and a 32% chance of limiting
the rise in GMST to 1.5 °C by 2100. Model simulations conducted using SSP4—3.4 (intermediate scenario between SSP1-2.6
and SSP2—4.5) and SSP1—-1.9 (aggressive future reductions in GHG emissions) show probabilities of 3% and 70% of limiting
warming to 1.5 °C by end-of-century. The likelihood of limiting warming to 2.0 °C is found to be 8%, 40%, 85%, and 100%
for the SSP2—4.5, SSP4-3.4, SSP1-2.6, and SSP1—-1.9 scenarios, respectively.

In our earlier work using the EM-GC that relied upon the Baseline framework, we had concluded that the SSP4-3.4
scenario provided a 64% probability of limiting global warming to 2 °C by end-of-century (McBride et al., 2021). The AR6-
based updates to ERFantn considered here result in a lower, 40% probability of achieving this upper limit of the PA.
Nonetheless, the EM-GC based estimates of limiting end-of-century warming to 2 °C for both the AR6 and Baseline
frameworks are more optimistic than is provided by many free-running CMIP6 ESMs. Our results suggest that SSP1-2.6 is the
“two degree pathway”, since this scenario provides an 85% probability of limiting global warming to the upper limit of the

PA.

5. Data and Code Availability

All data used as inputs of EM—GC are available from online resources. We have provided the links to these datasets below.
The compiled input files used by EM—GC are also provided on Zenodo.org at 10.5281/zenodo.14720490 (Farago et al., 2025).
The EM—GC output data is also provided in this Zenodo repository.

e  SSP database (Baseline Framework): https:/tntcat.iiasa.ac.at/SspDb/

e Tropospheric O3 RF (Baseline Framework): https://www.pik-potsdam.de/~mmalte/rcps/

e ARG Radiative Forcing (AR6 Framework): https://doi.org/10.5281/zenodo.5705391

e MEIv2 and MEI.ext: https://psl.noaa.gov/enso/mei/ and https://psl.noaa.gov/enso/mei.ext/

e  PDO: http://research.jisao.washington.edu/pdo/PDO.latest.txt

e COBE SST data used to construct the IOD time series is available at: https://psl.noaa.gov/data/gridded/data.cobe.html
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e  GloSSAC SAOD: https://asdc.larc.nasa.gov/project/GloSSAC

e TSI: https://lasp.colorado.edu/sorce/data/tsi-data/
e  OHC Records:

o Balmaseda: https://www.cgd.ucar.edu/cas/catalog/ocean/oras4.html

o Carton: https://www2.atmos.umd.edu/~ocean/soda3_readme.htm

o  Cheng: http://www.ocean.iap.ac.cn/pages/dataService/dataService.html?navAnchor=dataService

o Ishii: https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global en.html

o Levitus: https://www.ncei.noaa.gov/access/global-ocean-heat-content/
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