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Abstract.

Since the start of the 21st century, the European Alpine region has faced unprecedented low-flow conditions and drought
events, severely impacting sectors dependent on reliable water availability, such as hydropower production, agriculture, and
transportation. The growing frequency and severity of these low-flow conditions have led to a need for early warning systems.
In this study, we present a novel machine learning (ML) aided hybrid forecasting framework designed to enhance sub-seasonal
low-flow predictions in the European Alps. By harnessing the statistical power of ML and integrating diverse data sources,
we trained 11 models using the Temporal Fusion Transformer (TFT) algorithm. These models incorporate features such as
European Atlantic Weather Regimes (WR) for capturing large-scale atmospheric circulation patterns, in-situ streamflow obser-
vations for initial conditions, and process-based predictions from the European Flood Awareness System (EFAS). Our results
show that the hybrid framework, even when using only WR data, outperforms climatology. The best results are achieved by
combining observational data with process-based model data (raw EFAS output), underscoring the value of integrating diverse
data sources. The models effectively capture initial condition persistence and correct biases in the raw EFAS output. Based on
the Continuous Ranked Probability Skill Score (CRPSS), the best model effectively extends the skilful forecast horizon by 5
days on average across all stations during low flow periods. Furthermore, the interpretability of the TFT model provides valu-
able insights, identifying glacier coverage as a key catchment feature influencing model performance. Future research should
further explore the connections between hydrological features and prediction skill, as well as the framework’s applicability in

ungauged areas and other regions.
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1 Introduction

Streamflow prediction in the European Alps presents a significant challenge due to the complex joint effects of climatic,
hydrological, and geographical factors (Horton et al., 2022). The region’s diverse topography, combined with distinct seasonal
weather patterns, complicates accurate forecasting, which is crucial for water resource management, flood prevention, and
hydropower generation. Additionally, hydrological patterns in the Alps have changed noticeably with climate change, with a
marked increase in the intensity and frequency of low flow events since the late 20th century (Bard et al., 2015; Brunner et al.,
2023). This trend places added pressure on ecosystems and poses significant challenges for both cross-border and local water
management. The inventory study of Alpine drought impact reports highlights the need for increased preparedness to address
the growing frequency, severity, and complexity of drought impacts in the region (Stephan et al., 2021). The study calls for a
shift from reactive emergency responses to proactive prevention and preparedness actions. Historically, streamflow predictions
in the Alps have relied heavily on hydrological models driven by meteorological forecasts. Yet, the region’s high spatial
and temporal variability in precipitation and snowmelt processes introduces substantial difficulties for accurate streamflow
forecasting (Gurtz et al., 2003; Viviroli et al., 2009; Horton et al., 2022).

To address the uncertainties in hydrological models, various state-of-the-art post-processing techniques have been developed.
These methods aim to bias correct model outputs to improve their accuracy and reliability. Techniques such as quantile mapping
(QM), model output statistics (MOS), and ensemble model output statistics (EMOS) are widely used in the field of hydrome-
teorology (Gneiting et al., 2005; Wilks, 2011; Monhart et al., 2018). Quantile mapping, for instance, aligns the distribution of
model forecasts with observed data, thereby reducing systematic errors that arise, for example, when using coarse-resolution
forecasts in complex topography (Monhart et al., 2018). Alternatively, MOS and EMOS techniques use statistical models,
typically regressions, to relate model outputs to observed data, fitting a parametric distribution to improve forecast accuracy.
Furthermore, Bogner and Pappenberger (2011) demonstrated that error correction methods, particularly those using wavelet
transformations, can significantly improve the accuracy of river discharge predictions by effectively accounting for forecast er-
rors across multiple temporal scales. Nevertheless, many traditional post-processing methods often assume linear relationships
between predictors and outcomes, which may limit their ability to fully capture the complex, nonlinear dynamics influencing
streamflow.

Recent advances in machine learning (ML) have led to the development of new statistics-based streamflow prediction mod-
els. Google’s end-to-end flood warning system is a good example of deploying artificial intelligence (Al) in operational hydro-
logical forecasting (Nevo et al., 2022; Nearing et al., 2024). While traditional hydrological models and data-driven techniques
have independently advanced streamflow prediction, they each have their own disadvantages and often fall short of captur-
ing the full complexity of hydrological systems. This gap has prompted the development of hybrid forecasting frameworks,
with the aim to combine the strengths of both approaches. By combining physical models with ML algorithms, these systems
leverage the understanding of hydrological processes from physical models and the adaptive, statistical capabilities of ML,
providing the opportunity to enhance prediction accuracy (Papacharalampous and Tyralis, 2022; Hauswirth et al., 2022; Slater

et al., 2023; Ng et al., 2023; Wei et al., 2024).
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In their review study, Slater et al. (2023) investigated over 20 published hybrid hydroclimatic forecasting systems, and
categorized them by aspects such as predictands, type of data-driven and dynamical models, model combination methods, and
forecasting horizons. This comprehensive analysis revealed a wide range of setups and applications for hybrid approaches.
Several strengths of these systems were identified, including reduced computational costs and minimized biases, which are
achieved by leveraging large datasets from diverse sources to enhance forecast accuracy. The review also highlighted key
challenges and opportunities, such as the need for physically realistic results, the need for interpretability to boost forecast
uptake by operational centres, and the development of seamless prediction frameworks across different time scales.

A barrier to the broader application of ML-based forecasting systems, especially at regional and continental scale, is the
heterogeneous availability of hydrological data across regions. While some catchments have dense observational records and
calibrated models, others are sparsely gauged or lack consistent datasets. This variability limits the transferability of hybrid
approaches and remains a key obstacle to operational implementation at scale.

In response to this challenge, the present study introduces a hybrid forecasting framework designed to support flexible
model configurations while enhancing sub-seasonal streamflow prediction, with a particular focus on low-flow conditions in
the European Alps. Using interpretable Al, the study also seeks to identify the dominant drivers of forecast skill in Alpine
catchments, ultimately offering water managers a practical framework for decision support.

This study builds on our previous work (Chang et al., 2024), which defined the catchment network of interest and estab-
lished a baseline evaluation of low-flow prediction in the European Alps. Here, we extend that work by introducing a hybrid
forecasting framework that integrates multiple data sources.

The framework combines three complementary data sources: (1) North Atlantic—European Weather Regimes (WR) data,
which capture large-scale atmospheric circulation patterns; (2) in-situ streamflow observations, used for model training, initial
conditions, and persistence information; and (3) process-based streamflow simulations from the European Flood Awareness
System (EFAS), representing conventional physics-based hydrological modelling.

The following sections provide an overview of the study area (Sec. 2). In Sec. 3, we describe the three data sets used in this
study, followed by the methodology in Sec. 4. In Secs. 5 and 6, we present the main results and discuss the interpretability of

the models as well as the limitations of the study. We close with some concluding statements in Sec. 7.

2 Study area

Our study area, the European Alpine space, is defined by the red boundary in Figure 1, spanning across eight Alpine coun-
tries: France (FR), Monaco (MC) Switzerland (CH), Liechtenstein (LI) Italy (IT), Germany (DE), Austria (AT), and Slovenia
(SI). Within the Alpine space, we select 101 stations where we have both observational streamflow data and process-based
streamflow model data available. Station selection is mainly based the availability of continuous observational streamflow
data, requiring that data gaps not exceed seven consecutive days. As a result, the study includes 12 stations in FR, 22 in CH,

1in IT, 29 in DE, 26 in AT, and 11 in SI. These stations are distributed across four Alpine river basins: the Danube, Rhine,
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Rhone, and Po. This study area, and the associated station network, is the same as that analysed in Chang et al. (2024). The
metadata of the selected stations is provided as a supplementary CSV file.

Table 1 summarizes the primary characteristics of the 101 selected stations. Their catchment areas range from 75 to 101,800
km?. Due to this substantial variation in upstream areas, there is a large variability in mean annual streamflow among the
stations, ranging from 118 mm to 1843 mm, with a median of 774 mm per year. As the study area is situated in a mountainous
region, the stations exhibit a wide range of elevations, with median heights spanning from 98 m to 1078 m above sea level. The
Alpine space is home to many glaciers and the catchments have a glacier coverage from zero up to 13.7 %. There are many
lakes and reservoirs in the Alpine space, which can take up as much as 5% of the catchment area. The diverse nature of these

catchments results in complex hydrological behavior, presenting challenges for accurate hydrological modeling.
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Figure 1. Map of the study area - the European Alpine space in France (FR), Monaco (MC) Switzerland (CH), Liechtenstein (LI) Italy (IT),
Germany (DE), Austria (AT), and Slovenia (SI). 101 streamflow stations are selected for this study, including 54 on the River Danube, 32
on the River Rhine, 14 on the River Rhone, and 1 on the River Po. The round markers denote pluvial catchments, and the triangle markers

denote nival catchments.
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Min 25% Median 75% Max

Area (km?) 75 1250 3175 9700 101800
Median elevation (m) 76 229 334 416 1076
Glacier coverage (%) 0 0 0 0.7 13.7
Lake coverage (%) 0 0 0.2 0.4 49

Mean annual streamflow Q4 (mm) 118 424 774 1061 1843
25t percentile annual flow (mm) 92 364 680 961 1609

Table 1. Summary of the main characteristics of the 101 selected catchments.

2.1 Hydrological regimes

We identify two primary types of hydrological regimes in the study area: pluvial and nival regimes. A nival regime, where
streamflow is primarily influenced by snow and ice melt, features a bell-shaped hydrograph. In nival catchments, streamflow
builds from spring, reaches its maximum in early summer (typically June—July) (Figure 2a). By contrast, a pluvial regime is
rainfall-driven. In pluvial catchments, streamflow is highest during the wetter autumn and winter months and lowest in spring
and summer, responding to the annual rainfall cycle (Figure 2b). Two catchments illustrating these regimes from the same
dataset were presented in Chang et al. (2024).

In Figure 2, each grey line represents the climatological streamflow averaged over 1999-2018 for a station. To construct
the climatological distribution, we use a 31-day moving window centred on each day of the year, incorporating all (7-day
smoothed) daily streamflow data from the 20-year period (1999-2018). This approach, which includes data from 15 days before
and after each target day, helps smooth short-term variability and ensures a more stable estimate of climatological streamflow
conditions for any given time of the year. A catchment is classified as nival if the mean climatological streamflow during the
extended summer months (May - October) is higher than during the extended winter months (November - April). Vice versa, a
catchment is classified as pluvial if the mean climatological streamflow is higher in the winter months as compared to summer.
Based on this definition, there are 49 nival stations (mean elevation at 417 m) and 52 pluvial stations (mean elevation at 277
m). The dark black lines in Figures 2a and b represent the median streamflow of the nival and pluvial stations, respectively.
Although some stations exhibit influences from both rainfall and snowmelt, leading to mixed hydrological regimes (e.g., nival-
pluvial), we have classified each station as either nival or pluvial for this study. This decision is made because distinguishing
these in-between regimes can be tricky and may introduce ambiguity in the analysis. Refer to Figure 1 for the spatial distribution

of these two types of catchments.

3 Data

Our study uses three main types of data: meteorological weather regimes, streamflow observations, and process-based stream-

flow simulations. This section provides a description of each dataset.
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Figure 2. Panel (a) - streamflow climatology of all 49 stations that exhibit a nival flow regime. Panel (b) - streamflow climatology of all 52

stations that exhibit a pluvial flow regime. Medians are shown by the thick black lines. Climatology period: 1999-2018.

3.1 Observations

Observational streamflow data serve multiple purposes in this study. They provide target values for the ML models as training
data and are independently used for verifying model performance as separate testing data. We also incorporate observational
data as an input feature in the encoding period to provide initial condition information and recent past information to allow
the model to harness the catchment memory (Sutanto and Lanen, 2022). Daily observational streamflow data were obtained
from the same databases used in Chang et al. (2024), namely the Alpine Drought Observatory (Zun et al.), the Global Runoff
Data Centre (GRDC) (Global Runoff Data Centre (GRDC), 2023), and the HydroPortail in France (Dufeu et al., 2022). Due
to the considerable range in upstream catchment areas, daily streamflow data are converted from volumetric discharge (in
m3/s), facilitating meaningful comparisons across stations and enhancing model training by standardizing input magnitudes

and reducing scale-related biases.
3.2 Weather regimes

The European weather regimes (WRs) represent dominant large-scale atmospheric circulation patterns over the North At-
lantic—European region, which influence weather variability across Europe. Chang et al. (2023) showed that European WRs
have added value for post-processing sub-seasonal hydrological forecasts in Switzerland. In the present study, we extend the
scope of the analysis to the European Alpine space and explore the potential of using the same set of European weather regime
data to predict streamflow in a hybrid setup.

As in Chang et al. (2023), we employ the year-round classification of seven Atlantic-European weather regimes (WRs)
introduced by Grams et al. (2017), in combination with the forecasting methodology described in Grams et al. (2020) and
Biieler et al. (2021). The seven regimes are the Atlantic Trough regime (AT), Zonal regime (ZO), Scandinavian Trough (ScTr),
Atlantic Ridge (AR), European Blocking (EUBL), Scandinavian Blocking (ScBL) and Greenland Blocking (GL) regimes.
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The large-scale circulation patterns associated with each regime are illustrated in Figure 1 of Biieler et al. (2021). The regime
definition used in this study is based on ERAS reanalysis data covering 1979-2019. For each ensemble member and every 6-
hour forecast lead time (or the operational analysis), we calculate seven “weather regime indices" (IWRs), which represent the
normalized projection of the 10-day low-pass filtered normalized 500 hPa Geopotential Height (Z500) anomalies with respect
to an ERAS 1979-2019 calendar day climatology onto the respective regime patterns. From the IWRs, we derive a WR life
cycle (LC), enabling us to assign each time step to one of the regimes, while marking periods lacking regime characteristics as
”No Regime". The methodology for computing IWR and LC attribution follows the steps outlined by Biieler et al. (2021). In
contrast to Chang et al. (2023), here we use a post-processed version of the regimes as described in Osman et al. (2023).

The typical temperature and precipitation anomalies (based on ERAS data) in the European Alpine space associated with the
seven WRs are demonstrated in Figures S1 and S2 in the Supplementary. To further explore the connection between WRs and
local streamflow conditions, we analyse streamflow anomalies at the selected stations, grouped by their respective large river
catchments (Danube, Rhine, and Rhoéne). The Po River catchment is excluded from the analysis as it contains only one station,
which is insufficient to provide a representative assessment of streamflow patterns with respect to WRs for the catchment.
Figure S3 in the Supplementary shows the streamflow anomalies standardised by the standard deviation of the climatology on
days where one of the seven WRs or ”No Regime" is dominant. As we have seen a strong seasonality in the temperature and
precipitation anomalies, in Figure S3 in the Supplementary we present the streamflow anomalies for every season separately.
A positive anomaly indicates a higher-than-normal flow, while a negative standardised anomaly indicates a lower-than-normal
flow. WRs with the strongest and most robust streamflow signal within each season are highlighted with a solid frame for the
strongest positive anomaly or a dashed frame for the strongest negative anomaly. The ZO regime shows an overall low flow
signal. Similarly, the AR regime is associated with substantial low-flow conditions in winter and spring, but shows high-flow
signals in summer and a largely station-dependent signal in autumn. The AT regime, on the other hand, shows strong high-flow
signals for autumn, winter, and spring. The pronounced and robust signals in streamflow as a function of flow regime further
motivate the use of WR data in predictive systems.

Figure 3 illustrates the example of the ZO regime in spring in terms of the surface weather anomalies (panels a & b) alongside
streamflow anomalies (panels ¢ & d). The ZO regime is characterised by an anomalous low-pressure system over Greenland
and an anomalous high pressure system in mid-latitudes extending over southern and central Europe. This configuration is
associated with in a fairly zonal and strong jet stream. The high-pressure system covering our study area further leads to
generally warm and dry conditions. On spring days dominated by the ZO regime, a majority (70) of the stations experience
lower-than-normal flow conditions. However, the higher-than-normal temperatures accelerate snow and ice melt, leading nival
stations to experience higher-than-normal flow conditions (Figure S3e in the Supplementary). The ZO regime is further associ-
ated with warmer and drier than normal conditions in summer and autumn (Figures S5 and S6 in the Supplementary), leading
to lower-than-normal flow conditions at most stations during these seasons.

As a comparison example (Figures S4 and S7 in the Supplementary), the Atlantic Ridge (AR) regime is characterised by
an anomalous high-pressure system over the Atlantic, hence the name “Atlantic Ridge". This high-pressure system creates an

anticyclonic circulation, advecting cold and dry air from the polar region. Consequently, northern and central Europe tend to
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Figure 3. Composite of surface weather anomalies and streamflow anomalies during Zonal (ZO) regime days in spring. (a) surface temper-
ature, (b) daily accumulated total precipitation, (c) standardized streamflow anomaly for different stations (repeated from Figure S3y in the

Supplementary), and (d) standardized streamflow anomalies displayed on a map of the study area.

experience colder and drier conditions than normal. The reduced temperatures slow down the melting of snow and ice in spring,
and the lack of precipitation further contributes to lower-than-normal flow conditions at the majority of stations (Figure S3m
in the Supplementary). In winter, AR is the regime with the strongest lower-than-normal flow anomaly signal. These examples
show how the analysis of WR behaviour can help to gain physical insights into how the inclusion of WR data sources can give
predictive skill within a model.

Figure S8 in the Supplementary illustrates composite streamflow anomalies for days dominated by specific WRs, with

varying lag days applied, highlighting the persistence and lasting impact of WRs on streamflow conditions.
3.3 Process-based information - EFAS

In this study, we explore process-based information using the streamflow data product from the European Flood Awareness
System (EFAS, https://european-flood.emergency.copernicus.eu/en). This dataset is chosen for its comprehensive gridded cov-
erage (5 km x 5 km for EFAS v4.0) over Europe, at multiple forecast horizons, and its operational application in real-time flood

forecasting systems.
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Operational since 2012, EFAS is part of the Copernicus Emergency Management Service (CEMS, https://emergency.copernicus.
eu/) and delivers hydrological forecasts and simulations twice daily at 6-hourly steps and kilometer-scale resolution for Euro-
185 pean river basins. EFAS delivers extensive flood risk assessments and issues flood notifications with a lead time of up to 15
days. Additionally, extended range (46-day) and seasonal (7-month) forecasts are available. These simulations are produced
from the fully-distributed and physics-based hydrological model LISFLOOD (De Roo et al., 2000). Detailed model documen-
tation can be accessed at https://ec-jrc.github.io/lisflood-model/Lisflood_Model.pdf. For simplicity,”EFAS" hereafter refers to
both the LISFLOOD model and its streamflow data products.
190 The 101 stations selected for this study are all EFAS reporting stations. Calibration in EFAS is conducted at reporting
stations, though not all stations are calibrated, depending on data quality and catchment area size (only catchments larger than
500 km? are calibrated). In total, the station network is composed of 73 calibrated EFAS station and 28 without calibrationss,
same as in Chang et al. (2024).
We extract both EFAS reanalysis and EFAS reforecast datasets for this study. To ensure model consistency, both datasets
195 used are based on EFAS v4.0, which has a spatial resolution of 5 km x 5 km. The performance of EFAS outputs is regularly
evaluated and shows consistent improvements (CEMS, 2023; Bartholmes et al., 2009). The inter-model comparison study
of Chang et al. (2024) analysed the strengths and weaknesses of EFAS in simulating low flows. The results show that EFAS
output has potential for low flow applications but also highlights a “flashy" behaviour that limits its ability to capture prolonged
low flow events. This study aims to evaluate whether the deployed ML models can effectively extract useful process-based
200 information from EFAS while correcting for its biases and errors, particularly in the context of low flow periods.
Detailed findings and additional information on EFAS can be found in Chang et al. (2024). These EFAS datasets, available
from 1999 to 2018, are transformed from 6-hourly data into a mean daily streamflow time series. This period defines the scope

of our analysis.

4 Method
205 4.1 Temporal Fusion Transformer

The Transformer, a deep learning network model introduced by Vaswani et al. (2017), is a novel architecture primarily based

on the attention mechanism. Unlike previous models, the Transformer eliminates the need for recurrence and convolutions,

enabling highly parallelisable computation. This design allows the Transformer to efficiently model long-range dependencies

by using self-attention, which calculates relationships between all elements in a sequence simultaneously, regardless of their

210 distance. As a result, the Transformer excels at capturing both short-term and long-term dependencies more effectively than
traditional sequential models like recurrent neural networks (RNNs) and long- short-term memory (LSTMs).

Built upon the Transformer architecture, the Temporal Fusion Transformer (TFT) is a state-of-the-art deep learning model

specifically designed for time series forecasting. Introduced by Lim et al. (2021), the TFT combines the strengths of trans-

formers and RNNSs to effectively handle the complex nature of temporal data. The model’s key innovation lies in its ability to

215 capture both long-term dependencies and local patterns within time series data, making it particularly robust for multi-horizon
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forecasting tasks. A notable advantage of the TFT over other popular models is its capability to produce probabilistic forecasts
by predicting multiple quantiles, effectively generating a comprehensive distribution of possible outcomes. This built-in quan-
tile forecasting enables the TFT to inherently account for uncertainties, providing users with valuable insights into potential
outcomes.

The TFT architecture features a sequence-to-sequence structure, interpretable multi-head attention mechanism, variable se-
lection network, and static covariate encoders. Similar to the original Transformer architecture introduced by Vaswani et al.
(2017), the sequence-to-sequence structure combined with multi-head attention allows TFT to capture both local temporal pat-
terns and long-range dependencies. The variable selection network dynamically weighs the importance of each input feature at
every time step, thereby reducing overfitting and increasing the model’s robustness when handling complex data. Additionally,
static covariate encoders integrate context-specific information that remains constant over time, enabling the model to effec-
tively differentiate between entities or stations. Moreover, the TFT excels at handling heterogeneous data sources by ’fusing’
static, known, and observed variables through separate pathways before integrating them into the main architecture, further
improving its forecasting capability across various applications.

Another primary strength of the TFT is its interpretability. Unlike traditional deep learning models, which often operate
as black boxes, the TFT explicitly provides insights into how different input features and individual time steps influence
predictions. This interpretability is facilitated primarily by the multi-head attention mechanism and the variable selection
network, providing information on feature importance and temporal relationships within the data. Such interpretability is
crucial for applications requiring transparent decision-making and enhances trust in the model’s predictions.

The TFT has been applied across various domains with promising results. In finance, it has been used for predicting stock
prices and market trends, leveraging its ability to process and integrate multiple data sources and indicators Hajek and Novotny
(2024). In healthcare, the TFT has shown potential in predicting emergency department admission to optimize staffing levels
Caldas and Soares (2023). The energy sector has also benefited from the TFT’s capabilities, particularly in load forecasting
and renewable energy production prediction, where accurate multi-horizon forecasts are essential for operational planning and
management (Giacomazzi et al., 2023; Jenko and Costa, 2024) .

In this study, we deploy the TFT for streamflow time series prediction given its strengths in handling complex, multi-horizon
forecasts and its ability to incorporate diverse data sources. Streamflow data often exhibit intricate temporal patterns influenced
by various factors such as precipitation, temperature, and catchment characteristics. The attention mechanism of TFT models
can effectively capture these long-term dependencies and localised variations, leading to more accurate and interpretable fore-
casts. Additionally, the ability to include static and dynamic input features allows the model to integrate essential hydrological
and meteorological variables, enhancing the robustness of streamflow predictions. (Liu et al., 2024) showed that Transformer
models are competitive against the most well-established streamflow prediction algorithm, LSTM (Kratzert et al., 2018).

Our forecasting horizon extends up to 32 days, aiming for the sub-seasonal scale (which is defined as beyond 2 weeks (White
et al., 2022)). Spatially, one model is trained for all 101 stations to include as much diverse data as possible (Kratzert et al.,
2024). The encoder period, which captures recent past data before the forecasting horizon, is set to 64 days. The target variable

is the observed daily streamflow. The dataset is split into three periods: a training period from January 1991 to April 2012; a

10
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validation period from May 2012 to June 2015; and a testing period from July 2015 to December 2018. Training runs for a
maximum of 100 epochs, with 100 batches of encoder-decoder sequences randomly sampled from the time series data across
all 101 stations in each epoch. Table S1 in the Supplementary details the specific architecture used.

An attention-based model like the TFT can be computationally intensive due to the explicit modelling of interactions between
input-output elements (Caldas and Soares, 2023). In our case, training requires approximately one to two hours on a high-
performance computing (HPC) cluster using a single core and 15 GB of RAM. The exact time varies depending on the number

of input features, but this is considered computationally manageable.
4.2 Static Features

In the TFT, static features are time-invariant variables used to provide context and differentiate between entities (or stations, in
our case), helping the model make more informed and accurate predictions across different time steps and stations. The static
features we include are summarized in Table 2. These features are chosen for their roles in streamflow generation, particularly
within the Alpine region. The features "Country"”, "Local River", and "Large Basin" (e.g. Rhine or Danube) provide spatial
information, helping to contextualize the catchment within broader hydrological and geographical frameworks.

The catchment area is included for their impact on model performance (Poncelet et al., 2017; Harrigan et al., 2020; An-
dersson et al., 2015; Pappenberger et al., 2015). The challenge for prediction in smaller catchments arises due to greater
hydrological variability, more localized precipitation patterns, and the influence of local features such as land use and soil type.
Additionally, smaller catchments generally have quicker response times to precipitation events, necessitating higher-resolution
data and more detailed modelling approaches.

Elevation is included because it strongly influences precipitation patterns and snow accumulation—particularly in Alpine
regions—thus affecting the timing and magnitude of streamflow. In traditional dynamical models, this relationship is typically
represented with a temperature lapse rate, linking elevation to temperature variations and thus influencing snow accumulation
and melt processes (Andersson et al., 2015).

The flow regime is included to indicate the seasonality of high flow periods and whether a catchment is nival or pluvial.
We believe this distinction has added value for predicting streamflow patterns, as rain-fed catchments respond quickly to
precipitation events, while snow-fed catchments have delayed responses due to snowmelt processes.

Glacier coverage is included to provide insights into the contribution of ice melt to streamflow. Glaciers act as natural
reservoirs, releasing water during warmer months, which can sustain streamflow during dry periods. The presence of glaciers
can therefore delay maximum seasonal flow and moderate annual and monthly runoff variations (Fountain and Tangborn,
1985).

Lakes and reservoirs are included because they have a damping effect on streamflow (Quin and Destouni, 2018). They can
store excess water during periods of high precipitation and release it during dry periods, thus smoothing out the variability in
streamflow. This buffering capacity is essential for understanding the timing and magnitude of flow downstream.

By incorporating these static features, the model can better capture the complex interactions between various catchment

characteristics and their influence on streamflow generation, leading to more accurate and reliable predictions.
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Static Feature Description Class Value
Country country name category FR, CH, IT, DE, AT, or SI
Local River tributary name categorical 54 river names
Large Basin large catchment name categorical Danube, Rhine, Rhone, or Po
Area catchment size in km? numeric 75 - 101800
Elevation median elevation of catchment in m numeric 76 - 1076
Flow Regime type of hydrological regime categorical Pluvial or Nival
Glacier percentage of catchment covered by glacier numeric 0-13.7%
Lake percentage of catchment covered by lake numeric 0-4.9%

Table 2. Summary of static features applied in all models.

4.3 Varying Features

All models include the sine and cosine transformations of the day of the year as varying features. These periodic features help

the model capture seasonal and weekly patterns in the data.
4.3.1 Training

The models are distinguished by their use of different key predictors: Weather Regime Indices (IWR), Weather Regime Life Cy-
cle (WR_LC), Observations (OBS), and EFAS reanalysis data (EFAS). We take a perfect-model-like approach, using reanalysis
data for training instead of forecast data to eliminate forecasting errors in the three model simulation datasets: IWR, WR_LC,
and EFAS. To explore the contribution of these predictors to the hybrid framework, we train 11 models with various com-
binations. The simplest model uses WR_LC, representing the dominant weather regime. To increase data complexity, IWRs
are incorporated to capture the full field of large-scale circulation over the Atlantic. Another model type uses observational
data (OBS), available only at gauged locations. Finally, we introduce EFAS data, which provides process-based information,
benefiting from the EFAS system’s predictive capability. Refer to Table 3 for the different combinations.

Each model is trained using 11 different seeds to assess the model’s stability and robustness. The use of multiple seeds
ensures that the model performance is not dependent on a particular initialization and helps in evaluating the variability in the

results. The model output consists of seven streamflow quantiles for each station and 32 days of lead time.
4.3.2 Testing/Forecasting

We first evaluate the trained model with reanalysis data the models have not yet seen in the training and validation period. To
assess the true forecasting ability of the trained models in a quasi-operational setting, we replace the WR and EFAS reanalysis
data with their respective reforecast datasets during the decoding period, but only for the testing phase (July 2015 to December

2018). Unlike the reanalysis data, which provides a single deterministic value, the reforecast datasets consist of 11 ensemble
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Model Name TFT  Static Features WR_LC IWR OBS EFAS
RAW EFAS X
WR_LC X X X
IWR X X X

OBS X X X

WR_LC+0OBS X X X X

IWR+OBS X X X X
EFAS X X X
WR_LC+EFAS X X X X
IWR+EFAS X X X X
OBS+EFAS X X X X
WR_LC+OBS+EFAS X X X X X
IWR+OBS+EFAS X X X X X

Table 3. Summary of model compositions.

members. As a result, the TFT model generates 11 ensemble outputs for each of the 11 seeds, with each output consisting of 7

quantiles.
4.4 Verification
Modified Kling—Gupta efficiency Skill Score (KGESS”)

The Kling—Gupta Efficiency (KGE) metric (Gupta et al., 2009) is widely used for hydrological model evaluation, and a revised
form (KGE') was later proposed by Kling et al. (2012) to reduce dependencies among its components. KGE’ provides an
integrated view of model performance across correlation, bias, and variability. A detailed description of KGE’ was provided in
Chang et al. (2023). The KGE’ skill score is calculated by comparing the KGE’ of the forecast to that of a reference model. It

is defined as:

KGE — KGE,¢
KGESS = 1
KGEerf — KGEqes (1)

The choice of benchmark can influence the measure of skill (Pappenberger et al., 2015), and here we use mean flow as
the benchmark. Knoben et al. (2019) demonstrated that we can assume a KGE’ value of -0.41 for mean flow (KGE_clima =
1 - sqrt(1+140) = -0.41, where ps = u,, correlation coefficient is 0, and the standard deviation of climatology is also zero).
The same benchmark was applied in the assessment of GIoFAS by Harrigan et al. (2020) and has since been employed in the
evaluation of EFAS (Chang et al., 2024), supporting its application here. The highest KGESS’ is 1, while a value of 0 indicates
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that the forecast has no skill compared to the mean flow. Negative values indicate that the forecast is worse than the mean flow

prediction.
4.4.1 Continuous Ranked Probability Skill Score

The Continuous Ranked Probability Skill Score (CRPSS) is a widely used metric for evaluating the accuracy of probabilis-
tic forecasts. The CRPSS is derived from the Continuous Ranked Probability Score (CRPS), which measures the difference
between the predicted and reference distributions (Hersbach, 2000).

Similar to the KGESS’, CRPSS is then calculated by comparing the CRPS of the forecast to that of a benchmark forecast, a

climatology model in this case. It is defined as:

CRPSS — 1 — CRPSforecast (2)
CRPSclimalology

The climatology model is derived from the observed streamflow over the testing period as our reference. Same as KGESS’, a
CRPSS value of 1 indicates a perfect forecast, while a value of 0 indicates that the forecast has no skill compared to climatology.

Negative values indicate that the forecast is worse than the climatology.

S Results
5.1 Reanalysis

In this section we present results obtained from the 11 trained TFT models with different input datasets (see Table 3) and
evaluate their skill in modelling streamflow during low-flow days at the selected 101 stations across our study area. We begin
by analysing the models’ performance with reanalysis data inputs, using KGESS’ (benchmarked against a mean flow model)
to assess their skill. Although the reanalysis input data is deterministic, the TFT model produces probabilistic outputs in the
form of seven quantiles. While the model’s performance could theoretically be evaluated using ensemble verification scores
like CRPSS, we opt to use KGESS’ for comparing the trained models’ reanalysis testing results to the raw deterministic EFAS
output.

Figure 4 shows the KGESS’ for low flow periods, averaged across all stations for each of the 11 simulation seeds. Results
are presented for all 101 stations (pink) and only the non-calibrated stations (teal). Even the TFT model with only the dominant
weather regime type as the key predictor (WR_LC) is skilful against mean flow. Changing the WR information from only
the dominant type to the seven IWRs in the TFT model /WR results in an increase in skill. The skill of the WR TFT models
demonstrates that the TFT algorithm is able to capture the connection between WRs and streamflow as shown in Section 3.2,
and the models can benefit from the more detailed information of the full Z500 field provided by the IWRs. These results
quantify the fundamental relevance of large-scale atmospheric processes in determining streamflow during low-flow situations.

When in-situ observational data are available, the TFT model OBS, which uses observed streamflow data in the encoder

period as initial condition (can be considered as building a ‘persistence-like’ model), reaches a similar skill as the TFT model
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IWR with a reduced KGESS’ variability. The reduced variability from the different seeds indicates a more stable and robust
model. Although the TFT model IWR and OBS have similar skill individually, when combining WR information with observed
streamflow data, we observe a clear jump in skill for TFT models WR_LC+OBS and IWR+OBS.
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Figure 4. Comparison of KGESS’ model performance with various feature combinations, evaluated using reanalysis data on low-flow days
during the testing period (July 1, 2015 - December 28, 2018). Each model configuration includes 11 seeds. Refer to Table 3 for information
on model setups. Dotted lines represent the reference KGESS’ from raw EFAS output. Results averaged over all 101 stations are shown in

light pink, while teal represents non-calibrated EFAS stations.

Among the trained models, the largest increase in skill occurs when process-based information—in this case, EFAS out-
put—is provided as input. Specifically, the TFT model EFAS outperforms the raw EFAS output itself (pink dotted line in
Figure 4). As shown previously, for models using weather regimes (WR), incorporating full-field information from the seven
IWRs (TFT models IWR and IWR+OBS) provides higher skill than using WR_LC alone (TFT models WR_LC+EFAS vs. TFT
model IWR+EFAS). However, once process-based information (EFAS) is included, no differences in skill improvement is ob-
served from the choice of WR data (WR_LC+EFAS vs. IWR+EFAS). Adding large-scale circulation information becomes
redundant in the presence of EFAS data.

Introducing observed streamflow data along with EFAS output (OBS+EFAS) further improves model skill, yet again, ad-
ditional inclusion of WR information provides no extra benefit. This limited utility of WR data in models using EFAS likely
arises because EFAS already captures most meteorological signals that WRs represent. Consequently, ML models can achieve
optimal performance by selectively utilising relevant, non-redundant inputs, ensuring more efficient and precise forecasting. A

similar pattern is evident when evaluating all initialisation dates as well as high-flow days specifically (not shown here).
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For the non-calibrated EFAS stations (teal boxes in Figure 4), the same general evolution of model performance is observed
as for all stations. For the TFT models using EFAS input, the proposed framework brings the performance of non-calibrated

stations to a level comparable to the raw EFAS output averaged across all stations (pink dotted line).
5.2 Forecast mode

To assess the operational potential of our hybrid models, we select six out of the eleven trained models based on their KGESS
scores from the previous section. The six selected models are the TFT models: IWR, OBS, IWR+OBS, EFAS, OBS+EFAS,
and WR_LC+OBS+EFAS. Predictions are generated using reforecast data, incorporating uncertainties from the meteorological
forecasts embedded in the WR and EFAS reforecast data. Figure 5 presents the CRPSS values for the raw EFAS reforecast (in
dark blue) as a reference, alongside the six selected models, evaluated on low flow days between July 1, 2015, to December
31, 2018 (testing period).

The results demonstrate that the selected models, despite being trained with reanalysis data, consistently exhibit forecasting
skill relative to climatology, achieving CRPSS values above zero. As shown in Figure 5a (all stations), the TFT model /WR
(green line) maintains positive CRPSS across the entire 32-day forecast horizon. Although the TFT model /IWR does not
outperform the raw EFAS system, this result indicates that, in the absence of other forecasting models, using the WR-based
model alone still provides substantial improvements over climatology. Additionally, the /WR model demonstrates notably lower
variability across stations compared to RAW EFAS, reflecting greater consistency in its performance. When considering non-
calibrated stations exclusively (Figure 5b), the TFT model /WR matches the median CRPSS of RAW EFAS for the first two
weeks and surpasses it at longer lead times, although uncertainties associated with this improvement are relatively large. The
rest of the TFT models reach a higher skill compared to the raw EFAS model. This improvement is largest at the beginning of
the forecast period, with the skill differences between the trained models and the raw EFAS model reducing over time.

Figure 6 illustrates the performance of different TFT models at four selected stations, one from each major basin. These
stations exhibit patterns consistent with those discussed for Figure 5, with one notable exception at Station Rheinhalle. At this
station, the performance of the TFT models EFAS and OBS+EFAS is indistinguishable, suggesting that for large catchments,
incorporating observed initial conditions provides limited additional value once process-based EFAS information is included.
This result aligns with previous findings indicating that EFAS typically performs better in larger catchments, particularly for
flood forecasting (Alfieri et al., 2014).

The TFT model OBS demonstrates higher skill than the raw EFAS model, and it even surpasses the TFT model EFAS during
the first 5 days based on median station values, highlighting its ability to capture the persistence of low-flow conditions. This
persistence effect is more pronounced at non-calibrated stations, where the OBS model maintains comparable skill to the EFAS
model across the entire 32-day forecast horizon. However, when considering all stations, the forecasted streamflow data from
EFAS improves the TFT model skill from around day 5 to two weeks ahead, where the TFT model EFAS consistently out-
performs the OBS model. During high-flow periods (Figure S10b, Supplementary), the initial streamflow persistence provides
the OBS model comparable skill to the EFAS model only on day 1. Beyond that, its skill rapidly declines, dropping below

climatology after roughly one week. This contrast emphasizes that while the OBS model effectively leverages persistence to
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Figure 5. Comparison of CRPSS over a 32-day lead time for selected models with various input features. Information on model setup can be

found in Table 3. The raw EFAS output, shown in blue, serves as a baseline. The shaded regions represent the interquartile range of CRPSS

values across 101 stations and 11 seeds during the testing period (July 1, 2015 - December 28, 2018). Panel (a) presents results for low flow

days across all stations, while panel (b) focuses on non-calibrated EFAS stations on low flow days. Additional year-round and high-flow

results are provided in Figure S10 in the Supplementary.

capture slower dynamics typical of low-flow conditions, it struggles to maintain predictive skill under faster, more dynamic

high-flow conditions.

The best performing models are the TFT model OBS+EFAS and the TFT model WR_LC+OBS+EFAS, both achieving

similar CRPSS values that surpass all other models during the first weeks. While certain individual stations in specific seasons
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Figure 6. CRPSS comparison at selected stations. The panel name specifies the station and river basin names. Results include low flow

periods only.

may benefit from the inclusion of WR data, the overall added value of WR across all stations is not evident. Given that the
TFT model OBS+EFAS attains comparable skill as the TFT model WR_LC+OBS+EFAS with less input data, it is regarded as
the most effective model. The skill observed when combining in-situ observations with EFAS inputs likely arises from their
complementary nature. In-situ observations provide precise, localized data that enhances the initial conditions, while EFAS
offers broad-scale hydrological insights. This combination allows the model to leverage the accuracy of in-situ data while still
benefiting from the broader coverage and predictive capability of EFAS, ultimately improving overall forecast skill.

The skill gap between the TFT models and the raw EFAS becomes difficult to distinguish after week two when considering
all stations (Figure 5a), suggesting that the models may reach a ceiling of possible improvement with the current setup. When
focusing solely on non-calibrated stations, the TFT models converge to a similar CRPSS value while maintaining a clear gap
above the raw EFAS. This is likely because these stations present greater discrepancies and bias compared to observation,
allowing the models to derive more valuable information from the input features. It’s also worth noting that the TFT models
notably reduce the IQR of the raw EFAS, particularly at non-calibrated stations. The variability due to seeds is shown to be
relatively small (see Figure S9 in the Supplementary), suggesting the variability in Figure 5 is due to the differences among
stations.

We investigate the improvement in CRPSS achieved by the TFT model OBS+EFAS for the first three days of forecasts
relative to the raw EFAS model for the different subgroups (see Figure 7 and Table Al in the Appendix). Low flow peri-
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ods experience slightly less CRPSS improvement compared to high flow periods, indicating the model’s greater efficacy in
correcting high flow events. Seasonally, the largest improvements are observed during the summer season of JJA (June-July-
August), while the other seasons, particularly MAM (March-April-May), exhibit more modest improvements. The high level
of improvements in JJA could be due to the fact that more high flow events occur during the summer months.

Supporting the results shown in Figure 5, a comparison between calibrated and non-calibrated EFAS stations in Figure 7a
shows that non-calibrated stations experience greater improvements with the TFT model OBS+EFAS. This indicates the TFT
model is particularly effective at compensating for initial biases or deficiencies in the raw EFAS forecasts when calibration is
absent. The spatial pattern in Figure 7b further illustrates that these improvements are not uniformly distributed, with the highest
gains concentrated at non-calibrated stations. Such variability underscores the importance of targeted implementation of TFT
models, suggesting that forecasting systems could achieve optimal effectiveness by prioritising deployment at locations where
traditional model calibration is limited or absent, thus enhancing decision-making in areas currently underserved by calibrated
forecasts.

Figure 8 compares the number of skilful days for the TFT model OBS+EFAS versus the raw EFAS model during low-
flow periods across different CRPSS thresholds. The majority of stations are positioned above the 1:1 line, indicating a clear
extension of the skilful horizon for the TFT model OBS+EFAS. Notably, the stations with the greatest gains in skilful days are
predominantly non-calibrated stations, demonstrating the model’s effectiveness in improving forecasts where the raw EFAS
model typically underperforms. It is important to note that several stations may be represented by the same point on the plot,
especially when they share the same marker shapes, which can make overlaps difficult to see. This overlap highlights the

consistency of these skill gains across similar station types.

6 Discussion
6.1 Interpretability
6.1.1 Feature importance

Figure 9 presents the feature importance analysis of the TFT model ‘WR_LC+OBS+EFAS during the testing phase with
reanalysis data. The static features generally exhibit varying levels of importance across different stations, reflecting the distinct
static characteristics unique to each location. Since static features are constant and time-invariant, their importance remains
consistent across different initialisation dates for a given station. Figure 9a presents the percentage importance of each static
feature across all stations and random seeds, ordered by their corresponding median values. Glacier coverage stands out with the
highest median importance, highlighting its critical role in streamflow generation in the Alpine region. Although the median
and mean importance percentages show only slight differences across the static features, there are noticeable differences in
their variabilities. Nevertheless, the mean importance values cluster around the baseline, suggesting that no single static feature

overwhelmingly dominates the model’s predictions.
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Figure 7. CRPSS improvement achieved by the best-performing TFT model (‘OBS+EFAS’) compared to the raw EFAS output. Panel
(a) displays the results categorized into various subgroups. Detailed descriptions of these subgroups can be found in Table Al. Panel (b)
illustrates the low flow results spatially on a map. Calibrated stations are represented by circles, while non-calibrated stations are indicated

by diamonds.

This large spread in the distributions indicates that the relevance of static features is highly station-specific. Different stations
rely on different static features to varying extents, likely due to their unique geographical or environmental characteristics. The
absence of a universally dominant feature across all stations implies that the model does not rely heavily on a fixed set of
static features for its predictions. Instead, it demonstrates adaptability, leveraging a diverse set of features depending on the
specific context of each station. The balanced yet low overall importance of static features may indicate that these features,
while informative, are not the primary drivers of the model’s predictive performance. This could suggest that other types of
features, such as temporal or dynamic factors, are more critical in predicting streamflow. Additionally, the variability in feature
importance highlights the complexity of the underlying factors influencing streamflow and suggests that a more nuanced or

localised approach might be necessary for further refinement.
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Figure 8. Skillful forecast horizon in days by TFT model ‘OBS+EFAS’ compared to the raw EFAS output. The comparison includes both
calibrated (circles) and non-calibrated (triangles) stations, with marker colors representing the magnitude of the threshold. The diagonal line
indicates where the skillful forecast days of the TFT model ‘OBS+EFAS’ equals that of the raw EFAS output. Points above the line indicate

a gain in skillful days with TFT model ‘Obs+EFAS’, while points below indicate a reduction.

Figure 9b illustrates the frequency with which each feature appears as one of the three most important features for a station.
The figure suggests that features of glacier coverage, catchment area, catchment elevation, local river name, and lake coverage
are more frequently among the top three important features, consistent with Figure 9a. However, the differences among these
features are relatively small (also consistent with Figure 9a).

Overall, the model shows signs of generalisation and flexibility, effectively using the most relevant features based on the
specific conditions of each station. This context-dependent feature importance emphasises the necessity of considering local
conditions in predictive modelling, which may guide future efforts to improve feature selection and model accuracy.

While the importance of static features does not change from one prediction to another, the importance of encoder and de-
coder variables does. Figures 9c and d show the importance of the dynamic features in the TFT model. The encoder features
(Fig.9c) show that, in the encoder period, EFAS streamflow output is the most important feature, followed by streamflow ob-
servations. The high feature importance of EFAS data is somewhat surprising, as one might expect the initial condition from
streamflow observations to carry more weight in shaping short-term predictions. This outcome suggests that the model priori-
tises the broader hydrological context and process-based forecasts provided by EFAS over the localised conditions captured
by direct observations. In the decoder period (Fig.9d), EFAS input clearly dominates, as expected, given its role in providing
process-based information. WR data is deemed least important in both periods, which matches the results where WR data

addition to TFT model OBS+EFAS did not further improve skill (cf. Fig. 4).
6.1.2 Attention

The attention and self-attention mechanisms are fundamental components of transformer-based algorithms, allowing the model

to attend to the most informative part of the input by assigning varying importance to different time steps (Vaswani et al., 2017).
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Figure 9. Feature analysis of TFT model WR_LC+OBS+EFAS’. Panel (a) displays the importance of each static feature across all stations
and seeds as box plots, ordered by their corresponding median values. The red dotted line (11.1%) represents the reference level for equal
importance among features, and the red cross markers indicate the mean importance of each feature. Panel (b) shows the frequency with
which each static feature appears as a top three important feature, with the red dotted line representing the reference point based on a random

order of features for each station, Panels (c) and (d) illustrate the feature importance for the encoder and decoder features, respectively.

Figure 10a shows the analysis of the average attention weights assigned to each time step (in days) during the encoding period,
effectively illustrating how the model prioritises information from different days. Days closer to the start of the prediction pe-
riod (i.e. decoder phase) generally receive higher attention weights. However, this relationship is not strictly linear, as evidenced
by the fluctuations seen in Figure 10c and d. These panels show specific instances where certain days within the encoding pe-
riod exhibit higher importance, likely due to their relevance in capturing significant hydrological events that influence the
forecast.

Figure 10b, inspired by Padrén et al. (2025), presents the mean attention weights for each initialisation across all stations
for the year 2018. The plot shows a pattern where the attention gradually increases as key events approach the start of the
forecasting horizon (seen as sloped straight lines representing a fixed point in time), indicating the model’s ability to dynami-
cally adjust its focus based on the temporal proximity of important hydrological occurrences. This behaviour, also observed in

Padrén et al. (2025), suggests that the model is not merely relying on recent data but is instead selectively emphasizing time
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steps that contribute most effectively to the prediction, highlighting the adaptive nature of the attention mechanism in capturing
relevant temporal features, that is events with hydrological relevance in this case.

Moreover, when connecting to the WR analysis in Section 3.2, this attention pattern raises an interesting opportunity for
further investigation. Specifically, one could analyse the dominant WR types that coincide with days receiving higher attention
weights. Such an analysis could provide insights into how specific large-scale circulation patterns influence the model’s focus
and, consequently, the predictive skill during critical periods. This could also help refine the model’s interpretability, enabling
a clearer understanding of how the TFT model leverages both temporal and atmospheric information to enhance hydrological

forecasts.
6.2 Limitations and outlook

This section outlines the limitations of the study and proposes potential directions for future research to address these gaps and

build upon the current findings.

— This study develops a hybrid forecasting framework using diverse input data types, but it does not compare the proposed
TFT approach directly with conventional post-processing methods such as quantile mapping or simpler ML models.
Simpler ML methods typically require separate models for each station, limiting their ability to capture spatial relation-
ships and complicating model management. While simpler models might initially appear computationally more efficient,
advancements in transformer-based deep learning now support efficient parallel processing. Additionally, simpler mod-
els often provide less interpretability compared to attention-based deep learning approaches, which help identify key
drivers of predictability. Future research could systematically evaluate the trade-offs between computational efficiency,

interpretability, and predictive skill by directly comparing TFT with simpler ML methods under controlled conditions.

— The process-based hydrological data used in this study are from EFAS v4.0, which was the latest version providing a
complete set of reanalysis data at the time of our framework development. Although EFAS v5.0 (https://confluence.
ecmwf.int/display/CEMS/EFAS+versioning+system), a newer version offering higher spatial resolution and other im-
provements, became available during the study period, we selected EFAS v4.0 to ensure data completeness and con-
sistency. Given the performance of the hybrid framework with EFAS v4.0, we expect it to perform similarly well with
EFAS v5.0. Future research should evaluate the framework’s application using EFAS v5.0 to assess potential gains from
enhanced model inputs, as well as explore its adaptability to other process-based models to support broader generaliz-

ability.

— The spatial distribution of the selected stations within the study area is uneven, with certain regions, like the river Po
in Italy, being under-represented, which is due to the availability of high-quality observational data. A more balanced
station distribution could potentially reduce spatial discrepancies in model performance, thereby providing a more com-

prehensive assessment of the model’s generalizability across the Alpine region.
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Figure 10. Attention weight analysis of TFT model “‘WR_LC+OBS+EFAS’. The visualisation is adapted from the approach by Padrén et al.
(2025). Panel (a) shows the attention weight per station averaged over all seeds and initialisation dates, with each thin line representing a
station and the thick purple line indicating the median attention weight across all stations. Panel (b) presents a heatmap of attention weights,
where each row corresponds to one initialisation date averaged over all stations and seeds, focusing on the year 2018. Panels (c) and (d)

provide examples of attention weights at stations Rheinhalle (CH) and Neudorf bei 11z (AT) initialised on 2018-07-17.
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— Our results show that the greatest improvements in skill are observed at the non-calibrated EFAS stations, hihglighting the
potential of the hybrid model in ungauged areas (Figure 7). To assess its generalization ability, future studies should test
the model on unseen non-calibrated stations, offering insights into its applicability for enhancing hydrological forecasting

in data-scarce regions.

— Our study does not evaluate the hybrid system’s ability to assimilate human influence or directly incorporate anthro-
pogenic influences, such as the extensive network of reservoirs used for hydropower generation and flood protection,
which significantly alter natural streamflow patterns. Future research should focus on evaluating the ML model’s ability
to capture patterns associated with human activities and identifying additional predictors or proxies that incorporate hu-
man factors to enhance predictive accuracy. Despite challenges in data availability, such work can potentially lead to a

deeper understanding of the hydrological processes in regions affected by human activities.

7 Conclusions

In this study, we develop a hybrid framework for low-flow forecasting in the European Alps using the Temporal Fusion Trans-
former (TFT). We systematically evaluate the contribution of three distinct datasets: large-scale circulation weather regime
data, in-situ observation data, and process-based model simulation data from the European Flood Awareness System (EFAS).

Our analysis of the physical connections between hydrological behaviour and weather regimes forms the basis for our
selection of input features, ensuring that the model does not merely represent a black box but is instead grounded in an
understanding of the physical system. The findings suggest that the TFT model, even when using only the weather regime data,
achieves a forecast skill superior to that of climatology. The model performance further improves when combining weather
regime data with observation data, underscoring the value of integrating diverse sources of information. The inclusion of
process-based simulation data from EFAS leads to another significant enhancement in model performance. However, once the
process-based information is incorporated, adding weather regime data does not yield further improvements in forecast skill.

Additionally, we quantify the sources of model performance by analysing feature importance and attention weights within
the model. This analysis provides deeper insights into how each data source contributes to the forecasting skill, highlighting
the critical role of process-based simulations when combined with observational data.

In conclusion, the hybrid framework developed here demonstrates clear bias correction capabilities, with predictive skill
surpassing that of traditional approaches and enabling seamless forecasting up to a one-month horizon. Achieving this level
of performance is made possible by leveraging the latest deep learning algorithm TFT, alongside the integration of diverse,
large datasets. This approach enables the hybrid system to address catchments with high spatial variability while delivering
physically realistic results, paving the way for more accurate and reliable low-flow predictions in complex environments beyond

the Alps.
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Appendix A:

Table A1. Description of the different temporal analysis subgroups

Subgroup Descriptions

All All stations and all initialization dates
High All stations and only initialization dates where at least one quarter of the decoder periods experience flow higher than the
85th percentile of climatological flow
Low All stations and only initialization dates where at least one quarter of the decoder periods experience flow lower than the
15th percentile of climatological flow
DJF All stations and only initialization dates in the months of December, January, and February

MAM All stations and only initialization dates in the months of March, April, and May

JJA All stations and only initialization dates in the months of June, July, and August
SON All stations and only initialization dates in the months of September, October, and November
Cali Only calibrated stations (73). All initialization dates included.

NonCali Only non-calibrated stations (28). All initialization dates included.
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